1
|
Kang MG, Kang M, Cho HJ, Min YS, Park JS. Efficacy of leuprorelin in spinal and bulbar muscular atrophy: a 3-year observational study. Neurol Sci 2024; 45:3853-3859. [PMID: 38400888 DOI: 10.1007/s10072-024-07410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVE This study aimed to investigate the long-term effects and functional outcomes of androgen suppression therapy using leuprorelin among Korean patients with spinal and bulbar muscular atrophy (SBMA). METHODS This observational study enrolled patients with genetically confirmed SBMA who provided informed consent. Leuprorelin was administered via subcutaneous injection every 12 weeks. The primary outcome measure was the change in total Spinal and Bulbar Muscular Atrophy Functional Rating Scale (SBMAFRS) scores. RESULTS A total of 48 SBMA patients were evaluated in this study. Among them, 39 patients underwent androgen suppression therapy over a 3-year period. The total SBMAFRS score decreased from 41.72 ± 5.55 to 36.74 ± 7.74 (p < 0.001) in patients who completed their treatment. The subgroup with a baseline SBMAFRS score of ≥ 42 had a significantly lower decline in SBMAFRS score than did those with a baseline SBMAFRS score of ≤ 41. We determined that at a baseline, SBMAFRS cutoff value of 41.5 could predict good prognosis, with a corresponding area under the curve of 0.689. CONCLUSION Despite androgen suppression therapy, all enrolled participants exhibited a decrease in the overall SBMAFRS score. However, those with a baseline SBMAFRS of ≥ 42 showed a mild decrease in scores, indicating a more favorable prognosis. These findings suggest that a higher baseline motor function was a key prognostic indicator in SBMA treatment and that initiating early leuprorelin treatment in patients with high baseline function may lead to good clinical outcomes.
Collapse
Affiliation(s)
- Min-Gu Kang
- Department of Rehabilitation Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Minsung Kang
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Hee-Jin Cho
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Yu-Sun Min
- Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Jin-Sung Park
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea.
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
2
|
Marchioretti C, Andreotti R, Zuccaro E, Lieberman AP, Basso M, Pennuto M. Spinal and bulbar muscular atrophy: From molecular pathogenesis to pharmacological intervention targeting skeletal muscle. Curr Opin Pharmacol 2023; 71:102394. [PMID: 37463556 DOI: 10.1016/j.coph.2023.102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023]
Abstract
The clinical characteristics of SBMA, also known as Kennedy's disease (OMIM 313200), were initially documented by Dr. H Kawahara in the 18th century and a hundred years later by Dr. W. Kennedy. SBMA is a neuromuscular disease caused by expansions of a CAG microsatellite tandem repeat in exon 1 of the androgen receptor (AR) gene located on the X chromosome. These expansions result in the production of AR with an aberrantly expanded polyglutamine (polyQ) tract. In this review, we explore recent advancements in the significance of gene expression changes in skeletal muscle and discuss how pharmacological interventions targeting this aspect of disease pathogenesis can potentially be translated into therapies for SBMA patients.
Collapse
Affiliation(s)
- Caterina Marchioretti
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Roberta Andreotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Emanuela Zuccaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy.
| |
Collapse
|
3
|
Galbiati M, Meroni M, Boido M, Cescon M, Rusmini P, Crippa V, Cristofani R, Piccolella M, Ferrari V, Tedesco B, Casarotto E, Chierichetti M, Cozzi M, Mina F, Cicardi ME, Pedretti S, Mitro N, Caretto A, Risè P, Sala A, Lieberman AP, Bonaldo P, Pennuto M, Vercelli A, Poletti A. Bicalutamide and Trehalose Ameliorate Spinal and Bulbar Muscular Atrophy Pathology in Mice. Neurotherapeutics 2023; 20:524-545. [PMID: 36717478 PMCID: PMC10121997 DOI: 10.1007/s13311-023-01343-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2023] [Indexed: 02/01/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is characterized by motor neuron (MN) degeneration that leads to slowly progressive muscle weakness. It is considered a neuromuscular disease since muscle has a primary role in disease onset and progression. SBMA is caused by a CAG triplet repeat expansion in the androgen receptor (AR) gene. The translated poly-glutamine (polyQ) tract confers a toxic gain of function to the mutant AR altering its folding, causing its aggregation into intracellular inclusions, and impairing the autophagic flux. In an in vitro SBMA neuronal model, we previously showed that the antiandrogen bicalutamide and trehalose, a natural disaccharide stimulating autophagy, block ARpolyQ activation, reduce its nuclear translocation and toxicity and facilitate the autophagic degradation of cytoplasmic AR aggregates. Here, in a knock-in SBMA mouse model (KI AR113Q), we show that bicalutamide and trehalose ameliorated SBMA pathology. Bicalutamide reversed the formation of the AR insoluble forms in KI AR113Q muscle, preventing autophagic flux blockage. We demonstrated that apoptosis is activated in KI AR113Q muscle, and that both compounds prevented its activation. We detected a decrease of mtDNA and an increase of OXPHOS enzymes, already at early symptomatic stages; these alterations were reverted by trehalose. Overall, bicalutamide and/or trehalose led to a partial recovery of muscle morphology and function, and improved SBMA mouse motor behavior, inducing an extension of their survival. Thus, bicalutamide and trehalose, by counteracting ARpolyQ toxicity in skeletal muscle, are valuable candidates for future clinical trials in SBMA patients.
Collapse
Affiliation(s)
- Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy.
| | - Marco Meroni
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Maria Elena Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Weinberg ALS Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Silvia Pedretti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Anna Caretto
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Patrizia Risè
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Angelo Sala
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Alessandro Vercelli
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
4
|
Sengupta M, Pluciennik A, Merry DE. The role of ubiquitination in spinal and bulbar muscular atrophy. Front Mol Neurosci 2022; 15:1020143. [PMID: 36277484 PMCID: PMC9583669 DOI: 10.3389/fnmol.2022.1020143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative and neuromuscular genetic disease caused by the expansion of a polyglutamine-encoding CAG tract in the androgen receptor (AR) gene. The AR is an important transcriptional regulator of the nuclear hormone receptor superfamily; its levels are regulated in many ways including by ubiquitin-dependent degradation. Ubiquitination is a post-translational modification (PTM) which plays a key role in both AR transcriptional activity and its degradation. Moreover, the ubiquitin-proteasome system (UPS) is a fundamental component of cellular functioning and has been implicated in diseases of protein misfolding and aggregation, including polyglutamine (polyQ) repeat expansion diseases such as Huntington's disease and SBMA. In this review, we discuss the details of the UPS system, its functions and regulation, and the role of AR ubiquitination and UPS components in SBMA. We also discuss aspects of the UPS that may be manipulated for therapeutic effect in SBMA.
Collapse
Affiliation(s)
| | | | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Nakatsuji H, Ikeda T, Hashizume A, Katsuno M, Sobue G, Nakajima T. The Combined Efficacy of a Two-Year Period of Cybernic Treatment With a Wearable Cyborg Hybrid-Assistive Limb and Leuprorelin Therapy in a Patient With Spinal and Bulbar Muscular Atrophy: A Case Report. Front Neurol 2022; 13:905613. [PMID: 35812096 PMCID: PMC9263275 DOI: 10.3389/fneur.2022.905613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy's disease, is a rare, slowly progressive, incurable, and hereditary neurodegenerative disease caused by the testosterone-dependent accumulation of pathogenic polyglutamine-expanded androgen receptor protein. After extensive review, two treatments for SBMA have recently been approved in Japan; this decision was based on the results of randomized controlled trials: First, anti-androgen therapy using leuprorelin acetate (leuprorelin), a disease-modifying drug that can inhibit the progression of dysphagia but has not yet been proved to improve gait function; second, cybernic treatment with a wearable cyborg hybrid assistive limb (HAL®) (Cyberdyne Inc. Tsukuba, Japan). The HAL is an innovative walking exercise system that has been shown to significantly improve gait function in eight neuromuscular diseases without reduction in muscle function, including SBMA. It is possible that the combination of these two approaches might yield better outcomes. However, the long-term effects of such a combined approach have yet to be clinically evaluated. Here, we describe the case of a 39-year-old male with SBMA who commenced anti-androgen therapy with leuprorelin 1 year previously; this was followed by cybernic treatment with HAL. The duration of walking exercise with HAL was 20–30 min a day in one session. Over 2 weeks, the patient underwent nine sessions (one course). The efficacy of HAL was evaluated by gait function tests before and after one course of cybernic treatment. Then, leuprorelin treatment was combined with cybernic sessions every 2 months for 2 years (13 courses in total). Walking ability, as evaluated by the 2-min walk test, improved by 20.3% in the first course and peaked 10 months after the commencement of combined therapy (a 59.0% improvement). Walking function was maintained throughout the period. Generally, SBMA is characterized by moderately increased serum levels of creatine kinase (CK), reflecting neuromuscular damage; interestingly, the patient's CK levels decreased dramatically with combined therapy, indicating remarkable functional improvement. Long-term combined therapy improved the patient's gait function with a steady reduction in CK levels. The combination of leuprorelin with cybernic treatment can, therefore, improve and maintain gait function without damaging the motor unit and may also suppress disease progression.
Collapse
Affiliation(s)
- Hideaki Nakatsuji
- Department of Clinical Research, National Hospital Organization Niigata National Hospital, Kashiwazaki, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuhiko Ikeda
- Department of Neurology, National Hospital Organization Niigata National Hospital, Kashiwazaki, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
- Aichi Medical University, Nagakute, Japan
| | - Takashi Nakajima
- Department of Neurology, National Hospital Organization Niigata National Hospital, Kashiwazaki, Japan
- *Correspondence: Takashi Nakajima
| |
Collapse
|
6
|
Imai Y, Iida M, Kanie K, Katsuno M, Kato R. Label-free morphological sub-population cytometry for sensitive phenotypic screening of heterogenous neural disease model cells. Sci Rep 2022; 12:9296. [PMID: 35710681 PMCID: PMC9203459 DOI: 10.1038/s41598-022-12250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Label-free image analysis has several advantages with respect to the development of drug screening platforms. However, the evaluation of drug-responsive cells based exclusively on morphological information is challenging, especially in cases of morphologically heterogeneous cells or a small subset of drug-responsive cells. We developed a novel label-free cell sub-population analysis method called “in silico FOCUS (in silico analysis of featured-objects concentrated by anomaly discrimination from unit space)” to enable robust phenotypic screening of morphologically heterogeneous spinal and bulbar muscular atrophy (SBMA) model cells. This method with the anomaly discrimination concept can sensitively evaluate drug-responsive cells as morphologically anomalous cells through in silico cytometric analysis. As this algorithm requires only morphological information of control cells for training, no labeling or drug administration experiments are needed. The responses of SBMA model cells to dihydrotestosterone revealed that in silico FOCUS can identify the characteristics of a small sub-population with drug-responsive phenotypes to facilitate robust drug response profiling. The phenotype classification model confirmed with high accuracy the SBMA-rescuing effect of pioglitazone using morphological information alone. In silico FOCUS enables the evaluation of delicate quality transitions in cells that are difficult to profile experimentally, including primary cells or cells with no known markers.
Collapse
Affiliation(s)
- Yuta Imai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Madoka Iida
- Department of Neurology, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kei Kanie
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.,Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,Institute for Glyco-Core Research (iGCORE), Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan. .,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan. .,Institute for Glyco-Core Research (iGCORE), Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
7
|
Müller KI, Nilssen Ø, Nebuchenykh M, Løseth S, Jonsrud C, Hoem G, Van Ghelue M, Arntzen KA. Kennedy disease in two sisters with biallelic CAG expansions of the androgen receptor gene. Neuromuscul Disord 2021; 32:75-79. [PMID: 34922802 DOI: 10.1016/j.nmd.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/22/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
We present a retrospective 21-year follow-up of two sisters with X-linked biallelic CAG expansions in the androgen receptor (AR) gene causing Kennedy disease. Two sisters inherited CAG expansions from their mother who was a carrier and their father who had Kennedy disease. Genetic testing revealed alleles comprising 43/45, and 43/43 CAG repeats in the younger and older sister, respectively. They were referred to a neurologist for further evaluation. Both reported similar symptoms with chronic backache, pain and cramps in upper- and lower extremities, and fasciculations in their faces and extremities. Neurological examination demonstrated postural hand tremor in both and EMG revealed chronic neurogenic changes. Reevaluation of the patients at ages 74 and 83 showed slight progression of clinical manifestations. As opposed to male patients, these two females showed minimal disease progression and have maintained normal level of function into old age.
Collapse
Affiliation(s)
- Kai Ivar Müller
- National Neuromuscular Center Norway and Department of Neurology and Neurophysiology, University Hospital of North Norway, Tromsø, Troms 9038, Norway; Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Øivind Nilssen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway
| | - Maria Nebuchenykh
- National Neuromuscular Center Norway and Department of Neurology and Neurophysiology, University Hospital of North Norway, Tromsø, Troms 9038, Norway
| | - Sissel Løseth
- National Neuromuscular Center Norway and Department of Neurology and Neurophysiology, University Hospital of North Norway, Tromsø, Troms 9038, Norway; Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Christoffer Jonsrud
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway
| | - Gry Hoem
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway
| | - Marijke Van Ghelue
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway
| | - Kjell Arne Arntzen
- National Neuromuscular Center Norway and Department of Neurology and Neurophysiology, University Hospital of North Norway, Tromsø, Troms 9038, Norway; Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
8
|
Kang MG, Gwak DW, Cho HJ, Min YS, Park JS. Effect of leuprorelin in bulbar function of spinal and bulbar muscular atrophy patients: observational study for 1 year. J Neurol 2021; 268:3344-3351. [PMID: 33675422 DOI: 10.1007/s00415-021-10503-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND This study aimed to investigate the effect of androgen suppression therapy using leuprorelin focused on the bulbar function of patients with spinal and bulbar muscular atrophy (SBMA). METHODS Genetically confirmed SBMA patients who consented to participate in this observational study were enrolled. Leuprorelin was subcutaneously injected every 12 weeks. Videofluoroscopic swallowing study was performed at baseline and after androgen suppression therapy for 1 year. The primary outcome measures were the changes in the vallecular residue and pyriform sinus residue. The videofluoroscopic swallowing study data were analyzed and interpreted by two experienced physiatrists. RESULTS A total of 40 patients with SBMA were analyzed in this study. The inter-rater reliability testing showed good agreement for the pharyngeal residue (ICC = 0.84) and videofluoroscopic dysphagia scale (ICC = 0.75). The vallecular residue and pyriform sinus residue after swallowing 9 mL yogurt were significantly reduced (26.8 ± 22.6 to 14.6 ± 14.5, p < 0.001, 14.9 ± 16.9 to 7.6 ± 9.9, p < 0.001, respectively). The swallowing subscore of amyotrophic lateral sclerosis functional rating scale-revised improved after androgen suppression therapy (3.3 ± 0.5 to 3.5 ± 0.6, p = 0.041). CONCLUSIONS Leuprorelin significantly reduced the pharyngeal residue in patients with SBMA after 1 year of treatment without any serious adverse events and longitudinal studies are needed to confirm these results.
Collapse
Affiliation(s)
- Min-Gu Kang
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Dae-Won Gwak
- Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Hee-Jin Cho
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Yu-Sun Min
- Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Jin-Sung Park
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.
| |
Collapse
|
9
|
Kohli H, Kumar P, Ambasta RK. In silico designing of putative peptides for targeting pathological protein Htt in Huntington's disease. Heliyon 2021; 7:e06088. [PMID: 33659724 PMCID: PMC7890153 DOI: 10.1016/j.heliyon.2021.e06088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/26/2020] [Accepted: 01/21/2021] [Indexed: 12/30/2022] Open
Abstract
Huntington's disease is a neurodegenerative disease caused by CAG repeat in the first exon of HTT (Huntingtin) gene, leading to abnormal form of Htt protein containing enlarged polyglutamine strands of variable length that stick together to form aggregates and is toxic to brain causing brain damage. Complete reversal of brain damage is not possible till date but recovery may be possible by peptide therapy. The peptide-based therapy for Huntington's disease includes both poly Q peptide as well as non poly Q peptides like (QBP1)2, p42, Exendin 4, ED11, CaM, BiP, Leuprorelin peptide. The novel approach that is currently being tested in this article is the peptide-based therapy to target the mutated protein. This approach is based on the principle of preventing the aggregation of mutant Htt by blocking the potential sites responsible for protein aggregation and thereby ameliorating the disease symptoms. Herein, we have screened a variety of potential peptides that were known to prevent the protein aggregation, comparatively analyzed their binding affinity with homology modeled Htt protein, designed novel peptides based upon conservation analysis among screened potential peptides as a therapeutic agent, comparatively analyzed the therapeutic potential of novel peptides against modeled Htt protein for investigating the therapeutic prospects of Huntington's disease. We have designed a peptide for the therapy of Huntington's disease by comparing several peptides, which are already in use for Huntington's disease.
Collapse
Affiliation(s)
- Harleen Kohli
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi 110042, India
| | - Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi 110042, India
| |
Collapse
|
10
|
Minakawa EN, Popiel HA, Tada M, Takahashi T, Yamane H, Saitoh Y, Takahashi Y, Ozawa D, Takeda A, Takeuchi T, Okamoto Y, Yamamoto K, Suzuki M, Fujita H, Ito C, Yagihara H, Saito Y, Watase K, Adachi H, Katsuno M, Mochizuki H, Shiraki K, Sobue G, Toda T, Wada K, Onodera O, Nagai Y. Arginine is a disease modifier for polyQ disease models that stabilizes polyQ protein conformation. Brain 2021; 143:1811-1825. [PMID: 32436573 DOI: 10.1093/brain/awaa115] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 01/12/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022] Open
Abstract
The polyglutamine (polyQ) diseases are a group of inherited neurodegenerative diseases that include Huntington's disease, various spinocerebellar ataxias, spinal and bulbar muscular atrophy, and dentatorubral pallidoluysian atrophy. They are caused by the abnormal expansion of a CAG repeat coding for the polyQ stretch in the causative gene of each disease. The expanded polyQ stretches trigger abnormal β-sheet conformational transition and oligomerization followed by aggregation of the polyQ proteins in the affected neurons, leading to neuronal toxicity and neurodegeneration. Disease-modifying therapies that attenuate both symptoms and molecular pathogenesis of polyQ diseases remain an unmet clinical need. Here we identified arginine, a chemical chaperone that facilitates proper protein folding, as a novel compound that targets the upstream processes of polyQ protein aggregation by stabilizing the polyQ protein conformation. We first screened representative chemical chaperones using an in vitro polyQ aggregation assay, and identified arginine as a potent polyQ aggregation inhibitor. Our in vitro and cellular assays revealed that arginine exerts its anti-aggregation property by inhibiting the toxic β-sheet conformational transition and oligomerization of polyQ proteins before the formation of insoluble aggregates. Arginine exhibited therapeutic effects on neurological symptoms and protein aggregation pathology in Caenorhabditis elegans, Drosophila, and two different mouse models of polyQ diseases. Arginine was also effective in a polyQ mouse model when administered after symptom onset. As arginine has been safely used for urea cycle defects and for mitochondrial myopathy, encephalopathy, lactic acid and stroke syndrome patients, and efficiently crosses the blood-brain barrier, a drug-repositioning approach for arginine would enable prompt clinical application as a promising disease-modifier drug for the polyQ diseases.
Collapse
Affiliation(s)
- Eiko N Minakawa
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Helena Akiko Popiel
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Division of Clinical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masayoshi Tada
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | - Toshiaki Takahashi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | - Hiroshi Yamane
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuji Saitoh
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | | - Daisaku Ozawa
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akiko Takeda
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toshihide Takeuchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuma Okamoto
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Division of Clinical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuhiro Yamamoto
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Mari Suzuki
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiromi Fujita
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Chiyomi Ito
- Division of Clinical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroko Yagihara
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuko Saito
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kei Watase
- Center for Brain Integration Research, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hiroaki Adachi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tatsushi Toda
- Division of Clinical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Division of Clinical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
11
|
Quinn C, Elman L. Amyotrophic Lateral Sclerosis and Other Motor Neuron Diseases. Continuum (Minneap Minn) 2020; 26:1323-1347. [DOI: 10.1212/con.0000000000000911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Cristofani R, Crippa V, Cicardi ME, Tedesco B, Ferrari V, Chierichetti M, Casarotto E, Piccolella M, Messi E, Galbiati M, Rusmini P, Poletti A. A Crucial Role for the Protein Quality Control System in Motor Neuron Diseases. Front Aging Neurosci 2020; 12:191. [PMID: 32792938 PMCID: PMC7385251 DOI: 10.3389/fnagi.2020.00191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) are fatal diseases characterized by loss of motor neurons in the brain cortex, in the bulbar region, and/or in the anterior horns of the spinal cord. While generally sporadic, inherited forms linked to mutant genes encoding altered RNA/protein products have also been described. Several different mechanisms have been found altered or dysfunctional in MNDs, like the protein quality control (PQC) system. In this review, we will discuss how the PQC system is affected in two MNDs—spinal and bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS)—and how this affects the clearance of aberrantly folded proteins, which accumulate in motor neurons, inducing dysfunctions and their death. In addition, we will discuss how the PQC system can be targeted to restore proper cell function, enhancing the survival of affected cells in MNDs.
Collapse
Affiliation(s)
- Riccardo Cristofani
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Valeria Crippa
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Maria Elena Cicardi
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy.,Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Barbara Tedesco
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Marta Chierichetti
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Elena Casarotto
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Elio Messi
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Paola Rusmini
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Angelo Poletti
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy.,Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Vegeto E, Villa A, Della Torre S, Crippa V, Rusmini P, Cristofani R, Galbiati M, Maggi A, Poletti A. The Role of Sex and Sex Hormones in Neurodegenerative Diseases. Endocr Rev 2020; 41:5572525. [PMID: 31544208 PMCID: PMC7156855 DOI: 10.1210/endrev/bnz005] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDs) are a wide class of disorders of the central nervous system (CNS) with unknown etiology. Several factors were hypothesized to be involved in the pathogenesis of these diseases, including genetic and environmental factors. Many of these diseases show a sex prevalence and sex steroids were shown to have a role in the progression of specific forms of neurodegeneration. Estrogens were reported to be neuroprotective through their action on cognate nuclear and membrane receptors, while adverse effects of male hormones have been described on neuronal cells, although some data also suggest neuroprotective activities. The response of the CNS to sex steroids is a complex and integrated process that depends on (i) the type and amount of the cognate steroid receptor and (ii) the target cell type-either neurons, glia, or microglia. Moreover, the levels of sex steroids in the CNS fluctuate due to gonadal activities and to local metabolism and synthesis. Importantly, biochemical processes involved in the pathogenesis of NDs are increasingly being recognized as different between the two sexes and as influenced by sex steroids. The aim of this review is to present current state-of-the-art understanding on the potential role of sex steroids and their receptors on the onset and progression of major neurodegenerative disorders, namely, Alzheimer's disease, Parkinson's diseases, amyotrophic lateral sclerosis, and the peculiar motoneuron disease spinal and bulbar muscular atrophy, in which hormonal therapy is potentially useful as disease modifier.
Collapse
Affiliation(s)
- Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze della Salute (DiSS), Università degli Studi di Milano, Italy
| | - Sara Della Torre
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Valeria Crippa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Paola Rusmini
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Riccardo Cristofani
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Mariarita Galbiati
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Angelo Poletti
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| |
Collapse
|
14
|
Onodera K, Shimojo D, Ishihara Y, Yano M, Miya F, Banno H, Kuzumaki N, Ito T, Okada R, de Araújo Herculano B, Ohyama M, Yoshida M, Tsunoda T, Katsuno M, Doyu M, Sobue G, Okano H, Okada Y. Unveiling synapse pathology in spinal bulbar muscular atrophy by genome-wide transcriptome analysis of purified motor neurons derived from disease specific iPSCs. Mol Brain 2020; 13:18. [PMID: 32070397 PMCID: PMC7029484 DOI: 10.1186/s13041-020-0561-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 01/29/2020] [Indexed: 02/09/2023] Open
Abstract
Spinal bulbar muscular atrophy (SBMA) is an adult-onset, slowly progressive motor neuron disease caused by abnormal CAG repeat expansion in the androgen receptor (AR) gene. Although ligand (testosterone)-dependent mutant AR aggregation has been shown to play important roles in motor neuronal degeneration by the analyses of transgenic mice models and in vitro cell culture models, the underlying disease mechanisms remain to be fully elucidated because of the discrepancy between model mice and SBMA patients. Thus, novel human disease models that recapitulate SBMA patients’ pathology more accurately are required for more precise pathophysiological analysis and the development of novel therapeutics. Here, we established disease specific iPSCs from four SBMA patients, and differentiated them into spinal motor neurons. To investigate motor neuron specific pathology, we purified iPSC-derived motor neurons using flow cytometry and cell sorting based on the motor neuron specific reporter, HB9e438::Venus, and proceeded to the genome-wide transcriptome analysis by RNA sequences. The results revealed the involvement of the pathology associated with synapses, epigenetics, and endoplasmic reticulum (ER) in SBMA. Notably, we demonstrated the involvement of the neuromuscular synapse via significant upregulation of Synaptotagmin, R-Spondin2 (RSPO2), and WNT ligands in motor neurons derived from SBMA patients, which are known to be associated with neuromuscular junction (NMJ) formation and acetylcholine receptor (AChR) clustering. These aberrant gene expression in neuromuscular synapses might represent a novel therapeutic target for SBMA.
Collapse
Affiliation(s)
- Kazunari Onodera
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Daisuke Shimojo
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yasuharu Ishihara
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Haruhiko Banno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Naoko Kuzumaki
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.,Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, 142-8501, Japan
| | - Takuji Ito
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Rina Okada
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Bruno de Araújo Herculano
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Manabu Doyu
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Gen Sobue
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yohei Okada
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| |
Collapse
|
15
|
Chivet M, Marchioretti C, Pirazzini M, Piol D, Scaramuzzino C, Polanco MJ, Romanello V, Zuccaro E, Parodi S, D’Antonio M, Rinaldi C, Sambataro F, Pegoraro E, Soraru G, Pandey UB, Sandri M, Basso M, Pennuto M. Polyglutamine-Expanded Androgen Receptor Alteration of Skeletal Muscle Homeostasis and Myonuclear Aggregation Are Affected by Sex, Age and Muscle Metabolism. Cells 2020; 9:cells9020325. [PMID: 32019272 PMCID: PMC7072234 DOI: 10.3390/cells9020325] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022] Open
Abstract
Polyglutamine (polyQ) expansions in the androgen receptor (AR) gene cause spinal and bulbar muscular atrophy (SBMA), a neuromuscular disease characterized by lower motor neuron (MN) loss and skeletal muscle atrophy, with an unknown mechanism. We generated new mouse models of SBMA for constitutive and inducible expression of mutant AR and performed biochemical, histological and functional analyses of phenotype. We show that polyQ-expanded AR causes motor dysfunction, premature death, IIb-to-IIa/IIx fiber-type change, glycolytic-to-oxidative fiber-type switching, upregulation of atrogenes and autophagy genes and mitochondrial dysfunction in skeletal muscle, together with signs of muscle denervation at late stage of disease. PolyQ expansions in the AR resulted in nuclear enrichment. Within the nucleus, mutant AR formed 2% sodium dodecyl sulfate (SDS)-resistant aggregates and inclusion bodies in myofibers, but not spinal cord and brainstem, in a process exacerbated by age and sex. Finally, we found that two-week induction of expression of polyQ-expanded AR in adult mice was sufficient to cause premature death, body weight loss and muscle atrophy, but not aggregation, metabolic alterations, motor coordination and fiber-type switch, indicating that expression of the disease protein in the adulthood is sufficient to recapitulate several, but not all SBMA manifestations in mice. These results imply that chronic expression of polyQ-expanded AR, i.e. during development and prepuberty, is key to induce the full SBMA muscle pathology observed in patients. Our data support a model whereby chronic expression of polyQ-expanded AR triggers muscle atrophy through toxic (neomorphic) gain of function mechanisms distinct from normal (hypermorphic) gain of function mechanisms.
Collapse
Affiliation(s)
- Mathilde Chivet
- Dulbecco Telethon Institute, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy; (M.C.); (D.P.); (M.J.P.)
| | - Caterina Marchioretti
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
- Myology Center (Cir-Myo), University of Padova, 35129 Padova, Italy; (E.P.); (G.S.)
| | - Diana Piol
- Dulbecco Telethon Institute, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy; (M.C.); (D.P.); (M.J.P.)
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
| | - Chiara Scaramuzzino
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy; (C.S.); (S.P.)
| | - Maria Josè Polanco
- Dulbecco Telethon Institute, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy; (M.C.); (D.P.); (M.J.P.)
| | - Vanina Romanello
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
- Myology Center (Cir-Myo), University of Padova, 35129 Padova, Italy; (E.P.); (G.S.)
| | - Emanuela Zuccaro
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Sara Parodi
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy; (C.S.); (S.P.)
| | - Maurizio D’Antonio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Carlo Rinaldi
- Department of Paediatrics, University of Oxford, OX1 3QX Oxford, UK;
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, 35128 Padova, Italy;
- Padova Neuroscience Center (PNC), 35100 Padova, Italy
| | - Elena Pegoraro
- Myology Center (Cir-Myo), University of Padova, 35129 Padova, Italy; (E.P.); (G.S.)
- Department of Neuroscience (DNS), University of Padova, 35128 Padova, Italy;
- Padova Neuroscience Center (PNC), 35100 Padova, Italy
| | - Gianni Soraru
- Myology Center (Cir-Myo), University of Padova, 35129 Padova, Italy; (E.P.); (G.S.)
- Department of Neuroscience (DNS), University of Padova, 35128 Padova, Italy;
- Padova Neuroscience Center (PNC), 35100 Padova, Italy
| | - Udai Bhan Pandey
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA;
- Division of Child Neurology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marco Sandri
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
- Myology Center (Cir-Myo), University of Padova, 35129 Padova, Italy; (E.P.); (G.S.)
| | - Manuela Basso
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| | - Maria Pennuto
- Dulbecco Telethon Institute, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy; (M.C.); (D.P.); (M.J.P.)
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
- Myology Center (Cir-Myo), University of Padova, 35129 Padova, Italy; (E.P.); (G.S.)
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy; (C.S.); (S.P.)
- Padova Neuroscience Center (PNC), 35100 Padova, Italy
- Correspondence: ; Tel.: +39 049 8276069
| |
Collapse
|
16
|
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by a polyglutamine (polyQ) expansion in the androgen receptor (AR). Despite the fact that the monogenic cause of SBMA has been known for nearly 3 decades, there is no effective treatment for this disease, underscoring the complexity of the pathogenic mechanisms that lead to a loss of motor neurons and muscle in SBMA patients. In the current review, we provide an overview of the system-wide clinical features of SBMA, summarize the structure and function of the AR, discuss both gain-of-function and loss-of-function mechanisms of toxicity caused by polyQ-expanded AR, and describe the cell and animal models utilized in the study of SBMA. Additionally, we summarize previously conducted clinical trials which, despite being based on positive results from preclinical studies, proved to be largely ineffective in the treatment of SBMA; nonetheless, these studies provide important insights as researchers develop the next generation of therapies.
Collapse
Affiliation(s)
- Frederick J Arnold
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 411E Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, Pennsylvania, 19107, USA
| | - Diane E Merry
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 411E Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, Pennsylvania, 19107, USA.
| |
Collapse
|
17
|
Verma AK, Khan E, Bhagwat SR, Kumar A. Exploring the Potential of Small Molecule-Based Therapeutic Approaches for Targeting Trinucleotide Repeat Disorders. Mol Neurobiol 2019; 57:566-584. [DOI: 10.1007/s12035-019-01724-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/29/2019] [Indexed: 12/18/2022]
|
18
|
241st ENMC international workshop: Towards a European unifying lab for Kennedy's disease. 15-17th February, 2019 Hoofddorp, The Netherlands. Neuromuscul Disord 2019; 29:716-724. [PMID: 31488386 DOI: 10.1016/j.nmd.2019.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2019] [Indexed: 01/18/2023]
|
19
|
Cristofani R, Rusmini P, Galbiati M, Cicardi ME, Ferrari V, Tedesco B, Casarotto E, Chierichetti M, Messi E, Piccolella M, Carra S, Crippa V, Poletti A. The Regulation of the Small Heat Shock Protein B8 in Misfolding Protein Diseases Causing Motoneuronal and Muscle Cell Death. Front Neurosci 2019; 13:796. [PMID: 31427919 PMCID: PMC6688727 DOI: 10.3389/fnins.2019.00796] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
Misfolding protein diseases are a wide class of disorders in which the aberrantly folded protein aggregates accumulate in affected cells. In the brain and in the skeletal muscle, misfolded protein accumulation induces a variety of cell dysfunctions that frequently lead to cell death. In motoneuron diseases (MNDs), misfolded proteins accumulate primarily in motoneurons, glial cells and/or skeletal muscle cells, altering motor function. The deleterious effects of misfolded proteins can be counteracted by the activity of the protein quality control (PQC) system, composed of chaperone proteins and degradative systems. Here, we focus on a PQC system component: heat shock protein family B (small) member 8 (HSPB8), a chaperone induced by harmful stressful events, including proteotoxicity. In motoneuron and muscle cells, misfolded proteins activate HSPB8 transcription and enhance HSPB8 levels, which contributes to prevent aggregate formation and their harmful effects. HSPB8 acts not only as a chaperone, but also facilitates the autophagy process, to enable the efficient clearance of the misfolded proteins. HSPB8 acts as a dimer bound to the HSP70 co-chaperone BAG3, a scaffold protein that is also capable of binding to HSP70 (associated with the E3-ligase CHIP) and dynein. When this complex is formed, it is transported by dynein to the microtubule organization center (MTOC), where aggresomes are formed. Here, misfolded proteins are engulfed into nascent autophagosomes to be degraded via the chaperone-assisted selective autophagy (CASA). When CASA is insufficient or impaired, HSP70 and CHIP associate with an alternative co-chaperone, BAG1, which routes misfolded proteins to the proteasome for degradation. The finely tuned equilibrium between proteasome and CASA activity is thought to be crucial for maintaining the functional cell homeostasis during proteotoxic stresses, which in turn is essential for cell survival. This fine equilibrium seems to be altered in MNDs, like Amyotrophic lateral sclerosis (ALS) and spinal and bulbar muscular atrophy (SBMA), contributing to the onset and the progression of disease. Here, we will review how misfolded proteins may affect the PQC system and how the proper activity of this system can be restored by boosting or regulating HSPB8 activity, with the aim to ameliorate disease progression in these two fatal MNDs.
Collapse
Affiliation(s)
- Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Maria Elena Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Elio Messi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Serena Carra
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy.,Centro Interuniversitario Sulle Malattie Neurodegenerative, Università degli Studi di Firenze, Roma Tor Vergata, Milan, Italy
| |
Collapse
|
20
|
McLeod VM, Lau CL, Chiam MD, Rupasinghe TW, Roessner U, Djouma E, Boon WC, Turner BJ. Androgen receptor antagonism accelerates disease onset in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Br J Pharmacol 2019; 176:2111-2130. [PMID: 30849180 PMCID: PMC6555856 DOI: 10.1111/bph.14657] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/25/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease typically more common in males, implicating androgens in progression of both patients and mouse models. Androgen effects are mediated by androgen receptor which is highly expressed in spinal motor neurons and skeletal muscles. To clarify the role of androgen receptors in ALS, we therefore examined the effect of androgen receptor antagonism in the SOD1G93A mouse model. EXPERIMENTAL APPROACH The androgen receptor antagonist, flutamide, was administered to presymptomatic SOD1G93A mice as a slow-release subcutaneous implant (5 mg·day-1 ). Testosterone, flutamide, and metabolite levels were measured in blood and spinal cord tissue by LC-MS-MS. Effects on disease onset and progression were assessed using motor function tests, survival, muscle, and neuropathological analyses. KEY RESULTS Flutamide was metabolised to 2-hydroxyflutamide achieving steady-state plasma levels across the study duration and reached the spinal cord at pharmacologically active concentrations. Flutamide treatment accelerated disease onset and locomotor dysfunction in male SOD1G93A mice, but not female mice, without affecting survival. Analysis of hindlimb muscles revealed exacerbation of myofibre atrophy in male SOD1G93A mice treated with flutamide, although motor neuron pathology was not affected. CONCLUSION AND IMPLICATIONS The androgen receptor antagonist accelerated disease onset in male SOD1G93A mice, leading to exacerbated muscle pathology, consistent with a role of androgens in modulating disease severity, sexual dimorphism, and peripheral pathology in ALS. These results also demonstrate a key contribution of skeletal muscle pathology to disease onset, but not outcome, in this mouse model of ALS.
Collapse
Affiliation(s)
- Victoria M. McLeod
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVICAustralia
| | - Chew L. Lau
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVICAustralia
| | - Mathew D.F. Chiam
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVICAustralia
| | - Thusitha W. Rupasinghe
- Metabolomics Australia, School of BioSciencesUniversity of MelbourneMelbourneVICAustralia
| | - Ute Roessner
- Metabolomics Australia, School of BioSciencesUniversity of MelbourneMelbourneVICAustralia
| | - Elvan Djouma
- Department of Physiology, Anatomy and MicrobiologyLa Trobe UniversityBundooraVICAustralia
| | - Wah C. Boon
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVICAustralia
| | - Bradley J. Turner
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVICAustralia
| |
Collapse
|
21
|
Rodriguez CM, Todd PK. New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiol Dis 2019; 130:104515. [PMID: 31229686 DOI: 10.1016/j.nbd.2019.104515] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Tandem microsatellite repeats are common throughout the human genome and intrinsically unstable, exhibiting expansions and contractions both somatically and across generations. Instability in a small subset of these repeats are currently linked to human disease, although recent findings suggest more disease-causing repeats await discovery. These nucleotide repeat expansion disorders (NREDs) primarily affect the nervous system and commonly lead to neurodegeneration through toxic protein gain-of-function, protein loss-of-function, and toxic RNA gain-of-function mechanisms. However, the lines between these categories have blurred with recent findings of unconventional Repeat Associated Non-AUG (RAN) translation from putatively non-coding regions of the genome. Here we review two emerging topics in NREDs: 1) The mechanisms by which RAN translation occurs and its role in disease pathogenesis and 2) How nucleotide repeats as RNA and translated proteins influence liquid-liquid phase separation, membraneless organelle dynamics, and nucleocytoplasmic transport. We examine these topics with a particular eye on two repeats: the CGG repeat expansion responsible for Fragile X syndrome and Fragile X-associated Tremor Ataxia Syndrome (FXTAS) and the intronic GGGGCC repeat expansion in C9orf72, the most common inherited cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Our thesis is that these emerging disease mechanisms can inform a broader understanding of the native roles of microsatellites in cellular function and that aberrations in these native processes provide clues to novel therapeutic strategies for these currently untreatable disorders.
Collapse
Affiliation(s)
- C M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - P K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
da S. Hage-Melim LI, Ferreira JV, de Oliveira NK, Correia LC, Almeida MR, Poiani JG, Taft CA, de Paula da Silva CH. The Impact of Natural Compounds on the Treatment of Neurodegenerative Diseases. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190327100418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDDs) are characterized by a progressive deterioration of the motor and/or cognitive function, that are often accompanied by psychiatric disorders, caused by a selective loss of neurons in the central nervous system. Among the NDDs we can mention Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia 3 (SCA3), spinal and bulbar muscular atrophy (SBMA) and Creutzfeldt-Jakob disease (CJD). AD and HD are characterized mainly by massive neuronal loss. PD, ALS, SCA3 and SBMA are agerelated diseases which have characteristic motor symptoms. CJD is an NDD caused by prion proteins. With increasing life expectancy, elderly populations tend to have more health problems, such as chronic diseases related to age and disability. Therefore, the development of therapeutic strategies to treat or prevent multiple pathophysiological conditions in the elderly can improve the expectation and quality of life. The attention of researchers has been focused on bioactive natural compounds that represent important resources in the discovery and development of drug candidates against NDDs. In this review, we discuss the pathogenesis, symptoms, potential targets, treatment and natural compounds effective in the treatment of AD, PD, HD, ALS, SCA3, SBMA and CJD.
Collapse
Affiliation(s)
- Lorane I. da S. Hage-Melim
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Jaderson V. Ferreira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Nayana K.S. de Oliveira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Lenir C. Correia
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Marcos R.S. Almeida
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - João G.C. Poiani
- Laboratorio Computacional de Química Farmaceutica, Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlton A. Taft
- Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos H.T. de Paula da Silva
- Laboratorio Computacional de Química Farmaceutica, Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
23
|
Kondo N, Tohnai G, Sahashi K, Iida M, Kataoka M, Nakatsuji H, Tsutsumi Y, Hashizume A, Adachi H, Koike H, Shinjo K, Kondo Y, Sobue G, Katsuno M. DNA methylation inhibitor attenuates polyglutamine-induced neurodegeneration by regulating Hes5. EMBO Mol Med 2019; 11:e8547. [PMID: 30940675 PMCID: PMC6505579 DOI: 10.15252/emmm.201708547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/18/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a polyglutamine-mediated neuromuscular disease caused by a CAG repeat expansion in the androgen receptor (AR) gene. While transcriptional dysregulation is known to play a critical role in the pathogenesis of SBMA, the underlying molecular pathomechanisms remain unclear. DNA methylation is a fundamental epigenetic modification that silences the transcription of various genes that have a CpG-rich promoter. Here, we showed that DNA methyltransferase 1 (Dnmt1) is highly expressed in the spinal motor neurons of an SBMA mouse model and in patients with SBMA. Both genetic Dnmt1 depletion and treatment with RG108, a DNA methylation inhibitor, ameliorated the viability of SBMA model cells. Furthermore, a continuous intracerebroventricular injection of RG108 mitigated the phenotype of SBMA mice. DNA methylation array analysis identified hairy and enhancer of split 5 (Hes5) as having a CpG island with hyper-methylation in the promoter region, and the Hes5 expression was strongly silenced in SBMA. Moreover, Hes5 over-expression rescued the SBMA cells possibly by inducing Smad2 phosphorylation. Our findings suggest DNA hyper-methylation underlies the neurodegeneration in SBMA.
Collapse
Affiliation(s)
- Naohide Kondo
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Genki Tohnai
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kentaro Sahashi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Madoka Iida
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mayumi Kataoka
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideaki Nakatsuji
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yutaka Tsutsumi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Haruki Koike
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
24
|
Efficacy and safety of leuprorelin acetate for subjects with spinal and bulbar muscular atrophy: pooled analyses of two randomized-controlled trials. J Neurol 2019; 266:1211-1221. [PMID: 30847645 DOI: 10.1007/s00415-019-09251-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Spinal and bulbar muscular atrophy (SBMA) is an adult-onset, hereditary neuromuscular disease characterized by muscle atrophy, weakness, contraction fasciculation, and bulbar involvement. Although the causative gene, androgen receptor, has been identified, the development of novel therapeutics for SBMA is incomplete. In this study, the efficacy and safety of leuprorelin acetate administration for patients with SBMA, using the pooled data of two randomized-controlled trials, was studied. METHODS Two randomized double-blinded studies (JASMITT-06DB and JASMITT-11DB) were done as multicentric, investigator-initiated clinical trials in Japan. In both studies, eligible patients were randomly assigned 1:1 to receive leuprorelin acetate administration once per 12 weeks for 48 weeks. The primary endpoint was the longitudinal change of pharyngeal barium residues from the baseline data measured with videofluorographic swallowing analyses. The pooled analysis plan was decided upon after the 06B study was finished and before the 11DB study began. RESULTS The primary endpoint difference between the leuprorelin group and the placebo group was pharyngeal barium residue after initial swallowing, - 4.12% (95% CI, - 8.40-0.15; p = 0.058). The primary endpoint of this study does not reach significant results, although inter-group differences of pharyngeal barium residues after the initial swallowing indicated that leuprorelin acetate may be effective at each assessment point in both study groups. CONCLUSIONS The efficacy of leuprorelin acetate for patients with SBMA was statistically similar in two randomized-controlled trials, and suggested that leuprorelin acetate may be effective and safe. Further investigations are needed to clarify the promising efficacy of the drug.
Collapse
|
25
|
Liu X, Zhu M, Li X, Tang J. Clinical manifestations and AR gene mutations in Kennedy's disease. Funct Integr Genomics 2019; 19:533-539. [PMID: 30612224 DOI: 10.1007/s10142-018-0651-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/08/2018] [Accepted: 12/02/2018] [Indexed: 11/28/2022]
Abstract
Kennedy's disease, resulted from the expansion of a CAG repeat in exon 1 of androgen receptor (AR) gene, is a motor neuron degenerative disease in the brainstem and spinal cord with the slow development of facial, bulbar, and limb muscle degeneration. To investigate the clinical manifestations and gene mutations in Han Chinese patients with Kennedy's disease. The clinical manifestations of 5 male Han Chinese patients including 2 probands and their relatives from 2 families and 1 sporadic case were retrospectively studied. The CAG repeats in the first exon of AR were screened in 5 Han Chinese people including 2 probands and their healthy relatives from 2 families and 1 sporadic case by polymerase chain reaction (PCR) and direct sequencing. The average age at onset of Kennedy's disease was 48.20 ± 8.70 (mean ± SD) years and the average duration was 7.60 ± 5.32 years. All the patients showed slow onset and progressive weakness, wasting, and fasciculations of the whole body. Four patients demonstrated decreased fertility and 1 patient showed mild gynecomastia. Serum creatine kinase and testosterone levels were elevated mildly in 2 and 1 patients, respectively. The electromyogram showed neurogenic abnormalities. Muscle magnetic resonance demonstrated reduced muscle volume and fatty infiltration. Three different enlarged CAG domains were discovered in the 2 families and 1 sporadic patient with Kennedy's disease, and the CAG repeat number was 48, 43, and 44, respectively. The clinical manifestations of Kennedy's disease in Han Chinese middle-aged men were progressive weakness and atrophy in the bulbar and spinal muscles, occasionally demonstrating incomplete androgen insensitivity syndrome. These patients were also characterized with enlarged CAG repeat number in the first exon of AR, indicating that CAG number could be used in the diagnosis of Han Chinese patients with Kennedy's disease.
Collapse
Affiliation(s)
- Xiaomin Liu
- Department of Neurology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, People's Republic of China.
| | - Meijia Zhu
- Department of Neurology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, People's Republic of China
| | - Xiuhua Li
- Department of Neurology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, People's Republic of China
| | - Jiyou Tang
- Department of Neurology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
26
|
Cicardi ME, Cristofani R, Crippa V, Ferrari V, Tedesco B, Casarotto E, Chierichetti M, Galbiati M, Piccolella M, Messi E, Carra S, Pennuto M, Rusmini P, Poletti A. Autophagic and Proteasomal Mediated Removal of Mutant Androgen Receptor in Muscle Models of Spinal and Bulbar Muscular Atrophy. Front Endocrinol (Lausanne) 2019; 10:569. [PMID: 31481932 PMCID: PMC6710630 DOI: 10.3389/fendo.2019.00569] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/05/2019] [Indexed: 12/25/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease (MND) caused by a mutant androgen receptor (AR) containing an elongated polyglutamine (polyQ) tract. ARpolyQ toxicity is triggered by androgenic AR ligands, which induce aberrant conformations (misfolding) of the ARpolyQ protein that aggregates. Misfolded proteins perturb the protein quality control (PQC) system leading to cell dysfunction and death. Spinal cord motoneurons, dorsal root ganglia neurons and skeletal muscle cells are affected by ARpolyQ toxicity. Here, we found that, in stabilized skeletal myoblasts (s-myoblasts), ARpolyQ formed testosterone-inducible aggregates resistant to NP-40 solubilization; these aggregates did not affect s-myoblasts survival or viability. Both wild type AR and ARpolyQ were processed via proteasome, but ARpolyQ triggered (and it was also cleared via) autophagy. ARpolyQ reduced two pro-autophagic proteins expression (BAG3 and VCP), leading to decreased autophagic response in ARpolyQ s-myoblasts. Overexpression of two components of the chaperone assisted selective autophagy (CASA) complex (BAG3 and HSPB8), enhanced ARpolyQ clearance, while the treatment with the mTOR independent autophagy activator trehalose induced complete ARpolyQ degradation. Thus, trehalose has beneficial effects in SBMA skeletal muscle models even when autophagy is impaired, possibly by stimulating CASA to assist the removal of ARpolyQ misfolded species/aggregates.
Collapse
Affiliation(s)
- Maria Elena Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Elio Messi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Serena Carra
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Centro Interdipartimentale di Neuroscienze e Neurotecnologie (CfNN), Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Maria Pennuto
- Department of Neurosciences, Neuromuscular Center, University of Padova, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Dulbecco Telethon Institute, Centre for Integrative Biology (CIBIO), University of Trento, Povo, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
- Centro InterUniversitario sulle Malattie Neurodegenerative, Università degli Studi di Firenze, Milan, Italy
- *Correspondence: Angelo Poletti
| |
Collapse
|
27
|
Maksimova NR, Nikolaeva IA, Stepanova SK, Korotov MN. Clinical and molecular-genetic characteristics of X-linked spinal-bulbar amyotrophy (Kennedy's disease) in the Sakha Republic (Yakutia). Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:55-60. [DOI: 10.17116/jnevro201911902155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Kennedy’s disease (spinal and bulbar muscular atrophy): a clinically oriented review of a rare disease. J Neurol 2018; 266:565-573. [DOI: 10.1007/s00415-018-8968-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 01/18/2023]
|
29
|
Badders NM, Korff A, Miranda HC, Vuppala PK, Smith RB, Winborn BJ, Quemin ER, Sopher BL, Dearman J, Messing J, Kim NC, Moore J, Freibaum BD, Kanagaraj AP, Fan B, Tillman H, Chen PC, Wang Y, Freeman BB, Li Y, Kim HJ, La Spada AR, Taylor JP. Selective modulation of the androgen receptor AF2 domain rescues degeneration in spinal bulbar muscular atrophy. Nat Med 2018; 24:427-437. [PMID: 29505030 PMCID: PMC5975249 DOI: 10.1038/nm.4500] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Abstract
Spinal bulbar muscular atrophy (SBMA) is a motor neuron disease caused by toxic gain of function of the androgen receptor (AR). Previously, we found that co-regulator binding through the activation function-2 (AF2) domain of AR is essential for pathogenesis, suggesting that AF2 may be a potential drug target for selective modulation of toxic AR activity. We screened previously identified AF2 modulators for their ability to rescue toxicity in a Drosophila model of SBMA. We identified two compounds, tolfenamic acid (TA) and 1-[2-(4-methylphenoxy)ethyl]-2-[(2-phenoxyethyl)sulfanyl]-1H-benzimidazole (MEPB), as top candidates for rescuing lethality, locomotor function and neuromuscular junction defects in SBMA flies. Pharmacokinetic analyses in mice revealed a more favorable bioavailability and tissue retention of MEPB compared with TA in muscle, brain and spinal cord. In a preclinical trial in a new mouse model of SBMA, MEPB treatment yielded a dose-dependent rescue from loss of body weight, rotarod activity and grip strength. In addition, MEPB ameliorated neuronal loss, neurogenic atrophy and testicular atrophy, validating AF2 modulation as a potent androgen-sparing strategy for SBMA therapy.
Collapse
Affiliation(s)
- Nisha M Badders
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ane Korff
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Helen C Miranda
- Department of Pediatrics, University of California at San Diego, La Jolla, California, USA
| | - Pradeep K Vuppala
- Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rebecca B Smith
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Brett J Winborn
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Emmanuelle R Quemin
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bryce L Sopher
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Jennifer Dearman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - James Messing
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Nam Chul Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jennifer Moore
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anderson P Kanagaraj
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Baochang Fan
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Heather Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ping-Chung Chen
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yingzhe Wang
- Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Burgess B Freeman
- Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yimei Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Albert R La Spada
- Department of Pediatrics, University of California at San Diego, La Jolla, California, USA
- Departments of Neurology, Neurobiology and Cell Biology, and the Duke Center for Neurodegeneration & Neurotherapeutics, Durham, North Carolina, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
30
|
Pennuto M, Rinaldi C. From gene to therapy in spinal and bulbar muscular atrophy: Are we there yet? Mol Cell Endocrinol 2018; 465:113-121. [PMID: 28688959 DOI: 10.1016/j.mce.2017.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 01/12/2023]
Abstract
Abnormal polyglutamine expansions in the androgen receptor (AR) cause a muscular condition, known as Kennedy's disease or spinal and bulbar muscular atrophy (SBMA). The disease is transmitted in an X-linked fashion and is clinically characterized by weakness, atrophy and fasciculations of the limb and bulbar muscles as a result of a toxic gain-of-function of the mutant protein. Notably, affected males also show signs of androgen insensitivity, such as gynaecomastia and reduced fertility. The characterization of the natural history of the disease, the increasing understanding of the mechanism of pathogenesis and the elucidation of the functions of normal and mutant AR have offered a momentum for developing a rational therapeutic strategy for this disease. In this special issue on androgens and AR functions, we will review the molecular, biochemical, and cellular mechanisms underlying the pathogenesis of SBMA. We will discuss recent advances on therapeutic approaches and opportunities for this yet incurable disease, ranging from androgen deprivation, to gene silencing, to an expanding repertoire of peripheral targets, including muscle. With the advancement of these strategies into the clinic, it can be reasonably anticipated that the landscape of treatment options for SBMA and other neuromuscular conditions will change rapidly in the near future.
Collapse
Affiliation(s)
- Maria Pennuto
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy; Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy.
| | - Carlo Rinaldi
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, UK.
| |
Collapse
|
31
|
Abe K. [An early history of Japanese amyotrophic lateral sclerosis (ALS)-related diseases and the current development]. Rinsho Shinkeigaku 2018; 58:141-165. [PMID: 29491329 DOI: 10.5692/clinicalneurol.cn-001095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present review focuses an early history of Japanese amyotrophic lateral sclerosis (ALS)-related diseases and the current development. In relation to foreign previous reports, five topics are introduced and discussed on ALS with dementia, ALS/Parkinsonism dementia complex (ALS/PDC), familial ALS (FALS), spinal bulbar muscular atrophy (SBMA), and multisystem involvement especially in cerebellar system of ALS including ALS/SCA (spinocerebellar ataxia) crossroad mutation Asidan. This review found the great contribution of Japanese reports on the above five topics, and confirmed the great development of ALS-related diseases over the past 120 years.
Collapse
Affiliation(s)
- Koji Abe
- Department of Neurology, Okayama University Medical School
| |
Collapse
|
32
|
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an adult-onset degenerative disorder of the neuromuscular system resulting in slowly progressive weakness and atrophy of the proximal limb and bulbar muscles. The disease is caused by the expansion of a CAG/glutamine tract in the amino-terminus of the androgen receptor. That SBMA exclusively affects males reflects the fact that critical pathogenic events are hormone-dependent. These include translocation of the polyglutamine androgen receptor from the cytoplasm to the nucleus and unfolding of the mutant protein. Studies of the pathology of SBMA subjects have revealed nuclear aggregates of the mutant androgen receptor, loss of lower motor neurons in the brainstem and spinal cord, and both neurogenic and myopathic changes in skeletal muscle. Mechanisms underlying disease pathogenesis include toxicity in both lower motor neurons and skeletal muscle, where effects on transcription, intracellular transport, and mitochondrial function have been documented. Therapies to treat SBMA patients remain largely supportive, although experimental approaches targeting androgen action or promoting degradation of the mutant androgen receptor protein or the encoding RNA are under active study.
Collapse
|
33
|
X-Linked Spinal and Bulbar Muscular Atrophy: From Clinical Genetic Features and Molecular Pathology to Mechanisms Underlying Disease Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:103-133. [PMID: 29427100 DOI: 10.1007/978-3-319-71779-1_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal and Bulbar Muscular Atrophy (SBMA) is an inherited neuromuscular disorder caused by a CAG-polyglutamine (polyQ) repeat expansion in the androgen receptor (AR) gene. Unlike other polyQ diseases, where the function of the native causative protein is unknown, the biology of AR is well understood, and this knowledge has informed our understanding of how native AR function interfaces with polyQ-AR dysfunction. Furthermore, ligand-dependent activation of AR has been linked to SBMA disease pathogenesis, and has led to a thorough study of androgen-mediated effects on polyQ-AR stability, degradation, and post-translational modifications, as well as their roles in the disease process. Transcriptional dysregulation, proteostasis dysfunction, and mitochondrial abnormalities are central to polyQ-AR neurotoxicity, most likely via a 'change-of-function' mechanism. Intriguingly, recent work has demonstrated a principal role for skeletal muscle in SBMA disease pathogenesis, indicating that polyQ-AR toxicity initiates in skeletal muscle and results in secondary motor neuron demise. The existence of robust animal models for SBMA has permitted a variety of preclinical trials, driven by recent discoveries of altered cellular processes, and some of this preclinical work has led to human clinical trials. In this chapter, we review SBMA clinical features and disease biology, discuss our current understanding of the cellular and molecular basis of SBMA pathogenesis, and highlight ongoing efforts toward therapy development.
Collapse
|
34
|
The CAG-polyglutamine repeat diseases: a clinical, molecular, genetic, and pathophysiologic nosology. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:143-170. [PMID: 29325609 DOI: 10.1016/b978-0-444-63233-3.00011-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Throughout the genome, unstable tandem nucleotide repeats can expand to cause a variety of neurologic disorders. Expansion of a CAG triplet repeat within a coding exon gives rise to an elongated polyglutamine (polyQ) tract in the resultant protein product, and accounts for a unique category of neurodegenerative disorders, known as the CAG-polyglutamine repeat diseases. The nine members of the CAG-polyglutamine disease family include spinal and bulbar muscular atrophy (SBMA), Huntington disease, dentatorubral pallidoluysian atrophy, and six spinocerebellar ataxias (SCA 1, 2, 3, 6, 7, and 17). All CAG-polyglutamine diseases are dominantly inherited, with the exception of SBMA, which is X-linked, and many CAG-polyglutamine diseases display anticipation, which is defined as increasing disease severity in successive generations of an affected kindred. Despite widespread expression of the different polyQ-expanded disease proteins throughout the body, each CAG-polyglutamine disease strikes a particular subset of neurons, although the mechanism for this cell-type selectivity remains poorly understood. While the different genes implicated in these disorders display amino acid homology only in the repeat tract domain, certain pathologic molecular processes have been implicated in almost all of the CAG-polyglutamine repeat diseases, including protein aggregation, proteolytic cleavage, transcription dysregulation, autophagy impairment, and mitochondrial dysfunction. Here we highlight the clinical and molecular genetic features of each distinct disorder, and then discuss common themes in CAG-polyglutamine disease pathogenesis, closing with emerging advances in therapy development.
Collapse
|
35
|
Hashizume A, Katsuno M, Suzuki K, Hirakawa A, Hijikata Y, Yamada S, Inagaki T, Banno H, Sobue G. Long-term treatment with leuprorelin for spinal and bulbar muscular atrophy: natural history-controlled study. J Neurol Neurosurg Psychiatry 2017; 88:1026-1032. [PMID: 28780536 DOI: 10.1136/jnnp-2017-316015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/03/2017] [Accepted: 06/05/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To evaluate the prognosis and progression of spinal and bulbar muscular atrophy (SBMA), a rare X-linked motor neuron disorder caused by trinucleotide repeat expansion in the AR (androgen receptor) gene, after long-term androgen suppression with leuprorelin acetate treatment. METHODS In the present natural history-controlled study, 36 patients with SBMA treated with leuprorelin acetate for up to 84 months (leuprorelin acetate-treated group; LT group) and 29 patients with SBMA with no specific treatment (non-treated group; NT group) were analysed. Disease progression was evaluated by longitudinal quantitative assessment of motor functioning using the revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R), and the modified Norris score. In addition, we selected two major clinical endpoint events, namely the occurrence of pneumonia requiring hospitalisation and death, to evaluate disease prognosis following long-term leuprorelin acetate treatment. RESULTS In our analysis of the longitudinal disease progression using the random slope model, we observed a significant difference in the ALSFRS-R total score, the Limb Norris Score, and the Norris Bulbar Score (p=0.005, 0.026 and 0.020, respectively), with the LT group exhibiting a slower per-12-months decline compared with the NT group. As for the event analysis, the prognosis of the LT group was better in comparison to the NT group as for the event-free survival period (p=0.021). CONCLUSION Long-term treatment with leuprorelin acetate appears to delay the functional decline and suppress the incidence of pneumonia and death in subjects with SBMA.
Collapse
Affiliation(s)
- Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keisuke Suzuki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Department of Clinical Research, Innovation Center for Clinical Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Akihiro Hirakawa
- Biostatistics Section, Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yasuhiro Hijikata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinichiro Yamada
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomonori Inagaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Haruhiko Banno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
36
|
Protein Misfolding and Aggregation as a Therapeutic Target for Polyglutamine Diseases. Brain Sci 2017; 7:brainsci7100128. [PMID: 29019918 PMCID: PMC5664055 DOI: 10.3390/brainsci7100128] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/30/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022] Open
Abstract
The polyglutamine (polyQ) diseases, such as Huntington’s disease and several types of spinocerebellar ataxias, are a group of inherited neurodegenerative diseases that are caused by an abnormal expansion of the polyQ tract in disease-causative proteins. Proteins with an abnormally expanded polyQ stretch undergo a conformational transition to β-sheet rich structure, which assemble into insoluble aggregates with β-sheet rich amyloid fibrillar structures and accumulate as inclusion bodies in neurons, eventually leading to neurodegeneration. Since misfolding and aggregation of the expanded polyQ proteins are the most upstream event in the most common pathogenic cascade of the polyQ diseases, they are proposed to be one of the most ideal targets for development of disease-modifying therapies for polyQ diseases. In this review, we summarize the current understanding of the molecular pathogenic mechanisms of the polyQ diseases, and introduce therapeutic approaches targeting misfolding and aggregation of the expanded polyQ proteins, which are not only effective on a wide spectrum of polyQ diseases, but also broadly correct the functional abnormalities of multiple downstream cellular processes affected in the aggregation process of polyQ proteins. We hope that in the near future, effective therapies are developed, to bring hope to many patients suffering from currently intractable polyQ diseases.
Collapse
|
37
|
Rusmini P, Cristofani R, Galbiati M, Cicardi ME, Meroni M, Ferrari V, Vezzoli G, Tedesco B, Messi E, Piccolella M, Carra S, Crippa V, Poletti A. The Role of the Heat Shock Protein B8 (HSPB8) in Motoneuron Diseases. Front Mol Neurosci 2017; 10:176. [PMID: 28680390 PMCID: PMC5478700 DOI: 10.3389/fnmol.2017.00176] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and spinal and bulbar muscular atrophy (SBMA) are two motoneuron diseases (MNDs) characterized by aberrant protein behavior in affected cells. In familial ALS (fALS) and in SBMA specific gene mutations lead to the production of neurotoxic proteins or peptides prone to misfold, which then accumulate in form of aggregates. Notably, some of these proteins accumulate into aggregates also in sporadic ALS (sALS) even if not mutated. To prevent proteotoxic stresses detrimental to cells, misfolded and/or aggregated proteins must be rapidly removed by the protein quality control (PQC) system. The small heat shock protein B8 (HSPB8) is a chaperone induced by harmful events, like proteasome inhibition. HSPB8 is expressed both in motoneuron and muscle cells, which are both targets of misfolded protein toxicity in MNDs. In ALS mice models, in presence of the mutant proteins, HSPB8 is upregulated both in spinal cord and muscle. HSPB8 interacts with the HSP70 co-chaperone BAG3 and enhances the degradation of misfolded proteins linked to sALS, or causative of fALS and of SBMA. HSPB8 acts by facilitating autophagy, thereby preventing misfolded protein accumulation in affected cells. BAG3 and BAG1 compete for HSP70-bound clients and target them for disposal to the autophagy or proteasome, respectively. Enhancing the selective targeting of misfolded proteins by HSPB8-BAG3-HSP70 to autophagy may also decrease their delivery to the proteasome by the BAG1-HSP70 complex, thereby limiting possible proteasome overwhelming. Thus, approaches aimed at potentiating HSPB8-BAG3 may contribute to the maintenance of proteostasis and may delay MNDs progression.
Collapse
Affiliation(s)
- Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Maria E Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Marco Meroni
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Giulia Vezzoli
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Elio Messi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Serena Carra
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio EmiliaModena, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy.,C. Mondino National Neurological InstitutePavia, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy.,Centro Interuniversitario sulle Malattie Neurodegenerative, Università degli Studi di Firenze, Roma Tor VergataMilano, Italy
| |
Collapse
|
38
|
Sahashi K, Hashizume A, Sobue G, Katsuno M. Progress toward the development of treatment of spinal and bulbar muscular atrophy. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1329088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kentaro Sahashi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
39
|
Otto-Duessel M, Tew BY, Vonderfecht S, Moore R, Jones JO. Identification of neuron selective androgen receptor inhibitors. World J Biol Chem 2017; 8:138-150. [PMID: 28588757 PMCID: PMC5439165 DOI: 10.4331/wjbc.v8.i2.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/03/2017] [Accepted: 05/05/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To identify neuron-selective androgen receptor (AR) signaling inhibitors, which could be useful in the treatment of spinal and bulbar muscular atrophy (SBMA), or Kennedy’s disease, a neuromuscular disorder in which deterioration of motor neurons leads to progressive muscle weakness.
METHODS Cell lines representing prostate, kidney, neuron, adipose, and muscle tissue were developed that stably expressed the CFP-AR-YFP FRET reporter. We used these cells to screen a library of small molecules for cell type-selective AR inhibitors. Secondary screening in luciferase assays was used to identify the best cell-type specific AR inhibitors. The mechanism of action of a neuron-selective AR inhibitor was examined in vitro using luciferase reporter assays, immunofluorescence microscopy, and immunoprecipitations. Rats were treated with the most potent compound and tissue-selective AR inhibition was examined using RT-qPCR of AR-regulated genes and immunohistochemistry.
RESULTS We identified the thiazole class of antibiotics as compounds able to inhibit AR signaling in a neuronal cell line but not a muscle cell line. One of these antibiotics, thiostrepton is able to inhibit the activity of both wild type and polyglutamine expanded AR in neuronal GT1-7 cells with nanomolar potency. The thiazole antibiotics are known to inhibit FOXM1 activity and accordingly, a novel FOXM1 inhibitor FDI-6 also inhibited AR activity in a neuron-selective fashion. The selective inhibition of AR is likely indirect as the varied structures of these compounds would not suggest that they are competitive antagonists. Indeed, we found that FOXM1 expression correlates with cell-type selectivity, FOXM1 co-localizes with AR in the nucleus, and that shRNA-mediated knock down of FOXM1 reduces AR activity and thiostrepton sensitivity in a neuronal cell line. Thiostrepton treatment reduces FOXM1 levels and the nuclear localization of beta-catenin, a known co-activator of both FOXM1 and AR, and reduces the association between beta-catenin and AR. Treatment of rats with thiostrepton demonstrated AR signaling inhibition in neurons, but not muscles.
CONCLUSION Our results suggest that thiazole antibiotics, or other inhibitors of the AR-FOXM1 axis, can inhibit AR signaling selectively in motor neurons and may be useful in the treatment or prevention of SBMA symptoms.
Collapse
|
40
|
Banno H, Katsuno M, Suzuki K, Tanaka S, Suga N, Hashizume A, Mano T, Araki A, Watanabe H, Fujimoto Y, Yamamoto M, Sobue G. Swallowing markers in spinal and bulbar muscular atrophy. Ann Clin Transl Neurol 2017; 4:534-543. [PMID: 28812043 PMCID: PMC5553229 DOI: 10.1002/acn3.425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/14/2017] [Accepted: 05/02/2017] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE We examined the characteristics of dysphagia in spinal and bulbar muscular atrophy, a hereditary neuromuscular disease causing weakness of limb, facial, and oropharyngeal muscles via a videofluoroscopic swallowing study, and investigated the plausibility of using these outcome measures for quantitative analysis. METHODS A videofluoroscopic swallowing study was performed on 111 consecutive patients with genetically confirmed spinal and bulbar muscular atrophy and 53 age- and sex-matched healthy controls. Swallowing of 3-mL liquid barium was analyzed by the Logemann's Videofluorographic Examination of Swallowing worksheet. RESULTS Of more than 40 radiographic findings, the most pertinent abnormal findings in patients with spinal and bulbar muscular atrophy, included vallecular residue after swallow (residue just behind the tongue base), nasal penetration, and insufficient tongue movement (P < 0.001 for each) compared with healthy controls. Quantitative analyses showed that pharyngeal residue after initial swallowing, oral residue after initial swallowing, multiple swallowing sessions, and the penetration-aspiration scale were significantly worse in these patients (P ≤ 0.005 for each) than in controls. In patients with spinal and bulbar muscular atrophy, laryngeal penetration was observed more frequently in those without subjective dysphagia. INTERPRETATION Dysphagia of spinal and bulbar muscular atrophy was characterized by impaired tongue movement in the oral phase and nasal penetration followed by pharyngeal residues, which resulted in multiple swallowing sessions and laryngeal penetration. Although major limitations of reproducibility and radiation exposure still exist with videofluoroscopy, pharyngeal residue after initial swallowing and the penetration-aspiration scale might serve as potential outcome measures in clinical studies.
Collapse
Affiliation(s)
- Haruhiko Banno
- Department of Neurology Nagoya University Graduate School of Medicine 65 Tsurumai-cho, Showa-ku Nagoya 466-8550 Japan
| | - Masahisa Katsuno
- Department of Neurology Nagoya University Graduate School of Medicine 65 Tsurumai-cho, Showa-ku Nagoya 466-8550 Japan
| | - Keisuke Suzuki
- Department of Neurology Nagoya University Graduate School of Medicine 65 Tsurumai-cho, Showa-ku Nagoya 466-8550 Japan.,Innovation Centre for Clinical Research National Centre for Geriatrics and Gerontology 7-430 Morioka Obu 474-8511 Japan
| | - Seiya Tanaka
- Faculty of Health Care Sciences Himeji Dokkyo University 7-2-1 Kamiono Himeji 670-0896 Japan
| | - Noriaki Suga
- Department of Neurology Nagoya University Graduate School of Medicine 65 Tsurumai-cho, Showa-ku Nagoya 466-8550 Japan
| | - Atsushi Hashizume
- Department of Neurology Nagoya University Graduate School of Medicine 65 Tsurumai-cho, Showa-ku Nagoya 466-8550 Japan
| | - Tomoo Mano
- Department of Neurology Nagoya University Graduate School of Medicine 65 Tsurumai-cho, Showa-ku Nagoya 466-8550 Japan
| | - Amane Araki
- Department of Neurology Nagoya University Graduate School of Medicine 65 Tsurumai-cho, Showa-ku Nagoya 466-8550 Japan
| | - Hirohisa Watanabe
- Department of Neurology Nagoya University Graduate School of Medicine 65 Tsurumai-cho, Showa-ku Nagoya 466-8550 Japan
| | - Yasushi Fujimoto
- Department of Otorhinolaryngology Nagoya University Graduate school of Medicine 65 Tsurumai-cho, Showa-ku Nagoya 466-8550 Japan
| | - Masahiko Yamamoto
- Department of Health Science Aichi Gakuin University 12 Araike, Iwasaki-cho Nisshin 470-0131 Japan
| | - Gen Sobue
- Department of Neurology Nagoya University Graduate School of Medicine 65 Tsurumai-cho, Showa-ku Nagoya 466-8550 Japan.,Research Division of Dementia and Neurodegenerative Disease Nagoya University Graduate School of Medicine 65 Tsurumai-cho, Showa-ku Nagoya 466-8550 Japan
| |
Collapse
|
41
|
Hao D, Sun L, Hu X, Hao X. 99mTc-LHRH in tumor receptor imaging. Oncol Lett 2017; 14:569-578. [PMID: 28693207 PMCID: PMC5494691 DOI: 10.3892/ol.2017.6246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/13/2016] [Indexed: 11/24/2022] Open
Abstract
Detection of gonadotropin-releasing hormone (GnRH) also known as luteinizing hormone-releasing hormone (LHRH) in the relevant tumor tissue and normal tissues and organs in vivo expression was investigated. To examine the method of direct radio labeling of LHRH by 99mTc with relatively high radiochemical purity and stability, screening the best labeling conditions, to establish a simple and reliable method of preparation of 99mTc-LHRH was undertaken. The detection of radioisotope-labeled LHRH distribution in mice, LHRH receptor imaging for the study and treatment of cancer basis were evaluated. i) Immunohistochemical staining test was used in 23 patients with hepatocellular carcinoma (HCC), 20 patients with breast cancer, 10 patients with prostate cancer, 20 patients with lung cancer, 20 patients with endometrial cancer tumor cells and normal tissue LHRH-R De Biaoda levels; ii) pre-tin method use direct labeling of LHRH, marking completion of saline or human serum were added at room temperature, the chromatography was measured at different times, to calculate the rate of labeled product and the radiochemical purity of the label, in vivo observation of its stability, and comparative analysis of selected optimal condition; iii) rat pituitary cell membrane protein, the product of in vitro radio-receptor marker analysis, through the saturation and inhibition experiments, was used to test its receptor binding activity; iv) Ch-T method labeled 125I-LHRH, tail vein injection of normal mice at different times were sacrificed, blood and major organs were determined and calculated per gram organization percentage injected dose rate (%, ID/g). Detected by immunohistochemistry in 23 cases of HCC in the LHRH-positive rate was 82.61%, in the corresponding normal tissues, the positive rate was 15%; 20 cases of breast cancer positive rate of 95%, the corresponding normal tissues, the positive rate was 20%; 10 cases of prostate cancer positive rate of 70%, the corresponding normal tissues, the positive rate of 40%; 20 cases of lung cancer positive rate of 85%, the corresponding normal tissues, the positive rate of 15.79%; 20 cases of endometrial cancer positive rate of 80% in the corresponding normal tissues was 16.67% positive. 99mTc-LHRH mark was 97.9–100.0%, the radiochemical purity of 93.9–96.4%, marking the reaction gel content of <5%. Great product receptor marker analysis showed 99mTc-LHRH with saturable receptor binding characteristics and inhibition, and high affinity, RT = 23.2174 pmol, KD = 0.4348 nmol; intravenous injection of 131I-LHRH within 72 h after the mice rapidly cleared the blood radioactivity, the major radioactive accumulation in the liver and kidneys and by the liver, renal clearance, and other tissues and organs of the radioactivity gradually decreased with time. In conclusion, i) the liver, lung, breast, prostate, endometrial cancer exist in both LHRHR; ii) 99mTc-LHRH preparation is simple, rapid, radiochemical purity product obtained higher marks, better stability, no further purification; and iii) LHRH 99mTc labeled, still has a high receptor binding ability, biological activity; and has an ideal and realistic dynamics in animals, there is hope, as with the clinical value of imaging agent of GnRH receptors.
Collapse
Affiliation(s)
- Dawei Hao
- Department of Radiotherapy, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Lingfei Sun
- Department of Radiotherapy, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Xiang Hu
- Department of Radiotherapy, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Xiaowen Hao
- Department of Radiotherapy, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
42
|
Borgia D, Malena A, Spinazzi M, Desbats MA, Salviati L, Russell AP, Miotto G, Tosatto L, Pegoraro E, Sorarù G, Pennuto M, Vergani L. Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients. Hum Mol Genet 2017; 26:1087-1103. [PMID: 28087734 PMCID: PMC5409076 DOI: 10.1093/hmg/ddx019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disorder caused by polyglutamine expansion in the androgen receptor (AR) and characterized by the loss of lower motor neurons. Here we investigated pathological processes occurring in muscle biopsy specimens derived from SBMA patients and, as controls, age-matched healthy subjects and patients suffering from amyotrophic lateral sclerosis (ALS) and neurogenic atrophy. We detected atrophic fibers in the muscle of SBMA, ALS and neurogenic atrophy patients. In addition, SBMA muscle was characterized by the presence of a large number of hypertrophic fibers, with oxidative fibers having a larger size compared with glycolytic fibers. Polyglutamine-expanded AR expression was decreased in whole muscle, yet enriched in the nucleus, and localized to mitochondria. Ultrastructural analysis revealed myofibrillar disorganization and streaming in zones lacking mitochondria and degenerating mitochondria. Using molecular (mtDNA copy number), biochemical (citrate synthase and respiratory chain enzymes) and morphological (dark blue area in nicotinamide adenine dinucleotide-stained muscle cross-sections) analyses, we found a depletion of the mitochondria associated with enhanced mitophagy. Mass spectrometry analysis revealed an increase of phosphatidylethanolamines and phosphatidylserines in mitochondria isolated from SBMA muscles, as well as a 50% depletion of cardiolipin associated with decreased expression of the cardiolipin synthase gene. These observations suggest a causative link between nuclear polyglutamine-expanded AR accumulation, depletion of mitochondrial mass, increased mitophagy and altered mitochondrial membrane composition in SBMA muscle patients. Given the central role of mitochondria in cell bioenergetics, therapeutic approaches toward improving the mitochondrial network are worth considering to support SBMA patients.
Collapse
Affiliation(s)
- Doriana Borgia
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Adriana Malena
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Marco Spinazzi
- VIB Center for the Biology of Disease, KU Leuven Center for Human Genetics, Leuven, Belgium
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Padova, Italy, and IRP Città della Speranza, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Padova, Italy, and IRP Città della Speranza, Padova, Italy
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Giovanni Miotto
- Department of Molecular Medicine, University of Padova, Padova, Italy.,Proteomic Center of Padova University, VIMM and Padova University Hospital, Padova, Italy
| | - Laura Tosatto
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Maria Pennuto
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Lodovica Vergani
- Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
43
|
Juntas Morales R, Pageot N, Taieb G, Camu W. Adult-onset spinal muscular atrophy: An update. Rev Neurol (Paris) 2017; 173:308-319. [DOI: 10.1016/j.neurol.2017.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 03/01/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022]
|
44
|
Querin G, Sorarù G, Pradat PF. Kennedy disease (X-linked recessive bulbospinal neuronopathy): A comprehensive review from pathophysiology to therapy. Rev Neurol (Paris) 2017; 173:326-337. [PMID: 28473226 DOI: 10.1016/j.neurol.2017.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 01/18/2023]
Abstract
Kennedy's disease, also known as spinal and bulbar muscular atrophy (SBMA), is a rare, adult-onset, X-linked recessive neuromuscular disease caused by expansion of a CAG repeat sequence in exon 1 of the androgen receptor gene (AR) encoding a polyglutamine (polyQ) tract. The polyQ-expanded AR accumulates in nuclei, and initiates degeneration and loss of motor neurons and dorsal root ganglia. While the disease has long been considered a pure lower motor neuron disease, recently, the presence of major hyper-creatine-kinase (CK)-emia and myopathic alterations on muscle biopsy has suggested the presence of a primary myopathy underlying a wide range of clinical manifestations. The disease, which affects male adults, is characterized by muscle weakness and atrophy localized proximally in the limbs, and bulbar involvement. Sensory disturbances are associated with the motor phenotype, but may be subclinical. The most frequent systemic symptom is gynecomastia related to androgen insensitivity, but other abnormalities, such as heart rhythm and urinary disturbances, have also been reported. The course of the disease is slowly progressive with normal life expectancy. The diagnosis of SBMA is based on genetic testing, with 38 CAG repeats taken as pathogenic. Despite several therapeutic attempts made in mouse models, no effective disease-modifying therapy is yet available, although symptomatic therapy is beneficial for the management of the weakness, fatigue and bulbar symptoms.
Collapse
Affiliation(s)
- G Querin
- Laboratoire d'imagerie biomédicale, Sorbonne universités, UPMC University Paris 06, CNRS, Inserm, 75013 Paris, France; Department of Neurosciences, University of Padova, 35100 Padova, Italy
| | - G Sorarù
- Department of Neurosciences, University of Padova, 35100 Padova, Italy
| | - P-F Pradat
- Laboratoire d'imagerie biomédicale, Sorbonne universités, UPMC University Paris 06, CNRS, Inserm, 75013 Paris, France; Département des maladies du système nerveux, hôpital Pitié-Salpêtriere, centre référent-SLA, AP-HP, 47-83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
45
|
Möller GP, Müller S, Wolfstädter BT, Wolfrum S, Schepmann D, Wünsch B, Carreira EM. Oxetanyl Amino Acids for Peptidomimetics. Org Lett 2017; 19:2510-2513. [PMID: 28459595 DOI: 10.1021/acs.orglett.7b00745] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptides are important in the drug discovery process. In analogy to nonpeptidic small-molecule counterparts, they can sometimes suffer from disadvantages such as their low bioavailability and poor metabolic stability. Herein, we report the synthesis of new oxetanyl dipeptides and their incorporation into Leu-enkephalin analogues as proof-of-principle studies. The modular approach that is described enables the incorporation of a variety of oxetanyl amino acids into potential peptide therapeutics.
Collapse
Affiliation(s)
- Guido P Möller
- Laboratorium für Organische Chemie, ETH Zürich , Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Steffen Müller
- Laboratorium für Organische Chemie, ETH Zürich , Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Bernd T Wolfstädter
- Laboratorium für Organische Chemie, ETH Zürich , Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland.,Competence Center for Systems Physiology and Metabolic Diseases, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Susanne Wolfrum
- Laboratorium für Organische Chemie, ETH Zürich , Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, WWU Münster , Corrensstrasse 48, 48149 Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, WWU Münster , Corrensstrasse 48, 48149 Münster, Germany
| | - Erick M Carreira
- Laboratorium für Organische Chemie, ETH Zürich , Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
46
|
Esteves S, Duarte-Silva S, Maciel P. Discovery of Therapeutic Approaches for Polyglutamine Diseases: A Summary of Recent Efforts. Med Res Rev 2016; 37:860-906. [PMID: 27870126 DOI: 10.1002/med.21425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022]
Abstract
Polyglutamine (PolyQ) diseases are a group of neurodegenerative disorders caused by the expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the coding region of specific genes. This leads to the production of pathogenic proteins containing critically expanded tracts of glutamines. Although polyQ diseases are individually rare, the fact that these nine diseases are irreversibly progressive over 10 to 30 years, severely impairing and ultimately fatal, usually implicating the full-time patient support by a caregiver for long time periods, makes their economic and social impact quite significant. This has led several researchers worldwide to investigate the pathogenic mechanism(s) and therapeutic strategies for polyQ diseases. Although research in the field has grown notably in the last decades, we are still far from having an effective treatment to offer patients, and the decision of which compounds should be translated to the clinics may be very challenging. In this review, we provide a comprehensive and critical overview of the most recent drug discovery efforts in the field of polyQ diseases, including the most relevant findings emerging from two different types of approaches-hypothesis-based candidate molecule testing and hypothesis-free unbiased drug screenings. We hereby summarize and reflect on the preclinical studies as well as all the clinical trials performed to date, aiming to provide a useful framework for increasingly successful future drug discovery and development efforts.
Collapse
Affiliation(s)
- Sofia Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| |
Collapse
|
47
|
Mao Y, Tamura T, Yuki Y, Abe D, Tamada Y, Imoto S, Tanaka H, Homma H, Tagawa K, Miyano S, Okazawa H. The hnRNP-Htt axis regulates necrotic cell death induced by transcriptional repression through impaired RNA splicing. Cell Death Dis 2016; 7:e2207. [PMID: 27124581 PMCID: PMC4855646 DOI: 10.1038/cddis.2016.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022]
Abstract
In this study, we identify signaling network of necrotic cell death induced by transcriptional repression (TRIAD) by α-amanitin (AMA), the selective RNA polymerase II inhibitor, as a model of neurodegenerative cell death. We performed genetic screen of a knockdown (KD) fly library by measuring the ratio of transformation from pupa to larva (PL ratio) under TRIAD, and selected the cell death-promoting genes. Systems biology analysis of the positive genes mapped on protein-protein interaction databases predicted the signaling network of TRIAD and the core pathway including heterogeneous nuclear ribonucleoproteins (hnRNPs) and huntingtin (Htt). RNA sequencing revealed that AMA impaired transcription and RNA splicing of Htt, which is known as an endoplasmic reticulum (ER)-stabilizing molecule. The impairment in RNA splicing and PL ratio was rescued by overexpresion of hnRNP that had been also affected by transcriptional repression. Fly genetics with suppressor or expresser of Htt and hnRNP worsened or ameliorated the decreased PL ratio by AMA, respectively. Collectively, these results suggested involvement of RNA splicing and a regulatory role of the hnRNP-Htt axis in the process of the transcriptional repression-induced necrosis.
Collapse
Affiliation(s)
- Y Mao
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - T Tamura
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Y Yuki
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - D Abe
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Y Tamada
- Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - S Imoto
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - H Tanaka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - H Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - K Tagawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - S Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - H Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
48
|
Hoo FK, Hasan Sumon MS, Basri H, Wan Sulaiman WA, Stanslas J, Zaman Hashim H, Young CA. Androgen-modulating agents for spinal bulbar muscular atrophy/Kennedy's disease. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2015. [DOI: 10.1002/14651858.cd012000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fan Kee Hoo
- Universiti Putra Malaysia; Neurology Unit, Department of Medicine, Faculty of Medicine and Health Sciences; Serdang Malaysia
| | - Md. Shariful Hasan Sumon
- Universiti Putra Malaysia; Neurology Unit, Department of Medicine, Faculty of Medicine and Health Sciences; Serdang Malaysia
| | - Hamidon Basri
- Universiti Putra Malaysia; Neurology Unit, Department of Medicine, Faculty of Medicine and Health Sciences; Serdang Malaysia
| | - Wan Aliaa Wan Sulaiman
- Universiti Putra Malaysia; Neurology Unit, Department of Medicine, Faculty of Medicine and Health Sciences; Serdang Malaysia
| | - Johnson Stanslas
- Universiti Putra Malaysia; Pharmacology and Therapeutic Unit, Department of Medicine; Fakulti Perubatan dan Sains Kesihatan Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia 43400
| | - Hasnur Zaman Hashim
- International Islamic University Malaysia; Neurology Department; No 25, Lorong IM 8/44, Taman Mahkota Putra Indera Mahkota 8 Kuantan Pahang Malaysia 25200
| | - Carolyn A Young
- The Walton Centre NHS Foundation Trust; Lower Lane Fazakerley Liverpool UK L9 7LJ
| |
Collapse
|
49
|
Pennuto M, Basso M. In Vitro and In Vivo Modeling of Spinal and Bulbar Muscular Atrophy. J Mol Neurosci 2015; 58:365-73. [PMID: 26614347 DOI: 10.1007/s12031-015-0677-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/01/2015] [Indexed: 12/31/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an X-linked neuromuscular disease characterized by late-onset, progressive degeneration of lower motor neurons and skeletal muscle atrophy. SBMA is caused by expansions of a CAG trinucleotide repeat in the gene encoding the androgen receptor (AR). One striking feature of SBMA is sex specificity: SBMA fully manifests only in males, whereas females show subclinical or mild disease manifestations even when homozygous for the mutation. Since the identification of the mutation responsible for SBMA in 1991, several cell and animal models have been developed to recapitulate the main features of disease in vitro and in vivo. In this review, we describe the most widely used cellular and animal models of SBMA, highlighting advantages and disadvantages in the use of these models to gain mechanistic and therapeutic insights into SBMA.
Collapse
Affiliation(s)
- Maria Pennuto
- Dulbecco Telethon Institute Lab of Neurodegenerative Diseases, Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| | - Manuela Basso
- Laboratory of Transcriptional Neurobiology, Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
50
|
Rinaldi C, Malik B, Greensmith L. Targeted Molecular Therapies for SBMA. J Mol Neurosci 2015; 58:335-42. [PMID: 26576772 DOI: 10.1007/s12031-015-0676-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/01/2015] [Indexed: 12/11/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a late-onset neuromuscular disease caused by a polyglutamine expansion in the androgen receptor gene which results in progressive spinal and bulbar motor neuron degeneration, and muscle atrophy. Although the causative genetic defect is known, until recently, the molecular pathogenesis of the disease was unclear, resulting in few, if any, targets for therapy development. However, over the past decade, our understanding of the pathomechanisms that play a role in SBMA has increased dramatically, and several of these pathways and mechanisms have now been investigated as possible therapeutic targets. In this review, we discuss some of the key pathomechanisms implicated in SBMA and describe some of the therapeutic strategies that have been tested in SBMA to date, which fall into four main categories: (i) gene silencing; (ii) protein quality control and/or increased protein degradation; (iii) androgen deprivation; and (iv) modulation of AR function. Finally, it is also now clear that in addition to a greater understanding of the molecular mechanisms that underlie disease, the development of an effective disease modifying therapy for SBMA will require the coordinated, collaborative effort of research teams with diverse areas of expertise, clinicians, pharmaceutical companies as well as patient groups.
Collapse
Affiliation(s)
- Carlo Rinaldi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| | - Bilal Malik
- Sobell Department of Motor Neuroscience and Movement Disorders, Queen Square, London, WC1N 3BG, UK
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, Queen Square, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|