1
|
Zhang Q, Zhang C, Lu Y, Zhan H, Li B, Wei H, Yang Y, Liao L, Lan C, Hu C. JZL-184 Alleviate Neurological Impairment through Regulation of Mitochondrial Transfer and Lipid Droplet Accumulation after Cardiac Arrest. Mol Neurobiol 2024:10.1007/s12035-024-04633-3. [PMID: 39718743 DOI: 10.1007/s12035-024-04633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024]
Abstract
Astrocytes are abundant glial cells in the central nervous system (CNS) that play important roles in brain injury following cardiac arrest (CA). Following brain ischemia, astrocytes trigger endogenous neuroprotective mechanisms, such as fatty acid transport. Lipid droplets (LDs) are cellular structures involved in neutral lipid storage and play essential roles in many biological processes. However, whether lipid droplet metabolism is related to the neurological prognosis after CA remains unclear. JZL-184 is a selective irreversible inhibitor of monoacylglycerol lipase (MAGL), and previous investigations revealed that JZL-184 confers neuroprotection in the brain following stroke. However, further investigations are warranted to explore the effect and mechanism of JZL-184 after CA. Here, we reveal that JZL-184 is neuroprotective after cardiac arrest, as it alleviates astroglial activation by upregulating the expression of transforming growth factor beta 1 (TGF-β1), promotes the transfer of mitochondria from astrocytes to neurons in the astrocyte‒neuron coculture system, and reduces lipid droplet accumulation in neurons. Mechanistically, this protective effect depends on the downstream genes DUSP4 and Rab27b. This study provides additional insights into strategies for inhibiting neurological impairment and suggests a potential therapeutic target after cardiac arrest.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan engineering research center for cardiopulmonary and cerebral resuscitation, Zhengzhou, 450052, China
- Key Laboratory of Assisted Circulation, National Health Council, Guangzhou, 510080, China
| | - Chenyu Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Assisted Circulation, National Health Council, Guangzhou, 510080, China
| | - Yuanzheng Lu
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Haohong Zhan
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Assisted Circulation, National Health Council, Guangzhou, 510080, China
| | - Bo Li
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Hongyan Wei
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yilin Yang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liaoxing Liao
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Chao Lan
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan engineering research center for cardiopulmonary and cerebral resuscitation, Zhengzhou, 450052, China.
| | - Chunlin Hu
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Babakhanzadeh E, Hoseininasab FA, Khodadadian A, Nazari M, Hajati R, Ghafouri-Fard S. Circular RNAs: novel noncoding players in male infertility. Hereditas 2024; 161:46. [PMID: 39551760 PMCID: PMC11572108 DOI: 10.1186/s41065-024-00346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024] Open
Abstract
Infertility is a global problem being associated with emotional and financial burden. Recent studies have shown contribution of a group of non-coding RNAs, namely circular RNAs (circRNAs) to the etiology of some infertility conditions. CircRNA are transcribed from exons and form a circular RNA molecule, being abundant in eukaryotes. Traditionally classified as non-coding RNA, these transcripts are endogenously produced through either non-canonical back-splicing or linear splicing, typically produced from precursor messenger ribonucleic acid (pre-mRNA). While during the canonical splicing process the 3' end of the exon is joined to the 5' end of the succeeding exon to form linear mRNA, during backsplicing, the 3' end to the 5' end of the same exon is joined to make a circular molecule. circRNAs are involved in the regulation of several aspects of spermatogenesis. They appear to influence how stem germ cells grow and divide during the sperm production process. Malfunctions in circRNA activity could contribute to male infertility issues stemming from abnormalities in spermatogenesis. In the current review, we highlight the exciting potential of circRNAs as key players in the male fertility.
Collapse
Affiliation(s)
- Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ali Khodadadian
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reza Hajati
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Patidar P, Hirani N, Bharti S, Baig MS. Key regulators of hepatic stellate cell activation in alcohol liver Disease: A comprehensive review. Int Immunopharmacol 2024; 141:112938. [PMID: 39163683 DOI: 10.1016/j.intimp.2024.112938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Alcoholic liver disease (ALD) is a broad category of disorders that begin with liver injury, lead to liver fibrosis, and ultimately conclude in alcohol-induced liver cirrhosis, the most chronic and irreversible liver damage. Liver fibrosis (LF) is a common pathological characteristic observed in most chronic liver inflammatory conditions that involve prolonged inflammation. In this review, we have summarized ethanol-mediated hepatic stellate cell (HSCs) activation and its role in liver fibrosis progression. We highlight important molecular mechanisms that are modulated by ethanol, play a role in the activation of HSCs and the progression of liver fibrosis and identifying potential targets to ameliorate liver fibrosis.
Collapse
Affiliation(s)
- Pramod Patidar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Nik Hirani
- MRC Centre for Inflammation Research, Queen'sMedicalResearch Institute, University of Edinburgh, Edinburgh, EH164TJ, UK
| | - Shreya Bharti
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India.
| |
Collapse
|
4
|
Yang H, Park M, Lee JH, Kim B, Moon CS, Bae S, Kim Y, Lee HJ, Park CY. New peripherally-restricted CB1 receptor antagonists, PMG-505-010 and -013 ameliorate obesity-associated NAFLD and fibrosis. Biomed Pharmacother 2024; 180:117501. [PMID: 39366030 DOI: 10.1016/j.biopha.2024.117501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
The endocannabinoid system plays a crucial role in metabolic regulation, prompting the investigation of cannabinoid type 1 receptor (CB1R) antagonists for obesity and its complications like non-alcoholic fatty liver disease (NAFLD). Concerns over psychiatric side effects led to the development of peripheral CB1R antagonists that circumvent the blood-brain barrier (BBB). In this study, we synthesized PMG-505-010 and PMG-505-013 as peripherally restricted CB1 receptor antagonists by modifying rimonabant to minimize BBB penetration. Physicochemical analysis confirmed their reduced lipophilicity and increased polarity compared to rimonabant, indicating limited brain exposure. Molecular docking studies revealed similar binding modes to rimonabant at CB1R, characterized by robust hydrophobic interactions. Functionally, they acted as CB1R antagonists and inverse agonists, effectively reversing CP55,940-induced cAMP inhibition. In a murine model of obesity-related NAFLD, PMG-505-010 and -013 improved metabolic profiles, including fasting blood glucose levels and dyslipidemia. They also ameliorated hepatic injury, steatosis, and inflammation, evidenced by reduced liver enzymes, lipid peroxidation, hepatic lipid levels, and inflammatory cytokine levels. Notably, these compounds inhibited hepatic fibrosis by reducing extracellular matrix (ECM) deposition and altering fibrosis-related gene and protein expressions. In conclusion, PMG-505-010 and PMG-505-013 hold promise for treating obesity-related liver diseases, including NAFLD and fibrosis, through selective peripheral CB1R targeting, potentially avoiding CNS-related side effects seen with earlier CB1R antagonists.
Collapse
Affiliation(s)
- Hyekyung Yang
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea.
| | - Miey Park
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Republic of Korea.
| | - Ji Hye Lee
- PharminoGen Inc., Yongin 16827, Republic of Korea.
| | - Bokyoung Kim
- PharminoGen Inc., Yongin 16827, Republic of Korea.
| | - Chang Sang Moon
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Suyeal Bae
- PharminoGen Inc., Yongin 16827, Republic of Korea.
| | | | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| | - Cheol-Young Park
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea.
| |
Collapse
|
5
|
Dalle S, Schouten M, Deboutte J, de Lange E, Ramaekers M, Koppo K. The molecular signature of the peripheral cannabinoid receptor 1 antagonist AM6545 in adipose, liver and muscle tissue. Toxicol Appl Pharmacol 2024; 491:117081. [PMID: 39216835 DOI: 10.1016/j.taap.2024.117081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The endocannabinoid system plays an important role in the regulation of metabolism, growth and regeneration of peripheral tissues, including liver, adipose and muscle tissue. Studies in cells, rodents and humans showed that cannabinoid receptor 1 (CB1) antagonist treatment is an effective strategy to improve features of metabolic health such as substrate metabolism, at least in models of metabolic dysregulation. However, acute signaling events that might induce these metabolic adaptations are not understood. It is not clear whether, and to which extent, a single treatment with a CB1 antagonist induces acute effects in peripheral, metabolic tissues. Therefore, the present study compared the phosphorylation status of signaling pathways and metabolic markers in liver, adipose and muscle tissue of mice treated with the peripherally restricted CB1 antagonist AM6545 and vehicle-treated mice. Protein kinase A phosphorylation was downregulated in white and brown adipose tissue, whereas the mitogen-activated protein kinase, phospho-extracellular signal-regulated kinase, was higher in liver, white adipose and muscle tissue of AM6545-treated mice. Additionally, Akt-mammalian target of rapamycin activation was higher in all tissues of AM6545-treated mice, whereas the phosphorylation status of metabolic markers remained unaffected. These data indicate that acute CB1 antagonism is effective to induce phosphorylation events of signaling cascades and metabolic markers in metabolic tissues of healthy, lean mice within a 90-min time window. The observed adaptations to AM6545 treatment do not fully align with earlier in vitro and in vivo findings, which could be ascribed to differences in cell type, exposure intensity (dose and time), health status and species.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium.
| | - Moniek Schouten
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| | - Jolien Deboutte
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| | - Elsa de Lange
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| | - Monique Ramaekers
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium.
| |
Collapse
|
6
|
Fassarella LB, Neto JGO, Woyames J, Santos GRC, Pereira HMG, Pazos-Moura CC, Trevenzoli IH. Fish oil supplementation during pregnancy decreases liver endocannabinoid system and lipogenic markers in newborn rats exposed to maternal high-fat diet. Eur J Nutr 2024; 63:1565-1579. [PMID: 38727803 DOI: 10.1007/s00394-024-03422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/09/2024] [Indexed: 08/18/2024]
Abstract
PURPOSE Maternal high-fat diet (HF) programs obesity, metabolic dysfunction-associated steatotic liver disease (MASLD), hypertriglyceridemia, and hyperglycemia associated with increased endocannabinoid system (ECS) in the liver of adult male rat offspring. We hypothesized that maternal HF would induce sex specific ECS changes in the liver of newborn rats, prior to obesity onset, and maternal fish oil (FO) supplementation would reprogram the ECS and lipid metabolism markers preventing liver triglycerides (TG) accumulation. METHODS Female rats received a control (CT) (10.9% fat) or HF (28.7% fat) diet 8 weeks prior to mating and during pregnancy. A subgroup of HF dams received 3% FO supplementation in the HF diet (35.4% fat) during pregnancy (HFFO). Serum hormones and liver TG, ECS, lipid metabolism, oxidative stress and autophagy markers were assessed in male and female newborn offspring. RESULTS Maternal HF diet increased liver cannabinoid receptor 1 (CB1) in males and decreased CB2 in females, with no effect on liver TG. Maternal FO supplementation reduced liver CB1 regardless of the offspring sex, but reduced TG liver content only in females. FO reduced the liver content of the endocannabinoid anandamide in males, and the content of 2-arachidonoylglycerol in both sexes. Maternal HF increased lipogenic and decreased lipid oxidation markers, and FO induced the opposite regulation in the liver of offspring. CONCLUSION Prenatal HF and FO differentially modulate liver ECS in the offspring before obesity and MASLD development. These results suggest that maternal nutrition at critical stages of development can modulate the offspring's ECS, predisposing or preventing the onset of metabolic diseases.
Collapse
Affiliation(s)
- Larissa B Fassarella
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, 21941-902, Brasil
| | - Jessika G O Neto
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, 21941-902, Brasil
| | - Juliana Woyames
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, 21941-902, Brasil
| | - Gustavo R C Santos
- Laboratório Brasileiro de Controle de Dopagem, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Henrique M G Pereira
- Laboratório Brasileiro de Controle de Dopagem, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Carmen C Pazos-Moura
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, 21941-902, Brasil
| | - Isis H Trevenzoli
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, 21941-902, Brasil.
| |
Collapse
|
7
|
Sundi PRIO, Thipe VC, Omar MA, Adelusi TI, Gedefa J, Olaoba OT. Preclinical human and murine models of hepatocellular carcinoma (HCC). Clin Res Hepatol Gastroenterol 2024; 48:102418. [PMID: 39004339 DOI: 10.1016/j.clinre.2024.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/17/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent liver cancer, which account for more than 90 % of all liver cancer cases. It is the fifth leading cause of cancer globally and the second leading cause of cancer-related mortality in men. The availability of competent HCC preclinical models is fundamental to the success of mechanistic studies, molecular target identification, and drug testing. However, there are challenges associated with the use of these models. In this review, we provided updates on various cell lines, animals, and human HCC models, their specific preclinic use and associated potential challenges. Overall, the understanding of the merits and demerits of a particular HCC model will improve model selection for various preclinical studies.
Collapse
Affiliation(s)
- Pharidah Rajan Ibrahim Omar Sundi
- Lusaka Apex Medical University, Off Mumbwa Road, Lusaka 10101, Zambia; Pan African Organization for Health, Education and Research (POHER), United States
| | - Velaphi C Thipe
- Department of Radiology, Institute of Green Nanotechnology and Cancer Nanotechnology, University of Missouri, Columbia, MO 65211, USA
| | | | | | - Jalene Gedefa
- Collage of Health Sciences, Addis Ababa University, Ethiopia
| | - Olamide T Olaoba
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
8
|
Zhang T, An W, You S, Chen S, Zhang S. G protein-coupled receptors and traditional Chinese medicine: new thinks for the development of traditional Chinese medicine. Chin Med 2024; 19:92. [PMID: 38956679 PMCID: PMC11218379 DOI: 10.1186/s13020-024-00964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) widely exist in vivo and participate in many physiological processes, thus emerging as important targets for drug development. Approximately 30% of the Food and Drug Administration (FDA)-approved drugs target GPCRs. To date, the 'one disease, one target, one molecule' strategy no longer meets the demands of drug development. Meanwhile, small-molecule drugs account for 60% of FDA-approved drugs. Traditional Chinese medicine (TCM) has garnered widespread attention for its unique theoretical system and treatment methods. TCM involves multiple components, targets and pathways. Centered on GPCRs and TCM, this paper discusses the similarities and differences between TCM and GPCRs from the perspectives of syndrome of TCM, the consistency of TCM's multi-component and multi-target approaches and the potential of GPCRs and TCM in the development of novel drugs. A novel strategy, 'simultaneous screening of drugs and targets', was proposed and applied to the study of GPCRs. We combine GPCRs with TCM to facilitate the modernisation of TCM, provide valuable insights into the rational application of TCM and facilitate the research and development of novel drugs. This study offers theoretical support for the modernisation of TCM and introduces novel ideas for development of safe and effective drugs.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China
| | - Wenqiao An
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China
| | - Shengjie You
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China.
| |
Collapse
|
9
|
Chen J, Li F, Lee J, Manirujjaman M, Zhang L, Song ZH, McClain C, Feng W. Peripherally Restricted CB1 Receptor Inverse Agonist JD5037 Treatment Exacerbates Liver Injury in MDR2-Deficient Mice. Cells 2024; 13:1101. [PMID: 38994954 PMCID: PMC11240654 DOI: 10.3390/cells13131101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Previous research highlighted the involvement of the cannabinoid CB1 receptor in regulating the physiology of hepatocytes and hepatic stellate cells. The inhibition of the CB1 receptor via peripherally restricted CB1 receptor inverse agonist JD5037 has shown promise in inhibiting liver fibrosis in mice treated with CCl4. However, its efficacy in phospholipid transporter-deficiency-induced liver fibrosis remains uncertain. In this study, we investigated the effectiveness of JD5037 in Mdr2-/- mice. Mdr2 (Abcb4) is a mouse ortholog of the human MDR3 (ABCB4) gene encoding for the canalicular phospholipid transporter. Genetic disruption of the Mdr2 gene in mice causes a complete absence of phosphatidylcholine from bile, leading to liver injury and fibrosis. Mdr2-/- mice develop spontaneous fibrosis during growth. JD5037 was orally administered to the mice for four weeks starting at eight weeks of age. Liver fibrosis, bile acid levels, inflammation, and injury were assessed. Additionally, JD5037 was administered to three-week-old mice to evaluate its preventive effects on fibrosis development. Our findings corroborate previous observations regarding global CB1 receptor inverse agonists. Four weeks of JD5037 treatment in eight-week-old Mdr2-/- mice with established fibrosis led to reduced body weight gains. However, contrary to expectations, JD5037 significantly exacerbated liver injury, evidenced by elevated serum ALT and ALP levels and exacerbated liver histology. Notably, JD5037-treated Mdr2-/- mice exhibited significantly heightened serum bile acid levels. Furthermore, JD5037 treatment intensified liver fibrosis, increased fibrogenic gene expression, stimulated ductular reaction, and upregulated hepatic proinflammatory cytokines. Importantly, JD5037 failed to prevent liver fibrosis formation in three-week-old Mdr2-/- mice. In summary, our study reveals the exacerbating effect of JD5037 on liver fibrosis in genetically MDR2-deficient mice. These findings underscore the need for caution in the use of peripherally restricted CB1R inverse agonists for liver fibrosis treatment, particularly in cases of dysfunctional hepatic phospholipid transporter.
Collapse
MESH Headings
- Animals
- Mice
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/agonists
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- Liver Cirrhosis/pathology
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/chemically induced
- Liver Cirrhosis/drug therapy
- Liver Cirrhosis/genetics
- ATP-Binding Cassette Sub-Family B Member 4
- Liver/drug effects
- Liver/pathology
- Liver/metabolism
- Male
- Mice, Knockout
- Bile Acids and Salts/metabolism
- Drug Inverse Agonism
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Jenny Chen
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Fengyuan Li
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jiyeon Lee
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Md Manirujjaman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lihua Zhang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Craig McClain
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Flores-Cortez D, Villalobos-Pacheco E, Ignacio-Punin C, Gutierrez-Guerra G, Tovar-Brandan J, Rodriguez-Tafur J. Hepatoprotective Effect of Cannabidiol on the Progression of Experimental Hepatic Cirrhosis in Rats. Cannabis Cannabinoid Res 2024. [PMID: 38885158 DOI: 10.1089/can.2023.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
Introduction: Liver cirrhosis is a condition characterized by the gradual replacement of normal liver tissue with scar tissue, ultimately leading to liver failure. This slow and progressive disease begins with a chronic inflammatory process induced by a noxious agent. In its advanced stages, the disease lacks effective therapies. Research has demonstrated the significant involvement of the endocannabinoid system in the pathogenesis of this disease. This study evaluated the hepatoprotective effect of cannabidiol (CBD) in the progression of experimental hepatic cirrhosis induced by thioacetamide (TAA) in rats. Methods: A randomized experimental design was employed using Holtzman rats. Hepatic cirrhosis was induced by intraperitoneal administration of TAA at a dose of 150 mg/kg for 6 weeks, with treatment initiated additionally. The groups were as follows: Group 1: TAA + vehicle; Group 2: TAA + CBD 2 mg/kg; Group 3: TAA + CBD 9 mg/kg; Group 4: TAA + CBD 18 mg/kg; Group 5: TAA + silymarin 50 mg/kg; and Group 6: Healthy control. Serum biochemical analysis (total bilirubin, direct bilirubin, ALT, AST, alkaline phosphatase, and albumin) and hepatic histopathological study were performed. The Knodell histological activity index (HAI) was determined, considering periportal necrosis, intralobular degeneration, portal inflammation, fibrosis, and focal necrosis. Results: All groups receiving TAA exhibited an elevation in AST levels; however, only those treated with CBD at doses of 2 mg/kg and 18 mg/kg did not experience significant changes compared to their baseline values (152.8 and 135.7 IU/L, respectively). Moreover, ALT levels in animals treated with CBD showed no significant variation compared to baseline. The HAI of hepatic tissue was notably lower in animals treated with CBD at doses of 9 and 18 mg/kg, scoring 3.0 and 3.25, respectively, in contrast to the TAA + vehicle group, which recorded a score of 7.00. Animals treated with CBD at 18 mg/kg showed a reduced degree of fibrosis and necrosis compared to those receiving TAA alone (p ≤ 0.05). Conclusion: Our findings demonstrate that cannabidiol exerts a hepatoprotective effect in the development of experimental hepatic cirrhosis induced in rats.
Collapse
Affiliation(s)
- Daisy Flores-Cortez
- Pharmacology Laboratory, Faculty of Human Medicine, Universidad Nacional Mayor de San Marcos-UNMSM, Lima, Peru
- Research Group in Basic and Clinical Pharmacology of Drugs and Natural Products (FARMANAT)
| | - Eduardo Villalobos-Pacheco
- Pharmacology Laboratory, Faculty of Human Medicine, Universidad Nacional Mayor de San Marcos-UNMSM, Lima, Peru
- Research Group in Basic and Clinical Pharmacology of Drugs and Natural Products (FARMANAT)
| | - Cecilia Ignacio-Punin
- Pharmacology Laboratory, Faculty of Human Medicine, Universidad Nacional Mayor de San Marcos-UNMSM, Lima, Peru
- Research Group in Basic and Clinical Pharmacology of Drugs and Natural Products (FARMANAT)
| | | | - Javier Tovar-Brandan
- Pharmacology Laboratory, Faculty of Human Medicine, Universidad Nacional Mayor de San Marcos-UNMSM, Lima, Peru
- Research Group in Basic and Clinical Pharmacology of Drugs and Natural Products (FARMANAT)
| | - Juan Rodriguez-Tafur
- Pharmacology Laboratory, Faculty of Human Medicine, Universidad Nacional Mayor de San Marcos-UNMSM, Lima, Peru
- Research Group in Basic and Clinical Pharmacology of Drugs and Natural Products (FARMANAT)
| |
Collapse
|
11
|
Cinar R, Basu A, Arif M, Park JK, Zawatsky CN, Zuo BLG, Zuo MXG, O’Brien KJ, Behan M, Introne W, Iyer MR, Gahl WA, Malicdan MCV, Gochuico BR. Anandamide is an Early Blood Biomarker of Hermansky-Pudlak Syndrome Pulmonary Fibrosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.16.24307300. [PMID: 38798603 PMCID: PMC11118631 DOI: 10.1101/2024.05.16.24307300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Hermansky-Pudlak syndrome (HPS) is a group of rare genetic disorders, with several subtypes leading to fatal adult-onset pulmonary fibrosis (PF) and no effective treatment. Circulating biomarkers detecting early PF have not been identified. We investigated whether endocannabinoids could serve as blood biomarkers of PF in HPS. We measured endocannabinoids in the serum of HPS, IPF, and healthy human subjects and in a mouse model of HPSPF. Pulmonary function tests (PFT) were correlated with endocannabinoid measurements. In a pale ear mouse model of bleomycin-induced HPSPF, serum endocannabinoid levels were measured with and without treatment with zevaquenabant (MRI-1867), a peripheral CB1R and iNOS antagonist. In three separate cohorts, circulating anandamide levels were increased in HPS-1 patients with or without PF, compared to healthy volunteers. This increase was not observed in IPF patients or in HPS-3 patients, who do not have PF. Circulating anandamide (AEA) levels were negatively correlated with PFT. Furthermore, a longitudinal study over the course of 5-14 years with HPS-1 patients indicated that circulating AEA levels begin to increase with the fibrotic lung process even at the subclinical stages of HPSPF. In pale ear mice with bleomycin-induced HpsPF, serum AEA levels were significantly increased in the earliest stages of PF and remained elevated at a later fibrotic stage. Zevaquenabant treatment reduced the increased AEA levels and attenuated progression in bleomycin-induced HpsPF. Circulating AEA may be a prognostic blood biomarker for PF in HPS-1 patients. Further studies are indicated to evaluate endocannabinoids as potential surrogate biomarkers in progressive fibrotic lung diseases.
Collapse
Affiliation(s)
- Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Abhishek Basu
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Muhammad Arif
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Joshua K. Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852, USA
| | - Charles N. Zawatsky
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Ben Long G. Zuo
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Mei Xing G. Zuo
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Kevin J. O’Brien
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Molly Behan
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wendy Introne
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - William A. Gahl
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - May Christine V. Malicdan
- NIH Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernadette R. Gochuico
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
12
|
Kaffe E, Tisi A, Magkrioti C, Aidinis V, Mehal WZ, Flavell RA, Maccarrone M. Bioactive signalling lipids as drivers of chronic liver diseases. J Hepatol 2024; 80:140-154. [PMID: 37741346 DOI: 10.1016/j.jhep.2023.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/25/2023]
Abstract
Lipids are important in multiple cellular functions, with most having structural or energy storage roles. However, a small fraction of lipids exert bioactive roles through binding to G protein-coupled receptors and induce a plethora of processes including cell proliferation, differentiation, growth, migration, apoptosis, senescence and survival. Bioactive signalling lipids are potent modulators of metabolism and energy homeostasis, inflammation, tissue repair and malignant transformation. All these events are involved in the initiation and progression of chronic liver diseases. In this review, we focus specifically on the roles of bioactive lipids derived from phospholipids (lyso-phospholipids) and poly-unsaturated fatty acids (eicosanoids, pro-resolving lipid mediators and endocannabinoids) in prevalent chronic liver diseases (alcohol-associated liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma). We discuss the balance between pathogenic and beneficial bioactive lipids as well as potential therapeutic targets related to the agonism or antagonism of their receptors.
Collapse
Affiliation(s)
- Eleanna Kaffe
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA.
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | - Vassilis Aidinis
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | - Wajahat Z Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, 06520, USA; Veterans Affairs Medical Center, West Haven, CT, 06516, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy; Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy.
| |
Collapse
|
13
|
Wilson G, Yang L, Su X, Ding S, Li L, Yang Y, Wang X, Wang W, Sa Y, Zhang Y, Chen J, Ma X. Exploring the therapeutic potential of natural compounds modulating the endocannabinoid system in various diseases and disorders: review. Pharmacol Rep 2023; 75:1410-1444. [PMID: 37906390 DOI: 10.1007/s43440-023-00544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes involved in the biosynthesis and degradation of the endocannabinoids make up the endocannabinoid system (ECS). The components of the ECS are proven to modulate a vast bulk of various physiological and pathological processes due to their abundance throughout the human body. Such discoveries have attracted the researchers' attention and emerged as a potential therapeutical target for the treatment of various diseases. In the present article, we reviewed the discoveries of natural compounds, herbs, herbs formula, and their therapeutic properties in various diseases and disorders by modulating the ECS. We also summarize the molecular mechanisms through which these compounds elicit their properties by interacting with the ECS based on the existing findings. Our study provides the insight into the use of natural compounds that modulate ECS in various diseases and disorders, which in turn may facilitate future studies exploiting natural lead compounds as novel frameworks for designing more effective and safer therapeutics.
Collapse
Affiliation(s)
- Gidion Wilson
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaojuan Su
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Shuqin Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Liuyan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Youyue Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaoying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Weibiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yuping Sa
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yue Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Huatuo Road, Minhoushangjie, Fuzhou, 350122, China.
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| |
Collapse
|
14
|
Han M, Geng J, Zhang S, Rao J, Zhu Y, Xu S, Wang F, Ma F, Zhou M, Zhou H. Invariant natural killer T cells drive hepatic homeostasis in nonalcoholic fatty liver disease via sustained IL-10 expression in CD170 + Kupffer cells. Eur J Immunol 2023; 53:e2350474. [PMID: 37489253 DOI: 10.1002/eji.202350474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Kupffer cells (KCs) are liver-resident macrophages involved in hepatic inflammatory responses, including nonalcoholic fatty liver disease (NAFLD) development. However, the contribution of KC subsets to liver inflammation remains unclear. Here, using high-dimensional single-cell RNA sequencing, we characterized murine embryo-derived KCs and identified two KC populations with different gene expression profiles: KC-1 and KC-2. KC-1 expressed CD170, exhibiting immunoreactivity and immune-regulatory abilities, while KC-2 highly expressed lipid metabolism-associated genes. In a high-fat diet-induced NAFLD model, KC-1 cells differentiated into pro-inflammatory phenotypes and initiated more frequent communications with invariant natural killer T (iNKT) cells. In KC-1, interleukin (IL)-10 expression was unaffected by the high-fat diet but impaired by iNKT cell ablation and upregulated by iNKT cell adoptive transfer in vivo. Moreover, in a cellular co-culture system, primary hepatic iNKT cells promoted IL-10 expression in RAW264.7 and primary KC-1 cells. CD206 signal blocking in KC-1 or CD206 knockdown in RAW264.7 cells significantly reduced IL-10 expression. In conclusion, we identified two embryo-derived KC subpopulations with distinct transcriptional profiles. The CD206-mediated crosstalk between iNKT and KC-1 cells maintains IL-10 expression in KC-1 cells, affecting hepatic immune balance. Therefore, KC-based therapeutic strategies must consider cellular heterogeneity and the local immune microenvironment for enhanced specificity and efficiency.
Collapse
Affiliation(s)
- Mutian Han
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Anhui, China
| | - Jinke Geng
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Anhui, China
| | - Shuangshuang Zhang
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Anhui, China
| | - Jia Rao
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Anhui, China
| | - Yansong Zhu
- Department of Cell and Biology, College of Life Sciences, Anhui Medical University, Anhui, China
| | - Shaodong Xu
- Department of Cell and Biology, College of Life Sciences, Anhui Medical University, Anhui, China
| | - Fei Wang
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Anhui, China
| | - Fang Ma
- Center for Scientific Research, Anhui Medical University, Anhui, China
| | - Meng Zhou
- Department of Cell and Biology, College of Life Sciences, Anhui Medical University, Anhui, China
| | - Hong Zhou
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Anhui, China
- Department of Cell and Biology, College of Life Sciences, Anhui Medical University, Anhui, China
| |
Collapse
|
15
|
Suzuki S, Fleig A, Penner R. CBGA ameliorates inflammation and fibrosis in nephropathy. Sci Rep 2023; 13:6341. [PMID: 37072467 PMCID: PMC10113213 DOI: 10.1038/s41598-023-33507-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Cannabidiol (CBD) is thought to have multiple biological effects, including the ability to attenuate inflammatory processes. Cannabigerols (CBGA and its decarboxylated CBG molecule) have pharmacological profiles similar to CBD. The endocannabinoid system has recently emerged to contribute to kidney disease, however, the therapeutic properties of cannabinoids in kidney disease remain largely unknown. In this study, we determined whether CBD and CBGA can attenuate kidney damage in an acute kidney disease model induced by the chemotherapeutic cisplatin. In addition, we evaluated the anti-fibrosis effects of these cannabinoids in a chronic kidney disease model induced by unilateral ureteral obstruction (UUO). We find that CBGA, but not CBD, protects the kidney from cisplatin-induced nephrotoxicity. CBGA also strongly suppressed mRNA of inflammatory cytokines in cisplatin-induced nephropathy, whereas CBD treatment was only partially effective. Furthermore, both CBGA and CBD treatment significantly reduced apoptosis through inhibition of caspase-3 activity. In UUO kidneys, both CBGA and CBD strongly reduced renal fibrosis. Finally, we find that CBGA, but not CBD, has a potent inhibitory effect on the channel-kinase TRPM7. We conclude that CBGA and CBD possess reno-protective properties, with CBGA having a higher efficacy, likely due to its dual anti-inflammatory and anti-fibrotic effects paired with TRPM7 inhibition.
Collapse
Affiliation(s)
- Sayuri Suzuki
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl St., Honolulu, HI, 96813, USA.
| | - Andrea Fleig
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl St., Honolulu, HI, 96813, USA
- University of Hawaii Cancer Center, 651 Ilalo St., Honolulu, HI, 96813, USA
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, 96813, USA
| | - Reinhold Penner
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl St., Honolulu, HI, 96813, USA
- University of Hawaii Cancer Center, 651 Ilalo St., Honolulu, HI, 96813, USA
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, 96813, USA
| |
Collapse
|
16
|
Jacquot L, Pointeau O, Roger-Villeboeuf C, Passilly-Degrace P, Belkaid R, Regazzoni I, Leemput J, Buch C, Demizieux L, Vergès B, Degrace P, Crater G, Jourdan T. Therapeutic potential of a novel peripherally restricted CB1R inverse agonist on the progression of diabetic nephropathy. FRONTIERS IN NEPHROLOGY 2023; 3:1138416. [PMID: 37675364 PMCID: PMC10479578 DOI: 10.3389/fneph.2023.1138416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/28/2023] [Indexed: 09/08/2023]
Abstract
Objective This study assessed the efficacy of INV-202, a novel peripherally restricted cannabinoid type-1 receptor (CB1R) inverse agonist, in a streptozotocin-induced type-1 diabetes nephropathy mouse model. Methods Diabetes was induced in 8-week-old C57BL6/J male mice via intraperitoneal injection of streptozotocin (45 mg/kg/day for 5 days); nondiabetic controls received citrate buffer. Diabetic mice were randomized to 3 groups based on blood glucose, polyuria, and albuminuria, and administered daily oral doses for 28-days of INV-202 at 0.3 or 3 mg/kg or vehicle. Results INV-202 did not affect body weight but decreased kidney weight compared with the vehicle group. While polyuria was unaffected by INV-202 treatment, urinary urea (control 30.77 ± 14.93; vehicle 189.81 ± 31.49; INV-202 (0.3 mg/kg) 127.76 ± 20; INV-202 (3 mg/kg) 93.70 ± 24.97 mg/24h) and albumin (control 3.06 ± 0.38; vehicle 850.08 ± 170.50; INV-202 (0.3 mg/kg) 290.65 ± 88.70; INV-202 (3 mg/kg) 111.29 ± 33.47 µg/24h) excretion both decreased compared with vehicle-treated diabetic mice. Compared with the vehicle group, there was a significant improvement in the urinary albumin to creatinine ratio across INV-202 groups. Regardless of the dose, INV-202 significantly reduced angiotensin II excretion in diabetic mice. The treatment also decreased Agtr1a renal expression in a dose-dependent manner. Compared with nondiabetic controls, the glomerular filtration rate was increased in the vehicle group and significantly decreased by INV-202 at 3 mg/kg. While the vehicle group showed a significant loss in the mean number of podocytes per glomerulus, INV-202 treatment limited podocyte loss in a dose-dependent manner. Moreover, in both INV-202 groups, expression of genes coding for podocyte structural proteins nephrin (Nphs1), podocin (Nphs2), and podocalyxin (Pdxl) were restored to levels similar to nondiabetic controls. INV-202 partially limited the proximal tubular epithelial cell (PTEC) hyperplasia and normalized genetic markers for PTEC lesions. INV-202 also reduced expression of genes contributing to oxidative stress (Nox2, Nox4, and P47phox) and inflammation (Tnf). In addition, diabetes-induced renal fibrosis was significantly reduced by INV-202. Conclusions INV-202 reduced glomerular injury, preserved podocyte structure and function, reduced injury to PTECs, and ultimately reduced renal fibrosis in a streptozotocin-induced diabetic nephropathy mouse model. These results suggest that INV-202 may represent a new therapeutic option in the treatment of diabetic kidney disease.
Collapse
Affiliation(s)
- Laetitia Jacquot
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Océane Pointeau
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Célia Roger-Villeboeuf
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Patricia Passilly-Degrace
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Rim Belkaid
- ImaFlow core facility, UMR1231 INSERM, University of Burgundy, Dijon, France
| | - Isaline Regazzoni
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Julia Leemput
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Chloé Buch
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Laurent Demizieux
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Bruno Vergès
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pascal Degrace
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Tony Jourdan
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
17
|
Mukhopadhyay B, Holovac K, Schuebel K, Mukhopadhyay P, Cinar R, Iyer S, Marietta C, Goldman D, Kunos G. The endocannabinoid system promotes hepatocyte progenitor cell proliferation and maturation by modulating cellular energetics. Cell Death Discov 2023; 9:104. [PMID: 36966147 PMCID: PMC10039889 DOI: 10.1038/s41420-023-01400-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/27/2023] Open
Abstract
The proliferation and differentiation of hepatic progenitor cells (HPCs) drive the homeostatic renewal of the liver under diverse conditions. Liver regeneration is associated with an increase in Axin2+Cnr1+ HPCs, along with a marked increase in the levels of the endocannabinoid anandamide (AEA). But the molecular mechanism linking AEA signaling to HPC proliferation and/or differentiation has not been explored. Here, we show that in vitro exposure of HPCs to AEA triggers both cell cycling and differentiation along with increased expression of Cnr1, Krt19, and Axin2. Mechanistically, we found that AEA promotes the nuclear localization of the transcription factor β-catenin, with subsequent induction of its downstream targets. Systemic analyses of cells after CRISPR-mediated knockout of the β-catenin-regulated transcriptome revealed that AEA modulates β-catenin-dependent cell cycling and differentiation, as well as interleukin pathways. Further, we found that AEA promotes OXPHOS in HPCs when amino acids and glucose are readily available as substrates, but AEA inhibits it when the cells rely primarily on fatty acid oxidation. Thus, the endocannabinoid system promotes hepatocyte renewal and maturation by stimulating the proliferation of Axin2+Cnr1+ HPCs via the β-catenin pathways while modulating the metabolic activity of their precursor cells.
Collapse
Affiliation(s)
- Bani Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Kellie Holovac
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Kornel Schuebel
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Sindhu Iyer
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Cheryl Marietta
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Fajardo L, Sanchez P, Salles J, Rigaudière JP, Patrac V, Caspar-Bauguil S, Bergoglgio C, Moro C, Walrand S, Le Bacquer O. Inhibition of the endocannabinoid system reverses obese phenotype in aged mice and partly restores skeletal muscle function. Am J Physiol Endocrinol Metab 2023; 324:E176-E184. [PMID: 36629822 DOI: 10.1152/ajpendo.00258.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass, is associated with lipid accumulation and anabolic resistance; phenomena also observed in obesity and worsen when obesity and aging are combined. The endocannabinoid system (ECS) is overactivated in obesity, but its role in aging obesity-related muscle dysfunction is unknown. The aims of this study were to evaluate the effect of inhibition of the ECS by rimonabant (RIM) on the metabolic alterations induced by a high-fat high-sucrose diet and on skeletal muscle mass/function in aged mice. Eighteen-month-old male mice were subjected to a control (CTL) or a high-fat high-sucrose (HFHS) diet for 24 weeks. Mice were administered with saline or RIM (10 mg/kg/day) for the last 4 weeks of the diet. Skeletal muscle function was evaluated by open-field, rotarod, and grip strength tests. Metabolic alterations in liver, adipose tissue, and skeletal muscle were investigated by quantitative RT-PCR. Body mass was higher in HFHS mice compared to CTL mice (48.0 ± 1.5 vs. 33.5 ± 0.7 g, P < 0.01), as a result of fat accumulation (34.8 ± 1.0 vs. 16.7 ± 0.8%, P < 0.01). RIM reduced body fat mass in both CTL (-16%, P < 0.05) and HFHS conditions (-40%, P < 0.01), without affecting hindlimb skeletal muscle mass. In HFHS mice, grip strength evolution was improved (-0.29 ± 0.06 vs. -0.49 ± 0.06 g/g lean mass, P < 0.05), and rotarod activity was increased by ≈60% in response to RIM (45.9 ± 6.3 vs. 28.5 ± 4.6 cm, P < 0.05). Lipolysis and β-oxidation genes were upregulated in the liver as well as genes involved in adipose tissue browning. These results demonstrate that inhibition of the ECS induces metabolic changes in liver and adipose tissue associated with a reversion of the obese phenotype and that RIM is able to improve motor coordination and muscle strength in aged mice, without affecting skeletal muscle mass.NEW & NOTEWORTHY In 24-month-old mice submitted to high-fat high-sucrose-induced obesity, inhibition of the endocannabinoid system by rimonabant reversed the obese phenotype by promoting adipose tissue browning and β-oxidation in the liver but not in skeletal muscle. These metabolism modifications are associated with improved skeletal muscle function.
Collapse
Affiliation(s)
- Lucas Fajardo
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Phelipe Sanchez
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jérôme Salles
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jean Paul Rigaudière
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Véronique Patrac
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Sylvie Caspar-Bauguil
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases (I2MC), Inserm/Paul Sabatier University UMR1297, Toulouse, France
- Department of Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - Camille Bergoglgio
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases (I2MC), Inserm/Paul Sabatier University UMR1297, Toulouse, France
| | - Cédric Moro
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases (I2MC), Inserm/Paul Sabatier University UMR1297, Toulouse, France
| | - Stéphane Walrand
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
- Service de Nutrition Clinique, Hôpital Gabriel Montpied, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, Clermont-Ferrand, France
| | - Olivier Le Bacquer
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
19
|
De Nunzio V, Carrieri L, Scavo MP, Lippolis T, Cofano M, Caponio GR, Tutino V, Rizzi F, Depalo N, Osella AR, Notarnicola M. Plasma-Derived Exosomes from NAFLD Patients Modulate the Cannabinoid Receptors' Expression in Cultured HepaRG Cells. Int J Mol Sci 2023; 24:ijms24021739. [PMID: 36675254 PMCID: PMC9862025 DOI: 10.3390/ijms24021739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Exosomes produced by hepatocytes upon lipotoxic insult play a relevant role in pathogenesis of nonalcoholic fatty liver disease (NAFLD), suggesting an inflammatory response by the activation of monocytes and macrophages and accelerating the disease progression. In the pathogenesis of NAFLD and liver fibrosis, the endogenous cannabinoids and their major receptors CB1 and CB2 appear to be highly involved. This study aimed at evaluating the expression of cannabinoids receptors (CB1R and CB2R) in plasma-derived exosomes extracted from patients with NAFLD, as well as investigating the in vitro effects of the circulating exosomes in cultured human HepaRG cells following their introduction into the culture medium. The results demonstrated that plasma-derived exosomes from NAFLD patients are vehicles for the transport of CB1R and are able to modulate CB receptors' expression in HepaRG cells. In particular, circulating exosomes from NAFLD patients are inflammatory drivers for HepaRG cells, acting through CB1R activation and the downregulation of CB2R. Moreover, CB1R upregulation was associated with increased expression levels of PPAR-γ, a well-known mediator of liver tissue injury. In conclusion, this study provides evidence for CB1R transport by exosomes and suggests that the in vitro effects of circulating exosomes from NAFLD patients are mediated by the expression of cannabinoid receptors.
Collapse
Affiliation(s)
- Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Livianna Carrieri
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Maria Principia Scavo
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Tamara Lippolis
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Miriam Cofano
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Giusy Rita Caponio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Valeria Tutino
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Federica Rizzi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
- Institute for Chemical-Physical Processes (IPCF), Council National Research (CNR) Bari, Via Orabona 4, 70125 Bari, Italy
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes (IPCF), Council National Research (CNR) Bari, Via Orabona 4, 70125 Bari, Italy
| | - Alberto Ruben Osella
- Laboratory of Epidemiolgy and Biostatistics, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
- Correspondence: ; Tel.: +39-080-4994342
| |
Collapse
|
20
|
Abd-Nikfarjam B, Dolati-Somarin A, Baradaran Rahimi V, Askari VR. Cannabinoids in neuroinflammatory disorders: Focusing on multiple sclerosis, Parkinsons, and Alzheimers diseases. Biofactors 2023. [PMID: 36637897 DOI: 10.1002/biof.1936] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023]
Abstract
The medicinal properties of cannabis and cannabinoid-derivative are entirely investigated and known. In addition, the identification of psychotropic plant cannabinoids has led to more studies regarding the cannabinoid system and its therapeutic features in the treatment and management of clinical symptoms of neuroinflammatory disorders, such as multiple sclerosis (MS), Parkinsons disease (PD), and Alzheimers disease (AD). In fact, cannabinoid agonists are able to control and regulate inflammatory responses. In contrast to the cannabinoid receptor type 1 (CB1) and its unwanted adverse effects, the cannabinoid receptor type 2 (CB2) and its ligands hold promise for new and effective therapeutic approaches. So far, some successes have been achieved in this field. This review will discuss an outline of the endocannabinoid system's involvement in neuroinflammatory disorders. Moreover, the pharmacological efficacy of different natural and synthetic preparations of phytocannabinoids acting on cannabinoid receptors, particularly in MS, PD, and AD, will be updated. Also, the reasons for targeting CB2 for neurodegeneration will be explained.
Collapse
Affiliation(s)
- Bahareh Abd-Nikfarjam
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Hirsch S, Hinden L, Naim MBD, Baraghithy S, Permyakova A, Azar S, Nasser T, Portnoy E, Agbaria M, Nemirovski A, Golomb G, Tam J. Hepatic targeting of the centrally active cannabinoid 1 receptor (CB 1R) blocker rimonabant via PLGA nanoparticles for treating fatty liver disease and diabetes. J Control Release 2023; 353:254-269. [PMID: 36442615 PMCID: PMC9900386 DOI: 10.1016/j.jconrel.2022.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Over-activation of the endocannabinoid/CB1R system is a hallmark feature of obesity and its related comorbidities, most notably type 2 diabetes (T2D), and non-alcoholic fatty liver disease (NAFLD). Although the use of drugs that widely block the CB1R was found to be highly effective in treating all metabolic abnormalities associated with obesity, they are no longer considered a valid therapeutic option due to their adverse neuropsychiatric side effects. Here, we describe a novel nanotechnology-based drug delivery system for repurposing the abandoned first-in-class global CB1R antagonist, rimonabant, by encapsulating it in polymeric nanoparticles (NPs) for effective hepatic targeting of CB1Rs, enabling effective treatment of NAFLD and T2D. Rimonabant-encapsulated NPs (Rimo-NPs) were mainly distributed in the liver, spleen, and kidney, and only negligible marginal levels of rimonabant were found in the brain of mice treated by iv/ip administration. In contrast to freely administered rimonabant treatment, no CNS-mediated behavioral activities were detected in animals treated with Rimo-NPs. Chronic treatment of diet-induced obese mice with Rimo-NPs resulted in reduced hepatic steatosis and liver injury as well as enhanced insulin sensitivity, which were associated with enhanced cellular uptake of the formulation into hepatocytes. Collectively, we successfully developed a method of encapsulating the centrally acting CB1R blocker in NPs with desired physicochemical properties. This novel drug delivery system allows hepatic targeting of rimonabant to restore the metabolic advantages of blocking CB1R in peripheral tissues, especially in the liver, without the negative CB1R-mediated neuropsychiatric side effects.
Collapse
Affiliation(s)
- Shira Hirsch
- Obesity and Metabolism Laboratory, POB 12065, Jerusalem 9112001, Israel
| | - Liad Hinden
- Obesity and Metabolism Laboratory, POB 12065, Jerusalem 9112001, Israel
| | - Meital Ben-David Naim
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Saja Baraghithy
- Obesity and Metabolism Laboratory, POB 12065, Jerusalem 9112001, Israel
| | - Anna Permyakova
- Obesity and Metabolism Laboratory, POB 12065, Jerusalem 9112001, Israel
| | - Shahar Azar
- Obesity and Metabolism Laboratory, POB 12065, Jerusalem 9112001, Israel
| | - Taher Nasser
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Emma Portnoy
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Israel
| | - Majd Agbaria
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Alina Nemirovski
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Gershon Golomb
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, POB 12065, Jerusalem 9112001, Israel; The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
22
|
Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res 2023; 89:101194. [PMID: 36150527 DOI: 10.1016/j.plipres.2022.101194] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| |
Collapse
|
23
|
Afshar S, Abbasinazari M, Amin G, Farrokhian A, Sistanizad M, Afshar F, Khalili S. Endocannabinoids and related compounds as modulators of angiogenesis: Concepts and clinical significance. Cell Biochem Funct 2022; 40:826-837. [PMID: 36317321 DOI: 10.1002/cbf.3754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022]
Abstract
Vasculogenesis (the process of differentiation of angioblasts toward endothelial cells and de novo formation of crude vascular networks) and angiogenesis (the process of harmonized sprouting and dispersal of new capillaries from previously existing ones) are two fundamentally complementary processes, obligatory for maintaining physiological functioning of vascular system. In clinical practice, however, the later one is of more importance as it guarantees correct embryonic nourishment, accelerates wound healing processes, prevents uncontrolled cell growth and tumorigenesis, contributes in supplying nutritional demand following occlusion of coronary vessels and is in direct relation with development of diabetic retinopathy. Hence, discovery of novel molecules capable of modulating angiogenic events are of great clinical importance. Recent studies have demonstrated multiple angio-regulatory activities for endocannabinoid system modulators and endocannabinoid-like molecules, as well as their metabolizing enzymes. Hence, in present article, we reviewed the regulatory roles of these molecules on angiogenesis and described molecular mechanisms underlying them.
Collapse
Affiliation(s)
- Shima Afshar
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasinazari
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Amin
- Department of Pharmacognosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Farrokhian
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sistanizad
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Afshar
- Department of internal medicine, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shayesteh Khalili
- Department of Internal Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Li B, Wang H, Zhang Y, Liu Y, Zhou T, Zhou B, Zhang Y, Chen R, Xing J, He L, Salinas JM, Koyama S, Meng F, Wan Y. Current Perspectives of Neuroendocrine Regulation in Liver Fibrosis. Cells 2022; 11:3783. [PMID: 36497043 PMCID: PMC9736734 DOI: 10.3390/cells11233783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Liver fibrosis is a complicated process that involves different cell types and pathological factors. The excessive accumulation of extracellular matrix (ECM) and the formation of fibrotic scar disrupt the tissue homeostasis of the liver, eventually leading to cirrhosis and even liver failure. Myofibroblasts derived from hepatic stellate cells (HSCs) contribute to the development of liver fibrosis by producing ECM in the area of injuries. It has been reported that the secretion of the neuroendocrine hormone in chronic liver injury is different from a healthy liver. Activated HSCs and cholangiocytes express specific receptors in response to these neuropeptides released from the neuroendocrine system and other neuroendocrine cells. Neuroendocrine hormones and their receptors form a complicated network that regulates hepatic inflammation, which controls the progression of liver fibrosis. This review summarizes neuroendocrine regulation in liver fibrosis from three aspects. The first part describes the mechanisms of liver fibrosis. The second part presents the neuroendocrine sources and neuroendocrine compartments in the liver. The third section discusses the effects of various neuroendocrine factors, such as substance P (SP), melatonin, as well as α-calcitonin gene-related peptide (α-CGRP), on liver fibrosis and the potential therapeutic interventions for liver fibrosis.
Collapse
Affiliation(s)
- Bowen Li
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Hui Wang
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Yudian Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ying Liu
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tiejun Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bingru Zhou
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ying Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Rong Chen
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Juan Xing
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Longfei He
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Jennifer Mata Salinas
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Sachiko Koyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Ying Wan
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
25
|
Lombó M, Giommi C, Paolucci M, Notarstefano V, Montik N, Delli Carpini G, Ciavattini A, Ragusa A, Maradonna F, Giorgini E, Carnevali O. Preeclampsia Correlates with an Increase in Cannabinoid Receptor 1 Levels Leading to Macromolecular Alterations in Chorionic Villi of Term Placenta. Int J Mol Sci 2022; 23:12931. [PMID: 36361721 PMCID: PMC9656520 DOI: 10.3390/ijms232112931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 09/06/2023] Open
Abstract
Preeclampsia is a human pregnancy-specific disease characterized by abnormal placentation that usually presents with maternal hypertension and proteinuria. The main hallmark of preeclampsia, impaired trophoblast migration, and the subsequent disruption of uterine arteries remodeling lead to several molecular alterations in the placental compartments with those occurring in the chorionic villi being of the utmost importance. Given the essential role of the endocannabinoid system during preimplantation and trophoblast migration, we have combined the histological and hyperspectral imaging analyses to shed light on the involvement of two cannabinoid receptors in the macromolecular alterations related to preeclampsia. The results obtained by immunohistochemistry showed a significant increase in the protein levels of cannabinoid receptor 1 (CB1) in the preeclamptic chorionic villi. However, no changes were reported regarding transient receptor potential vanilloid 1 (TRPV-1) levels either in the bulk placental samples or chorionic villi when comparing control and preeclamptic patients. Histological analysis and Fourier-transform infrared spectroscopy (FTIRI) showed an increase in collagen deposition together with higher levels of lipid peroxidation and phosphorylated compounds in the pathological villi. Since CB1 enhancement has been described as promoting fibrosis and oxidative stress in several tissues, we proposed that the higher receptor abundance in preeclampsia could be triggering similar molecular effects in preeclamptic term placentas.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, 24071 León, Spain
| | - Christian Giommi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Michela Paolucci
- Department of Odontostomatological and Specialized Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Nina Montik
- Department of Odontostomatological and Specialized Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Giovanni Delli Carpini
- Department of Odontostomatological and Specialized Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Andrea Ciavattini
- Department of Odontostomatological and Specialized Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Antonio Ragusa
- Department of Obstetrics and Gynecology, Università Campus Bio Medico di Roma, 00128 Roma, Italy
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| |
Collapse
|
26
|
del Río C, Ruiz-Pino F, Prados ME, Fiebich BL, Tena-Sempere M, Muñoz E. Cannabidiol markedly alleviates skin and liver fibrosis. Front Pharmacol 2022; 13:981817. [PMID: 36339540 PMCID: PMC9627610 DOI: 10.3389/fphar.2022.981817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/05/2022] [Indexed: 08/27/2023] Open
Abstract
Cannabidiol (CBD) has been suggested as a potential therapy for inflammatory and fibrotic diseases. Cannabidiol was demonstrated to reduce alcohol-induced liver inflammation and steatosis but its specific activity on the fibrotic process was not investigated. Herein, the antifibrotic effects of cannabidiol in the skin were analysed in vitro using NIH-3T3 fibroblasts and human dermal fibroblasts and in vivo using the bleomycin-induced model of skin fibrosis. In a second model, non-alcoholic liver fibrosis was induced in mice by CCl4 exposure. Cannabidiol was administered daily, intraperitoneally in mice challenged with bleomycin and orally in CCl4 mice, and skin and liver fibrosis and inflammation were assessed by immunochemistry. Cannabidiol inhibited collagen gene transcription and synthesis and prevented TGFβ-and IL-4 induced fibroblast migration. In the bleomycin model, cannabidiol prevented skin fibrosis and collagen accumulation around skin blood vessels, and in the CCl4 model cannabidiol significantly attenuated liver fibrosis measured by picrosirius red and Tenascin C staining and reduced T cell and macrophage infiltration. Altogether, our data further support the rationale of the medicinal use of this cannabinoid, as well as cannabis preparations containing it, in the management of fibrotic diseases including Systemic Sclerosis and Non-Alcoholic Fatty Liver Disease.
Collapse
Affiliation(s)
- Carmen del Río
- Instituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC, Cordoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía, Cordoba, Spain
| | | | | | | | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC, Cordoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía, Cordoba, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC, Cordoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía, Cordoba, Spain
| |
Collapse
|
27
|
Alcohol-Related Liver Disease: An Overview on Pathophysiology, Diagnosis and Therapeutic Perspectives. Biomedicines 2022; 10:biomedicines10102530. [PMID: 36289791 PMCID: PMC9599689 DOI: 10.3390/biomedicines10102530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 11/19/2022] Open
Abstract
Alcohol-related liver disease (ALD) refers to a spectrum of liver manifestations ranging from fatty liver diseases, steatohepatitis, and fibrosis/cirrhosis with chronic inflammation primarily due to excessive alcohol use. Currently, ALD is considered as one of the most prevalent causes of liver disease-associated mortality worldwide. Although the pathogenesis of ALD has been intensively investigated, the present understanding of its biomarkers in the context of early clinical diagnosis is not complete, and novel therapeutic targets that can significantly alleviate advanced forms of ALD are limited. While alcohol abstinence remains the primary therapeutic intervention for managing ALD, there are currently no approved medications for treating ALD. Furthermore, given the similarities and the differences between ALD and non-alcoholic fatty liver disease in terms of disease progression and underlying molecular mechanisms, numerous studies have demonstrated that many therapeutic interventions targeting several signaling pathways, including oxidative stress, inflammatory response, hormonal regulation, and hepatocyte death play a significant role in ALD treatment. Therefore, in this review, we summarized several key molecular targets and their modes of action in ALD progression. We also described the updated therapeutic options for ALD management with a particular emphasis on potentially novel signaling pathways.
Collapse
|
28
|
Duncan RS, Riordan SM, Hall CW, Payne AJ, Chapman KD, Koulen P. N-acylethanolamide metabolizing enzymes are upregulated in human neural progenitor-derived neurons exposed to sub-lethal oxidative stress. Front Cell Neurosci 2022; 16:902278. [PMID: 36003139 PMCID: PMC9393304 DOI: 10.3389/fncel.2022.902278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022] Open
Abstract
N-acyl amides (NAAs) are a class of lipids that consist of an acyl group N-linked to an amino acid, neurotransmitter, taurine or ethanolamide group (N-acylethanolamines or NAEs) and include some endocannabinoids (eCB) such as anandamide. These lipids are synthesized in a wide variety of organisms and in multiple cell types, including neurons. NAEs are involved in numerous cellular and physiological processes and their concentrations are elevated in response to ischemia and physical trauma to play a role in neuroprotection. The neuroprotective properties of eCB NAEs make the protein targets of these compounds attractive targets for clinical intervention for a variety of conditions. The most promising of these targets include cannabinoid receptor type 1 (CB1), cannabinoid receptor type 2 (CB2), fatty acid amide hydrolase (FAAH), N-acylethanolamine acid amidase (NAAA), and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD). Further characterization of these targets in a more contemporary model system of neurodegeneration and neuroprotection will allow us to fully describe their role and mechanism of action in neuroprotection against oxidative stress leading to better utilization in the clinical setting. Human stem cell-derived or human neural progenitor cell-derived cells, such as ReN cells, have become more utilized for the study of human neuronal development and neurodegenerative diseases. ReN cells can be easily differentiated thereby circumventing the need for using transformed cell lines and primary neurons as cell model systems. In this study, we determined whether ReN cells, a superior cell model system for studying neurodevelopment, differentiation, and neuroprotection, express proteins involved in canonical eCB NAE signaling and whether oxidative stress can induce their expression. We determined that sublethal oxidative stress upregulates the expression of all eCB proteins tested. In addition, we determined that oxidative stress increases the nuclear localization of FAAH, and to a lesser extent, NAAA and NAPE-PLD. This study is a first step toward determining how oxidative stress affects CB1, CB2, FAAH, NAAA, and NAPE-PLD expression and their potential defense against oxidative stress. As such, our data is important for further determining the role of eCB metabolizing proteins and eCB receptors against oxidative stress.
Collapse
Affiliation(s)
- R. Scott Duncan
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Sean M. Riordan
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Conner W. Hall
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Andrew J. Payne
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Kent D. Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, United States
| | - Peter Koulen
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, United States
- Department of Biomedical Sciences, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
- *Correspondence: Peter Koulen,
| |
Collapse
|
29
|
Mallat A. EASL Recognition Award Recipient 2022: Dr. Sophie Lotersztajn. J Hepatol 2022; 77:282-283. [PMID: 35750546 DOI: 10.1016/j.jhep.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022]
Affiliation(s)
- Ariane Mallat
- Department of Hepatology, Hôpital Henri Mondor, Creteil, France; Université Paris Est, Creteil, France.
| |
Collapse
|
30
|
He Q, Zhang W, Zhang J, Deng Y. Cannabinoid Analogue WIN 55212-2 Protects Paraquat-Induced Lung Injury and Enhances Macrophage M2 Polarization. Inflammation 2022; 45:2256-2267. [PMID: 35674874 PMCID: PMC9174632 DOI: 10.1007/s10753-022-01688-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 01/02/2023]
Abstract
WIN 55212-2 is an endocannabinoids analogue that has been reported to have anti-inflammatory and anti-fibrosis effects on different models. In this study, we investigated the protective effects of WIN 55212-2 on paraquat (PQ)-induced poison on mice especially on lung injury. Mice were administrated with different dose of PQ and thereafter treated with 0.2 mg/kg or 1 mg/kg WIN 55212-2. The survival of mice was recorded during 4 weeks of observation. Twenty-eight days after PQ treatment, the cell population and inflammatory factors IL-6, IL-10, and TNF-α were measured in bronchoalveolar lavage fluid (BALF). Pulmonary fibrosis was evaluated by Masson staining. Our results showed that WIN 55212-2 treatment reduced PQ-induced mortality of mice in a dose dependent manner. It decreased the number of inflammation-associated cells, as well as the level of pro-inflammatory factors in BALF (P < 0.05). WIN 55212-2 increased M2 cells in BALF (P < 0.05), improved the lung histology, reduced fibrosis formation, and decreased TGF-β, α-SMA and PDGFRa expression. The protective effects of WIN 55212-2 on PQ-induced lung injury and fibrosis were associated with an increase inM2 cells and increased expressions of IL-10, CD163, and CD206, suggesting that polarization of M2 macrophages may be involved in WIN 55212-2 protective effects on PQ-induced lung injury.
Collapse
Affiliation(s)
- Quan He
- Department of Emergency, the First People's Hospital of Yunnan Province,the Affiliated Hospital of Kunming University of Science and Technology, Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China.
| | - Wen Zhang
- Department of Basic Research Institute, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology,Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| | - Jinjuan Zhang
- Department of Basic Research Institute, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology,Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| | - Yuanyou Deng
- Department of Emergency, the First People's Hospital of Yunnan Province,the Affiliated Hospital of Kunming University of Science and Technology, Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| |
Collapse
|
31
|
Chen D, Tang H, Jiang H, Sun L, Zhao W, Qian F. ACPA Alleviates Bleomycin-Induced Pulmonary Fibrosis by Inhibiting TGF-β-Smad2/3 Signaling-Mediated Lung Fibroblast Activation. Front Pharmacol 2022; 13:835979. [PMID: 35355726 PMCID: PMC8959577 DOI: 10.3389/fphar.2022.835979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 01/06/2023] Open
Abstract
Pulmonary fibrosis is a group of life-threatening diseases with limited therapeutic options. The involvement of cannabinoid type 1 receptors (CB1R) has been indicated in fibrotic diseases, but whether or not the activation of CB1R can be a benefit for fibrosis treatment is controversial. In this study, we investigated the effects of arachidonoylcyclopropylamide (ACPA), as a selective CB1R agonist, on bleomycin (BLM)-induced pulmonary fibrosis. We showed that ACPA treatment significantly improved the survival rate of BLM-treated mice, alleviated BLM-induced pulmonary fibrosis, and inhibited the expressions of extracellular matrix (ECM) markers, such as collagen, fibronectin, and α-SMA. The enhanced expressions of ECM markers in transforming growth factor-beta (TGF-β)-challenged primary lung fibroblasts isolated from mouse lung tissues were inhibited by ACPA treatment in a dose-dependent manner, and the fibroblast migration triggered by TGF-β was dose-dependently diminished after ACPA administration. Moreover, the increased mRNA levels of CB1R were observed in both lung fibroblasts of BLM-induced fibrotic mice in vivo and TGF-β-challenged primary lung fibroblasts in vitro. CB1R-specific agonist ACPA significantly diminished the activation of TGF-β–Smad2/3 signaling, i.e., the levels of p-Smad2 and p-Smad3, and decreased the expressions of downstream effector proteins including slug and snail, which regulate ECM production, in TGF-β-challenged primary lung fibroblasts. Collectively, these findings demonstrated that CB1R-specific agonist ACPA exhibited antifibrotic efficacy in both in vitro and in vivo models of pulmonary fibrosis, revealing a novel anti-fibrosis approach to fibroblast-selective inhibition of TGF-β-Smad2/3 signaling by targeting CB1R.
Collapse
Affiliation(s)
- Dongxin Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Huirong Tang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Hongchao Jiang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Qian
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
32
|
ElTelbany A, Khoudari G, Al-Khadra Y, McCullough A, Alkhouri N. Lower Rates of Hepatocellular Carcinoma Observed Among Cannabis Users: A Population-Based Study. Cureus 2022; 14:e24576. [PMID: 35651376 PMCID: PMC9138632 DOI: 10.7759/cureus.24576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and the fourth leading cause of cancer deaths in the world. The association between HCC and cannabis has been identified in mice; however, to our knowledge has not been identified in humans. Therefore, we aim to investigate the relation between HCC and cannabis use in humans. METHODS Using data from the National Inpatient Sample (NIS) database between 2002 and 2014, we identified the patients with HCC and cannabis use diagnosis using the International Classification of Disease 9th version codes (ICD-9). Then, we identified patients without cannabis use as the control group. We adjusted for multiple potential confounders and performed multivariable logistic regression analysis to determine the association between cannabis abuse and HCC. RESULTS A total of 101,231,036 patients were included in the study. Out of the total, 996,290 patients (1%) had the diagnosis of cannabis abuse versus 100,234,746 patients (99%) in the control group without cannabis abuse. We noticed that patients with cannabis abuse were younger (34 vs 48 years), had more males (61.7% vs 41.4%) and more African Americans (29.9% vs 14.2%) compared with the control group (P<0.001 for all). Besides, patients with cannabis use had more hepatitis B, hepatitis C, liver cirrhosis, and smoking, but had less obesity and gallstones, (P<0.001 for all). Using multivariable logistic regression, and after adjusting for potential confounders, patients with cannabis abuse were 55% less likely to have HCC (adjusted Odds Ratio {aOR}, 0.45, 95% Confidence Interval {CI}, 0.42-0.49, P<0.001) compared with patients without cannabis abuse. CONCLUSION Based on our large database analysis, we found that cannabis use patients were 55% less likely to have HCC compared to patients without cannabis use. Further prospective studies are needed to assess the role of cannabis use on HCC.
Collapse
Affiliation(s)
| | - George Khoudari
- Gastroenterology and Hepatology, MedStar Georgetown University Hospital, Washington DC, USA
| | - Yasser Al-Khadra
- Cardiology, Southern Illinois University School of Medicine, Springfield, USA
| | | | - Naim Alkhouri
- Fatty Liver Program, Arizona Liver Health, Pheonix, USA
| |
Collapse
|
33
|
Perramón M, Carvajal S, Reichenbach V, Fernández‐Varo G, Boix L, Macias‐Muñoz L, Melgar‐Lesmes P, Bruix J, Melmed S, Lamas S, Jiménez W. The pituitary tumour-transforming gene 1/delta-like homologue 1 pathway plays a key role in liver fibrogenesis. Liver Int 2022; 42:651-662. [PMID: 35050550 PMCID: PMC9303549 DOI: 10.1111/liv.15165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS PTTG1 is almost undetectable in adult livers but is highly expressed in hepatocarcinoma. While little is known about its involvement in liver fibrosis, PTTG1 expression is associated with DLK1. We assessed the role of the PTTG1/DLK1 pathway in fibrosis progression and the potential therapeutic effect of PTTG1 silencing in fibrosis. METHODS Pttg1 and Dlk1 were studied in liver and isolated cell populations of control and fibrotic rats and in human liver biopsies. The fibrotic molecular signature was analysed in Pttg1-/- and Pttg1+/+ fibrotic mice. Finally, Pttg1 silencing was evaluated in rats as a novel antifibrotic therapy. RESULTS Pttg1 and Dlk1 mRNA selectively increased in fibrotic rats paralleling fibrosis progression. Serum DLK1 concentrations correlated with hepatic collagen content and systemic and portal haemodynamics. Human cirrhotic livers showed greater PTTG1 and DLK1 transcript abundance than non-cirrhotic, and reduced collagen was observed in Pttg1 Pttg1-/- mice. The liver fibrotic molecular signature revealed lower expression of genes related to extracellular matrix remodelling including Mmp8 and 9 and Timp4 and greater eotaxin and Mmp13 than fibrotic Pttg1+/+ mice. Finally, interfering Pttg1 resulted in reduced liver fibrotic area, lower α-Sma and decreased portal pressure than fibrotic animals. Furthermore, Pttg1 silencing decreased the transcription of Dlk1, collagens I and III, Pdgfrβ, Tgfrβ, Timp1, Timp2 and Mmp2. CONCLUSIONS Pttg1/Dlk1 are selectively overexpressed in the cirrhotic liver and participate in ECM turnover regulation. Pttg1 disruption decreases Dlk1 transcription and attenuates collagen deposition. PTTG1/DLK1 signalling is a novel pathway for targeting the progression of liver fibrosis.
Collapse
Affiliation(s)
- Meritxell Perramón
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain
| | - Silvia Carvajal
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain
| | - Vedrana Reichenbach
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain
| | - Guillermo Fernández‐Varo
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain
| | - Loreto Boix
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain,Department of MedicineUniversity of BarcelonaBarcelonaSpain,Barcelona‐Clínic Liver Cancer GroupHospital Clínic UniversitariBarcelonaSpain
| | - Laura Macias‐Muñoz
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain
| | - Pedro Melgar‐Lesmes
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain,Department of BiomedicineUniversity of BarcelonaBarcelonaSpain,Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Jordi Bruix
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain,Department of MedicineUniversity of BarcelonaBarcelonaSpain,Barcelona‐Clínic Liver Cancer GroupHospital Clínic UniversitariBarcelonaSpain
| | - Shlomo Melmed
- Department of Medicine, Cedars‐Sinai Research InstituteUniversity of California School of MedicineLos AngelesCAUSA
| | - Santiago Lamas
- Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)MadridSpain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain,Department of BiomedicineUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
34
|
Iyer MR, Cinar R, Wood CM, Zawatsky CN, Coffey NJ, Kim KA, Liu Z, Katz A, Abdalla J, Hassan SA, Lee YS. Synthesis, Biological Evaluation, and Molecular Modeling Studies of 3,4-Diarylpyrazoline Series of Compounds as Potent, Nonbrain Penetrant Antagonists of Cannabinoid-1 (CB 1R) Receptor with Reduced Lipophilicity. J Med Chem 2022; 65:2374-2387. [PMID: 35084860 DOI: 10.1021/acs.jmedchem.1c01836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the present report, we describe the synthesis and structure-activity relationships of novel "four-arm" dihydropyrazoline compounds designed as peripherally restricted antagonists of cannabinoid-1 receptor (CB1R). A series of racemic 3,4-diarylpyrazolines were synthesized and evaluated initially in CB1 receptor binding assays. The novel compounds, designed to limit brain penetrance and decreased lipophilicity, showed high affinity for CB1R and potent in vitro CB1R antagonist activities. Promising compounds with potent CB1R activity were evaluated in tissue distribution studies. Compounds 6a, 6f, and 7c showed limited brain penetrance attesting to its peripheral restriction. The 4S-enantiomer of these compounds further showed a stereoselective affinity for the CB1 receptor and behaved as inverse agonists. In vivo studies on food intake and body weight reduction in diet-induced obese (DIO) mice showed that these compounds could serve as potential leads for the development of selective CB1R antagonists with improved potency and peripheral restriction.
Collapse
Affiliation(s)
- Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Casey M Wood
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Charles N Zawatsky
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Nathan J Coffey
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Kyu Ah Kim
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Ziyi Liu
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Alexis Katz
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Jasmina Abdalla
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, United States
| | - Yong-Sok Lee
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, United States
| |
Collapse
|
35
|
Kennedy L, Alpini G. Cannabinoid Receptor 1 Antagonism Demonstrates High Therapeutic Potential for the Treatment of Primary Sclerosing Cholangitis. Cell Mol Gastroenterol Hepatol 2022; 13:1259-1260. [PMID: 35131175 PMCID: PMC9073729 DOI: 10.1016/j.jcmgh.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/10/2022]
Affiliation(s)
- Lindsey Kennedy
- Gastroenterology, Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Gianfranco Alpini
- Gastroenterology, Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana.
| |
Collapse
|
36
|
Lotersztajn S, Mallat A. Does CB-1 in hepatic stellate cells contribute to liver fibrosis? J Clin Invest 2022; 132:155413. [PMID: 34981781 PMCID: PMC8718148 DOI: 10.1172/jci155413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
37
|
Dale NC, Johnstone EKM, Pfleger KDG. GPCR heteromers: An overview of their classification, function and physiological relevance. Front Endocrinol (Lausanne) 2022; 13:931573. [PMID: 36111299 PMCID: PMC9468249 DOI: 10.3389/fendo.2022.931573] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are capable of interacting to form higher order structures such as homomers and heteromers. Heteromerisation in particular has implications for receptor function, with research showing receptors can attain unique expression, ligand binding, signalling and intracellular trafficking upon heteromerisation. As such, GPCR heteromers represent novel drug targets with extensive therapeutic potential. Changes to ligand affinity, efficacy and G protein coupling have all been described, with alterations to these pharmacological aspects now well accepted as common traits for heteromeric complexes. Changes in internalisation and trafficking kinetics, as well as β-arrestin interactions are also becoming more apparent, however, few studies to date have explicitly looked at the implications these factors have upon the signalling profile of a heteromer. Development of ligands to target GPCR heteromers both experimentally and therapeutically has been mostly concentrated on bivalent ligands due to difficulties in identifying and developing heteromer-specific ligands. Improving our understanding of the pharmacology and physiology of GPCR heteromers will enable further development of heteromer-specific ligands with potential to provide therapeutics with increased efficacy and decreased side effects.
Collapse
Affiliation(s)
- Natasha C. Dale
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Elizabeth K. M. Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
- *Correspondence: Kevin D. G. Pfleger, ; Elizabeth K. M. Johnstone,
| | - Kevin D. G. Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- Dimerix Limited, Nedlands, Australia
- *Correspondence: Kevin D. G. Pfleger, ; Elizabeth K. M. Johnstone,
| |
Collapse
|
38
|
Shao T, Chen Z, Rong J, Belov V, Chen J, Jeyarajan A, Deng X, Fu H, Yu Q, Rwema SH, Lin W, Papisov M, Josephson L, Chung RT, Liang SH. [ 18F]MAGL-4-11 positron emission tomography molecular imaging of monoacylglycerol lipase changes in preclinical liver fibrosis models. Acta Pharm Sin B 2022; 12:308-315. [PMID: 35127387 PMCID: PMC8799882 DOI: 10.1016/j.apsb.2021.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/06/2021] [Accepted: 07/01/2021] [Indexed: 01/11/2023] Open
Abstract
Monoacylglycerol lipase (MAGL) is a pivotal enzyme in the endocannabinoid system, which metabolizes 2-arachidonoylglycerol (2-AG) into the proinflammatory eicosanoid precursor arachidonic acid (AA). MAGL and other endogenous cannabinoid (EC) degrading enzymes are involved in the fibrogenic signaling pathways that induce hepatic stellate cell (HSC) activation and ECM accumulation during chronic liver disease. Our group recently developed an 18F-labeled MAGL inhibitor ([18F]MAGL-4-11) for PET imaging and demonstrated highly specific binding in vitro and in vivo. In this study, we determined [18F]MAGL-4-11 PET enabled imaging MAGL levels in the bile duct ligation (BDL) and carbon tetrachloride (CCl4) models of liver cirrhosis; we also assessed the hepatic gene expression of the enzymes involved with EC system including MAGL, NAPE-PLD, FAAH and DAGL that as a function of disease severity in these models; [18F]MAGL-4-11 autoradiography was performed to assess tracer binding in frozen liver sections both in animal and human. [18F]MAGL-4-11 demonstrated reduced PET signals in early stages of fibrosis and further significantly decreased with disease progression compared with control mice. We confirmed MAGL and FAAH expression decreases with fibrosis severity, while its levels in normal liver tissue are high; in contrast, the EC synthetic enzymes NAPE-PLD and DAGL are enhanced in these different fibrosis models. In vitro autoradiography further supported that [18F]MAGL-4-11 bound specifically to MAGL in both animal and human fibrotic liver tissues. Our PET ligand [18F]MAGL-4-11 shows excellent sensitivity and specificity for MAGL visualization in vivo and accurately reflects the histological stages of liver fibrosis in preclinical models and human liver tissues.
Collapse
Affiliation(s)
- Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA,Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Vasily Belov
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA,Shriners Hospitals for Children-Boston Boston, MA 02114, USA
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Andre Jeyarajan
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Qingzhen Yu
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Steve H. Rwema
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mikhail Papisov
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA,Shriners Hospitals for Children-Boston Boston, MA 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Raymond T. Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA,Corresponding authors. Tel.: +1 617 724 7562, fax: +1 617 643 0446 (Raymond T. Chung); Tel.: +1 617 726 6107, fax: +1 617 726 6165 (Steven H. Liang).
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA,Corresponding authors. Tel.: +1 617 724 7562, fax: +1 617 643 0446 (Raymond T. Chung); Tel.: +1 617 726 6107, fax: +1 617 726 6165 (Steven H. Liang).
| |
Collapse
|
39
|
Helmrich N, Roderfeld M, Baier A, Windhorst A, Herebian D, Mayatepek E, Dierkes C, Ocker M, Glebe D, Christ B, Churin Y, Irungbam K, Roeb E. Pharmacologic Antagonization of Cannabinoid Receptor 1 Improves Cholestasis in Abcb4 -/- Mice. Cell Mol Gastroenterol Hepatol 2021; 13:1041-1055. [PMID: 34954190 PMCID: PMC8873597 DOI: 10.1016/j.jcmgh.2021.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS The endocannabinoid system is involved in the modulation of inflammatory, fibrotic, metabolic, and carcinogenesis-associated signaling pathways via cannabinoid receptor (CB)1 and CB2. We hypothesized that the pharmacologic antagonization of CB1 receptor improves cholestasis in Abcb4-/- mice. METHODS After weaning, male Abcb4-/- mice were treated orally with rimonabant (a specific antagonist of CB1) or ACEA (an agonist of CB1) until up to 16 weeks of age. Liver tissue and serum were isolated and examined by means of serum analysis, quantitative real time polymerase chain reaction, Western blot, immunohistochemistry, and enzyme function. Untreated Abcb4-/- and Bagg Albino Mouse/c wild-type mice served as controls. RESULTS Cholestasis-induced symptoms such as liver damage, bile duct proliferation, and enhanced circulating bile acids were improved by CB1 antagonization. Rimonabant treatment also improved Phosphoenolpyruvat-Carboxykinase expression and reduced inflammation and the acute-phase response. The carcinogenesis-associated cellular-Jun N-terminal kinase/cellular-JUN and signal transducer and activator of transcription 3 signaling pathways activated in Abcb4-/- mice were reduced to wild-type level by CB1 antagonization. CONCLUSIONS We showed a protective effect of oral CB1 antagonization in chronic cholestasis using the established Abcb4-/- model. Our results suggest that pharmacologic antagonization of the CB1 receptor could have a therapeutic benefit in cholestasis-associated metabolic changes, liver damage, inflammation, and carcinogenesis.
Collapse
Affiliation(s)
| | | | - Anne Baier
- Department of Gastroenterology, Giessen, Germany
| | - Anita Windhorst
- Institute for Medical Informatics, Justus Liebig University, Giessen, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Christian Dierkes
- Medizinisches Versorgungszentrum for Pathology, Justus Liebig University Giessen, Trier, Germany
| | - Matthias Ocker
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Bruno Christ
- Applied Molecular Hepatology Laboratory, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Yuri Churin
- Department of Gastroenterology, Giessen, Germany
| | | | - Elke Roeb
- Department of Gastroenterology, Giessen, Germany,Correspondence Address correspondence to: Elke Roeb, MD, MHAC, Department of Gastroenterology, Justus Liebig University Giessen, University Hospital Universitätsklinikum Giessen und Marburg (UKGM), Klinikstrasse 33, 35392 Giessen, Germany. fax: (49) 641-985-42339.
| |
Collapse
|
40
|
Gish A, Wiart JF, Turpin E, Allorge D, Gaulier JM. État de l’art et intérêt des dosages plasmatiques des substances endocannabinoïdes et endocannabinoïdes-like. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2021. [DOI: 10.1016/j.toxac.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Ramer R, Wittig F, Hinz B. The Endocannabinoid System as a Pharmacological Target for New Cancer Therapies. Cancers (Basel) 2021; 13:cancers13225701. [PMID: 34830856 PMCID: PMC8616499 DOI: 10.3390/cancers13225701] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cannabinoids have been shown to suppress tumour cell proliferation, tumour invasion, metastasis, angiogenesis, chemoresistance and epithelial-mesenchymal transition and to induce tumour cell apoptosis, autophagy and immune response. This review focuses on the current status of investigations on the impact of inhibitors of endocannabinoid-degrading enzymes on tumour growth and spread in preclinical oncology research. Abstract Despite the long history of cannabinoid use for medicinal and ritual purposes, an endogenous system of cannabinoid-controlled receptors, as well as their ligands and the enzymes that synthesise and degrade them, was only discovered in the 1990s. Since then, the endocannabinoid system has attracted widespread scientific interest regarding new pharmacological targets in cancer treatment among other reasons. Meanwhile, extensive preclinical studies have shown that cannabinoids have an inhibitory effect on tumour cell proliferation, tumour invasion, metastasis, angiogenesis, chemoresistance and epithelial-mesenchymal transition (EMT) and induce tumour cell apoptosis and autophagy as well as immune response. Appropriate cannabinoid compounds could moreover be useful for cancer patients as potential combination partners with other chemotherapeutic agents to increase their efficacy while reducing unwanted side effects. In addition to the direct activation of cannabinoid receptors through the exogenous application of corresponding agonists, another strategy is to activate these receptors by increasing the endocannabinoid levels at the corresponding pathological hotspots. Indeed, a number of studies accordingly showed an inhibitory effect of blockers of the endocannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on tumour development and spread. This review summarises the relevant preclinical studies with FAAH and MAGL inhibitors compared to studies with cannabinoids and provides an overview of the regulation of the endocannabinoid system in cancer.
Collapse
|
42
|
Yang K, Choi SE, Jeong WI. Hepatic Cannabinoid Signaling in the Regulation of Alcohol-Associated Liver Disease. Alcohol Res 2021; 41:12. [PMID: 34646717 PMCID: PMC8496755 DOI: 10.35946/arcr.v41.1.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The endocannabinoid system has emerged as a key regulatory signaling pathway in the pathophysiology of alcohol-associated liver disease (ALD). More than 30 years of research have established different roles of endocannabinoids and their receptors in various aspects of liver diseases, such as steatosis, inflammation, and fibrosis. However, pharmacological applications of the endocannabinoid system for the treatment of ALD have not been successful because of psychoactive side effects, despite some beneficial effects. Thus, a more delicate and detailed elucidation of the mechanism linking the endocannabinoid system and ALD may be of paramount significance in efforts to apply the system to the treatment of ALD. SEARCH METHODS Three electronic databases (PubMed, MEDLINE, and Cochrane Library) were used for literature search from November 1988 to April 2021. Major keywords used for literature searches were “cannabinoid,” “cannabinoid receptor,” “ALD,” “steatosis,” and “fibrosis.” SEARCH RESULTS According to the inclusion and exclusion criteria, the authors selected 47 eligible full-text articles out of 2,691 searched initially. Studies in the past 3 decades revealed the opposite effects of cannabinoid receptors CB1R and CB2R on steatosis, inflammation, and fibrosis in ALD. DISCUSSION AND CONCLUSIONS This review summarizes the endocannabinoid signaling in the general physiology of the liver, the pathogenesis of ALD, and some of the potential therapeutic implications of cannabinoid-based treatments for ALD.
Collapse
Affiliation(s)
- Keungmo Yang
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sung Eun Choi
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
43
|
Tan Z, Sun H, Xue T, Gan C, Liu H, Xie Y, Yao Y, Ye T. Liver Fibrosis: Therapeutic Targets and Advances in Drug Therapy. Front Cell Dev Biol 2021; 9:730176. [PMID: 34621747 PMCID: PMC8490799 DOI: 10.3389/fcell.2021.730176] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
Liver fibrosis is an abnormal wound repair response caused by a variety of chronic liver injuries, which is characterized by over-deposition of diffuse extracellular matrix (ECM) and anomalous hyperplasia of connective tissue, and it may further develop into liver cirrhosis, liver failure or liver cancer. To date, chronic liver diseases accompanied with liver fibrosis have caused significant morbidity and mortality in the world with increasing tendency. Although early liver fibrosis has been reported to be reversible, the detailed mechanism of reversing liver fibrosis is still unclear and there is lack of an effective treatment for liver fibrosis. Thus, it is still a top priority for the research and development of anti-fibrosis drugs. In recent years, many strategies have emerged as crucial means to inhibit the occurrence and development of liver fibrosis including anti-inflammation and liver protection, inhibition of hepatic stellate cells (HSCs) activation and proliferation, reduction of ECM overproduction and acceleration of ECM degradation. Moreover, gene therapy has been proved to be a promising anti-fibrosis method. Here, we provide an overview of the relevant targets and drugs under development. We aim to classify and summarize their potential roles in treatment of liver fibrosis, and discuss the challenges and development of anti-fibrosis drugs.
Collapse
Affiliation(s)
- Zui Tan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbao Sun
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Taixiong Xue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Cailing Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Xie
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqin Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Zawatsky CN, Park JK, Abdalla J, Kunos G, Iyer MR, Cinar R. Peripheral Hybrid CB 1R and iNOS Antagonist MRI-1867 Displays Anti-Fibrotic Efficacy in Bleomycin-Induced Skin Fibrosis. Front Endocrinol (Lausanne) 2021; 12:744857. [PMID: 34650521 PMCID: PMC8505776 DOI: 10.3389/fendo.2021.744857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
Scleroderma, or systemic sclerosis, is a multi-organ connective tissue disease resulting in fibrosis of the skin, heart, and lungs with no effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) and increased activity of inducible NO synthase (iNOS) promote tissue fibrosis including skin fibrosis, and joint targeting of these pathways may improve therapeutic efficacy. Recently, we showed that in mouse models of liver, lung and kidney fibrosis, treatment with a peripherally restricted hybrid CB1R/iNOS inhibitor (MRI-1867) yields greater anti-fibrotic efficacy than inhibiting either target alone. Here, we evaluated the therapeutic efficacy of MRI-1867 in bleomycin-induced skin fibrosis. Skin fibrosis was induced in C57BL/6J (B6) and Mdr1a/b-Bcrp triple knock-out (KO) mice by daily subcutaneous injections of bleomycin (2 IU/100 µL) for 28 days. Starting on day 15, mice were treated for 2 weeks with daily oral gavage of vehicle or MRI-1867. Skin levels of MRI-1867 and endocannabinoids were measured by mass spectrometry to assess target exposure and engagement by MRI-1867. Fibrosis was characterized histologically by dermal thickening and biochemically by hydroxyproline content. We also evaluated the potential increase of drug-efflux associated ABC transporters by bleomycin in skin fibrosis, which could affect target exposure to test compounds, as reported in bleomycin-induced lung fibrosis. Bleomycin-induced skin fibrosis was comparable in B6 and Mdr1a/b-Bcrp KO mice. However, the skin level of MRI-1867, an MDR1 substrate, was dramatically lower in B6 mice (0.023 µM) than in Mdr1a/b-Bcrp KO mice (8.8 µM) due to a bleomycin-induced increase in efflux activity of MDR1 in fibrotic skin. Furthermore, the endocannabinoids anandamide and 2-arachidonylglycerol were elevated 2-4-fold in the fibrotic vs. control skin in both mouse strains. MRI-1867 treatment attenuated bleomycin-induced established skin fibrosis and the associated increase in endocannabinoids in Mdr1a/b-Bcrp KO mice but not in B6 mice. We conclude that combined inhibition of CB1R and iNOS is an effective anti-fibrotic strategy for scleroderma. As bleomycin induces an artifact in testing antifibrotic drug candidates that are substrates of drug-efflux transporters, using Mdr1a/b-Bcrp KO mice for preclinical testing of such compounds avoids this pitfall.
Collapse
Affiliation(s)
- Charles N. Zawatsky
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Joshua K. Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Jasmina Abdalla
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Malliga R. Iyer
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
45
|
Wang S, Zhu Q, Liang G, Franks T, Boucher M, Bence KK, Lu M, Castorena CM, Zhao S, Elmquist JK, Scherer PE, Horton JD. Cannabinoid receptor-1 signaling in hepatocytes and stellate cells does not contribute to NAFLD. J Clin Invest 2021; 131:e152242. [PMID: 34499619 DOI: 10.1172/jci152242] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
The endocannabinoid system regulates appetite and energy expenditure and inhibitors of the cannabinoid receptor-1 (CB-1) induce weight loss with improvement in components of the metabolic syndrome. While CB-1 blockage in brain is responsible for weight loss, many of the metabolic benefits associated with CB-1 blockade have been attributed to inhibition of CB-1 signaling in the periphery. As a result, there has been interest in developing a peripherally restricted CB-1 inhibitor for the treatment of nonalcoholic fatty liver disease (NAFLD) that would lack the unwanted centrally mediated side effects. Here, we produced mice that lacked CB-1 receptors in hepatocytes or stellate cells to determine if CB-1 signaling contributes to the development of NAFLD or liver fibrosis. Deletion of CB-1 receptors in hepatocytes did not alter the development of NAFLD in mice fed a high sucrose high fat diet or high fat diet (HFD). Similarly, deletion of CB-1 deletion specifically in stellate cells also did not prevent the development of NAFLD in mice fed the HFD nor did it protect mice for carbon tetrachloride (CCl4)-induced fibrosis. Combined, these studies do not support a direct role for hepatocyte or stellate cell CB-1 signaling in the development of NAFLD or liver fibrosis.
Collapse
Affiliation(s)
- Simeng Wang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Qingzhang Zhu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Guosheng Liang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States of America
| | - Tania Franks
- Drug Safety Research and Development, Pfizer Inc, Cambridge, United States of America
| | - Magalie Boucher
- Drug Safety Research and Development, Pfizer Inc, Cambridge, United States of America
| | - Kendra K Bence
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, United States of America
| | - Mingjian Lu
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, United States of America
| | - Carlos M Castorena
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Shangang Zhao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Joel K Elmquist
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Philipp E Scherer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Jay D Horton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States of America
| |
Collapse
|
46
|
Sousa-Lima I, Kim HJ, Jones J, Kim YB. Rho-Kinase as a Therapeutic Target for Nonalcoholic Fatty Liver Diseases. Diabetes Metab J 2021; 45:655-674. [PMID: 34610720 PMCID: PMC8497927 DOI: 10.4093/dmj.2021.0197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major public health problem and the most common form of chronic liver disease, affecting 25% of the global population. Although NAFLD is closely linked with obesity, insulin resistance, and type 2 diabetes mellitus, knowledge on its pathogenesis remains incomplete. Emerging data have underscored the importance of Rho-kinase (Rho-associated coiled-coil-containing kinase [ROCK]) action in the maintenance of normal hepatic lipid homeostasis. In particular, pharmacological blockade of ROCK in hepatocytes or hepatic stellate cells prevents the progression of liver diseases such as NAFLD and fibrosis. Moreover, mice lacking hepatic ROCK1 are protected against obesity-induced fatty liver diseases by suppressing hepatic de novo lipogenesis. Here we review the roles of ROCK as an indispensable regulator of obesity-induced fatty liver disease and highlight the key cellular pathway governing hepatic lipid accumulation, with focus on de novo lipogenesis and its impact on therapeutic potential. Consequently, a comprehensive understanding of the metabolic milieu linking to liver dysfunction triggered by ROCK activation may help identify new targets for treating fatty liver diseases such as NAFLD.
Collapse
Affiliation(s)
- Inês Sousa-Lima
- CEDOC-Chronic Disease Research Center, NOVA Medical School/ Faculty of Medical Sciences, New University of Lisbon, Lisbon, Portugal
| | - Hyun Jeong Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - John Jones
- Center for Neuroscience and Cell Biology, University of Coimbra, Marquis of Pombal Square, Coimbra, Portugal
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Corresponding author: Young-Bum Kim https://orcid.org/0000-0001-9471-6330 Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA E-mail:
| |
Collapse
|
47
|
Oyagawa CRM, Grimsey NL. Cannabinoid receptor CB 1 and CB 2 interacting proteins: Techniques, progress and perspectives. Methods Cell Biol 2021; 166:83-132. [PMID: 34752341 DOI: 10.1016/bs.mcb.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cannabinoid receptors 1 and 2 (CB1 and CB2) are implicated in a range of physiological processes and have gained attention as promising therapeutic targets for a number of diseases. Protein-protein interactions play an integral role in modulating G protein-coupled receptor (GPCR) expression, subcellular distribution and signaling, and the identification and characterization of these will not only improve our understanding of GPCR function and biology, but may provide a novel avenue for therapeutic intervention. A variety of techniques are currently being used to investigate GPCR protein-protein interactions, including Förster/fluorescence and bioluminescence resonance energy transfer (FRET and BRET), proximity ligation assay (PLA), and bimolecular fluorescence complementation (BiFC). However, the reliable application of these methodologies is dependent on the use of appropriate controls and the consideration of the physiological context. Though not as extensively characterized as some other GPCRs, the investigation of CB1 and CB2 interacting proteins is a growing area of interest, and a range of interacting partners have been identified to date. This review summarizes the current state of the literature regarding the cannabinoid receptor interactome, provides commentary on the methodologies and techniques utilized, and discusses future perspectives.
Collapse
Affiliation(s)
- Caitlin R M Oyagawa
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
48
|
Holloman BL, Nagarkatti M, Nagarkatti P. Epigenetic Regulation of Cannabinoid-Mediated Attenuation of Inflammation and Its Impact on the Use of Cannabinoids to Treat Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms22147302. [PMID: 34298921 PMCID: PMC8307988 DOI: 10.3390/ijms22147302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation is considered to be a silent killer because it is the underlying cause of a wide range of clinical disorders, from cardiovascular to neurological diseases, and from cancer to obesity. In addition, there are over 80 different types of debilitating autoimmune diseases for which there are no cure. Currently, the drugs that are available to suppress chronic inflammation are either ineffective or overtly suppress the inflammation, thereby causing increased susceptibility to infections and cancer. Thus, the development of a new class of drugs that can suppress chronic inflammation is imperative. Cannabinoids are a group of compounds produced in the body (endocannabinoids) or found in cannabis (phytocannabinoids) that act through cannabinoid receptors and various other receptors expressed widely in the brain and immune system. In the last decade, cannabinoids have been well established experimentally to mediate anti-inflammatory properties. Research has shown that they suppress inflammation through multiple pathways, including apoptosis and inducing immunosuppressive T regulatory cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Interestingly, cannabinoids also mediate epigenetic alterations in genes that regulate inflammation. In the current review, we highlight how the epigenetic modulations caused by cannabinoids lead to the suppression of inflammation and help identify novel pathways that can be used to target autoimmune diseases.
Collapse
|
49
|
Cinar R, Park JK, Zawatsky CN, Coffey NJ, Bodine SP, Abdalla J, Yokoyama T, Jourdan T, Jay L, Zuo MXG, O'Brien KJ, Huang J, Mackie K, Alimardanov A, Iyer MR, Gahl WA, Kunos G, Gochuico BR, Malicdan MCV. CB 1 R and iNOS are distinct players promoting pulmonary fibrosis in Hermansky-Pudlak syndrome. Clin Transl Med 2021; 11:e471. [PMID: 34323400 PMCID: PMC8255071 DOI: 10.1002/ctm2.471] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder which, in its most common and severe form, HPS-1, leads to fatal adult-onset pulmonary fibrosis (PF) with no effective treatment. We evaluated the role of the endocannabinoid/CB1 R system and inducible nitric oxide synthase (iNOS) for dual-target therapeutic strategy using human bronchoalveolar lavage fluid (BALF), lung samples from patients with HPS and controls, HPS-PF patient-derived lung fibroblasts, and bleomycin-induced PF in pale ear mice (HPS1ep/ep ). We found overexpression of CB1 R and iNOS in fibrotic lungs of HPSPF patients and bleomycin-infused pale ear mice. The endocannabinoid anandamide was elevated in BALF and negatively correlated with pulmonary function parameters in HPSPF patients and pale ear mice with bleomycin-induced PF. Simultaneous targeting of CB1 R and iNOS by MRI-1867 yielded greater antifibrotic efficacy than inhibiting either target alone by attenuating critical pathologic pathways. Moreover, MRI-1867 treatment abrogated bleomycin-induced increases in lung levels of the profibrotic interleukin-11 via iNOS inhibition and reversed mitochondrial dysfunction via CB1 R inhibition. Dual inhibition of CB1 R and iNOS is an effective antifibrotic strategy for HPSPF.
Collapse
Affiliation(s)
- Resat Cinar
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthMarylandUSA
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Joshua K. Park
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Charles N. Zawatsky
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Nathan J. Coffey
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Steven P. Bodine
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Jasmina Abdalla
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Tadafumi Yokoyama
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
- Present address:
Department of PediatricsKanazawa UniversityKanazawaJapan
| | - Tony Jourdan
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
- Present address:
INSERM Lipids, Nutrition, Cancer UMR1231University of Burgundy and Franche‐ComtéDijonFrance
| | - Lindsey Jay
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Mei Xing G. Zuo
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Kevin J. O'Brien
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Junfeng Huang
- Therapeutics Development BranchDivision of Preclinical InnovationNational Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | - Ken Mackie
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
| | - Asaf Alimardanov
- Therapeutics Development BranchDivision of Preclinical InnovationNational Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | - Malliga R. Iyer
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - William A. Gahl
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
- NIH Undiagnosed Diseases Program and Office of the Clinical DirectorNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - George Kunos
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Bernadette R. Gochuico
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - May Christine V. Malicdan
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
- NIH Undiagnosed Diseases Program and Office of the Clinical DirectorNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
50
|
Neshat SY, Quiroz VM, Wang Y, Tamayo S, Doloff JC. Liver Disease: Induction, Progression, Immunological Mechanisms, and Therapeutic Interventions. Int J Mol Sci 2021; 22:ijms22136777. [PMID: 34202537 PMCID: PMC8267746 DOI: 10.3390/ijms22136777] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
The liver is an organ with impressive regenerative potential and has been shown to heal sizable portions after their removal. However, certain diseases can overstimulate its potential to self-heal and cause excessive cellular matrix and collagen buildup. Decompensation of liver fibrosis leads to cirrhosis, a buildup of fibrotic ECM that impedes the liver’s ability to efficiently exchange fluid. This review summarizes the complex immunological activities in different liver diseases, and how failure to maintain liver homeostasis leads to progressive fibrotic tissue development. We also discuss a variety of pathologies that lead to liver cirrhosis, such as alcoholic liver disease and chronic hepatitis B virus (HBV). Mesenchymal stem cells are widely studied for their potential in tissue replacement and engineering. Herein, we discuss the potential of MSCs to regulate immune response and alter the disease state. Substantial efforts have been performed in preclinical animal testing, showing promising results following inhibition of host immunity. Finally, we outline the current state of clinical trials with mesenchymal stem cells and other cellular and non-cellular therapies as they relate to the detection and treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Sarah Y. Neshat
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.Y.N.); (V.M.Q.); (Y.W.); (S.T.)
| | - Victor M. Quiroz
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.Y.N.); (V.M.Q.); (Y.W.); (S.T.)
| | - Yuanjia Wang
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.Y.N.); (V.M.Q.); (Y.W.); (S.T.)
| | - Sebastian Tamayo
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.Y.N.); (V.M.Q.); (Y.W.); (S.T.)
| | - Joshua C. Doloff
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.Y.N.); (V.M.Q.); (Y.W.); (S.T.)
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center, Oncology-Cancer Immunology Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Correspondence:
| |
Collapse
|