1
|
Bai JW, Qiu SQ, Zhang GJ. Molecular and functional imaging in cancer-targeted therapy: current applications and future directions. Signal Transduct Target Ther 2023; 8:89. [PMID: 36849435 PMCID: PMC9971190 DOI: 10.1038/s41392-023-01366-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Targeted anticancer drugs block cancer cell growth by interfering with specific signaling pathways vital to carcinogenesis and tumor growth rather than harming all rapidly dividing cells as in cytotoxic chemotherapy. The Response Evaluation Criteria in Solid Tumor (RECIST) system has been used to assess tumor response to therapy via changes in the size of target lesions as measured by calipers, conventional anatomically based imaging modalities such as computed tomography (CT), and magnetic resonance imaging (MRI), and other imaging methods. However, RECIST is sometimes inaccurate in assessing the efficacy of targeted therapy drugs because of the poor correlation between tumor size and treatment-induced tumor necrosis or shrinkage. This approach might also result in delayed identification of response when the therapy does confer a reduction in tumor size. Innovative molecular imaging techniques have rapidly gained importance in the dawning era of targeted therapy as they can visualize, characterize, and quantify biological processes at the cellular, subcellular, or even molecular level rather than at the anatomical level. This review summarizes different targeted cell signaling pathways, various molecular imaging techniques, and developed probes. Moreover, the application of molecular imaging for evaluating treatment response and related clinical outcome is also systematically outlined. In the future, more attention should be paid to promoting the clinical translation of molecular imaging in evaluating the sensitivity to targeted therapy with biocompatible probes. In particular, multimodal imaging technologies incorporating advanced artificial intelligence should be developed to comprehensively and accurately assess cancer-targeted therapy, in addition to RECIST-based methods.
Collapse
Affiliation(s)
- Jing-Wen Bai
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
| | - Si-Qi Qiu
- Diagnosis and Treatment Center of Breast Diseases, Clinical Research Center, Shantou Central Hospital, 515041, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, 515041, Shantou, China
| | - Guo-Jun Zhang
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
| |
Collapse
|
2
|
Gao Y, Yang R, Lou K, Dang Y, Dong Y, He Y, Huang W, Chen M, Zhang G. In vivo visualization of fluorescence reflecting CDK4 activity in a breast cancer mouse model. MedComm (Beijing) 2022; 3:e136. [PMID: 35711853 PMCID: PMC9187519 DOI: 10.1002/mco2.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/06/2022] Open
Abstract
The CDK4/6-Rb axis is a crucial target of cancer therapy and several selective inhibitors of it have been approved for clinical application. However, current therapeutic efficacy evaluation mostly relies on anatomical imaging, which cannot directly reflect changes in drug targets, leading to a delay in the selection of optimal treatment. In this study, we constructed a novel fluorescent probe, CPP30-Lipo/CDKACT4, for real-time monitoring of CDK4 activity and the therapeutic efficacy of its inhibitor in HR+/HER2- breast cancer. CPP30-Lipo/CDKACT4 exhibited good optical stability and targetability. The signal of the probe in living cells decreased after CDK4 knockdown or palbociclib treatment. Moreover, the fluorescence intensity of the tumors after 7 days of palbociclib treatment was significantly lower than that before treatment, while no significant change in tumor diameter was observed under magnetic resonance imaging. Overall, we developed an innovative fluorescent probe that can monitor CDK4 activity and the early therapeutic response to CDK4 inhibitors in living cells and in vivo. It may provide a new strategy for evaluating antitumor therapeutic efficacy in a clinical context and for drug development.
Collapse
Affiliation(s)
- Yi‐Yang Gao
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Rui‐Qin Yang
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Kang‐Liang Lou
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yong‐Ying Dang
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yuan‐Yuan Dong
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yue‐Yang He
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Wen‐He Huang
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
| | - Min Chen
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Cancer Research Center of Xiamen UniversitySchool of Medicine, Xiamen UniversityXiamenChina
| | - Guo‐Jun Zhang
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Cancer Research Center of Xiamen UniversitySchool of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
3
|
Moore KM, Cerqueira V, MacLeod KG, Mullen P, Hayward RL, Green S, Harrison DJ, Cameron DA, Langdon SP. Collateral-resistance to estrogen and HER-activated growth is associated with modified AKT, ERα, and cell-cycle signaling in a breast cancer model. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:97-116. [PMID: 35441158 PMCID: PMC7612628 DOI: 10.37349/etat.2022.00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aim: A model of progressively endocrine-resistant breast cancer was investigated to identify changes that can occur in signaling pathways after endocrine manipulation. Methods: The MCF7 breast cancer model is sensitive to estrogens and anti-estrogens while variant lines previously derived from wild-type MCF7 are either relatively 17β-estradiol (E2
)-insensitive (LCC1) or fully resistant to estrogen and anti-estrogens (LCC9). Results: In LCC1 and LCC9 cell lines, loss of estrogen sensitivity was accompanied by loss of growth response to transforming growth factor alpha (TGFα), heregulin-beta and pertuzumab. LCC1 and LCC9 cells had enhanced AKT phosphorylation relative to MCF7 which was reflected in downstream activation of phospho-mechanistic target of rapamycin (mTOR), phospho-S6, and phospho-estrogen receptor alpha Ser167 [ERα(Ser167)]. Both AKT2 and AKT3 were phosphorylated in the resistant cell lines, but small interfering RNA (siRNA) knockdown suggested that all three AKT isoforms contributed to growth response. ERα(Ser118) phosphorylation was increased by E2 and TGFα in MCF7, by E2 only in LCC1, but by neither in LCC9 cells. Multiple alterations in E2-mediated cell cycle control were identified in the endocrine-resistant cell lines including increased expression of MYC, cyclin A1, cyclin D1, cyclin-dependent kinase 1 (CDK1), CDK2, and hyperphosphorylated retinoblastoma protein (ppRb), whereas p21 and p27 were reduced. Estrogen modulated expression of these regulators in MCF7 and LCC1 cells but not in LCC9 cells. Seliciclib inhibited CDK2 activation in MCF7 cells but not in resistant variants; in all lines, it reduced ppRb, increased p53 associated responses including p21, p53 up-regulated modulator of apoptosis (PUMA), and p53 apoptosis-inducing protein 1 (p53AIP1), inhibited growth, and produced G2/M block and apoptosis. Conclusions: Multiple changes occur with progression of endocrine resistance in this model with AKT activation contributing to E2 insensitivity and loss of ERα(Ser118) phosphorylation being associated with full resistance. Cell cycle regulation is modified in endocrine-resistant breast cancer cells, and seliciclib is effective in both endocrine-sensitive and resistant diseases.
Collapse
Affiliation(s)
- Kate M. Moore
- 1Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK 2Cancer Research UK Barts Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Vera Cerqueira
- 1Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK 3West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, G51 4TF Glasgow, UK
| | - Kenneth G. MacLeod
- 1Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK
| | - Peter Mullen
- 4School of Medicine, University of St Andrews, North Haugh, KY16 9TF St Andrews, UK
| | - Richard L. Hayward
- 1Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK
| | - Simon Green
- 5Cyclacel Ltd, James Lindsay Place, Dundee Technopole, DD1 5JJ Dundee, UK
| | - David J. Harrison
- 4School of Medicine, University of St Andrews, North Haugh, KY16 9TF St Andrews, UK
| | - David A. Cameron
- 1Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK
| | - Simon P. Langdon
- 1Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK
| |
Collapse
|
4
|
Functional Imaging Using Bioluminescent Reporter Genes in Living Subjects. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Guo C, Guo Y, Liu J, Gao Y, Wei M, Zhao R, Chen M, Zhang G. The G1 phase optical reporter serves as a sensor of CDK4/6 inhibition in vivo. Int J Biol Sci 2021; 17:728-741. [PMID: 33767584 PMCID: PMC7975702 DOI: 10.7150/ijbs.52101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/10/2021] [Indexed: 02/05/2023] Open
Abstract
Visualization of cell-cycle G1 phase for monitoring the early response of cell cycle specific drug remains challenging. In this study, we developed genetically engineered bioluminescent reporters by fusing full-length cyclin E to the C-terminal luciferase (named as CycE-Luc and CycE-Luc2). Next, HeLa cell line or an ER-positive breast cancer cell line MCF-7 was transfected with these reporters. In cellular assays, the bioluminescent signal of CycE-Luc and CycE-Luc2 was accumulated in the G1 phase and decreased after exiting from the G1 phase. The expression of CycE-Luc and CycE-Luc2 fusion protein was regulated in a cell cycle-dependent manner, which was mediated by proteasome ubiquitination and degradation. Next, our in vitro and in vivo experiment confirmed that the cell cycle arrested by anti-cancer agents (palbociclib or 5-FU) was monitored quantitatively and dynamically by bioluminescent imaging of these reporters in a real-time and non-invasive manner. Thus, these optical reporters could reflect the G1 phase alternation of cell cycle, and might become a future clinically translatable approach for predicting and monitoring response to palbociclib in patients with ER-positive breast cancer.
Collapse
Affiliation(s)
- Cuiping Guo
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yuxian Guo
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Present address: Department of Thyroid and Breast Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jingjing Liu
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yiyang Gao
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Min Wei
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ruijun Zhao
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Min Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Clinical Central Research Core and Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- ✉ Corresponding authors: Prof. Guo-Jun Zhang, Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital, Xiamen University, School of Medicine, Xiamen University, No. 2000, Xiang'an Road East, Xiang'an District, Xiamen, 361101, Fujian, China. Phone: +86-592-2889988, E-mail: or Min Chen, Phone: +86-592-2889270, E-mail:
| | - Guojun Zhang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Clinical Central Research Core and Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- ✉ Corresponding authors: Prof. Guo-Jun Zhang, Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital, Xiamen University, School of Medicine, Xiamen University, No. 2000, Xiang'an Road East, Xiang'an District, Xiamen, 361101, Fujian, China. Phone: +86-592-2889988, E-mail: or Min Chen, Phone: +86-592-2889270, E-mail:
| |
Collapse
|
6
|
The Role of CDKs and CDKIs in Murine Development. Int J Mol Sci 2020; 21:ijms21155343. [PMID: 32731332 PMCID: PMC7432401 DOI: 10.3390/ijms21155343] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) and their inhibitors (CDKIs) play pivotal roles in the regulation of the cell cycle. As a result of these functions, it may be extrapolated that they are essential for appropriate embryonic development. The twenty known mouse CDKs and eight CDKIs have been studied to varying degrees in the developing mouse, but only a handful of CDKs and a single CDKI have been shown to be absolutely required for murine embryonic development. What has become apparent, as more studies have shone light on these family members, is that in addition to their primary functional role in regulating the cell cycle, many of these genes are also controlling specific cell fates by directing differentiation in various tissues. Here we review the extensive mouse models that have been generated to study the functions of CDKs and CDKIs, and discuss their varying roles in murine embryonic development, with a particular focus on the brain, pancreas and fertility.
Collapse
|
7
|
Kim JE, Kang TC. Nucleocytoplasmic p27 Kip1 Export Is Required for ERK1/2-Mediated Reactive Astroglial Proliferation Following Status Epilepticus. Front Cell Neurosci 2018; 12:152. [PMID: 29930499 PMCID: PMC5999727 DOI: 10.3389/fncel.2018.00152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/16/2018] [Indexed: 01/09/2023] Open
Abstract
Reactive astrogliosis is a prominent and ubiquitous reaction of astrocytes to many types of brain injury. Up-regulation of glial fibrillary acidic protein (GFAP) expression and astroglial proliferation are hallmarks of reactive astrogliosis. However, the mechanisms that regulate reactive astrogliosis remain elusive. In the present study, status epilepticus (SE, a prolonged seizure activity) led to reactive astrogliosis showing the increases in GFAP expression and the number of proliferating astrocytes with prolonged extracellular signal receptor-activated kinases 1/2 (ERK1/2) activation and reduced nuclear p27Kip1 level. U0126, an ERK1/2 inhibitor, showed opposite effects. Leptomycin B (LMB), an inhibitor of chromosomal maintenance 1 (CRM1), attenuated nucleocytoplasmic p27Kip1 export and astroglial proliferation, although it up-regulated ERK1/2 phosphorylation and GFAP expression. Roscovitine ameliorated the reduced nuclear p27Kip1 level and astroglial proliferation without changing GFAP expression and ERK1/2 phosphorylation. U0126 aggravated SE-induced astroglial apoptosis in the molecular layer of the dentate gyrus that was unaffected by LMB and roscovitine. In addition, U0126 exacerbated SE-induced neuronal death, while LMB mitigated it. Roscovitine did not affect SE-induced neuronal death. The present data elucidate for the first time the roles of nucleocytoplasmic p27Kip1 transport in ERK1/2-mediated reactive astrogliosis independent of SE-induced neuronal death and astroglial apoptosis. Therefore, our findings suggest that nucleocytoplasmic p27Kip1 export may be required for ERK1/2-mediated astroglial proliferation during reactive astrogliosis, and that nuclear p27Kip1 entrapment may be a potential therapeutic strategy for anti-proliferation in reactive astrocytes.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
8
|
Imamura T, Saitou T, Kawakami R. In vivo optical imaging of cancer cell function and tumor microenvironment. Cancer Sci 2018; 109:912-918. [PMID: 29465804 PMCID: PMC5891206 DOI: 10.1111/cas.13544] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 02/04/2023] Open
Abstract
In vivo optical imaging using fluorescence and bioluminescence is superior to other methods in terms of spatiotemporal resolution and specificity, and represents a new technology for comprehensively studying living organisms in a less invasive way. Nowadays, it is an indispensable technology for studying many aspects of cancer biology, including dynamic invasion and metastasis. In observations of fluorescence or bioluminescence signals in a living body, various problems were caused by optical characteristics such as absorption and scattering and, therefore, observation of deep tissue was difficult. Recent developments in techniques for observation of the deep tissues of living animals overcame this difficulty by improving bioluminescent proteins, fluorescent proteins, and fluorescent dyes, as well as detection technologies such as two‐photon excitation microscopy. In the present review, we introduce these technological developments and in vivo application of bioluminescence and fluorescence imaging, and discuss future perspectives on the use of in vivo optical imaging technology in cancer research.
Collapse
Affiliation(s)
- Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, Japan.,Translational Research Center, Ehime University Hospital, Toon, Japan
| | - Takashi Saitou
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, Japan.,Translational Research Center, Ehime University Hospital, Toon, Japan
| | - Ryosuke Kawakami
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
9
|
Schuetze T, Meyer V. Polycistronic gene expression in Aspergillus niger. Microb Cell Fact 2017; 16:162. [PMID: 28946884 PMCID: PMC5613464 DOI: 10.1186/s12934-017-0780-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
Background Genome mining approaches predict dozens of biosynthetic gene clusters in each of the filamentous fungal genomes sequenced so far. However, the majority of these gene clusters still remain cryptic because they are not expressed in their natural host. Simultaneous expression of all genes belonging to a biosynthetic pathway in a heterologous host is one approach to activate biosynthetic gene clusters and to screen the metabolites produced for bioactivities. Polycistronic expression of all pathway genes under control of a single and tunable promoter would be the method of choice, as this does not only simplify cloning procedures, but also offers control on timing and strength of expression. However, polycistronic gene expression is a feature not commonly found in eukaryotic host systems, such as Aspergillus niger. Results In this study, we tested the suitability of the viral P2A peptide for co-expression of three genes in A. niger. Two genes descend from Fusarium oxysporum and are essential to produce the secondary metabolite enniatin (esyn1, ekivR). The third gene (luc) encodes the reporter luciferase which was included to study position effects. Expression of the polycistronic gene cassette was put under control of the Tet-On system to ensure tunable gene expression in A. niger. In total, three polycistronic expression cassettes which differed in the position of luc were constructed and targeted to the pyrG locus in A. niger. This allowed direct comparison of the luciferase activity based on the position of the luciferase gene. Doxycycline-mediated induction of the Tet-On expression cassettes resulted in the production of one long polycistronic mRNA as proven by Northern analyses, and ensured comparable production of enniatin in all three strains. Notably, gene position within the polycistronic expression cassette matters, as, luciferase activity was lowest at position one and had a comparable activity at positions two and three. Conclusions The P2A peptide can be used to express at least three genes polycistronically in A. niger. This approach can now be applied to heterologously express entire secondary metabolite gene clusters polycistronically or to co-express any genes of interest in equimolar amounts. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0780-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tabea Schuetze
- Department of Applied Microbiology and Genetics, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| | - Vera Meyer
- Department of Applied Microbiology and Genetics, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| |
Collapse
|
10
|
Sharifian S, Homaei A, Hemmati R, Khajeh K. Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:115-128. [DOI: 10.1016/j.jphotobiol.2017.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/16/2017] [Indexed: 02/08/2023]
|
11
|
Meng F, Qian J, Yue H, Li X, Xue K. SUMOylation of Rb enhances its binding with CDK2 and phosphorylation at early G1 phase. Cell Cycle 2016; 15:1724-32. [PMID: 27163259 PMCID: PMC4957593 DOI: 10.1080/15384101.2016.1182267] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Retinoblastoma protein (Rb) is a prototypical tumor suppressor that is vital to the negative regulation of the cell cycle and tumor progression. Hypo-phosphorylated Rb is associated with G0/G1 arrest by suppressing E2F transcription factor activity, whereas Rb hyper-phosphorylation allows E2F release and cell cycle progression from G0/G1 to S phase. However, the factors that regulate cyclin-dependent protein kinase (CDK)-dependent hyper-phosphorylation of Rb during the cell cycle remain obscure. In this study, we show that throughout the cell cycle, Rb is specifically small ubiquitin-like modifier (SUMO)ylated at early G1 phase. SUMOylation of Rb stimulates its phosphorylation level by recruiting a SUMO-interaction motif (SIM)-containing kinase CDK2, leading to Rb hyper-phosphorylation and E2F-1 release. In contrast, a SUMO-deficient Rb mutant results in reduced SUMOylation and phosphorylation, weakened CDK2 binding, and attenuated E2F-1 sequestration. Furthermore, we reveal that Rb SUMOylation is required for cell proliferation. Therefore, our study describes a novel mechanism that regulates Rb phosphorylation during cell cycle progression.
Collapse
Affiliation(s)
- Fengxi Meng
- a Department of Ophthalmology , Eye and ENT Hospital of Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University , Shanghai , China
| | - Jiang Qian
- a Department of Ophthalmology , Eye and ENT Hospital of Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University , Shanghai , China
| | - Han Yue
- a Department of Ophthalmology , Eye and ENT Hospital of Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University , Shanghai , China
| | - Xiaofeng Li
- a Department of Ophthalmology , Eye and ENT Hospital of Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University , Shanghai , China
| | - Kang Xue
- a Department of Ophthalmology , Eye and ENT Hospital of Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University , Shanghai , China
| |
Collapse
|
12
|
Khalil HS, Mitev V, Vlaykova T, Cavicchi L, Zhelev N. Discovery and development of Seliciclib. How systems biology approaches can lead to better drug performance. J Biotechnol 2015; 202:40-9. [PMID: 25747275 DOI: 10.1016/j.jbiotec.2015.02.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 11/30/2022]
Abstract
Seliciclib (R-Roscovitine) was identified as an inhibitor of CDKs and has undergone drug development and clinical testing as an anticancer agent. In this review, the authors describe the discovery of Seliciclib and give a brief summary of the biology of the CDKs Seliciclib inhibits. An overview of the published in vitro and in vivo work supporting the development as an anti-cancer agent, from in vitro experiments to animal model studies ending with a summary of the clinical trial results and trials underway is presented. In addition some potential non-oncology applications are explored and the potential mode of action of Seliciclib in these areas is described. Finally the authors argue that optimisation of the therapeutic effects of kinase inhibitors such as Seliciclib could be enhanced using a systems biology approach involving mathematical modelling of the molecular pathways regulating cell growth and division.
Collapse
Affiliation(s)
- Hilal S Khalil
- CMCBR, SIMBIOS, School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, Scotland, UK
| | - Vanio Mitev
- Department of Chemistry and Biochemistry, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Tatyana Vlaykova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| | - Laura Cavicchi
- CMCBR, SIMBIOS, School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, Scotland, UK
| | - Nikolai Zhelev
- CMCBR, SIMBIOS, School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, Scotland, UK.
| |
Collapse
|
13
|
Trojanowsky M, Vidovic D, Simanski S, Penas C, Schurer S, Ayad NG. Screening of cell cycle fusion proteins to identify kinase signaling networks. Cell Cycle 2015; 14:1274-81. [PMID: 25606665 DOI: 10.1080/15384101.2015.1006987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Kinase signaling networks are well-established mediators of cell cycle transitions. However, how kinases interact with the ubiquitin proteasome system (UPS) to elicit protein turnover is not fully understood. We sought a means of identifying kinase-substrate interactions to better understand signaling pathways controlling protein degradation. Our prior studies used a luciferase fusion protein to uncover kinase networks controlling protein turnover. In this study, we utilized a similar approach to identify pathways controlling the cell cycle protein p27(Kip1). We generated a p27(Kip1)-luciferase fusion and expressed it in cells incubated with compounds from a library of pharmacologically active compounds. We then compared the relative effects of the compounds on p27(Kip1)-luciferase fusion stabilization. This was combined with in silico kinome profiling to identify potential kinases inhibited by each compound. This approach effectively uncovered known kinases regulating p27(Kip1) turnover. Collectively, our studies suggest that this parallel screening approach is robust and can be applied to fully understand kinase-ubiquitin pathway interactions.
Collapse
Affiliation(s)
- Michelle Trojanowsky
- a From the Center for Therapeutic Innovation; Department of Psychiatry and Behavioral Sciences ; University of Miami ; Miami , FL USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The clinical successes of proteasome inhibitors for the treatment of cancer have highlighted the therapeutic potential of targeting this protein degradation system. However, proteasome inhibitors prevent the degradation of numerous proteins, which may cause adverse effects. Increased specificity could be achieved by inhibiting the components of the ubiquitin-proteasome system that target specific subsets of proteins for degradation. F-box proteins are the substrate-targeting subunits of SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complexes. Through the degradation of a plethora of diverse substrates, SCF ubiquitin ligases control a multitude of processes at the cellular and organismal levels, and their dysregulation is implicated in many pathologies. SCF ubiquitin ligases are characterized by their high specificity for substrates, and these ligases therefore represent promising drug targets. However, the potential for therapeutic manipulation of SCF complexes remains an underdeveloped area. This Review explores and discusses potential strategies to target SCF-mediated biological processes to treat human diseases.
Collapse
Affiliation(s)
- Jeffrey R Skaar
- 1] Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA. [2]
| | - Julia K Pagan
- 1] Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA. [2]
| | - Michele Pagano
- 1] Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA. [2] Howard Hughes Medical Institute
| |
Collapse
|
15
|
Tummala H, Khalil HS, Zhelev N. Repair, Abort, Ignore? Strategies for Dealing With UV Damage. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
16
|
New researches and application progress of commonly used optical molecular imaging technology. BIOMED RESEARCH INTERNATIONAL 2014; 2014:429198. [PMID: 24696850 PMCID: PMC3947735 DOI: 10.1155/2014/429198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 12/20/2013] [Indexed: 12/26/2022]
Abstract
Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging.
Collapse
|
17
|
Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS, Wong KK, Bradner JE, Kaelin WG. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 2013; 343:305-9. [PMID: 24292623 DOI: 10.1126/science.1244917] [Citation(s) in RCA: 1110] [Impact Index Per Article: 100.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thalidomide-like drugs such as lenalidomide are clinically important treatments for multiple myeloma and show promise for other B cell malignancies. The biochemical mechanisms underlying their antitumor activity are unknown. Thalidomide was recently shown to bind to, and inhibit, the cereblon ubiquitin ligase. Cereblon loss in zebrafish causes fin defects reminiscent of the limb defects seen in children exposed to thalidomide in utero. Here we show that lenalidomide-bound cereblon acquires the ability to target for proteasomal degradation two specific B cell transcription factors, Ikaros family zinc finger proteins 1 and 3 (IKZF1 and IKZF3). Analysis of myeloma cell lines revealed that loss of IKZF1 and IKZF3 is both necessary and sufficient for lenalidomide's therapeutic effect, suggesting that the antitumor and teratogenic activities of thalidomide-like drugs are dissociable.
Collapse
Affiliation(s)
- Gang Lu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang GJ, Chen TB, Davide J, Tao W, Vanko A, Connolly B, Williams DL, Sur C. Visualization of mitotic arrest of cell cycle with bioluminescence imaging in living animals. Mol Imaging Biol 2013; 15:431-40. [PMID: 23440602 PMCID: PMC3708287 DOI: 10.1007/s11307-013-0619-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Visualization of the cell cycle in living subjects has long been a big challenge. The present study aimed to noninvasively visualize mitotic arrest of the cell cycle with an optical reporter in living subjects. PROCEDURES An N-terminal cyclin B1-luciferase fusion construct (cyclin B-Luc) controlled by the cyclin B promoter, as a mitosis reporter, was generated. HeLa or HCT116 cells stably expressing cyclin B-Luc reporter were used to evaluate its cell cycle-dependent regulation and ubiquitination-mediated degradation. We also evaluated its feasibility to monitor the mitotic arrest caused by Taxotere both in vitro and in vivo. RESULTS We showed that the cyclin B-Luc fusion protein was regulated in a cell cycle-dependent manner and accumulated in the mitotic phase (M phase) in cellular assays. The regulation of cyclin B-Luc reporter was mediated by proteasome ubiquitination. In the present study, in vitro imaging showed that antimitotic reagents like Taxotere upregulated the reporter through cell cycle arrest in the M phase. Noninvasive longitudinal bioluminescence imaging further demonstrated an upregulation of the reporter consistent with mitotic arrest induced in tumor xenograft models. Induction of this reporter was also observed with a kinesin spindle protein inhibitor, which causes cell cycle blockage in the M phase. CONCLUSIONS Our results demonstrate that the cyclin B-Luc reporter can be used to image whether compounds are capable, in vivo, of causing an M phase arrest and/or altering cyclin B turnover. This reporter can also be potentially used in high-throughput screening efforts aimed at discovering novel molecules that will cause cell cycle arrest at the M phase in cultivated cell lines and animal models.
Collapse
Affiliation(s)
- Guo-Jun Zhang
- The Breast Center, Cancer Hospital, Shantou University Medical College, 7 Raoping Road, Shantou, Guangdong, 515031, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen ZH, Zhao RJ, Li RH, Guo CP, Zhang GJ. Bioluminescence imaging of DNA synthetic phase of cell cycle in living animals. PLoS One 2013; 8:e53291. [PMID: 23301056 PMCID: PMC3536746 DOI: 10.1371/journal.pone.0053291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/29/2012] [Indexed: 02/05/2023] Open
Abstract
Bioluminescence reporter proteins have been widely used in the development of tools for monitoring biological events in living cells. Currently, some assays like flow cytometry analysis are available for studying DNA synthetic phase (S-phase) targeted anti-cancer drug activity in vitro; however, techniques for imaging of in vivo models remain limited. Cyclin A2 is known to promote S-phase entry in mammals. Its expression levels are low during G1-phase, but they increase at the onset of S-phase. Cyclin A2 is degraded during prometaphase by ubiquitin-dependent, proteasome-mediated proteolysis. In this study, we have developed a cyclin A2-luciferase (CYCA-Luc) fusion protein targeted for ubiquitin-proteasome dependent degradation, and have evaluated its utility in screening S-phase targeted anti-cancer drugs. Similar to endogenous cyclin A2, CYCA-Luc accumulates during S-phase and is degraded during G2/M-phase. Using Cdc20 siRNA we have demonstrated that Cdc20 can mediate CYCA-Luc degradation. Moreover, using noninvasive bioluminescent imaging, we demonstrated accumulation of CYCA-Luc in response to 10-hydroxycamptothecin (HCPT), an S-phase targeted anti-cancer drug, in human tumor cells in vivo and in vitro. Our results indicate that a CYCA-Luc fusion reporter system can be used to monitor S-phase of cell cycle, and evaluate pharmacological activity of anti-cancer drug HCPT in real time in vitro and in vivo, and is likely to provide an important tool for screening such drugs.
Collapse
Affiliation(s)
- Zhi-Hong Chen
- Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, People’s Republic of China
- Heilongjiang Province Key Laboratory of Cancer Prevention and Treatment, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Rui-Jun Zhao
- Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, People’s Republic of China
- Cancer Research Center, Shantou University Medical College, Shantou, People’s Republic of China
| | - Rong-Hui Li
- Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, People’s Republic of China
- Cancer Research Center, Shantou University Medical College, Shantou, People’s Republic of China
| | - Cui-Ping Guo
- Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, People’s Republic of China
- Cancer Research Center, Shantou University Medical College, Shantou, People’s Republic of China
| | - Guo-Jun Zhang
- Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, People’s Republic of China
- Cancer Research Center, Shantou University Medical College, Shantou, People’s Republic of China
- * E-mail:
| |
Collapse
|
20
|
Abstract
Protein phosphorylation is a fundamental post-translational modification. It regulates a large number of critical cellular processes (differentiation, division, proliferation, apoptosis). Cell division is a process including a series of phases by which a parent cell divides into two daughter cells. The cells enter these stages then progress within the cell division under an accurate control by many proteins. These proteins are activated by phosphorylation. Cyclin-dependent kinases are responsible for this phosphorylation and therefore represent potential therapeutic targets especially in oncology.
Collapse
|
21
|
Ifediba MA, Moore A. In vivo imaging of the systemic delivery of small interfering RNA. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:428-37. [PMID: 22228711 DOI: 10.1002/wnan.1158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Short interfering RNAs (siRNAs) have emerged as a potent new class of therapeutics, which regulate gene expression through sequence-specific inhibition of mRNA translation. Human trials of siRNAs have highlighted the need for robust delivery and detection techniques that will enable the application of these therapeutics to increasingly complex disease and organ systems. Efforts to monitor the in vivo trafficking and efficacy of siRNAs have routinely involved bioluminescence imaging of naked siRNA molecules. More recently, siRNAs have been incorporated into a variety of molecular imaging probes to promote their detection with clinically relevant imaging modalities. Lipid-, polymer-, and nanoparticle-based siRNA delivery vehicles have proven effective in improving the stability, bioavailability, and target specificity of siRNAs following systemic administration in vivo. Additionally, these methods provide a platform to modify siRNAs with a variety of contrast agents and have enabled nuclear and magnetic resonance imaging of siRNA delivery in preclinical studies. These image-guided delivery approaches represent a crucial step in the transition of siRNA therapeutics to the clinic.
Collapse
Affiliation(s)
- Marytheresa A Ifediba
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | | |
Collapse
|
22
|
Molecular imaging in tumor angiogenesis and relevant drug research. Int J Biomed Imaging 2011; 2011:370701. [PMID: 21808639 PMCID: PMC3144661 DOI: 10.1155/2011/370701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/16/2011] [Accepted: 05/23/2011] [Indexed: 02/07/2023] Open
Abstract
Molecular imaging,
including fluorescence imaging (FMI),
bioluminescence imaging (BLI), positron emission
tomography (PET), single-photon emission-computed tomography (SPECT), and computed tomography
(CT), has a pivotal role in the
process of tumor and relevant drug research. CT,
especially Micro-CT, can provide the anatomic
information for a region of interest (ROI); PET
and SPECT can provide functional information for
the ROI. BLI and FMI can provide optical
information for an ROI. Tumor angiogenesis and
relevant drug development is a lengthy,
high-risk, and costly process, in which a novel
drug needs about 10–15 years of testing to
obtain Federal Drug Association (FDA) approval.
Molecular imaging can enhance the development
process by understanding the tumor mechanisms
and drug activity. In this paper, we focus on
tumor angiogenesis, and we review the
characteristics of molecular imaging modalities
and their applications in tumor angiogenesis and
relevant drug research.
Collapse
|
23
|
Lee SB, Kim JJ, Chung JS, Lee MS, Lee KH, Kim BS, Tansey WP, Do Yoo Y. Romo1 is a negative-feedback regulator of Myc. J Cell Sci 2011; 124:1911-24. [PMID: 21558421 DOI: 10.1242/jcs.079996] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Degradation of Myc protein is mediated by E3 ubiquitin ligases, including SCF(Fbw7) and SCF(Skp2), but much remains unknown about the mechanism of S-phase kinase-associated protein (Skp2)-mediated Myc degradation. In the present study, we show that upregulated Myc protein, which triggers the G1-S phase progression in response to growth-stimulatory signals, induces reactive oxygen species modulator 1 (Romo1) expression. Romo1 subsequently triggers Skp2-mediated ubiquitylation and degradation of Myc by a mechanism not previously reported in normal lung fibroblasts. We also show that reactive oxygen species (ROS) derived from steady-state Romo1 expression are necessary for cell cycle entry of quiescent cells. From this study, we suggest that the generation of ROS mediated by pre-existing Romo1 protein is required for Myc induction. Meanwhile, Romo1 expression induced by Myc during G1 phase stimulates Skp2-mediated Myc degradation in a negative-feedback mechanism.
Collapse
Affiliation(s)
- Seung Baek Lee
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hu S, Cao W, Lan X, He Y, Lang J, Li C, Hu J, An R, Gao Z, Zhang Y. Comparison of rNIS and hNIS as reporter genes for noninvasive imaging of bone mesenchymal stem cells transplanted into infarcted rat myocardium. Mol Imaging 2011; 10:227-37. [PMID: 21518634 DOI: 10.2310/7290.2010.00051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 06/22/2010] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study was to investigate and compare the feasibility of rat sodium iodide symporter (rNIS) and human sodium iodide symporter (hNIS) as reporter genes for noninvasive monitoring of rat bone marrow mesenchymal stem cells (rBMSCs) transplanted into infarcted rat myocardium. rBMSCs were isolated from rat bone marrow. Adenovirus (Ad) was reconstructed to contain rNIS-enhanced green fluorescent protein (eGFP) or hNIS-eGFP. The transfection efficiency of Ad/eGFP/rNIS and Ad/eGFP/hNIS to rBMSCs was measured by real-time polymerase chain reaction, flow cytometry, Western blot, and immunofluorescence staining. The transfected rBMSCs were transplanted into infarcted rat myocardium followed by a single-photon emission computed tomography (SPECT) study with (99m)Tc-pertechnetate as the radiotracer and by autoradiography. The isolated rBMSCs were CD29, CD44, and CD90 positive and CD34, CD45, and CD11b negative. The expression of rNIS and hNIS in the transfected rBMSCs at both gene and protein levels was obviously higher than that without transfection. The myocardium of rats transplanted with transfected rBMSCs could be visualized by SPECT owing to the accumulation of (99m)Tc-pertechnetate in rBMSCs mediated by exogenous NIS genes. The accumulation of (99m)Tc-pertechnetate in myocardium mediated by rNIS was higher than that by hNIS, which was also confirmed by autoradiography. Both rNIS and hNIS are useful reporter genes to monitor BMSCs transplanted into infarcted myocardium in vivo with rNIS being superior to hNIS as the reporter gene.
Collapse
Affiliation(s)
- Shuo Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ma X, Tian J, Qin C, Yang X, Zhang B, Xue Z, Zhang X, Han D, Dong D, Liu X. Early detection of liver cancer based on bioluminescence tomography. APPLIED OPTICS 2011; 50:1389-95. [PMID: 21460905 DOI: 10.1364/ao.50.001389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As a new modality of molecular imaging, bioluminescence imaging has been widely used in tumor detection and drug evaluation. However, BLI cannot present the depth of information for internal diseases such as a liver tumor in situ or a lung tumor in situ. In this paper, we describe a bioluminescence tomography (BLT) method based on the bioluminescent intensity attenuation calibration and applied it to the early detection of liver cancer in situ. In comparison with BLT without calibration, this method could improve the reconstruction accuracy by more than 10%. In comparison with micro-computed tomography and other traditional imaging modalities, this method can detect a liver tumor at a very early stage and provide reliable location information.
Collapse
Affiliation(s)
- Xibo Ma
- Medical Imaging Processing Group, Institute of Automation, Chinese Academy of Sciences, P.O. Box 2728, Beijing, 100190, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang L, Virani S, Zhang Y, Bhojani MS, Burgess TL, Coxon A, Galban CJ, Ross BD, Rehemtulla A. Molecular imaging of c-Met tyrosine kinase activity. Anal Biochem 2011; 412:1-8. [PMID: 21276769 DOI: 10.1016/j.ab.2011.01.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/14/2011] [Accepted: 01/21/2011] [Indexed: 11/29/2022]
Abstract
The receptor tyrosine kinase c-Met and its ligand, hepatocyte growth factor/scatter factor (HGF/SF), modulate signaling cascades implicated in cellular proliferation, survival, migration, invasion, and angiogenesis. Therefore, dysregulation of HGF/c-Met signaling can compromise the cellular capacity to moderate these activities and can lead to tumorigenesis, metastasis, and therapeutic resistance in various human malignancies. To facilitate studies investigating HGF/c-Met receptor coupling or c-Met signaling events in real time and in living cells and animals, here we describe a genetically engineered reporter where bioluminescence can be used as a surrogate for c-Met tyrosine kinase activity. c-Met kinase activity in cultured cells and tumor xenografts was monitored quantitatively and dynamically in response to the activation or inhibition of the HGF/c-Met signaling pathway. Treatment of tumor-bearing animals with a c-Met inhibitor and the HGF neutralizing antibody stimulated the reporter's bioluminescence activity in a dose-dependent manner and led to a regression of U-87 MG tumor xenografts. Results obtained from these studies provide unique insights into the pharmacokinetics and pharmacodynamics of agents that modulate c-Met activity and validate c-Met as a target for human glioblastoma therapy.
Collapse
Affiliation(s)
- Limin Zhang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Idowu MA. Cyclin-Dependent Kinases as Drug Targets for Cell Growth and Proliferation Disorders. A Role for Systems Biology Approach in Drug Development. Part I—Cyclin-Dependent Kinases as Drug Targets in Cancer. BIOTECHNOL BIOTEC EQ 2011. [DOI: 10.5504/bbeq.2011.0107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
28
|
Rico-Bautista E, Yang CC, Lu L, Roth GP, Wolf DA. Chemical genetics approach to restoring p27Kip1 reveals novel compounds with antiproliferative activity in prostate cancer cells. BMC Biol 2010; 8:153. [PMID: 21182779 PMCID: PMC3025922 DOI: 10.1186/1741-7007-8-153] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 12/23/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cyclin-dependent kinase (CDK) inhibitor p27(Kip)¹ is downregulated in a majority of human cancers due to ectopic proteolysis by the ubiquitin-proteasome pathway. The expression of p27 is subject to multiple mechanisms of control involving several transcription factors, kinase pathways and at least three different ubiquitin ligases (SCF(SKP)², KPC, Pirh2), which regulate p27 transcription, translation, protein stability and subcellular localization. Using a chemical genetics approach, we have asked whether this control network can be modulated by small molecules such that p27 protein expression is restored in cancer cells. RESULTS We developed a cell-based assay for measuring the levels of endogenous nuclear p27 in a high throughput screening format employing LNCaP prostate cancer cells engineered to overexpress SKP2. The assay platform was optimized to Z' factors of 0.48 - 0.6 and piloted by screening a total of 7368 chemical compounds. During the course of this work, we discovered two small molecules of previously unknown biological activity, SMIP001 and SMIP004, which increase the nuclear level of p27 at low micromolar concentrations. SMIPs (small molecule inhibitors of p27 depletion) also upregulate p21(Cip)¹, inhibit cellular CDK2 activity, induce G1 delay, inhibit colony formation in soft agar and exhibit preferential cytotoxicity in LNCaP cells relative to normal human fibroblasts. Unlike SMIP001, SMIP004 was found to downregulate SKP2 and to stabilize p27, although neither SMIP is a proteasome inhibitor. Whereas the screening endpoint - nuclear p27 - was robustly modulated by the compounds, SMIP-mediated cell cycle arrest and apoptosis were not strictly dependent on p27 and p21 - a finding that is explained by parallel inhibitory effects of SMIPs on positive cell cycle regulators, including cyclins E and A, and CDK4. CONCLUSIONS Our data provide proof-of-principle that the screening platform we developed, using endogenous nuclear p27 as an endpoint, presents an effective means of identifying bioactive molecules with cancer selective antiproliferative activity. This approach, when applied to larger and more diverse sets of compounds with refined drug-like properties, bears the potential of revealing both unknown cellular pathways globally impinging on p27 and novel leads for chemotherapeutics targeting a prominent molecular defect of human cancers.
Collapse
|
29
|
Contessa JN, Bhojani MS, Freeze HH, Ross BD, Rehemtulla A, Lawrence TS. Molecular imaging of N-linked glycosylation suggests glycan biosynthesis is a novel target for cancer therapy. Clin Cancer Res 2010; 16:3205-14. [PMID: 20413434 DOI: 10.1158/1078-0432.ccr-09-3331] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Redundant receptor tyrosine kinase (RTK) signaling is a mechanism for therapeutic resistance to epidermal growth factor receptor (EGFR) inhibition. A strategy to reduce parallel signaling by coexpressed RTKs is inhibition of N-linked glycosylation (NLG), an endoplasmic reticulum (ER) cotranslational protein modification required for receptor maturation and cell surface expression. We therefore investigated the feasibility of blocking NLG in vivo to reduce overexpression of RTKs. EXPERIMENTAL DESIGN We developed a model system to dynamically monitor NLG in vitro and in vivo using bioluminescent imaging techniques. Functional imaging of NLG is accomplished with a luciferase reporter (ER-LucT) modified for endoplasmic reticulum translation and glycosylation. After in vitro validation, this reporter was integrated with D54 glioma xenografts to do noninvasive imaging of tumors, and inhibition of NLG was correlated with RTK protein levels and tumor growth. RESULTS The ER-LucT reporter shows the ability to sensitively and specifically detect NLG inhibition. Using this molecular imaging approach we carried out serial imaging studies to determine safe and efficacious in vivo dosing of the GlcNAc-1-phosphotransferase inhibitor tunicamycin, which blocks N-glycan precursor biosynthesis. Molecular analyses of tunicamycin-treated tumors showed reduced levels of EGFR and Met, two RTKs overexpressed in gliomas. Furthermore, D54 and U87MG glioma xenograft tumor experiments showed significant reductions in tumor growth following NLG inhibition and radiation therapy, consistent with an enhancement in tumor radiosensitivity. CONCLUSIONS This study suggests that NLG inhibition is a novel therapeutic strategy for targeting EGFR and RTK signaling in both gliomas and other malignant tumors.
Collapse
Affiliation(s)
- Joseph N Contessa
- Department of Radiation Oncology, The University of Michigan, Ann Arbor, Michigan, USA.
| | | | | | | | | | | |
Collapse
|
30
|
O'Neill K, Lyons SK, Gallagher WM, Curran KM, Byrne AT. Bioluminescent imaging: a critical tool in pre-clinical oncology research. J Pathol 2010; 220:317-27. [PMID: 19967724 DOI: 10.1002/path.2656] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bioluminescent imaging (BLI) is a non-invasive imaging modality widely used in the field of pre-clinical oncology research. Imaging of small animal tumour models using BLI involves the generation of light by luciferase-expressing cells in the animal following administration of substrate. This light may be imaged using an external detector. The technique allows a variety of tumour-associated properties to be visualized dynamically in living models. The increasing use of BLI as a small-animal imaging modality has led to advances in the development of xenogeneic, orthotopic, and genetically engineered animal models expressing luciferase genes. This review aims to provide insight into the principles of BLI and its applications in cancer research. Many studies to assess tumour growth and development, as well as efficacy of candidate therapeutics, have been performed using BLI. More recently, advances have also been made using bioluminescent imaging in studies of protein-protein interactions, genetic screening, cell-cycle regulators, and spontaneous cancer development. Such novel studies highlight the versatility and potential of bioluminescent imaging in future oncological research.
Collapse
Affiliation(s)
- Karen O'Neill
- UCD School of Medicine and Medical Science, Health Science Building, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
31
|
Chen R, Plunkett W. Strategy to induce apoptosis and circumvent resistance in chronic lymphocytic leukaemia. Best Pract Res Clin Haematol 2010; 23:155-66. [DOI: 10.1016/j.beha.2010.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Kim JB, Urban K, Cochran E, Lee S, Ang A, Rice B, Bata A, Campbell K, Coffee R, Gorodinsky A, Lu Z, Zhou H, Kishimoto TK, Lassota P. Non-invasive detection of a small number of bioluminescent cancer cells in vivo. PLoS One 2010; 5:e9364. [PMID: 20186331 PMCID: PMC2826408 DOI: 10.1371/journal.pone.0009364] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 01/02/2010] [Indexed: 11/21/2022] Open
Abstract
Early detection of tumors can significantly improve the outcome of tumor treatment. One of the most frequently asked questions in cancer imaging is how many cells can be detected non-invasively in a live animal. Although many factors limit such detection, increasing the light emission from cells is one of the most effective ways of overcoming these limitations. Here, we describe development and utilization of a lentiviral vector containing enhanced firefly luciferase (luc2) gene. The resulting single cell clones of the mouse mammary gland tumor (4T1-luc2) showed stable light emission in the range of 10,000 photons/sec/cell. In some cases individual 4T1-luc2 cells inserted under the skin of a nu/nu mouse could be detected non-invasively using a cooled CCD camera in some cases. In addition, we showed that only few cells are needed to develop tumors in these mice and tumor progression can be monitored right after the cells are implanted. Significantly higher luciferase activity in these cells allowed us to detect micrometastases in both, syngeneic Balb/c and nu/nu mice.
Collapse
Affiliation(s)
- Jae-Beom Kim
- Caliper Life Sciences Inc., Alameda, California, United States of America
- * E-mail: (J-BK); (PL)
| | - Konnie Urban
- Caliper Life Sciences Inc., Alameda, California, United States of America
| | - Edward Cochran
- Momenta Pharmaceuticals Inc., Cambridge, Massachusetts, United States of America
| | - Steve Lee
- Caliper Life Sciences Inc., Alameda, California, United States of America
| | - Angel Ang
- Caliper Life Sciences Inc., Alameda, California, United States of America
| | - Bradley Rice
- Caliper Life Sciences Inc., Alameda, California, United States of America
| | - Adam Bata
- Caliper Life Sciences Inc., Cranbury, New Jersey, United States of America
| | - Kenneth Campbell
- Caliper Life Sciences Inc., Cranbury, New Jersey, United States of America
| | - Richard Coffee
- Caliper Life Sciences Inc., Cranbury, New Jersey, United States of America
| | - Alex Gorodinsky
- Caliper Life Sciences Inc., Cranbury, New Jersey, United States of America
| | - Zhan Lu
- Caliper Life Sciences Inc., Cranbury, New Jersey, United States of America
| | - He Zhou
- Momenta Pharmaceuticals Inc., Cambridge, Massachusetts, United States of America
| | | | - Peter Lassota
- Caliper Life Sciences Inc., Alameda, California, United States of America
- * E-mail: (J-BK); (PL)
| |
Collapse
|
33
|
Ohtani N, Yamakoshi K, Takahashi A, Hara E. Real-time in vivo imaging of p16gene expression: a new approach to study senescence stress signaling in living animals. Cell Div 2010; 5:1. [PMID: 20157424 PMCID: PMC2821322 DOI: 10.1186/1747-1028-5-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/14/2010] [Indexed: 12/26/2022] Open
Abstract
Oncogenic proliferative signals are coupled to a variety of growth inhibitory processes. In cultured primary human fibroblasts, for example, ectopic expression of oncogenic Ras or its downstream mediator initiates cellular senescence, the state of irreversible cell cycle arrest, through up-regulation of cyclin-dependent kinase (CDK) inhibitors, such as p16INK4a. To date, much of our current knowledge of how human p16INK4a gene expression is induced by oncogenic stimuli derives from studies undertaken in cultured primary cells. However, since human p16INK4a gene expression is also induced by tissue culture-imposed stress, it remains unclear whether the induction of human p16INK4a gene expression in tissue-cultured cells truly reflects an anti-cancer process or is an artifact of tissue culture-imposed stress. To eliminate any potential problems arising from tissue culture imposed stress, we have recently developed a bioluminescence imaging (BLI) system for non-invasive and real-time analysis of human p16INK4a gene expression in the context of a living animal. Here, we discuss the molecular mechanisms that direct p16INK4a gene expression in vivo and its potential for tumor suppression.
Collapse
Affiliation(s)
- Naoko Ohtani
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | | | | | | |
Collapse
|
34
|
Owens L, Simanski S, Squire C, Smith A, Cartzendafner J, Cavett V, Caldwell Busby J, Sato T, Ayad NG. Activation domain-dependent degradation of somatic Wee1 kinase. J Biol Chem 2009; 285:6761-9. [PMID: 20038582 DOI: 10.1074/jbc.m109.093237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell cycle progression is dependent upon coordinate regulation of kinase and proteolytic pathways. Inhibitors of cell cycle transitions are degraded to allow progression into the subsequent cell cycle phase. For example, the tyrosine kinase and Cdk1 inhibitor Wee1 is degraded during G(2) and mitosis to allow mitotic progression. Previous studies suggested that the N terminus of Wee1 directs Wee1 destruction. Using a chemical mutagenesis strategy, we report that multiple regions of Wee1 control its destruction. Most notably, we find that the activation domain of the Wee1 kinase is also required for its degradation. Mutations in this domain inhibit Wee1 degradation in somatic cell extracts and in cells without affecting the overall Wee1 structure or kinase activity. More broadly, these findings suggest that kinase activation domains may be previously unappreciated sites of recognition by the ubiquitin proteasome pathway.
Collapse
Affiliation(s)
- Laura Owens
- Department of Cancer Biology, Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Boss DS, Schwartz GK, Middleton MR, Amakye DD, Swaisland H, Midgley RS, Ranson M, Danson S, Calvert H, Plummer R, Morris C, Carvajal RD, Chirieac LR, Schellens JHM, Shapiro GI. Safety, tolerability, pharmacokinetics and pharmacodynamics of the oral cyclin-dependent kinase inhibitor AZD5438 when administered at intermittent and continuous dosing schedules in patients with advanced solid tumours. Ann Oncol 2009; 21:884-894. [PMID: 19825886 DOI: 10.1093/annonc/mdp377] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AZD5438 is an orally bioavailable inhibitor of cyclin E-cdk2, cyclin A-cdk2 and cyclin B-cdk1 complexes. Three phase I studies assessed the clinical safety, tolerability, pharmacokinetics and pharmacodynamics of AZD5438 when administered in different dosing schedules. PATIENTS AND METHODS AZD5438 was administered four times daily, once every 7 days (study 1), for 14 consecutive days followed by 7 days of rest (study 2), or continuously (study 3), to patients with advanced solid tumours. Dose escalation proceeded until the emergence of dose-limiting toxic effects. RESULTS Sixty-four patients were included across the three studies (19, 17 and 28, respectively). Nausea and vomiting were the most common adverse events. When dosed continuously, 40 mg four times daily was considered intolerable, and due to safety issues, all studies were terminated prematurely. Consequently, no intolerable dose was identified during the weekly schedule. Pharmacokinetics demonstrated dose-proportional exposure, high interpatient variability and accumulation after multiple doses. Skin biopsies indicated reduced retinoblastoma protein phosphorylation at cdk2 phospho-sites; other pharmacodynamic assessments did not reveal consistent trends. CONCLUSIONS AZD5438 was generally well tolerated in a weekly dosing schedule, but not in continuous schedules. The clinical development programme for AZD5438 was discontinued owing to tolerability and exposure data from these studies.
Collapse
Affiliation(s)
- D S Boss
- Department of Medical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - G K Schwartz
- Gastrointestinal Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - M R Middleton
- Departments of Oncology and Clinical Pharmacology, Oxford Radcliffe Hospitals, Oxford
| | - D D Amakye
- AstraZeneca, Alderley Park, Macclesfield, Cheshire
| | - H Swaisland
- AstraZeneca, Alderley Park, Macclesfield, Cheshire
| | - R S Midgley
- Departments of Oncology and Clinical Pharmacology, Oxford Radcliffe Hospitals, Oxford
| | - M Ranson
- The Derek Crowther Clinical Trials Unit, Christie Hospital NHS Trust, Manchester
| | - S Danson
- Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, University of Manchester, Manchester
| | - H Calvert
- Medical Oncology, Northern Centre for Cancer Treatment, Newcastle General Hospital, Newcastle upon Tyne, UK
| | - R Plummer
- Medical Oncology, Northern Centre for Cancer Treatment, Newcastle General Hospital, Newcastle upon Tyne, UK
| | - C Morris
- AstraZeneca, Alderley Park, Macclesfield, Cheshire
| | - R D Carvajal
- Gastrointestinal Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - L R Chirieac
- Department of Pathology, Brigham and Women's Hospital; Harvard Medical School
| | - J H M Schellens
- Department of Medical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| | - G I Shapiro
- Harvard Medical School; Early Drug Development Center, Department of Medical Oncology, Dana-Farber Cancer Institute; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
37
|
Węsierska-Gądek J, Kryštof V. Selective Cyclin-Dependent Kinase Inhibitors Discriminating between Cell Cycle and Transcriptional Kinases. Ann N Y Acad Sci 2009; 1171:228-41. [DOI: 10.1111/j.1749-6632.2009.04726.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat Cell Biol 2009; 11:397-408. [PMID: 19270695 DOI: 10.1038/ncb1847] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 12/03/2008] [Indexed: 01/18/2023]
Abstract
Deregulated Skp2 function promotes cell transformation, and this is consistent with observations of Skp2 overexpression in many human cancers. However, the mechanisms underlying elevated Skp2 expression are still unknown. Here we show that the serine/threonine protein kinase Akt1, but not Akt2, directly controls Skp2 stability by a mechanism that involves degradation by the APC-Cdh1 ubiquitin ligase complex. We show further that Akt1 phosphorylates Skp2 at Ser 72, which is required to disrupt the interaction between Cdh1 and Skp2. In addition, we show that Ser 72 is localized within a putative nuclear localization sequence and that phosphorylation of Ser 72 by Akt leads to cytoplasmic translocation of Skp2. This finding expands our knowledge of how specific signalling kinase cascades influence proteolysis governed by APC-Cdh1 complexes, and provides evidence that elevated Akt activity and cytoplasmic Skp2 expression may be causative for cancer progression.
Collapse
|
39
|
R-roscovitine sensitizes anaplastic thyroid carcinoma cells to TRAIL-induced apoptosis via regulation of IKK/NF-κB pathway. Int J Cancer 2009; 124:2728-36. [DOI: 10.1002/ijc.24260] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Song H, Shahverdi K, Huso DL, Wang Y, Fox JJ, Hobbs RF, Gimi B, Gabrielson KL, Pomper MG, Tsui BM, Bhujwalla Z, Reilly RT, Sgouros G. An immunotolerant HER-2/neu transgenic mouse model of metastatic breast cancer. Clin Cancer Res 2008; 14:6116-24. [PMID: 18829490 DOI: 10.1158/1078-0432.ccr-07-4672] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE Animal models of breast cancer metastases that recapitulate the pattern of metastatic progression seen in patients are lacking; metastatic breast cancer models do not currently exist for evaluation of immune-mediated therapies. We have developed and characterized a preclinical model for the evaluation of immune-mediated metastatic breast cancer therapies. EXPERIMENTAL DESIGN The NT2.5 mammary tumor cell line was injected into the left cardiac ventricle of immunotolerant transgenic neu-N mice and athymic nu/nu mice. Metastatic progression was monitored by bioluminescent, small-animal magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography/computed tomography imaging, and also by histopathology. Antigen expression in normal organs and tumor metastases was evaluated by Western blot analysis and flow cytometry. RESULTS Left cardiac ventricle injection of NT2.5 cells yielded widespread metastases in bones, liver, and spleen. Three to four weeks after injection, mice exhibited hind limb paralysis and occasional abdominal enlargement. Bioluminescence imaging of metastatic progression was successful in nude mice but the bioluminescent cells were rejected in immunocompetent mice. Other imaging modalities allowed successful imaging of nonbioluminescent cells. Small-animal positron emission tomography imaging allowed visualization of disease, in vivo, in the bones and liver. Magnetic resonance imaging revealed initial dissemination of the tumor cells to the bone marrow. Small-animal single-photon emission computed tomography/computed tomography imaging identified metastatic bone lesions targeted by a radiolabeled antibody. CONCLUSION The model closely recapitulates the pattern of metastatic spread in breast cancer. This immunotolerant metastatic model is a novel addition to existing breast cancer models and coupling the model with in vivo imaging greatly facilitates the evaluation of targeted immunotherapies of metastasis.
Collapse
Affiliation(s)
- Hong Song
- Division of Nuclear Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cui K, Xu X, Zhao H, Wong STC. A quantitative study of factors affecting in vivo bioluminescence imaging. LUMINESCENCE 2008; 23:292-5. [PMID: 18452141 DOI: 10.1002/bio.1032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In vivo bioluminescence imaging (BLI) has the advantages of high sensitivity and low background. By counting the number of photons emitted from a specimen, BLI can quantify biological events such as tumour growth, gene expression and drug response. The intensities and kinetics of the BL signal are affected by many factors and may confound the quantitative results acquired from consecutive imaging sessions or different specimens. We used three different mouse models of tumours to examine whether anaesthetics, positioning and tumour growth may affect the consistency of the BL signal. The results showed that BLI signal could be affected by different anaesthetics and repetitive positioning. Using the same anaesthetics produced consistent peak times, while other factors were held constant. However, as the tumours grew the peak times shifted and the time course of BL signals had different shapes, depending on the positioning of the mice. The data indicate that a carefully designed BLI experiment is required to generate optimal and consistent results.
Collapse
Affiliation(s)
- Kemi Cui
- Department of Radiology, The Methodist Hospital, Weill Cornell University, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Stem cell–based cellular therapy represents a promising outlook for regenerative medicine. Imaging techniques provide a means for noninvasive, repeated, and quantitative tracking of stem cell implant or transplant. From initial deposition to the survival, migration and differentiation of the transplant/implanted stem cells, imaging allows monitoring of the infused cells in the same live object over time. The current review briefly summarizes and compares existing imaging methods for cell labeling and imaging in animal models. Several studies performed by our group using different imaging techniques are described, with further discussion on the issues with these current imaging approaches and potential directions for future development in stem cell imaging.
Collapse
|
43
|
Coppola JM, Ross BD, Rehemtulla A. Noninvasive imaging of apoptosis and its application in cancer therapeutics. Clin Cancer Res 2008; 14:2492-501. [PMID: 18413842 DOI: 10.1158/1078-0432.ccr-07-0782] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Activation of the apoptotic cascade plays an important role in the response of tumors to therapy. Noninvasive imaging of apoptosis facilitates optimization of therapeutic protocols regarding dosing and schedule and enables identification of efficacious combination therapies. EXPERIMENTAL DESIGN We describe a hybrid polypeptide that reports on caspase-3 activity in living cells and animals in a noninvasive manner. This reporter, ANLucBCLuc, constitutes a fusion of small interacting peptides, peptide A and peptide B, with the NLuc and CLuc fragments of luciferase with a caspase-3 cleavage site (DEVD) between pepANLuc (ANLuc) and pepBCLuc (BCLuc). During apoptosis, caspase-3 cleaves the reporter, enabling separation of ANLuc from BCLuc. A high-affinity interaction between peptide A and peptide B restores luciferase activity by NLuc and CLuc complementation. Using a D54 glioma model, we show the utility of the reporter in imaging of apoptosis in living subjects in response to various chemotherapy and radiotherapy regimens. RESULTS Treatment of live cells and mice carrying D54 tumor xenografts with chemotherapeutic agents such as temozolomide and perifosine resulted in induction of bioluminescence activity, which correlated with activation of caspase-3. Treatment of mice with combination therapy of temozolomide and radiation resulted in increased bioluminescence activity over individual treatments and increased therapeutic response due to enhanced apoptosis. CONCLUSION The data provided show the utility of the ANLucBCLuc reporter in dynamic, noninvasive imaging of apoptosis and provides a rationale for use of this technology to optimize dose and schedule of novel therapies or to develop novel combination therapies using existing drugs.
Collapse
Affiliation(s)
- Julia M Coppola
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
44
|
Zhang GJ, Chen TB, Hargreaves R, Sur C, Williams DL. Bioluminescence imaging of hollow fibers in living animals: its application in monitoring molecular pathways. Nat Protoc 2008; 3:891-9. [DOI: 10.1038/nprot.2008.52] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Abstract
Hematopoietic stem cells (HSCs) have been studied for decades in order to understand their stem cell biology and their potential as treatments in gene therapy, and those studies have resulted in tremendous advancement of understanding HSCs. However, most of the studies required the sacrifice of cohorts of the animals in order to obtain data for analysis, resulting in the use of large animal numbers along with difficult long-term studies. The dynamic engraftment and expansion of HSC are not fully observed and analyzed. Until recently, with the development of optical imaging, HSC repopulation can be continuously monitored in the same animal over a long period of time, reducing animal numbers and opening a new dimension for investigation. In this chapter, bioluminescence imaging of murine HSC is described for observing the dynamic repopulation process after transplantation. Photons emitted from transplanted murine HSCs expressing firefly luciferase within the mice can be visualized in light-sealed chamber with a highly sensitive digital camera after injection of substrate D-luciferin. Xenogen IVIS200 imaging system is used to record the process, and other similar imaging systems can also be used for this process.
Collapse
|
46
|
Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 2008; 132:487-98. [PMID: 18267078 DOI: 10.1016/j.cell.2007.12.033] [Citation(s) in RCA: 1592] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 11/19/2007] [Accepted: 12/18/2007] [Indexed: 01/12/2023]
Abstract
The cell-cycle transition from G1 to S phase has been difficult to visualize. We have harnessed antiphase oscillating proteins that mark cell-cycle transitions in order to develop genetically encoded fluorescent probes for this purpose. These probes effectively label individual G1 phase nuclei red and those in S/G2/M phases green. We were able to generate cultured cells and transgenic mice constitutively expressing the cell-cycle probes, in which every cell nucleus exhibits either red or green fluorescence. We performed time-lapse imaging to explore the spatiotemporal patterns of cell-cycle dynamics during the epithelial-mesenchymal transition of cultured cells, the migration and differentiation of neural progenitors in brain slices, and the development of tumors across blood vessels in live mice. These mice and cell lines will serve as model systems permitting unprecedented spatial and temporal resolution to help us better understand how the cell cycle is coordinated with various biological events.
Collapse
|
47
|
|
48
|
Abstract
Optical techniques, such as bioluminescence and fluorescence, are emerging as powerful new modalities for molecular imaging in disease and therapy. Combining innovative molecular biology and chemistry, researchers have developed optical methods for imaging a variety of cellular and molecular processes in vivo, including protein interactions, protein degradation, and protease activity. Whereas optical imaging has been used primarily for research in small-animal models, there are several areas in which optical molecular imaging will translate to clinical medicine. In this review, we summarize recent advances in optical techniques for molecular imaging and the potential impact for clinical medicine.
Collapse
Affiliation(s)
- Gary D Luker
- University of Michigan, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
49
|
Zhang GJ, Chen TB, Bednar B, Connolly BM, Hargreaves R, Sur C, Williams DL. Optical imaging of tumor cells in hollow fibers: evaluation of the antitumor activities of anticancer drugs and target validation. Neoplasia 2007; 9:652-61. [PMID: 17786184 PMCID: PMC1950435 DOI: 10.1593/neo.07421] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/20/2007] [Accepted: 06/20/2007] [Indexed: 11/18/2022] Open
Abstract
The in vivo hollow fiber assay, in which semipermeable hollow fibers filled with tumor cells, are implanted into animals, was originally developed to screen for anticancer compounds before assessment in more complex tumor models. To enhance screening and evaluation of anticancer drugs, we have applied optical imaging technology to this assay. To demonstrate that tumor cells inside hollow fibers can communicate with the host mice, we have used fluorescence imaging in vivo and CD31 immunostaining ex vivo to show that angiogenesis occurs around cell-filled hollow fibers by 2 weeks after subcutaneous implantation. Bioluminescence imaging has been used to follow the number of luciferase-expressing tumor cells within implanted hollow fibers; proliferation of those cells was found to be significantly inhibited by docetaxel or irinotecan. We also used bioluminescence imaging of hollow fibers to monitor the nuclear factor kappaB (NFkappaB) pathway in vivo; NFkappaB activation by lipopolysaccharide and tumor necrosis factor-alpha was evaluated in tumor cell lines genetically engineered to express luciferase controlled by an NFkappaB-responsive element. These results demonstrate that optical imaging of hollow fibers containing reporter tumor cells can be used for the rapid and accurate evaluation of antitumor activities of anticancer drugs and for measurement of molecular pathways.
Collapse
Affiliation(s)
- Guo-Jun Zhang
- Imaging Department, MRL, Merck and Co., Inc., West Point, PA 19486, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Ohtani N, Imamura Y, Yamakoshi K, Hirota F, Nakayama R, Kubo Y, Ishimaru N, Takahashi A, Hirao A, Shimizu T, Mann DJ, Saya H, Hayashi Y, Arase S, Matsumoto M, Kazuki N, Hara E. Visualizing the dynamics of p21(Waf1/Cip1) cyclin-dependent kinase inhibitor expression in living animals. Proc Natl Acad Sci U S A 2007; 104:15034-9. [PMID: 17848507 PMCID: PMC1975854 DOI: 10.1073/pnas.0706949104] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although the role of p21(Waf1/Cip1) gene expression is well documented in various cell culture studies, its in vivo roles are poorly understood. To gain further insight into the role of p21(Waf1/Cip1) gene expression in vivo, we attempted to visualize the dynamics of p21(Waf1/Cip1) gene expression in living animals. In this study, we established a transgenic mice line (p21-p-luc) expressing the firefly luciferase under the control of the p21(Waf1/Cip1) gene promoter. In conjunction with a noninvasive bioluminescent imaging technique, p21-p-luc mice enabled us to monitor the endogenous p21(Waf1/Cip1) gene expression in vivo. By monitoring and quantifying the p21(Waf1/Cip1) gene expression repeatedly in the same mouse throughout its entire lifespan, we were able to unveil the dynamics of p21(Waf1/Cip1) gene expression in the aging process. We also applied this system to chemically induced skin carcinogenesis and found that the levels of p21(Waf1/Cip1) gene expression rise dramatically in benign skin papillomas, suggesting that p21(Waf1/Cip1) plays a preventative role(s) in skin tumor formation. Surprisingly, moreover, we found that the level of p21(Waf1/Cip1) expression strikingly increased in the hair bulb and oscillated with a 3-week period correlating with hair follicle cycle progression. Notably, this was accompanied by the expression of p63 but not p53. This approach, together with the analysis of p21(Waf1/Cip1) knockout mice, has uncovered a novel role for the p21(Waf1/Cip1) gene in hair development. These data illustrate the unique utility of bioluminescence imaging in advancing our understanding of the timing and, hence, likely roles of specific gene expression in higher eukaryotes.
Collapse
Affiliation(s)
- Naoko Ohtani
- *Institute for Genome Research
- To whom correspondence may be addressed. E-mail:
or
| | | | | | | | - Rika Nakayama
- Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | - Yoshiaki Kubo
- Institute of Health Biosciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Naozumi Ishimaru
- Institute of Health Biosciences, University of Tokushima, Tokushima 770-8503, Japan
| | | | - Atsushi Hirao
- Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- **CREST, Japan Science and Technology Agency, Tokyo 102-0075, Japan
| | - Takatsune Shimizu
- Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; and
| | - David J. Mann
- Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hideyuki Saya
- Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; and
| | - Yoshio Hayashi
- Institute of Health Biosciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Seiji Arase
- Institute of Health Biosciences, University of Tokushima, Tokushima 770-8503, Japan
| | | | - Nakao Kazuki
- Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | - Eiji Hara
- *Institute for Genome Research
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|