1
|
Kawakami N, Wekerle H. Life history of a brain autoreactive T cell: From thymus through intestine to blood-brain barrier and brain lesion. Neurotherapeutics 2024:e00442. [PMID: 39237437 DOI: 10.1016/j.neurot.2024.e00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Brain antigen-specific autoreactive T cells seem to play a key role in inducing inflammation in the central nervous system (CNS), a characteristic feature of human multiple sclerosis (MS). These T cells are generated within the thymus, where they escape negative selection and become integrated into the peripheral immune repertoire of immune cells. Typically, these autoreactive T cells rest in the periphery without attacking the CNS. When autoimmune T cells enter gut-associated lymphatic tissue (GALT), they may be stimulated by the microbiota and its metabolites. After activation, the cells migrate into the CNS through the blood‒brain barrier, become reactivated upon interacting with local antigen-presenting cells, and induce inflammatory lesions within the brain parenchyma. This review describes how microbiota influence autoreactive T cells during their life, starting in the thymus, migrating through the periphery and inducing inflammation in their target organ, the CNS.
Collapse
Affiliation(s)
- Naoto Kawakami
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany.
| | - Hartmut Wekerle
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany; Emeritus Group Neuroimmunology, Max Planck Institute of Biological Intelligence, Germany.
| |
Collapse
|
2
|
Scavone C, Anatriello A, Baccari I, Cantone A, Di Giulio Cesare D, Bernardi FF, Moreggia O, Liguori V, Andreone V, Maniscalco GT, Capuano A. Comparison of injective related reactions following ofatumumab and ocrelizumab in patients with multiple sclerosis: data from the European spontaneous reporting system. Front Neurol 2024; 15:1383910. [PMID: 38994488 PMCID: PMC11236557 DOI: 10.3389/fneur.2024.1383910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction In 2021 ofatumumab, a recombinant human anti-CD20 monoclonal antibody (mAb) already authorized for the treatment of chronic lymphocytic leukemia, received the marketing approval for the treatment of relapsing forms of multiple sclerosis (MS). Differently from ocrelizumab, that is administered intravenously, ofatumumab if the first anti-CD20 mAb to be administered subcutaneously without a premedication. Methods and objectives In this study we aimed to describe and compare the main characteristics of Individual Case Safety Reports (ICSRs) describing the occurrence of Injective Related Reactions (IRRs) following the treatment with ocrelizumab and ofatumumab reported in the Eudravigilance (EV) database during years 2021-2023. Results A total of 860 ICSRs with either ofatumumab and ocrelizumab as suspected drug were retrieved from Eudravigilance, of which 51% associated with ofatumumab and 49% with ocrelizumab. The majority of patients who experienced IRRs following ocrelizumab belonged to the age group of 18-64 years (73%), while the age-group was mostly not specified (55%) in ICSRs reporting ofatumumab as suspected. The distribution of gender was almost similar in the two groups, with the majority of ICSRs related to female patients. "Pyrexia" was the Preferred Term (PT) most reported for ofatumumab, while "Infusion related reaction" were more frequently reported with ocrelizumab. Premedication drugs were reported in 148 ICSRs. Out of 89 ICSRs for which the Time to Event (TTE) was calculated, 74 reported IRRs that occurred the same day of the drug administration. Discussion Based on the results of this study, although a risk of ofatumumab-induced IRRs cannot be excluded, it should be considered as manageable considering that the drug seems to be mostly associated with the occurrence of fever. Thus, it is important to continue to closely monitor the use of these in clinical practice to improve the knowledge on their long-term safety.
Collapse
Affiliation(s)
- Cristina Scavone
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, Naples, Italy
| | - Antonietta Anatriello
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, Naples, Italy
| | - Isabella Baccari
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, Naples, Italy
| | - Andrea Cantone
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, Naples, Italy
| | | | | | - Ornella Moreggia
- Multiple Sclerosis Regional Center, "A. Cardarelli" Hospital, Naples, Italy
| | - Valerio Liguori
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, Naples, Italy
| | - Vincenzo Andreone
- Neurological Clinic and Stroke Unit, "A. Cardarelli" Hospital, Naples, Italy
| | - Giorgia Teresa Maniscalco
- Multiple Sclerosis Regional Center, "A. Cardarelli" Hospital, Naples, Italy
- Neurological Clinic and Stroke Unit, "A. Cardarelli" Hospital, Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, Naples, Italy
| |
Collapse
|
3
|
Fazazi MR, Doss PMIA, Pereira R, Fudge N, Regmi A, Joly-Beauparlant C, Akbar I, Yeola AP, Mailhot B, Baillargeon J, Grenier P, Bertrand N, Lacroix S, Droit A, Moore CS, Rojas OL, Rangachari M. Myelin-reactive B cells exacerbate CD4 + T cell-driven CNS autoimmunity in an IL-23-dependent manner. Nat Commun 2024; 15:5404. [PMID: 38926356 PMCID: PMC11208426 DOI: 10.1038/s41467-024-49259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
B cells and T cells collaborate in multiple sclerosis (MS) pathogenesis. IgH[MOG] mice possess a B cell repertoire skewed to recognize myelin oligodendrocyte glycoprotein (MOG). Here, we show that upon immunization with the T cell-obligate autoantigen, MOG[35-55], IgH[MOG] mice develop rapid and exacerbated experimental autoimmune encephalomyelitis (EAE) relative to wildtype (WT) counterparts, characterized by aggregation of T and B cells in the IgH[MOG] meninges and by CD4+ T helper 17 (Th17) cells in the CNS. Production of the Th17 maintenance factor IL-23 is observed from IgH[MOG] CNS-infiltrating and meningeal B cells, and in vivo blockade of IL-23p19 attenuates disease severity in IgH[MOG] mice. In the CNS parenchyma and dura mater of IgH[MOG] mice, we observe an increased frequency of CD4+PD-1+CXCR5- T cells that share numerous characteristics with the recently described T peripheral helper (Tph) cell subset. Further, CNS-infiltrating B and Tph cells from IgH[MOG] mice show increased reactive oxygen species (ROS) production. Meningeal inflammation, Tph-like cell accumulation in the CNS and B/Tph cell production of ROS were all reduced upon p19 blockade. Altogether, MOG-specific B cells promote autoimmune inflammation of the CNS parenchyma and meninges in an IL-23-dependent manner.
Collapse
Affiliation(s)
- Mohamed Reda Fazazi
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Prenitha Mercy Ignatius Arokia Doss
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Resel Pereira
- Krembil Research Institute, University Health Network, Toronto, M5T 0S8, ON, Canada
| | - Neva Fudge
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
- Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Aryan Regmi
- Krembil Research Institute, University Health Network, Toronto, M5T 0S8, ON, Canada
- Department of Immunology, University of Toronto, Toronto, M5S 1A1, ON, Canada
| | - Charles Joly-Beauparlant
- axe Endocrinologie et nephrologie, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Irshad Akbar
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Asmita Pradeep Yeola
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Benoit Mailhot
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Joanie Baillargeon
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Philippe Grenier
- axe Endocrinologie et nephrologie, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Nicolas Bertrand
- axe Endocrinologie et nephrologie, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, QC, G1V 4G2, Canada
- Faculty of Pharmacy, Laval University, 1050 ave de la Médecine, Quebec City, QC, G1V 4G2, Canada
| | - Steve Lacroix
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, 1050 ave de la Médecine, Quebec City, QC, G1V 4G2, Canada
| | - Arnaud Droit
- axe Endocrinologie et nephrologie, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, QC, G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, 1050 ave de la Médecine, Quebec City, QC, G1V 4G2, Canada
| | - Craig S Moore
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
- Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Olga L Rojas
- Krembil Research Institute, University Health Network, Toronto, M5T 0S8, ON, Canada
- Department of Immunology, University of Toronto, Toronto, M5S 1A1, ON, Canada
| | - Manu Rangachari
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada.
- Department of Molecular Medicine, Faculty of Medicine, Laval University, 1050 ave de la Médecine, Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
4
|
Callegari I, Oechtering J, Schneider M, Perriot S, Mathias A, Voortman MM, Cagol A, Lanner U, Diebold M, Holdermann S, Kreiner V, Becher B, Granziera C, Junker A, Du Pasquier R, Khalil M, Kuhle J, Kappos L, Sanderson NSR, Derfuss T. Cell-binding IgM in CSF is distinctive of multiple sclerosis and targets the iron transporter SCARA5. Brain 2024; 147:839-848. [PMID: 38123517 PMCID: PMC10907079 DOI: 10.1093/brain/awad424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 12/23/2023] Open
Abstract
Intrathecal IgM production in multiple sclerosis is associated with a worse disease course. To investigate pathogenic relevance of autoreactive IgM in multiple sclerosis, CSF from two independent cohorts, including multiple sclerosis patients and controls, were screened for antibody binding to induced pluripotent stem cell-derived neurons and astrocytes, and a panel of CNS-related cell lines. IgM binding to a primitive neuro-ectodermal tumour cell line discriminated 10% of multiple sclerosis donors from controls. Transcriptomes of single IgM producing CSF B cells from patients with cell-binding IgM were sequenced and used to produce recombinant monoclonal antibodies for characterization and antigen identification. We produced five cell-binding recombinant IgM antibodies, of which one, cloned from an HLA-DR + plasma-like B cell, mediated antigen-dependent complement activation. Immunoprecipitation and mass spectrometry, and biochemical and transcriptome analysis of the target cells identified the iron transport scavenger protein SCARA5 as the antigen target of this antibody. Intrathecal injection of a SCARA5 antibody led to an increased T cell infiltration in an experimental autoimmune encephalomyelitis (EAE) model. CSF IgM might contribute to CNS inflammation in multiple sclerosis by binding to cell surface antigens like SCARA5 and activating complement, or by facilitating immune cell migration into the brain.
Collapse
Affiliation(s)
- Ilaria Callegari
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
| | - Johanna Oechtering
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
| | - Mika Schneider
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Sylvain Perriot
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Center of Research in Neurosciences, Lausanne 1011, Switzerland
| | - Amandine Mathias
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Center of Research in Neurosciences, Lausanne 1011, Switzerland
| | | | - Alessandro Cagol
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, Basel 4123, Switzerland
| | - Ulrike Lanner
- Proteomics Core Facility, Biozentrum, University of Basel, Basel 4056, Switzerland
| | - Martin Diebold
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg 79085, Germany
| | - Sebastian Holdermann
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Victor Kreiner
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Cristina Granziera
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, Basel 4123, Switzerland
| | - Andreas Junker
- Department of Neuropathology, University Hospital Essen, Essen 45147, Germany
| | - Renaud Du Pasquier
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Center of Research in Neurosciences, Lausanne 1011, Switzerland
- Department of Clinical Neurosciences, Service of Neurology, Lausanne 1011, Switzerland
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz 8010, Austria
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
| | - Nicholas S R Sanderson
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
| | - Tobias Derfuss
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
| |
Collapse
|
5
|
Beckers L, Baeten P, Popescu V, Swinnen D, Cardilli A, Hamad I, Van Wijmeersch B, Tavernier SJ, Kleinewietfeld M, Broux B, Fraussen J, Somers V. Alterations in the innate and adaptive immune system in a real-world cohort of multiple sclerosis patients treated with ocrelizumab. Clin Immunol 2024; 259:109894. [PMID: 38185268 DOI: 10.1016/j.clim.2024.109894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
B cell depletion by the anti-CD20 antibody ocrelizumab is effective in relapsing-remitting (RR) and primary progressive (PP) multiple sclerosis (MS). We investigated immunological changes in peripheral blood of a real-world MS cohort after 6 and 12 months of ocrelizumab. All RRMS and most PPMS patients (15/20) showed treatment response. Ocrelizumab not only reduced CD20+ B cells, but also numbers of CD20+ T cells. Absolute numbers of monocytes, dendritic cells and CD8+ T cells were increased, while CD56hi natural killer cells were reduced after ocrelizumab. The residual B cell population shifted towards transitional and activated, IgA+ switched memory B cells, double negative B cells, and antibody-secreting cells. Delaying the treatment interval by 2-3 months increased mean B cell frequencies and enhanced naive B cell repopulation. Ocrelizumab reduced plasma levels of interleukin(IL)-12p70 and interferon(IFN)-α2. These findings will contribute to understanding ineffective treatment responses, dealing with life-threatening infections and further unravelling MS pathogenesis.
Collapse
Affiliation(s)
- L Beckers
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - P Baeten
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - V Popescu
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium; Noorderhart, Rehabilitation and MS Center, Pelt, Belgium
| | - D Swinnen
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium; VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Diepenbeek, Belgium
| | - A Cardilli
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium; VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Diepenbeek, Belgium
| | - I Hamad
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium; VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Diepenbeek, Belgium
| | - B Van Wijmeersch
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium; Noorderhart, Rehabilitation and MS Center, Pelt, Belgium
| | - S J Tavernier
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
| | - M Kleinewietfeld
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium; VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Diepenbeek, Belgium
| | - B Broux
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - J Fraussen
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - V Somers
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
6
|
Wang Q, Feng D, Jia S, Lu Q, Zhao M. B-Cell Receptor Repertoire: Recent Advances in Autoimmune Diseases. Clin Rev Allergy Immunol 2024; 66:76-98. [PMID: 38459209 DOI: 10.1007/s12016-024-08984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
In the field of contemporary medicine, autoimmune diseases (AIDs) are a prevalent and debilitating group of illnesses. However, they present extensive and profound challenges in terms of etiology, pathogenesis, and treatment. A major reason for this is the elusive pathophysiological mechanisms driving disease onset. Increasing evidence suggests the indispensable role of B cells in the pathogenesis of autoimmune diseases. Interestingly, B-cell receptor (BCR) repertoires in autoimmune diseases display a distinct skewing that can provide insights into disease pathogenesis. Over the past few years, advances in high-throughput sequencing have provided powerful tools for analyzing B-cell repertoire to understand the mechanisms during the period of B-cell immune response. In this paper, we have provided an overview of the mechanisms and analytical methods for generating BCR repertoire diversity and summarize the latest research progress on BCR repertoire in autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), primary Sjögren's syndrome (pSS), multiple sclerosis (MS), and type 1 diabetes (T1D). Overall, B-cell repertoire analysis is a potent tool to understand the involvement of B cells in autoimmune diseases, facilitating the creation of innovative therapeutic strategies targeting specific B-cell clones or subsets.
Collapse
Affiliation(s)
- Qian Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Delong Feng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
7
|
Al-kuraishy HM, Jabir MS, Al-Gareeb AI, Saad HM, Batiha GES, Klionsky DJ. The beneficial role of autophagy in multiple sclerosis: Yes or No? Autophagy 2024; 20:259-274. [PMID: 37712858 PMCID: PMC10813579 DOI: 10.1080/15548627.2023.2259281] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic progressive demyelinating disease of the central nervous system (CNS) due to an increase of abnormal peripherally auto-reactive T lymphocytes which elicit autoimmunity. The main pathophysiology of MS is myelin sheath damage by immune cells and a defect in the generation of myelin by oligodendrocytes. Macroautophagy/autophagy is a critical degradation process that eliminates dysfunctional or superfluous cellular components. Autophagy has the property of a double-edged sword in MS in that it may have both beneficial and detrimental effects on MS neuropathology. Therefore, this review illustrates the protective and harmful effects of autophagy with regard to this disease. Autophagy prevents the progression of MS by reducing oxidative stress and inflammatory disorders. In contrast, over-activated autophagy is associated with the progression of MS neuropathology and in this case the use of autophagy inhibitors may alleviate the pathogenesis of MS. Furthermore, autophagy provokes the activation of different immune and supporting cells that play an intricate role in the pathogenesis of MS. Autophagy functions in the modulation of MS neuropathology by regulating cell proliferation related to demyelination and remyelination. Autophagy enhances remyelination by increasing the activity of oligodendrocytes, and astrocytes. However, autophagy induces demyelination by activating microglia and T cells. In conclusion, specific autophagic activators of oligodendrocytes, and astrocytes, and specific autophagic inhibitors of dendritic cells (DCs), microglia and T cells induce protective effects against the pathogenesis of MS.Abbreviations: ALS: amyotrophic lateral sclerosis; APCs: antigen-presenting cells; BBB: blood-brain barrier; CSF: cerebrospinal fluid; CNS: central nervous system; DCs: dendritic cells; EAE: experimental autoimmune encephalomyelitis; ER: endoplasmic reticulum; LAP: LC3-associated phagocytosis; MS: multiple sclerosis; NCA: non-canonical autophagy; OCBs: oligoclonal bands; PBMCs: peripheral blood mononuclear cells; PD: Parkinson disease; ROS: reactive oxygen species; UPR: unfolded protein response.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Iraq, Baghdad
| | - Majid S. Jabir
- Department of Applied Science, University of Technology, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Iraq, Baghdad
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El Beheira, Egypt
| | | |
Collapse
|
8
|
Xue H, Guo X, Jiang Y, Qin L, Wang X, Xu J, Zuo S, Liu Q, Li W. Comparing clinical features, severity and prognosis of autoimmune encephalitis and with and without oligoclonal bands. Front Neurol 2024; 14:1281276. [PMID: 38249729 PMCID: PMC10799335 DOI: 10.3389/fneur.2023.1281276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Objective This study aimed to examine the clinical distinctions among patients diagnosed with autoimmune encephalitis (AE) based on the presence or absence of cerebrospinal fluid (CSF) oligoclonal bands (OCBs). Additionally, it sought to explore the relationship between OCBs and the severity and prognosis of autoimmune encephalitis. Methods A retrospective analysis was conducted on 94 patients diagnosed with AE at the People's Hospital of Zhengzhou University between October 2016 and June 2022. The patients were divided into OCB-positive and OCB-negative groups based on CSF-OCBs. Patient severity at admission was assessed utilizing the Clinical Assessment Scale for Autoimmune Encephalitis (CASE) and the modified Rankin scale (mRS). Additionally, some oligoclonal-positive patients underwent dynamic longitudinal analysis of cerebrospinal fluid test indices. The mRS score was ultimately employed to evaluate patients' short-term prognosis (6 months) and long-term prognosis (at least 12 months) following immunotherapy. Results Of the 94 patients, 34 (36.2%) belonged to the OCB-positive group, while 60 (63.8%) belonged to the OCB-negative group. The group with anti-n-methyl-d-aspartate receptor (anti-NMDAR) encephalitis exhibited the highest rate of oligoclonal positivity at 27 (49.1%), followed by anti-aminobutyric acid B receptor (GABABR) encephalitis with 4 cases (30.8%), anti-contactin-associated protein-like 2 (CASPR2) encephalitis with 2 cases (20%), and anti-leucine-rich glioma inactivating protein 1 (LGI1) encephalitis with 1 case (6.25%). No statistically significant differences were found between the two groups regarding gender, age, prodromal symptoms, psychiatric disorders, seizures, language disorders, motor dysfunction, cognitive dysfunction, tumor incidence, and magnetic resonance imaging (MRI) abnormalities (p > 0.05). The OCB-positive group exhibited higher rates of autonomic dysfunction, intensive care unit (ICU) admission, CSF leukocytes, and IgG index compared to the OCB-negative group (p < 0.05). Additionally, the OCB-positive group had significantly higher median CASE and mRS scores prior to immunotherapy than the OCB-negative group (p < 0.001 and p < 0.001). Furthermore, in both short-term follow-up and long-term follow-up, the OCB-positive group had a significantly lower proportion of patients with a favorable prognosis compared to the OCB-negative group (50% vs. 71.7, 61.8% vs. 83.3%; p = 0.036, p = 0.002). Conclusion Autonomic dysfunction, ICU admission, leukocytes in the cerebrospinal fluid, and elevated IgG index are more commonly observed in OCB-positive patients. OCB-positivity has also been linked to the severity and prognosis of AE, making it a potential biomarker. Initial OCB testing aids clinicians in identifying potentially critically ill patients early and monitoring disease progression, thereby optimizing clinical treatment decisions.
Collapse
Affiliation(s)
- Hongfei Xue
- Department of Neurology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xiaochan Guo
- Department of Neonatology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yushu Jiang
- Department of Neurology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Lingzhi Qin
- Department of Neurology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xiaojuan Wang
- Department of Neurology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jiajia Xu
- Department of Neurology, People’s Hospital of Henan University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Shaomin Zuo
- Department of Neurology, People’s Hospital of Henan University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qiuyan Liu
- Department of Neurology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Wei Li
- Department of Neurology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
9
|
Owens GP, Fellin TJ, Matschulat A, Salas V, Schaller KL, Given KS, Ritchie AM, Navarro A, Blauth K, Hughes EG, Macklin WB, Bennett JL. Pathogenic myelin-specific antibodies in multiple sclerosis target conformational proteolipid protein 1-anchored membrane domains. J Clin Invest 2023; 133:e162731. [PMID: 37561592 PMCID: PMC10541191 DOI: 10.1172/jci162731] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
B cell clonal expansion and cerebrospinal fluid (CSF) oligoclonal IgG bands are established features of the immune response in multiple sclerosis (MS). Clone-specific recombinant monoclonal IgG1 Abs (rAbs) derived from MS patient CSF plasmablasts bound to conformational proteolipid protein 1 (PLP1) membrane complexes and, when injected into mouse brain with human complement, recapitulated histologic features of MS pathology: oligodendrocyte cell loss, complement deposition, and CD68+ phagocyte infiltration. Conformational PLP1 membrane epitopes were complex and governed by the local cholesterol and glycolipid microenvironment. Abs against conformational PLP1 membrane complexes targeted multiple surface epitopes, were enriched within the CSF compartment, and were detected in most MS patients, but not in inflammatory and noninflammatory neurologic controls. CSF PLP1 complex Abs provide a pathogenic autoantibody biomarker specific for MS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ethan G. Hughes
- Department of Cell & Developmental Biology
- Program in Neuroscience
| | - Wendy B. Macklin
- Department of Cell & Developmental Biology
- Program in Neuroscience
| | - Jeffrey L. Bennett
- Department of Neurology
- Program in Neuroscience
- Department of Ophthalmology, and
- Program in Immunology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
10
|
Evonuk KS, Wang S, Mattie J, Cracchiolo CJ, Mager R, Ferenčić Ž, Sprague E, Carrier B, Schofield K, Martinez E, Stewart Z, Petrosino T, Johnson GA, Yusuf I, Plaisted W, Naiman Z, Delp T, Carter L, Marušić S. Bruton's tyrosine kinase inhibition reduces disease severity in a model of secondary progressive autoimmune demyelination. Acta Neuropathol Commun 2023; 11:115. [PMID: 37438842 PMCID: PMC10337138 DOI: 10.1186/s40478-023-01614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) is an emerging target in multiple sclerosis (MS). Alongside its role in B cell receptor signaling and B cell development, BTK regulates myeloid cell activation and inflammatory responses. Here we demonstrate efficacy of BTK inhibition in a model of secondary progressive autoimmune demyelination in Biozzi mice with experimental autoimmune encephalomyelitis (EAE). We show that late in the course of disease, EAE severity could not be reduced with a potent relapse inhibitor, FTY720 (fingolimod), indicating that disease was relapse-independent. During this same phase of disease, treatment with a BTK inhibitor reduced both EAE severity and demyelination compared to vehicle treatment. Compared to vehicle treatment, late therapeutic BTK inhibition resulted in fewer spinal cord-infiltrating myeloid cells, with lower expression of CD86, pro-IL-1β, CD206, and Iba1, and higher expression of Arg1, in both tissue-resident and infiltrating myeloid cells, suggesting a less inflammatory myeloid cell milieu. These changes were accompanied by decreased spinal cord axonal damage. We show similar efficacy with two small molecule inhibitors, including a novel, highly selective, central nervous system-penetrant BTK inhibitor, GB7208. These results suggest that through lymphoid and myeloid cell regulation, BTK inhibition reduced neurodegeneration and disease progression during secondary progressive EAE.
Collapse
Affiliation(s)
| | - Sen Wang
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Josh Mattie
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - C. J. Cracchiolo
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Reine Mager
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Željko Ferenčić
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Ethan Sprague
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Brandon Carrier
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Kai Schofield
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Evelyn Martinez
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Zachary Stewart
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Tara Petrosino
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | | | - Isharat Yusuf
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Warren Plaisted
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Zachary Naiman
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Timothy Delp
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Laura Carter
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Suzana Marušić
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| |
Collapse
|
11
|
Li Y, Noto D, Hoshino Y, Mizuno M, Yoshikawa S, Miyake S. Immunoglobulin directly enhances differentiation of oligodendrocyte-precursor cells and remyelination. Sci Rep 2023; 13:9394. [PMID: 37296298 PMCID: PMC10256778 DOI: 10.1038/s41598-023-36532-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease characterized by multiple lesions in the central nervous system. Although the role of B cells in MS pathogenesis has attracted much attention, but the detailed mechanisms remain unclear. To investigate the effects of B cells on demyelination, we analyzed a cuprizone-induced demyelination model, and found that demyelination was significantly exacerbated in B cell-deficient mice. We next investigated whether immunoglobulin affected the myelin formation process using organotypic brain slice cultures and revealed that remyelination was improved in immunoglobulin-treated groups compared with the control group. Analysis of oligodendrocyte-precursor cell (OPC) monocultures showed that immunoglobulins directly affected on OPCs and promoted their differentiation and myelination. Furthermore, OPCs expressed FcγRI and FcγRIII, two receptors that were revealed to mediate the effects of IgG. To the best of our knowledge, this is the first study to demonstrate that B cells act in an inhibitory manner against cuprizone-induced demyelination, while immunoglobulins enhance remyelination following demyelination. Analysis of the culture system revealed that immunoglobulins directly act on OPCs to promote their differentiation and myelination. Future studies to elucidate the effects of immunoglobulins on OPCs in vivo and the detailed mechanisms of these effects may lead to new treatments for demyelinating diseases.
Collapse
Affiliation(s)
- Yaguang Li
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Daisuke Noto
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yasunobu Hoshino
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Miho Mizuno
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Soichiro Yoshikawa
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
12
|
Polak J, Wagnerberger JH, Torsetnes SB, Lindeman I, Høglund RAA, Vartdal F, Sollid LM, Lossius A. Single-cell transcriptomics combined with proteomics of intrathecal IgG reveal transcriptional heterogeneity of oligoclonal IgG-secreting cells in multiple sclerosis. Front Cell Neurosci 2023; 17:1189709. [PMID: 37362001 PMCID: PMC10285169 DOI: 10.3389/fncel.2023.1189709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
The phenotypes of B lineage cells that produce oligoclonal IgG in multiple sclerosis have not been unequivocally determined. Here, we utilized single-cell RNA-seq data of intrathecal B lineage cells in combination with mass spectrometry of intrathecally synthesized IgG to identify its cellular source. We found that the intrathecally produced IgG matched a larger fraction of clonally expanded antibody-secreting cells compared to singletons. The IgG was traced back to two clonally related clusters of antibody-secreting cells, one comprising highly proliferating cells, and the other consisting of more differentiated cells expressing genes associated with immunoglobulin synthesis. These findings suggest some degree of heterogeneity among cells that produce oligoclonal IgG in multiple sclerosis.
Collapse
Affiliation(s)
- Justyna Polak
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Johanna H. Wagnerberger
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Ida Lindeman
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Rune A. Aa. Høglund
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Frode Vartdal
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Ludvig M. Sollid
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andreas Lossius
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
13
|
Touil H, Mounts K, De Jager PL. Differential impact of environmental factors on systemic and localized autoimmunity. Front Immunol 2023; 14:1147447. [PMID: 37283765 PMCID: PMC10239830 DOI: 10.3389/fimmu.2023.1147447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
The influence of environmental factors on the development of autoimmune disease is being broadly investigated to better understand the multifactorial nature of autoimmune pathogenesis and to identify potential areas of intervention. Areas of particular interest include the influence of lifestyle, nutrition, and vitamin deficiencies on autoimmunity and chronic inflammation. In this review, we discuss how particular lifestyles and dietary patterns may contribute to or modulate autoimmunity. We explored this concept through a spectrum of several autoimmune diseases including Multiple Sclerosis (MS), Systemic Lupus Erythematosus (SLE) and Alopecia Areata (AA) affecting the central nervous system, whole body, and the hair follicles, respectively. A clear commonality between the autoimmune conditions of interest here is low Vitamin D, a well-researched hormone in the context of autoimmunity with pleiotropic immunomodulatory and anti-inflammatory effects. While low levels are often correlated with disease activity and progression in MS and AA, the relationship is less clear in SLE. Despite strong associations with autoimmunity, we lack conclusive evidence which elucidates its role in contributing to pathogenesis or simply as a result of chronic inflammation. In a similar vein, other vitamins impacting the development and course of these diseases are explored in this review, and overall diet and lifestyle. Recent work exploring the effects of dietary interventions on MS showed that a balanced diet was linked to improvement in clinical parameters, comorbid conditions, and overall quality of life for patients. In patients with MS, SLE and AA, certain diets and supplements are linked to lower incidence and improved symptoms. Conversely, obesity during adolescence was linked with higher incidence of MS while in SLE it was associated with organ damage. Autoimmunity is thought to emerge from the complex interplay between environmental factors and genetic background. Although the scope of this review focuses on environmental factors, it is imperative to elaborate the interaction between genetic susceptibility and environment due to the multifactorial origin of these disease. Here, we offer a comprehensive review about the influence of recent environmental and lifestyle factors on these autoimmune diseases and potential translation into therapeutic interventions.
Collapse
Affiliation(s)
- Hanane Touil
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Kristin Mounts
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Philip Lawrence De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
- Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
14
|
Telesford KM, Amezcua L, Tardo L, Horton L, Lund BT, Reder AT, Vartanian T, Monson NL. Understanding humoral immunity and multiple sclerosis severity in Black, and Latinx patients. Front Immunol 2023; 14:1172993. [PMID: 37215103 PMCID: PMC10196635 DOI: 10.3389/fimmu.2023.1172993] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
People identified with Black/African American or Hispanic/Latinx ethnicity are more likely to exhibit a more severe multiple sclerosis disease course relative to those who identify as White. While social determinants of health account for some of this discordant severity, investigation into contributing immunobiology remains sparse. The limited immunologic data stands in stark contrast to the volume of clinical studies describing ethnicity-associated discordant presentation, and to advancement made in our understanding of MS immunopathogenesis over the past several decades. In this perspective, we posit that humoral immune responses offer a promising avenue to better understand underpinnings of discordant MS severity among Black/African American, and Hispanic/Latinx-identifying patients.
Collapse
Affiliation(s)
- Kiel M. Telesford
- Department of Neurology, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Lilyana Amezcua
- Multiple Sclerosis Comprehensive Care Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauren Tardo
- Department of Neurology, University of Texas Southwestern Medical Center (UT), Dallas, TX, United States
| | - Lindsay Horton
- Department of Neurology, University of Texas Southwestern Medical Center (UT), Dallas, TX, United States
| | - Brett T. Lund
- Multiple Sclerosis Comprehensive Care Center, University of Southern California, Los Angeles, CA, United States
| | - Anthony T. Reder
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | - Timothy Vartanian
- Department of Neurology, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Nancy L. Monson
- Department of Neurology, University of Texas Southwestern Medical Center (UT), Dallas, TX, United States
| |
Collapse
|
15
|
Maheshwari S, Dwyer LJ, Sîrbulescu RF. Inflammation and immunomodulation in central nervous system injury - B cells as a novel therapeutic opportunity. Neurobiol Dis 2023; 180:106077. [PMID: 36914074 PMCID: PMC10758988 DOI: 10.1016/j.nbd.2023.106077] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
Acute injury to the central nervous system (CNS) remains a complex and challenging clinical need. CNS injury initiates a dynamic neuroinflammatory response, mediated by both resident and infiltrating immune cells. Following the primary injury, dysregulated inflammatory cascades have been implicated in sustaining a pro-inflammatory microenvironment, driving secondary neurodegeneration and the development of lasting neurological dysfunction. Due to the multifaceted nature of CNS injury, clinically effective therapies for conditions such as traumatic brain injury (TBI), spinal cord injury (SCI), and stroke have proven challenging to develop. No therapeutics that adequately address the chronic inflammatory component of secondary CNS injury are currently available. Recently, B lymphocytes have gained increasing appreciation for their role in maintaining immune homeostasis and regulating inflammatory responses in the context of tissue injury. Here we review the neuroinflammatory response to CNS injury with particular focus on the underexplored role of B cells and summarize recent results on the use of purified B lymphocytes as a novel immunomodulatory therapeutic for tissue injury, particularly in the CNS.
Collapse
Affiliation(s)
- Saumya Maheshwari
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liam J Dwyer
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruxandra F Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Techa-Angkoon P, Siritho S, Tisavipat N, Suansanae T. Current evidence of rituximab in the treatment of multiple sclerosis. Mult Scler Relat Disord 2023; 75:104729. [PMID: 37148577 DOI: 10.1016/j.msard.2023.104729] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/15/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disorder of the central nervous system. The immunopathology of MS involves both T and B lymphocytes. Rituximab is one of the anti-CD20 monoclonal antibody therapies which deplete B-cells. Although some anti-CD20 therapies have been approved by the Food and Drug Administration for treatment of MS, rituximab is used off-label. Several studies have shown that rituximab has a good efficacy and safety in MS, including certain specific patient conditions such as treatment-naïve patients, treatment-switching patients, and the Asian population. However, there are still questions about the optimal dose and duration of rituximab in MS due to the different dosing regimens used in each study. Moreover, many biosimilars have become available at a lower cost with comparable physicochemical properties, pharmacokinetics, pharmacodynamics, efficacy, safety, and immunogenicity. Thus, rituximab may be considered as a potential therapeutic option for patients without access to standard treatment. This narrative review summarized the evidence of both original and biosimilars of rituximab in MS treatment including pharmacokinetics, pharmacodynamics, clinical efficacy, safety, and dosing regimen.
Collapse
Affiliation(s)
- Phanutgorn Techa-Angkoon
- Division of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Sasitorn Siritho
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Neuroimmunology Center, Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Bumrungrad International Hospital, Bangkok, Thailand
| | | | - Thanarat Suansanae
- Division of Clinical Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri Ayutthaya Road, Ratchathewi, Bangkok 10400, Thailand.
| |
Collapse
|
17
|
Bogers L, Engelenburg HJ, Janssen M, Unger PPA, Melief MJ, Wierenga-Wolf AF, Hsiao CC, Mason MRJ, Hamann J, van Langelaar J, Smolders J, van Luijn MM. Selective emergence of antibody-secreting cells in the multiple sclerosis brain. EBioMedicine 2023; 89:104465. [PMID: 36796230 PMCID: PMC9958261 DOI: 10.1016/j.ebiom.2023.104465] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Although distinct brain-homing B cells have been identified in multiple sclerosis (MS), it is unknown how these further evolve to contribute to local pathology. We explored B-cell maturation in the central nervous system (CNS) of MS patients and determined their association with immunoglobulin (Ig) production, T-cell presence, and lesion formation. METHODS Ex vivo flow cytometry was performed on post-mortem blood, cerebrospinal fluid (CSF), meninges and white matter from 28 MS and 10 control brain donors to characterize B cells and antibody-secreting cells (ASCs). MS brain tissue sections were analysed with immunostainings and microarrays. IgG index and CSF oligoclonal bands were measured with nephelometry, isoelectric focusing, and immunoblotting. Blood-derived B cells were cocultured under T follicular helper-like conditions to evaluate their ASC-differentiating capacity in vitro. FINDINGS ASC versus B-cell ratios were increased in post-mortem CNS compartments of MS but not control donors. Local presence of ASCs associated with a mature CD45low phenotype, focal MS lesional activity, lesional Ig gene expression, and CSF IgG levels as well as clonality. In vitro B-cell maturation into ASCs did not differ between MS and control donors. Notably, lesional CD4+ memory T cells positively correlated with ASC presence, reflected by local interplay with T cells. INTERPRETATION These findings provide evidence that local B cells at least in late-stage MS preferentially mature into ASCs, which are largely responsible for intrathecal and local Ig production. This is especially seen in active MS white matter lesions and likely depends on the interaction with CD4+ memory T cells. FUNDING Stichting MS Research (19-1057 MS; 20-490f MS), National MS Fonds (OZ2018-003).
Collapse
Affiliation(s)
- Laurens Bogers
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Hendrik J Engelenburg
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Malou Janssen
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands; Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Peter-Paul A Unger
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Marie-José Melief
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Cheng-Chih Hsiao
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Matthew R J Mason
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, 1007 MB, Amsterdam, The Netherlands
| | - Jamie van Langelaar
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands; Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands; Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Ransohoff RM. Multiple sclerosis: role of meningeal lymphoid aggregates in progression independent of relapse activity. Trends Immunol 2023; 44:266-275. [PMID: 36868982 DOI: 10.1016/j.it.2023.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 03/05/2023]
Abstract
The emphasis on mechanisms driving multiple sclerosis (MS) symptomatic worsening suggests that we move beyond categorical clinical classifiers such as relapsing-remitting MS (RR-MS) and progressive MS (P-MS). Here, we focus on the clinical phenomenon progression independent of relapse activity (PIRA), which begins early in the disease course. PIRA occurs throughout MS, becoming more phenotypically evident as patients age. The underlying mechanisms for PIRA include chronic-active demyelinating lesions (CALs), subpial cortical demyelination, and nerve fiber injury following demyelination. We propose that much of the tissue injury associated with PIRA is driven by autonomous meningeal lymphoid aggregates, present before disease onset and unresponsive to current therapeutics. Recently, specialized magnetic resonance imaging (MRI) has identified and characterized CALs as paramagnetic rim lesions in humans, enabling novel radiographic-biomarker-clinical correlations to further understand and treat PIRA.
Collapse
Affiliation(s)
- Richard M Ransohoff
- Third Rock Ventures, Boston, MA, USA; Abata Therapeutics, 100 Forge Road, Suite 200, Boston, MA 02472, USA.
| |
Collapse
|
19
|
Giovannini D, Belbezier A, Baillet A, Bouillet L, Kawano M, Dumestre-Perard C, Clavarino G, Noble J, Pers JO, Sturm N, Huard B. Heterogeneity of antibody-secreting cells infiltrating autoimmune tissues. Front Immunol 2023; 14:1111366. [PMID: 36895558 PMCID: PMC9989216 DOI: 10.3389/fimmu.2023.1111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
The humoral response is frequently dysfunctioning in autoimmunity with a frequent rise in total serum immunoglobulins, among which are found autoantibodies that may be pathogenic by themselves and/or propagate the inflammatory reaction. The infiltration of autoimmune tissues by antibody-secreting cells (ASCs) constitutes another dysfunction. The known high dependency of ASCs on the microenvironment to survive combined to the high diversity of infiltrated tissues implies that ASCs must adapt. Some tissues even within a single clinical autoimmune entity are devoid of infiltration. The latter means that either the tissue is not permissive or ASCs fail to adapt. The origin of infiltrated ASCs is also variable. Indeed, ASCs may be commonly generated in the secondary lymphoid organ draining the autoimmune tissue, and home at the inflammation site under the guidance of specific chemokines. Alternatively, ASCs may be generated locally, when ectopic germinal centers are formed in the autoimmune tissue. Alloimmune tissues with the example of kidney transplantation will also be discussed own to their high similarity with autoimmune tissues. It should also be noted that antibody production is not the only function of ASCs, since cells with regulatory functions have also been described. This article will review all the phenotypic variations indicative of tissue adaptation described so for at the level of ASC-infiltrating auto/alloimmune tissues. The aim is to potentially define tissue-specific molecular targets in ASCs to improve the specificity of future autoimmune treatments.
Collapse
Affiliation(s)
- Diane Giovannini
- Department of Pathology, Grenoble University Hospital, Grenoble, France.,Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France
| | - Aude Belbezier
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.,Department of Internal Medicine, Grenoble University Hospital, Grenoble, France
| | - Athan Baillet
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.,Department of Rheumatology, Grenoble University Hospital, Grenoble, France
| | - Laurence Bouillet
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.,Department of Internal Medicine, Grenoble University Hospital, Grenoble, France
| | - Mitsuhiro Kawano
- Department of Rheumatology, Kanazawa University Hospital, Kanazawa, Japan
| | | | | | - Johan Noble
- Department of Nephrology, Grenoble University Hospital, Grenoble, France
| | - Jacques-Olivier Pers
- B Lymphocytes, Autoimmunity and Immunotherapies, Brest University, INSERM, UMR1227, Brest, France.,Odontology Unit, Brest University Hospital, Brest, France
| | - Nathalie Sturm
- Department of Pathology, Grenoble University Hospital, Grenoble, France.,Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France
| | - Bertrand Huard
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France
| |
Collapse
|
20
|
Evangelopoulos ME, Koutsis G, Boufidou F, Markianos M. Cholesterol levels in plasma and cerebrospinal fluid in patients with clinically isolated syndrome and relapsing-remitting multiple sclerosis. Neurobiol Dis 2022; 174:105889. [DOI: 10.1016/j.nbd.2022.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 10/31/2022] Open
|
21
|
Chunder R, Schropp V, Jabari S, Marzin M, Amor S, Kuerten S. Identification of a novel role for matrix metalloproteinase-3 in the modulation of B cell responses in multiple sclerosis. Front Immunol 2022; 13:1025377. [PMID: 36389698 PMCID: PMC9644161 DOI: 10.3389/fimmu.2022.1025377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/26/2022] [Indexed: 07/30/2023] Open
Abstract
There has been a growing interest in the presence and role of B cell aggregates within the central nervous system of multiple sclerosis patients. However, very little is known about the expression profile of molecules associated with these aggregates and how they might be influencing aggregate development or persistence in the brain. The current study focuses on the effect of matrix metalloproteinase-3, which is associated with B cell aggregates in autopsied multiple sclerosis brain tissue, on B cells. Autopsied brain sections from multiple sclerosis cases and controls were screened for the presence of CD20+ B cell aggregates and expression of matrix metalloproteinase-3. Using flow cytometry, enzyme-linked immunosorbent assay and gene array as methods, in vitro studies were conducted using peripheral blood of healthy volunteers to demonstrate the effect of matrix metalloproteinase-3 on B cells. Autopsied brain sections from multiple sclerosis patients containing aggregates of B cells expressed a significantly higher amount of matrix metalloproteinase-3 compared to controls. In vitro experiments demonstrated that matrix metalloproteinase-3 dampened the overall activation status of B cells by downregulating CD69, CD80 and CD86. Furthermore, matrix metalloproteinase-3-treated B cells produced significantly lower amounts of interleukin-6. Gene array data confirmed that matrix metalloproteinase-3 altered the proliferation and survival profiles of B cells. Taken together, out data indicate a role for B cell modulatory properties of matrix metalloproteinase-3.
Collapse
Affiliation(s)
- Rittika Chunder
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Verena Schropp
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Samir Jabari
- Institute of Neuropathology, University Hospitals Erlangen, Erlangen, Germany
| | - Manuel Marzin
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Sandra Amor
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
22
|
Intrathecal B cell-related markers for an optimized biological investigation of multiple sclerosis patients. Sci Rep 2022; 12:16425. [PMID: 36180495 PMCID: PMC9525661 DOI: 10.1038/s41598-022-19811-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
In multiple sclerosis (MS) disease, the importance of the intrathecal B cell response classically revealed as IgG oligoclonal bands (OCB) in cerebrospinal fluid (CSF) was reaffirmed again in the recently revised diagnostic criteria. We aimed to optimize Laboratory investigation by testing the performance of new B cell-related molecules in CSF (Ig free light chains (FLCκ and λ) and CXCL13 (B-Cell Attracting chemokine1)) for MS diagnosis. 320 paired (CSF-serum) samples were collected from 160 patients with MS (n = 82) and non-MS diseases (n = 78). All patients benefited from IgG index determination, OCB detection, CSF CXCL13 and FLC (κ and λ) measurement in CSF and serum for metrics calculation (κ/λ ratio, FLC-related indexes, and κFLC-intrathecal fraction (IF)). CXCL13 and FLC metrics in CSF were higher in patients with MS and positive OCB. As expected, κFLC metrics—in particular, κFLC index and κFLC IF—had the highest accuracy for MS diagnosis. κ index showed the best performance (sensitivity 83% and specificity 91.7%) at a cut-off of 14.9. Most of the FLC-related parameters were positively correlated with IgG index and the level of CXCL13. In conclusion, the quantitative, standardizable, and technically simple CSF FLCκ metrics seem to be reliable for MS diagnosis, but could not replace OCB detection. CXCL13 appears to be an effective parameter reflecting the intrathecal B cell response. An optimized way for CSF testing combining the conventional and the new B cell-related parameters is proposed in this study.
Collapse
|
23
|
Mariottini A, Muraro PA, Lünemann JD. Antibody-mediated cell depletion therapies in multiple sclerosis. Front Immunol 2022; 13:953649. [PMID: 36172350 PMCID: PMC9511140 DOI: 10.3389/fimmu.2022.953649] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Development of disease-modifying therapies including monoclonal antibody (mAb)-based therapeutics for the treatment of multiple sclerosis (MS) has been extremely successful over the past decades. Most of the mAb-based therapies approved for MS deplete immune cell subsets and act through activation of cellular Fc-gamma receptors expressed by cytotoxic lymphocytes and phagocytes, resulting in antibody-dependent cellular cytotoxicity or by initiation of complement-mediated cytotoxicity. The therapeutic goal is to eliminate pathogenic immune cell components and to potentially foster the reconstitution of a new and healthy immune system. Ab-mediated immune cell depletion therapies include the CD52-targeting mAb alemtuzumab, CD20-specific therapeutics, and new Ab-based treatments which are currently being developed and tested in clinical trials. Here, we review recent developments in effector mechanisms and clinical applications of Ab-based cell depletion therapies, compare their immunological and clinical effects with the prototypic immune reconstitution treatment strategy, autologous hematopoietic stem cell transplantation, and discuss their potential to restore immunological tolerance and to achieve durable remission in people with MS.
Collapse
Affiliation(s)
- Alice Mariottini
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
| | - Paolo A. Muraro
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Jan D. Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
- *Correspondence: Jan D. Lünemann,
| |
Collapse
|
24
|
Torres JB, Roodselaar J, Sealey M, Ziehn M, Bigaud M, Kneuer R, Leppert D, Weckbecker G, Cornelissen B, Anthony DC. Distribution and efficacy of ofatumumab and ocrelizumab in humanized CD20 mice following subcutaneous or intravenous administration. Front Immunol 2022; 13:814064. [PMID: 35967378 PMCID: PMC9366925 DOI: 10.3389/fimmu.2022.814064] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Approval of B-cell-depleting therapies signifies an important advance in the treatment of multiple sclerosis (MS). However, it is unclear whether the administration route of anti-CD20 monoclonal antibodies (mAbs) alters tissue distribution patterns and subsequent downstream effects. This study aimed to investigate the distribution and efficacy of radiolabeled ofatumumab and ocrelizumab in humanized-CD20 (huCD20) transgenic mice following subcutaneous (SC) and intravenous (IV) administration. For distribution analysis, huCD20 and wildtype mice (n = 5 per group) were imaged by single-photon emission computed tomography (SPECT)/CT 72 h after SC/IV administration of ofatumumab or SC/IV administration of ocrelizumab, radiolabeled with Indium-111 (111In-ofatumumab or 111In-ocrelizumab; 5 µg, 5 MBq). For efficacy analysis, huCD20 mice with focal delayed-type hypersensitivity lesions and associated tertiary lymphoid structures (DTH-TLS) were administered SC/IV ofatumumab or SC/IV ocrelizumab (7.5 mg/kg, n = 10 per group) on Days 63, 70 and 75 post lesion induction. Treatment impact on the number of CD19+ cells in select tissues and the evolution of DTH-TLS lesions in the brain were assessed. Uptake of an 111In-labelled anti-CD19 antibody in cervical and axillary lymph nodes was also assessed before and 18 days after treatment initiation as a measure of B-cell depletion. SPECT/CT image quantification revealed similar tissue distribution, albeit with large differences in blood signal, of 111In-ofatumumab and 111In-ocrelizumab following SC and IV administration; however, an increase in both mAbs was observed in the axillary and inguinal lymph nodes following SC versus IV administration. In the DTH-TLS model of MS, both treatments significantly reduced the 111In-anti-CD19 signal and number of CD19+ cells in select tissues, where no differences between the route of administration or mAb were observed. Both treatments significantly decreased the extent of glial activation, as well as the number of B- and T-cells in the lesion following SC and IV administration, although this was mostly achieved to a greater extent with ofatumumab versus ocrelizumab. These findings suggest that there may be more direct access to the lymph nodes through the lymphatic system with SC versus IV administration. Furthermore, preliminary findings suggest that ofatumumab may be more effective than ocrelizumab at controlling MS-like pathology in the brain.
Collapse
Affiliation(s)
| | - Jay Roodselaar
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Megan Sealey
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | | - Marc Bigaud
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Rainer Kneuer
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - David Leppert
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | | | - Bart Cornelissen
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Wang X, Liang Z, Wang S, Ma D, Zhu M, Feng J. Role of Gut Microbiota in Multiple Sclerosis and Potential Therapeutic Implications. Curr Neuropharmacol 2022; 20:1413-1426. [PMID: 34191698 PMCID: PMC9881072 DOI: 10.2174/1570159x19666210629145351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/03/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022] Open
Abstract
The role of gut microbiota in health and diseases has been receiving increased attention recently. Emerging evidence from previous studies on gut-microbiota-brain axis highlighted the importance of gut microbiota in neurological disorders. Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the central nervous system (CNS) resulting from T-cell-driven, myelin-directed autoimmunity. The dysbiosis of gut microbiota in MS patients has been reported in published research studies, indicating that gut microbiota plays an important role in the pathogenesis of MS. Gut microbiota have also been reported to influence the initiation of disease and severity of experimental autoimmune encephalomyelitis, which is the animal model of MS. However, the underlying mechanisms of gut microbiota involvement in the pathogenesis of MS remain unclear. Therefore, in this review, we summerized the potential mechanisms for gut microbiota involvement in the pathogenesis of MS, including increasing the permeability of the intestinal barrier, initiating an autoimmune response, disrupting the blood-brain barrier integrity, and contributing to chronic inflammation. The possibility for gut microbiota as a target for MS therapy has also been discussed. This review provides new insight into understanding the role of gut microbiota in neurological and inflammatory diseases.
Collapse
Affiliation(s)
- Xu Wang
- Department of Neurology, The First Hospital of Jilin University, Xinmin Street 71# Changchun, CN 130021, China
| | - Zhen Liang
- Department of Neurology, The First Hospital of Jilin University, Xinmin Street 71# Changchun, CN 130021, China
| | - Shengnan Wang
- Department of Neurology, The First Hospital of Jilin University, Xinmin Street 71# Changchun, CN 130021, China
| | - Di Ma
- Department of Neurology, The First Hospital of Jilin University, Xinmin Street 71# Changchun, CN 130021, China
| | - Mingqin Zhu
- Department of Neurology, The First Hospital of Jilin University, Xinmin Street 71# Changchun, CN 130021, China,Address correspondence to these authors at the Department of Neurology, the First Hospital of Jilin University, Xinmin Street 71# Changchun, CN 130021; Tel: + 86 13756661276; E-mail: ; Tel: +86 15948316086; E-mail:
| | - Jiachun Feng
- Department of Neurology, The First Hospital of Jilin University, Xinmin Street 71# Changchun, CN 130021, China,Address correspondence to these authors at the Department of Neurology, the First Hospital of Jilin University, Xinmin Street 71# Changchun, CN 130021; Tel: + 86 13756661276; E-mail: ; Tel: +86 15948316086; E-mail:
| |
Collapse
|
26
|
Boziki M, Bakirtzis C, Sintila SA, Kesidou E, Gounari E, Ioakimidou A, Tsavdaridou V, Skoura L, Fylaktou A, Nikolaidou V, Stangou M, Nikolaidis I, Giantzi V, Karafoulidou E, Theotokis P, Grigoriadis N. Ocrelizumab in Patients with Active Primary Progressive Multiple Sclerosis: Clinical Outcomes and Immune Markers of Treatment Response. Cells 2022; 11:cells11121959. [PMID: 35741088 PMCID: PMC9222195 DOI: 10.3390/cells11121959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Ocrelizumab is a B-cell-depleting monoclonal antibody approved for the treatment of relapsing-remitting multiple sclerosis (RRMS) and active primary progressive MS (aPPMS). This prospective, uncontrolled, open-label, observational study aimed to assess the efficacy of ocrelizumab in patients with aPPMS and to dissect the clinical, radiological and laboratory attributes of treatment response. In total, 22 patients with aPPMS followed for 24 months were included. The primary efficacy outcome was the proportion of patients with optimal response at 24 months, defined as patients free of relapses, free of confirmed disability accumulation (CDA) and free of T1 Gd-enhancing lesions and new/enlarging T2 lesions on the brain and cervical MRI. In total, 14 (63.6%) patients and 13 patients (59.1%) were classified as responders at 12 and 24 months, respectively. Time exhibited a significant effect on mean absolute and normalized gray matter cerebellar volume (F = 4.342, p = 0.23 and F = 4.279, p = 0.024, respectively). Responders at 24 months exhibited reduced peripheral blood ((%) of CD19+ cells) plasmablasts compared to non-responders at the 6-month point estimate (7.69 ± 4.4 vs. 22.66 ± 7.19, respectively, p = 0.043). Response to ocrelizumab was linked to lower total and gray matter cerebellar volume loss over time. Reduced plasmablast depletion was linked for the first time to sub-optimal response to ocrelizumab in aPPMS.
Collapse
Affiliation(s)
- Marina Boziki
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Christos Bakirtzis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Styliani-Aggeliki Sintila
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Evangelia Kesidou
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Evdoxia Gounari
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Aliki Ioakimidou
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Vasiliki Tsavdaridou
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Lemonia Skoura
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Asimina Fylaktou
- National Peripheral Histocompatibility Center, Immunology Department, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (V.N.)
| | - Vasiliki Nikolaidou
- National Peripheral Histocompatibility Center, Immunology Department, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (V.N.)
| | - Maria Stangou
- Department of Nephrology, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, 54642 Thessaloniki, Greece;
| | - Ioannis Nikolaidis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Virginia Giantzi
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Eleni Karafoulidou
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Paschalis Theotokis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
- Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
27
|
Engelhardt B, Comabella M, Chan A. Multiple sclerosis: Immunopathological heterogeneity and its implications. Eur J Immunol 2022; 52:869-881. [PMID: 35476319 PMCID: PMC9324211 DOI: 10.1002/eji.202149757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023]
Abstract
MS is the most common autoimmune demyelinating disease of the CNS. For the past decades, several immunomodulatory disease-modifying treatments with multiple presumed mechanisms of action have been developed, but MS remains an incurable disease. Whereas high efficacy, at least in early disease, corroborates underlying immunopathophysiology, there is profound heterogeneity in clinical presentation as well as immunophenotypes that may also vary over time. In addition, functional plasticity in the immune system as well as in the inflamed CNS further contributes to disease heterogeneity. In this review, we will highlight immune-pathophysiological and associated clinical heterogeneity that may have an implication for more precise immunomodulatory therapeutic strategies in MS.
Collapse
Affiliation(s)
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Stathopoulos P, Dalakas MC. Evolution of Anti-B Cell Therapeutics in Autoimmune Neurological Diseases. Neurotherapeutics 2022; 19:691-710. [PMID: 35182380 PMCID: PMC9294112 DOI: 10.1007/s13311-022-01196-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 02/08/2023] Open
Abstract
B cells have an ever-increasing role in the etiopathology of a number of autoimmune neurological disorders, acting as antigen-presenting cells facilitating antibody production but also as sensors, coordinators, and regulators of the immune response. In particular, B cells can regulate the T cell activation process through their participation in antigen presentation, production of proinflammatory cytokines (bystander activation or suppression), and contribution to ectopic lymphoid aggregates. Such an important interplay between B and T cells makes therapeutic depletion of B cells an attractive treatment strategy. The last decade, anti-B cell therapies using monoclonal antibodies against B cell surface molecules have evolved into a rational approach for successfully treating autoimmune neurological disorders, even when T cells seem to be the main effector cells. The paper summarizes basic aspects of B cell biology, discusses the roles of B cells in neurological autoimmunities, and highlights how the currently available or under development anti-B cell therapeutics exert their action in the wide spectrum and immunologically diverse neurological disorders. The efficacy of the various anti-B cell therapies and practical issues on induction and maintenance therapy is specifically detailed for the treatment of patients with multiple sclerosis, neuromyelitis-spectrum disorders, autoimmune encephalitis and hyperexcitability CNS disorders, autoimmune neuropathies, myasthenia gravis, and inflammatory myopathies. The success of anti-B cell therapies in inducing long-term remission in IgG4 neuroautoimmunities is also highlighted pointing out potential biomarkers for follow-up infusions.
Collapse
Affiliation(s)
- Panos Stathopoulos
- 1st Department of Neurology, National and Kapodistrian University of Athens, Athens, Greece
| | - Marinos C Dalakas
- Thomas Jefferson University, Philadelphia, PA, USA.
- Neuroimmunology Unit, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
29
|
Havla J, Hohlfeld R. Antibody Therapies for Progressive Multiple Sclerosis and for Promoting Repair. Neurotherapeutics 2022; 19:774-784. [PMID: 35289375 PMCID: PMC9294105 DOI: 10.1007/s13311-022-01214-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/21/2022] Open
Abstract
Progressive multiple sclerosis (PMS) is clinically distinct from relapsing-remitting MS (RRMS). In PMS, clinical disability progression occurs independently of relapse activity. Furthermore, there is increasing evidence that the pathological mechanisms of PMS and RRMS are different. Current therapeutic options for the treatment of PMS remain inadequate, although ocrelizumab, a B-cell-depleting antibody, is now available as the first approved therapeutic option for primary progressive MS. Recent advances in understanding the pathophysiology of PMS provide hope for new innovative therapeutic options: these include antibody therapies with anti-inflammatory, neuroprotective, and/or remyelination-fostering effects. In this review, we summarize the relevant trial data relating to antibody therapy and consider future antibody options for treating PMS.
Collapse
Affiliation(s)
- Joachim Havla
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany.
- Data Integration for Future Medicine (DIFUTURE) Consortium, LMU Munich, Munich, Germany.
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
30
|
Salvador F, Deramoudt L, Leprêtre F, Figeac M, Guerrier T, Boucher J, Bas M, Journiac N, Peters A, Mars LT, Zéphir H. A Spontaneous Model of Experimental Autoimmune Encephalomyelitis Provides Evidence of MOG-Specific B Cell Recruitment and Clonal Expansion. Front Immunol 2022; 13:755900. [PMID: 35185870 PMCID: PMC8850296 DOI: 10.3389/fimmu.2022.755900] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/11/2022] [Indexed: 01/02/2023] Open
Abstract
The key role of B cells in the pathophysiology of multiple sclerosis (MS) is supported by the presence of oligoclonal bands in the cerebrospinal fluid, by the association of meningeal ectopic B cell follicles with demyelination, axonal loss and reduction of astrocytes, as well as by the high efficacy of B lymphocyte depletion in controlling inflammatory parameters of MS. Here, we use a spontaneous model of experimental autoimmune encephalomyelitis (EAE) to study the clonality of the B cell response targeting myelin oligodendrocyte glycoprotein (MOG). In particular, 94% of SJL/j mice expressing an I-As: MOG92-106 specific transgenic T cell receptor (TCR1640) spontaneously develop a chronic paralytic EAE between the age of 60-500 days. The immune response is triggered by the microbiota in the gut-associated lymphoid tissue, while there is evidence that the maturation of the autoimmune demyelinating response might occur in the cervical lymph nodes owing to local brain drainage. Using MOG-protein-tetramers we tracked the autoantigen-specific B cells and localized their enrichment to the cervical lymph nodes and among the brain immune infiltrate. MOG-specific IgG1 antibodies were detected in the serum of diseased TCR1640 mice and proved pathogenic upon adoptive transfer into disease-prone recipients. The ontogeny of the MOG-specific humoral response preceded disease onset coherent with their contribution to EAE initiation. This humoral response was, however, not sufficient for disease induction as MOG-antibodies could be detected at the age of 69 days in a model with an average age of onset of 197 days. To assess the MOG-specific B cell repertoire we FACS-sorted MOG-tetramer binding cells and clonally expand them in vitro to sequence the paratopes of the IgG heavy chain and kappa light chains. Despite the fragility of clonally expanding MOG-tetramer binding effector B cells, our results indicate the selection of a common CDR-3 clonotype among the Igk light chains derived from both disease-free and diseased TCR1640 mice. Our study demonstrates the pre-clinical mobilization of the MOG-specific B cell response within the brain-draining cervical lymph nodes, and reiterates that MOG antibodies are a poor biomarker of disease onset and progression.
Collapse
Affiliation(s)
- Florent Salvador
- Univ. Lille, Inserm, CHU Lille, Laboratory of Neuroinflammation and Multiple Sclerosis (NEMESIS), UMR-S1172, Lille Neuroscience & Cognition, LICEND, FHU Imminent, Lille, France
| | - Laure Deramoudt
- Univ. Lille, Inserm, CHU Lille, Laboratory of Neuroinflammation and Multiple Sclerosis (NEMESIS), UMR-S1172, Lille Neuroscience & Cognition, LICEND, FHU Imminent, Lille, France
| | - Frédéric Leprêtre
- UMS2014-US51, Genomics and Structural Platform, Lille University, Lille, France
| | - Martin Figeac
- UMS2014-US51, Genomics and Structural Platform, Lille University, Lille, France
| | - Thomas Guerrier
- Univ. Lille, Inserm, CHU Lille, U1286, INFINITE-Institute for Translational Research in Inflammation, Lille, France
| | - Julie Boucher
- Univ. Lille, Inserm, CHU Lille, Laboratory of Neuroinflammation and Multiple Sclerosis (NEMESIS), UMR-S1172, Lille Neuroscience & Cognition, LICEND, FHU Imminent, Lille, France
| | - Mathilde Bas
- Univ. Lille, Inserm, CHU Lille, Laboratory of Neuroinflammation and Multiple Sclerosis (NEMESIS), UMR-S1172, Lille Neuroscience & Cognition, LICEND, FHU Imminent, Lille, France
| | - Nathalie Journiac
- Univ. Lille, Inserm, CHU Lille, Laboratory of Neuroinflammation and Multiple Sclerosis (NEMESIS), UMR-S1172, Lille Neuroscience & Cognition, LICEND, FHU Imminent, Lille, France
| | - Anneli Peters
- Institute of Clinical Neuroimmunology, Hospital and Biomedical Center of the Ludwig-Maximilian University (LMU), Martinsried, Germany
| | - Lennart T Mars
- Univ. Lille, Inserm, CHU Lille, Laboratory of Neuroinflammation and Multiple Sclerosis (NEMESIS), UMR-S1172, Lille Neuroscience & Cognition, LICEND, FHU Imminent, Lille, France
| | - Hélène Zéphir
- Univ. Lille, Inserm, CHU Lille, Laboratory of Neuroinflammation and Multiple Sclerosis (NEMESIS), UMR-S1172, Lille Neuroscience & Cognition, LICEND, FHU Imminent, Lille, France.,Institute of Clinical Neuroimmunology, Hospital and Biomedical Center of the Ludwig-Maximilian University (LMU), Martinsried, Germany.,CRC-SEP of Lille, CHU of Lille, Lille, France
| |
Collapse
|
31
|
Olate-Briones A, Escalona E, Salazar C, Herrada MJ, Liu C, Herrada AA, Escobedo N. The meningeal lymphatic vasculature in neuroinflammation. FASEB J 2022; 36:e22276. [PMID: 35344212 DOI: 10.1096/fj.202101574rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
The lymphatic vasculature is a unidirectional network of lymphatic endothelial cells, whose main role is to maintain fluid homeostasis along with the absorption of dietary fat in the gastrointestinal organs and management and coordination of immune cell trafficking into lymph nodes during homeostasis and under inflammatory conditions. In homeostatic conditions, immune cells, such as dendritic cells, macrophages, or T cells can enter into the lymphatic vasculature and move easily through the lymph reaching secondary lymph nodes where immune cell activation or peripheral tolerance can be modulated. However, under inflammatory conditions such as pathogen infection, increased permeabilization of lymphatic vessels allows faster immune cell migration into inflamed tissues following a chemokine gradient, facilitating pathogen clearance and the resolution of inflammation. Interestingly, since the re-discovery of lymphatic vasculature in the central nervous system, known as the meningeal lymphatic vasculature, the role of these lymphatics as a key player in several neurological disorders has been described, with emphasis on the neurodegenerative process. Alternatively, less has been discussed about meningeal lymphatics and its role in neuroinflammation. In this review, we discuss current knowledge about the anatomy and function of the meningeal lymphatic vasculature and specifically analyze its contribution to different neuroinflammatory processes, highlighting the potential therapeutic target of meningeal lymphatic vasculature in these pathological conditions.
Collapse
Affiliation(s)
- Alexandra Olate-Briones
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Emilia Escalona
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Celia Salazar
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | | | - Chaohong Liu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andrés A Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Noelia Escobedo
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
32
|
Durisin M, Krüger C, Pich A, Warnecke A, Steffens M, Zeilinger C, Lenarz T, Prenzler N, Schmitt H. Proteome profile of patients with excellent and poor speech intelligibility after cochlear implantation: Can perilymph proteins predict performance? PLoS One 2022; 17:e0263765. [PMID: 35239655 PMCID: PMC8893673 DOI: 10.1371/journal.pone.0263765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 01/26/2022] [Indexed: 11/20/2022] Open
Abstract
Modern proteomic analysis and reliable surgical access to gain liquid inner ear biopsies have enabled in depth molecular characterization of the cochlea microenvironment. In order to clarify whether the protein composition of the perilymph can provide new insights into individual hearing performance after cochlear implantation (CI), computational analysis in correlation to clinical performance after CI were performed based on the proteome profile derived from perilymph samples (liquid biopsies). Perilymph samples from cochlear implant recipients have been analyzed by mass spectrometry (MS). The proteins were identified using the shot-gun proteomics method and quantified and analyzed using Max Quant, Perseus and IPA software. A total of 75 perilymph samples from 68 (adults and children) patients were included in the analysis. Speech perception data one year after implantation were available for 45 patients and these were used for subsequent analysis. According to their hearing performance, patients with excellent (n = 22) and poor (n = 14) performance one year after CI were identified and used for further analysis. The protein composition and statistically significant differences in the two groups were detected by relative quantification of the perilymph proteins. With this procedure, a selection of 287 proteins were identified in at least eight samples in both groups. In the perilymph of the patients with excellent and poor performance, five and six significantly elevated proteins were identified respectively. These proteins seem to be involved in different immunological processes in excellent and poor performer. Further analysis on the role of specific proteins as predictors for poor or excellent performance among CI recipients are mandatory. Combinatory analysis of molecular inner ear profiles and clinical performance data using bioinformatics analysis may open up new possibilities for patient stratification. The impact of such prediction algorithms on diagnosis and treatment needs to be established in further studies.
Collapse
Affiliation(s)
- Martin Durisin
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Caroline Krüger
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Core Facility Proteomics, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all”, Hannover Medical School, Hannover, Germany
| | - Melanie Steffens
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Carsten Zeilinger
- BMWZ (Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all”, Hannover Medical School, Hannover, Germany
| | - Nils Prenzler
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Heike Schmitt
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all”, Hannover Medical School, Hannover, Germany
| |
Collapse
|
33
|
Lanz TV, Brewer RC, Ho PP, Moon JS, Jude KM, Fernandez D, Fernandes RA, Gomez AM, Nadj GS, Bartley CM, Schubert RD, Hawes IA, Vazquez SE, Iyer M, Zuchero JB, Teegen B, Dunn JE, Lock CB, Kipp LB, Cotham VC, Ueberheide BM, Aftab BT, Anderson MS, DeRisi JL, Wilson MR, Bashford-Rogers RJ, Platten M, Garcia KC, Steinman L, Robinson WH. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 2022; 603:321-327. [PMID: 35073561 PMCID: PMC9382663 DOI: 10.1038/s41586-022-04432-7] [Citation(s) in RCA: 390] [Impact Index Per Article: 195.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/14/2022] [Indexed: 11/09/2022]
Abstract
Multiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system. B lymphocytes in the cerebrospinal fluid (CSF) of patients with MS contribute to inflammation and secrete oligoclonal immunoglobulins1,2. Epstein-Barr virus (EBV) infection has been epidemiologically linked to MS, but its pathological role remains unclear3. Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM) and provide structural and in vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements and the crystal structure of the EBNA1-peptide epitope in complex with the autoreactive Fab fragment enabled tracking of the development of the naive EBNA1-restricted antibody to a mature EBNA1-GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates disease in a mouse model of MS, and anti-EBNA1 and anti-GlialCAM antibodies are prevalent in patients with MS. Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies.
Collapse
Affiliation(s)
- Tobias V. Lanz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States, and the Geriatric Research, Education, and Clinical Centers (GRECC), VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States,Department of Neurology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany,Department of Neurology and National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - R. Camille Brewer
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States, and the Geriatric Research, Education, and Clinical Centers (GRECC), VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States
| | - Peggy P. Ho
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Beckman Center for Molecular Medicine, 279 Campus Drive, Stanford, CA 94305, United States
| | - Jae-Seung Moon
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States, and the Geriatric Research, Education, and Clinical Centers (GRECC), VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States
| | - Kevin M. Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Beckman Center for Molecular Medicine, 279 Campus Drive, Stanford, CA 94305, United States
| | - Daniel Fernandez
- Stanford ChEM-H Institute, Macromolecular Structure Knowledge Center, 290 Jane Stanford Way, Stanford, CA 94305, United States
| | - Ricardo A. Fernandes
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Beckman Center for Molecular Medicine, 279 Campus Drive, Stanford, CA 94305, United States
| | - Alejandro M. Gomez
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States, and the Geriatric Research, Education, and Clinical Centers (GRECC), VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States
| | - Gabriel-Stefan Nadj
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States, and the Geriatric Research, Education, and Clinical Centers (GRECC), VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States
| | - Christopher M. Bartley
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, United States,Weill Institute for Neurosciences, Department of Psychiatry and Behavioral Sciences, University of California San Francisco, 675 Nelson Rising Ln San Francisco, CA 94158, San Francisco, United States
| | - Ryan D. Schubert
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Ln San Francisco, CA 94158, San Francisco, United States
| | - Isobel A. Hawes
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Ln San Francisco, CA 94158, San Francisco, United States
| | - Sara E. Vazquez
- Department of Biochemistry and Biophysics, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, United States
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welsh Road, Stanford, CA, United States
| | - J. Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welsh Road, Stanford, CA, United States
| | - Bianca Teegen
- Institute of Experimental Immunology, Euroimmun AG, Seekamp 31, 23560 Lübeck, Germany
| | - Jeffrey E. Dunn
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Stanford, CA, United States
| | - Christopher B. Lock
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Stanford, CA, United States
| | - Lucas B. Kipp
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Stanford, CA, United States
| | - Victoria C. Cotham
- Department of Biochemistry and Molecular Pharmacology, NYU Perlmutter Cancer Center, and NYU Langone Health Proteomics Laboratory, Division of Advanced Research Technologies, NYU School of Medicine, 430 East 29th St, New York, NY, 10016, United States
| | - Beatrix M. Ueberheide
- Department of Biochemistry and Molecular Pharmacology, NYU Perlmutter Cancer Center, and NYU Langone Health Proteomics Laboratory, Division of Advanced Research Technologies, NYU School of Medicine, 430 East 29th St, New York, NY, 10016, United States
| | - Blake T. Aftab
- Preclinical Science and Translational Medicine, Atara Biotherapeutics, 611 Gateway Blvd South San Francisco, CA 94080, United States
| | - Mark S. Anderson
- Department of Medicine, Diabetes Center, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA 94143, United States
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, United States,Chan Zuckerberg Biohub, University of California San Francisco, 499 Illinois Street, San Francisco, CA 94158, United States
| | - Michael R. Wilson
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Ln San Francisco, CA 94158, San Francisco, United States
| | - Rachael J.M. Bashford-Rogers
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7BN, United Kingdom
| | - Michael Platten
- Department of Neurology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany,Department of Neurology and National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany,DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Beckman Center for Molecular Medicine, 279 Campus Drive, Stanford, CA 94305, United States
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Beckman Center for Molecular Medicine, 279 Campus Drive, Stanford, CA 94305, United States
| | - William H. Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States, and the Geriatric Research, Education, and Clinical Centers (GRECC), VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States,Corresponding Author: William H. Robinson, Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States,
| |
Collapse
|
34
|
Multiple sclerosis: two decades of progress. Lancet Neurol 2022; 21:211-214. [DOI: 10.1016/s1474-4422(22)00040-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
|
35
|
|
36
|
Ionov S, Lee J. An Immunoproteomic Survey of the Antibody Landscape: Insights and Opportunities Revealed by Serological Repertoire Profiling. Front Immunol 2022; 13:832533. [PMID: 35178051 PMCID: PMC8843944 DOI: 10.3389/fimmu.2022.832533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Immunoproteomics has emerged as a versatile tool for analyzing the antibody repertoire in various disease contexts. Until recently, characterization of antibody molecules in biological fluids was limited to bulk serology, which identifies clinically relevant features of polyclonal antibody responses. The past decade, however, has seen the rise of mass-spectrometry-enabled proteomics methods that have allowed profiling of the antibody response at the molecular level, with the disease-specific serological repertoire elucidated in unprecedented detail. In this review, we present an up-to-date survey of insights into the disease-specific immunological repertoire by examining how quantitative proteomics-based approaches have shed light on the humoral immune response to infection and vaccination in pathogenic illnesses, the molecular basis of autoimmune disease, and the tumor-specific repertoire in cancer. We address limitations of this technology with a focus on emerging potential solutions and discuss the promise of high-resolution immunoproteomics in therapeutic discovery and novel vaccine design.
Collapse
Affiliation(s)
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
37
|
Lindeman I, Polak J, Qiao S, Holmøy T, Høglund RA, Vartdal F, Berg‐Hansen P, Sollid LM, Lossius A. Stereotyped B‐cell responses are linked to IgG constant region polymorphisms in multiple sclerosis. Eur J Immunol 2022; 52:550-565. [DOI: 10.1002/eji.202149576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Ida Lindeman
- Department of Immunology Oslo University Hospital Oslo Norway
- Department of Immunology Institute of Clinical Medicine University of Oslo Norway
- K.G. Jebsen Coeliac Disease Research Centre University of Oslo Norway
| | - Justyna Polak
- Department of Immunology Institute of Clinical Medicine University of Oslo Norway
- K.G. Jebsen Coeliac Disease Research Centre University of Oslo Norway
| | - Shuo‐Wang Qiao
- Department of Immunology Oslo University Hospital Oslo Norway
- Department of Immunology Institute of Clinical Medicine University of Oslo Norway
- K.G. Jebsen Coeliac Disease Research Centre University of Oslo Norway
| | - Trygve Holmøy
- Department of Neurology Akershus University Hospital Lørenskog Norway
- Department of Neurology Institute of Clinical Medicine University of Oslo Norway
| | - Rune A. Høglund
- Department of Neurology Akershus University Hospital Lørenskog Norway
- Department of Neurology Institute of Clinical Medicine University of Oslo Norway
| | - Frode Vartdal
- Department of Immunology Institute of Clinical Medicine University of Oslo Norway
- K.G. Jebsen Coeliac Disease Research Centre University of Oslo Norway
| | - Pål Berg‐Hansen
- Department of Neurology Oslo University Hospital Oslo Norway
| | - Ludvig M. Sollid
- Department of Immunology Oslo University Hospital Oslo Norway
- Department of Immunology Institute of Clinical Medicine University of Oslo Norway
- K.G. Jebsen Coeliac Disease Research Centre University of Oslo Norway
| | - Andreas Lossius
- K.G. Jebsen Coeliac Disease Research Centre University of Oslo Norway
- Department of Neurology Akershus University Hospital Lørenskog Norway
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Norway
| |
Collapse
|
38
|
Viral Proteins with PxxP and PY Motifs May Play a Role in Multiple Sclerosis. Viruses 2022; 14:v14020281. [PMID: 35215874 PMCID: PMC8879583 DOI: 10.3390/v14020281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a debilitating disease that arises from immune system attacks to the protective myelin sheath that covers nerve fibers and ensures optimal communication between brain and body. Although the cause of MS is unknown, a number of factors, which include viruses, have been identified as increasing the risk of displaying MS symptoms. Specifically, the ubiquitous and highly prevalent Epstein–Barr virus, human herpesvirus 6, cytomegalovirus, varicella–zoster virus, and other viruses have been identified as potential triggering agents. In this review, we examine the specific role of proline-rich proteins encoded by these viruses and their potential role in MS at a molecular level.
Collapse
|
39
|
Next Generation Sequencing of Cerebrospinal Fluid B Cell Repertoires in Multiple Sclerosis and Other Neuro-Inflammatory Diseases-A Comprehensive Review. Diagnostics (Basel) 2021; 11:diagnostics11101871. [PMID: 34679570 PMCID: PMC8534365 DOI: 10.3390/diagnostics11101871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
During the last few decades, the role of B cells has been well established and redefined in neuro-inflammatory diseases, including multiple sclerosis and autoantibody-associated diseases. In particular, B cell maturation and trafficking across the blood–brain barrier (BBB) has recently been deciphered with the development of next-generation sequencing (NGS) approaches, which allow the assessment of representative cerebrospinal fluid (CSF) and peripheral blood B cell repertoires. In this review, we perform literature research focusing on NGS studies that allow further insights into B cell pathophysiology during neuro-inflammation. Besides the analysis of CSF B cells, the paralleled assessment of peripheral blood B cell repertoire provides deep insights into not only the CSF compartment, but also in B cell trafficking patterns across the BBB. In multiple sclerosis, CSF-specific B cell maturation, in combination with a bidirectional exchange of B cells across the BBB, is consistently detectable. These data suggest that B cells most likely encounter antigen(s) within the CSF and migrate across the BBB, with further maturation also taking place in the periphery. Autoantibody-mediated diseases, such as neuromyelitis optica spectrum disorder and LGI1 / NMDAR encephalitis, also show features of a CSF-specific B cell maturation and clonal connectivity with peripheral blood. In conclusion, these data suggest an intense exchange of B cells across the BBB, possibly feeding autoimmune circuits. Further developments in sequencing technologies will help to dissect the exact pathophysiologic mechanisms of B cells during neuro-inflammation.
Collapse
|
40
|
Margoni M, Preziosa P, Filippi M, Rocca MA. Anti-CD20 therapies for multiple sclerosis: current status and future perspectives. J Neurol 2021; 269:1316-1334. [PMID: 34382120 PMCID: PMC8356891 DOI: 10.1007/s00415-021-10744-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory, demyelinating and neurodegenerative disease affecting the central nervous system (CNS), often characterized by the accumulation of irreversible clinical disability over time. During last years, there has been a dramatic evolution in several key concepts of immune pathophysiology of MS and in the treatment of this disease. The demonstration of the strong efficacy and good safety profile of selective B-cell-depleting therapies (such as anti-CD20 monoclonal antibodies) has significantly expanded the therapeutic scenario for both relapsing and progressive MS patients with the identification of a new therapeutic target. The key role of B cells in triggering MS disease has been also pointed out, determining a shift from the traditional view of MS activity as largely being ‘T-cell mediated’ to the notion that MS-related pathological processes involve bi-directional interactions between several immune cell types, including B cells, both in the periphery and in the CNS. This review provides an updated overview of the involvement of B cells in the immune pathophysiology and pathology of MS. We summarize the rationale regarding the use of anti-CD20 therapies and the results of the main randomized controlled trials and observational studies investigating the efficacy and safety profile of rituximab, ocrelizumab, ofatumumab and ublituximab. Suggestions regarding vaccinations and management of MS patients during COVID-19 pandemic with anti-CD20 therapies are also discussed. Finally, therapies under investigation and future perspectives of anti-CD20 therapies are taken into consideration.
Collapse
Affiliation(s)
- Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Multiple Sclerosis Center of the Veneto Region, Department of Neurosciences, University Hospital-School of Medicine, Padua, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, 20132, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, 20132, Milan, Italy.
| |
Collapse
|
41
|
Cross-reactivity of a pathogenic autoantibody to a tumor antigen in GABA A receptor encephalitis. Proc Natl Acad Sci U S A 2021; 118:1916337118. [PMID: 33619082 DOI: 10.1073/pnas.1916337118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Encephalitis associated with antibodies against the neuronal gamma-aminobutyric acid A receptor (GABAA-R) is a rare form of autoimmune encephalitis. The pathogenesis is still unknown but autoimmune mechanisms were surmised. Here we identified a strongly expanded B cell clone in the cerebrospinal fluid of a patient with GABAA-R encephalitis. We expressed the antibody produced by it and showed by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry that it recognizes the GABAA-R. Patch-clamp recordings revealed that it tones down inhibitory synaptic transmission and causes increased excitability of hippocampal CA1 pyramidal neurons. Thus, the antibody likely contributed to clinical disease symptoms. Hybridization to a protein array revealed the cross-reactive protein LIM-domain-only protein 5 (LMO5), which is related to cell-cycle regulation and tumor growth. We confirmed LMO5 recognition by immunoprecipitation and ELISA and showed that cerebrospinal fluid samples from two other patients with GABAA-R encephalitis also recognized LMO5. This suggests that cross-reactivity between GABAA-R and LMO5 is frequent in GABAA-R encephalitis and supports the hypothesis of a paraneoplastic etiology.
Collapse
|
42
|
Hauser SL. Curing Multiple Sclerosis: How to Know When We're There. Ann Neurol 2021; 90:539-541. [PMID: 34216039 DOI: 10.1002/ana.26155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Stephen L Hauser
- UCSF Weill Institute for Neurosciences and Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
43
|
Cencioni MT, Mattoscio M, Magliozzi R, Bar-Or A, Muraro PA. B cells in multiple sclerosis - from targeted depletion to immune reconstitution therapies. Nat Rev Neurol 2021; 17:399-414. [PMID: 34075251 DOI: 10.1038/s41582-021-00498-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 02/04/2023]
Abstract
Increasing evidence indicates the involvement of B cells in the pathogenesis of multiple sclerosis (MS), but their precise roles are unclear. In this Review, we provide an overview of the development and physiological functions of B cells and the main mechanisms through which B cells are thought to contribute to CNS autoimmunity. In MS, abnormalities of B cell function include pro-inflammatory cytokine production, defective B cell regulatory function and the formation of tertiary lymphoid-like structures in the CNS, which are the likely source of abnormal immunoglobulin production detectable in the cerebrospinal fluid. We also consider the hypothesis that Epstein-Barr virus (EBV) is involved in the B cell overactivation that leads to inflammatory injury to the CNS in MS. We also review the immunological effects - with a focus on the effects on B cell subsets - of several successful therapeutic approaches in MS, including agents that selectively deplete B cells (rituximab, ocrelizumab and ofatumumab), agents that less specifically deplete lymphocytes (alemtuzumab and cladribine) and autologous haematopoietic stem cell transplantation, in which the immune system is unselectively ablated and reconstituted. We consider the insights that these effects on B cell populations provide and their potential to further our understanding and targeting of B cells in MS.
Collapse
Affiliation(s)
- Maria T Cencioni
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Miriam Mattoscio
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Roberta Magliozzi
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.,Department of Neurology, University of Verona, Verona, Italy
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paolo A Muraro
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
44
|
Schlüter M, Oswald E, Winklmeier S, Meinl I, Havla J, Eichhorn P, Meinl E, Kümpfel T. Effects of Natalizumab Therapy on Intrathecal Immunoglobulin G Production Indicate Targeting of Plasmablasts. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/5/e1030. [PMID: 34210800 PMCID: PMC8265584 DOI: 10.1212/nxi.0000000000001030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/16/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To evaluate the long-term effects of natalizumab (NTZ) on different features of intrathecal immunoglobulin (Ig) synthesis in patients with multiple sclerosis (MS) and to quantify the expression of α4-integrin in stages of B-cell maturation. METHODS We combined a cross-sectional (49 NTZ-treated MS patients, mean treatment duration 5.1 years, and 47 untreated MS patients) and a longitudinal study (33 patients with MS before and during NTZ, mean treatment duration: 4.8 years), analyzing paired serum and CSF samples for IgG, IgA, and IgM levels, reactivity against selected viruses (measles virus, rubella virus, and varicella zoster virus [MRZ] reaction), and oligoclonal bands (OCBs). Banding patterns before and after therapy were directly compared by isoelectric focusing in 1 patient. In addition, we determined the expression of α4-integrin by FACS analysis on blood-derived B-cell subsets (plasmablasts, memory B cells, and naive B cells) of healthy controls. RESULTS In serum, NTZ decreased IgM and IgG, but not IgA, levels. IgM hypogammaglobulinemia occurred in 28% of NTZ-treated patients. In CSF, NTZ treatment resulted in a strong reduction of intrathecally produced IgG and, to a lesser extent, IgA, whereas IgM indices [(Ig CSF/Serum)/(Albumin CSF/Serum)] remained largely unchanged. Reduction of the IgG index correlated with NTZ treatment duration, as did serum IgM and IgA levels. MRZ reaction was unchanged and OCB persisted. Direct comparison of OCB pattern before and after NTZ revealed the persistence of individual bands. α4-Integrin expression was highest on plasmablasts (CD19+CD38+CD27+). CONCLUSION Our data indicate that NTZ reduces short-lived plasmablasts in the CNS compartment but has little effect on locally persisting long-lived plasma cells.
Collapse
Affiliation(s)
- Miriam Schlüter
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Eva Oswald
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Stephan Winklmeier
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Ingrid Meinl
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Joachim Havla
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Peter Eichhorn
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Edgar Meinl
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Tania Kümpfel
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany.
| |
Collapse
|
45
|
B Cells in Neuroinflammation: New Perspectives and Mechanistic Insights. Cells 2021; 10:cells10071605. [PMID: 34206848 PMCID: PMC8305155 DOI: 10.3390/cells10071605] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, the role of B cells in neurological disorders has substantially expanded our perspectives on mechanisms of neuroinflammation. The success of B cell-depleting therapies in patients with CNS diseases such as neuromyelitis optica and multiple sclerosis has highlighted the importance of neuroimmune crosstalk in inflammatory processes. While B cells are essential for the adaptive immune system and antibody production, they are also major contributors of pro- and anti-inflammatory cytokine responses in a number of inflammatory diseases. B cells can contribute to neurological diseases through peripheral immune mechanisms, including production of cytokines and antibodies, or through CNS mechanisms following compartmentalization. Emerging evidence suggests that aberrant pro- or anti-inflammatory B cell populations contribute to neurological processes, including glial activation, which has been implicated in the pathogenesis of several neurodegenerative diseases. In this review, we summarize recent findings on B cell involvement in neuroinflammatory diseases and discuss evidence to support pathogenic immunomodulatory functions of B cells in neurological disorders, highlighting the importance of B cell-directed therapies.
Collapse
|
46
|
Castellazzi M, Ferri C, Alfiero S, Lombardo I, Laudisi M, Tecilla G, Boni M, Pizzicotti S, Fainardi E, Bellini T, Pugliatti M. Sex-Related Differences in Cerebrospinal Fluid Plasma-Derived Proteins of Neurological Patients. Diagnostics (Basel) 2021; 11:diagnostics11050884. [PMID: 34065720 PMCID: PMC8156001 DOI: 10.3390/diagnostics11050884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Background and aims: Cerebrospinal fluid (CSF) protein content presents a sexual dimorphism in humans. We investigated sex-related differences in CSF IgG levels and in the quantification of intrathecal IgG synthesis (IIS). Methods: CSF, serum albumin and IgG were measured in 1519 neurological patients and both linear and hyperbolic formulas were used for the quantification of IIS. CSF-restricted oligoclonal IgG bands (OCBs) were used as “gold standard”. Results: The linear IgG Index showed a weak agreement with OCBs in males and females (k = 0.559, k = 0.587, respectively), while the hyperbolic Reiber’s formulas had a moderate agreement with OCBs in females (k = 0.635) and a weak agreement in males (k = 0.565). Higher CSF albumin and IgG levels were found in men than in women in the whole population and in subjects without IIS after adjusting for age and for serum concentrations of albumin and IgG, respectively (Quade statistics, p < 0.000001). CSF and serum albumin and IgG levels positively correlated to age in both sexes. CSF total protein content did not correlate with CSF leukocyte numbers but was higher in patients with marked pleocytosis. Conclusions: In neurological patients, men have higher levels of CSF serum-derived proteins, such as albumin and IgG.
Collapse
Affiliation(s)
- Massimiliano Castellazzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (S.A.); (I.L.); (M.L.); (G.T.); (T.B.); (M.P.)
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-236388
| | - Caterina Ferri
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (S.A.); (I.L.); (M.L.); (G.T.); (T.B.); (M.P.)
| | - Sarah Alfiero
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (S.A.); (I.L.); (M.L.); (G.T.); (T.B.); (M.P.)
| | - Ilenia Lombardo
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (S.A.); (I.L.); (M.L.); (G.T.); (T.B.); (M.P.)
| | - Michele Laudisi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (S.A.); (I.L.); (M.L.); (G.T.); (T.B.); (M.P.)
| | - Ginevra Tecilla
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (S.A.); (I.L.); (M.L.); (G.T.); (T.B.); (M.P.)
| | - Michela Boni
- Chemical-Clinical Analysis Laboratory, “S. Anna” University Hospital, 44124 Ferrara, Italy; (M.B.); (S.P.)
| | - Stefano Pizzicotti
- Chemical-Clinical Analysis Laboratory, “S. Anna” University Hospital, 44124 Ferrara, Italy; (M.B.); (S.P.)
| | - Enrico Fainardi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50121 Florence, Italy;
| | - Tiziana Bellini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (S.A.); (I.L.); (M.L.); (G.T.); (T.B.); (M.P.)
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (S.A.); (I.L.); (M.L.); (G.T.); (T.B.); (M.P.)
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
47
|
Erturk-Hasdemir D, Ochoa-Repáraz J, Kasper DL, Kasper LH. Exploring the Gut-Brain Axis for the Control of CNS Inflammatory Demyelination: Immunomodulation by Bacteroides fragilis' Polysaccharide A. Front Immunol 2021; 12:662807. [PMID: 34025663 PMCID: PMC8131524 DOI: 10.3389/fimmu.2021.662807] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
The symbiotic relationship between animals and their resident microorganisms has profound effects on host immunity. The human microbiota comprises bacteria that reside in the gastrointestinal tract and are involved in a range of inflammatory and autoimmune diseases. The gut microbiota's immunomodulatory effects extend to extraintestinal tissues, including the central nervous system (CNS). Specific symbiotic antigens responsible for inducing immunoregulation have been isolated from different bacterial species. Polysaccharide A (PSA) of Bacteroides fragilis is an archetypical molecule for host-microbiota interactions. Studies have shown that PSA has beneficial effects in experimental disease models, including experimental autoimmune encephalomyelitis (EAE), the most widely used animal model for multiple sclerosis (MS). Furthermore, in vitro stimulation with PSA promotes an immunomodulatory phenotype in human T cells isolated from healthy and MS donors. In this review, we discuss the current understanding of the interactions between gut microbiota and the host in the context of CNS inflammatory demyelination, the immunomodulatory roles of gut symbionts. More specifically, we also discuss the immunomodulatory effects of B. fragilis PSA in the gut-brain axis and its therapeutic potential in MS. Elucidation of the molecular mechanisms responsible for the microbiota's impact on host physiology offers tremendous promise for discovering new therapies.
Collapse
Affiliation(s)
| | | | - Dennis L. Kasper
- Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Lloyd H. Kasper
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States
| |
Collapse
|
48
|
Bar-Or A, Li R. Cellular immunology of relapsing multiple sclerosis: interactions, checks, and balances. Lancet Neurol 2021; 20:470-483. [PMID: 33930317 DOI: 10.1016/s1474-4422(21)00063-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 01/04/2023]
Abstract
Novel insights from basic and translational studies are reshaping concepts of the immunopathogenesis of multiple sclerosis and understanding of the different inflammatory responses throughout the disease course. Previously, the cellular immunology of relapsing multiple sclerosis was considered to be principally T-cell driven; however, this process is now understood to involve multiple cell types and their functionally distinct subsets. Particularly, relapsing multiple sclerosis appears to involve imbalanced interactions between T cells, myeloid cells, B cells, and their effector and regulatory subpopulations. The major contributors to such imbalances differ across patients. Several emerging techniques enable comprehensive immune cell profiling at the single-cell level, revealing substantial functional heterogeneity and plasticity that could influence disease state and response to treatment. Findings from clinical trials with agents that successfully limit new multiple sclerosis disease activity and trials of agents that inadvertently exacerbate CNS inflammation have helped to elucidate disease mechanisms, better define the relevant modes of action of current immune therapies, and pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Multiple Sclerosis Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rui Li
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Multiple Sclerosis Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
49
|
Ramaglia V, Rojas O, Naouar I, Gommerman JL. The Ins and Outs of Central Nervous System Inflammation-Lessons Learned from Multiple Sclerosis. Annu Rev Immunol 2021; 39:199-226. [PMID: 33524273 DOI: 10.1146/annurev-immunol-093019-124155] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple sclerosis (MS) is a chronic disease that is characterized by the inappropriate invasion of lymphocytes and monocytes into the central nervous system (CNS), where they orchestrate the demyelination of axons, leading to physical and cognitive disability. There are many reasons immunologists should be interested in MS. Aside from the fact that there is still significant unmet need for patients living with the progressive form of the disease, MS is a case study for how immune cells cross CNS barriers and subsequently interact with specialized tissue parenchymal cells. In this review, we describe the types of immune cells that infiltrate the CNS and then describe interactions between immune cells and glial cells in different types of lesions. Lastly, we provide evidence for CNS-compartmentalized immune cells and speculate on how this impacts disease progression for MS patients.
Collapse
Affiliation(s)
- Valeria Ramaglia
- Department of Immunology, University of Toronto, Ontario M5S 1A8, Canada;
| | - Olga Rojas
- Department of Immunology, University of Toronto, Ontario M5S 1A8, Canada;
| | - Ikbel Naouar
- Department of Immunology, University of Toronto, Ontario M5S 1A8, Canada;
| | | |
Collapse
|
50
|
Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat Rev Drug Discov 2021; 20:179-199. [PMID: 33324003 PMCID: PMC7737718 DOI: 10.1038/s41573-020-00092-2] [Citation(s) in RCA: 316] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/30/2023]
Abstract
In the past 15 years, B cells have been rediscovered to be not merely bystanders but rather active participants in autoimmune aetiology. This has been fuelled in part by the clinical success of B cell depletion therapies (BCDTs). Originally conceived as a method of eliminating cancerous B cells, BCDTs such as those targeting CD20, CD19 and BAFF are now used to treat autoimmune diseases, including systemic lupus erythematosus and multiple sclerosis. The use of BCDTs in autoimmune disease has led to some surprises. For example, although antibody-secreting plasma cells are thought to have a negative pathogenic role in autoimmune disease, BCDT, even when it controls the disease, has limited impact on these cells and on antibody levels. In this Review, we update our understanding of B cell biology, review the results of clinical trials using BCDT in autoimmune indications, discuss hypotheses for the mechanism of action of BCDT and speculate on evolving strategies for targeting B cells beyond depletion.
Collapse
Affiliation(s)
- Dennis S. W. Lee
- grid.17063.330000 0001 2157 2938Department of Immunology, University of Toronto, Toronto, ON Canada
| | - Olga L. Rojas
- grid.17063.330000 0001 2157 2938Department of Immunology, University of Toronto, Toronto, ON Canada
| | - Jennifer L. Gommerman
- grid.17063.330000 0001 2157 2938Department of Immunology, University of Toronto, Toronto, ON Canada
| |
Collapse
|