1
|
Niyas MA, Shoyama K, Würthner F. Ternary π-π Stacking Complexes by Allosteric Regulation in Multilayer Nanographenes. J Am Chem Soc 2024; 146:29728-29734. [PMID: 39423344 DOI: 10.1021/jacs.4c11119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Construction of π-π stacking supramolecular complexes with more than two different components is challenging due to the weak and directionless nature of dispersion interactions. Here, we report ternary complexes of a ditopic nanographene tetraimide (1), α-substituted phthalocyanine (Pc), and polyaromatic hydrocarbons (PAHs) in solution and the crystalline state via allosteric regulation. Binding of one Pc gives rise to significant distortion and conformational changes in 1 that in turn lead to the inhibition of the second binding of Pc. The conformational changes associated with first binding allowed an allosteric binding of a third component (PAHs) to form ternary complexes in solution. 1H NMR titration revealed moderately high thermodynamic stability for the ternary complexes in CDCl3. Competition between allosterically regulated ternary complexes ([Pc·1·PAH]) and 1:2 stoichiometric binary complexes of 1 with PAHs ([PAH·1·PAH]) was elucidated. Further, the selective formation of ternary complexes in solution led to the generation of ternary cocrystals from a 1:1:1 mixture of three components in solution. Our work shows that large π-conjugated nanographenes designed with allosteric recognition sites allow the construction of multilayer ternary complexes in solution and the solid state even with dispersive π-π interactions.
Collapse
Affiliation(s)
- M A Niyas
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
2
|
Coker JF, Moro S, Gertsen AS, Shi X, Pearce D, van der Schelling MP, Xu Y, Zhang W, Andreasen JW, Snyder CR, Richter LJ, Bird MJ, McCulloch I, Costantini G, Frost JM, Nelson J. Perpendicular crossing chains enable high mobility in a noncrystalline conjugated polymer. Proc Natl Acad Sci U S A 2024; 121:e2403879121. [PMID: 39226361 PMCID: PMC11406284 DOI: 10.1073/pnas.2403879121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
The nature of interchain π-system contacts, and their relationship to hole transport, are elucidated for the high-mobility, noncrystalline conjugated polymer C16-IDTBT by the application of scanning tunneling microscopy, molecular dynamics, and quantum chemical calculations. The microstructure is shown to favor an unusual packing motif in which paired chains cross-over one another at near-perpendicular angles. By linking to mesoscale microstructural features, revealed by coarse-grained molecular dynamics and previous studies, and performing simulations of charge transport, it is demonstrated that the high mobility of C16-IDTBT can be explained by the promotion of a highly interconnected transport network, stemming from the adoption of perpendicular contacts at the nanoscale, in combination with fast intrachain transport.
Collapse
Affiliation(s)
- Jack F Coker
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stefania Moro
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Anders S Gertsen
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Xingyuan Shi
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Drew Pearce
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Martin P van der Schelling
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - Yucheng Xu
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Weimin Zhang
- King Abdullah University of Science and Technology Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Kingdom of Saudi Arabia
| | - Jens W Andreasen
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Chad R Snyder
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Lee J Richter
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Matthew J Bird
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Giovanni Costantini
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jarvist M Frost
- Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Jenny Nelson
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
3
|
Zeng CY, Deng WJ, Zhao KQ, Redshaw C, Donnio B. Phenanthrothiophene-Triazine Star-Shaped Discotic Liquid Crystals: Synthesis, Self-Assembly, and Stimuli-Responsive Fluorescence Properties. Chemistry 2024; 30:e202400296. [PMID: 38427538 DOI: 10.1002/chem.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Lipophilic biphenylthiophene- and phenanthrothiophene-triazine compounds, BPTTn and CPTTn, respectively, were prepared by a tandem procedure involving successive Suzuki-Miyaura coupling and Scholl cyclodehydrogenation reactions. These compounds display photoluminescence in solution and in thin film state, solvatochromism with increasing solvent's polarity, as well as acidochromism and metal ion recognition stimuli-responsive fluorescence. Protonation of BPTT10 and CPTT10 by trifluoroacetic acid results in fluorescence quenching, which is reversibly restored once treated with triethylamine (ON-OFF switch). DFT computational studies show that intramolecular charge transfer (ICT) phenomena occurs for both molecules, and reveal that protonation enhances the electron-withdrawing ability of the triazine core and reduces the band gap. This acidochromic behavior was applied to a prototype fluorescent anti-counterfeiting device. They also specifically recognize Fe3+ through coordination, and the recognition mechanism is closely related to the photoinduced electron transfer between Fe3+ and BPTT10/CPTT10. CPTTn self-assemble into columnar rectangular (Colrec) mesophase, which can be modulated by oleic acid via the formation of a hydrogen-bonded supramolecular liquid crystal hexagonal Colhex mesophase. Finally, CPTTn also form organic gels in alkanes at low critical gel concentration (3.0 mg/mL). Therefore, these star-shaped triazine molecules possess many interesting features and thus hold great promises for information processing, liquid crystal semiconductors and organogelators.
Collapse
Affiliation(s)
- Chong-Yang Zeng
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Wen-Jing Deng
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Carl Redshaw
- Department of Chemistry, University of Hull, School of Natural Sciences, Hull, HU6 7RX, UK
| | - Bertrand Donnio
- Institut de Chimie et Physique des Matériaux de Strasbourg, UMR 7504, CNRS-University of Strasbourg, 67034, Strasbourg, France
| |
Collapse
|
4
|
Brown PA, Kołacz J, Spillmann CM. Enhancing Charge Transport Using Boron and Nitrogen Substitutions into Triphenylene-Based Discotic Liquid Crystals. J Phys Chem B 2024; 128:3463-3474. [PMID: 38536772 PMCID: PMC11017245 DOI: 10.1021/acs.jpcb.3c05825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 04/12/2024]
Abstract
The substitution of p-block heteroatoms into polyaromatic hydrocarbons offers the potential for introducing enhanced molecular properties and advancing material development for electro-optical applications. Using density functional theory, we characterize the substitution of boron and nitrogen atoms into a 2,3,6,7,10,11-hexakis(hexathiol)triphenylene (TTP) core, a precursor for a material with a discotic liquid crystal phase, to determine the strength of exciton dissociation and the influence doping has on the formation of a heterojunction with graphene. The substitution of nitrogen and boron into the TTP motif enables tunability of both electron and hole coupling between hetero- and homodyads. The coupling is found to far exceed that of TTP and varied transport behavior with different combinations of doped cores of nitrogen-TTP and boron-TTP is reported. Heterodyads of nitrogen-TTP with boron-TTP appear to be ambipolar in electron/hole coupling, whereas heterodyads of boron- or nitrogen-TTP with TTP form strong electron coupling dyads and homodyads of nitrogen-TTP and boron-TTP form strong hole coupling. Finally, we describe the heterojunction of nitrogen- or boron-TTP with monolayer graphene and observe Ohmic contacts with large hole transport barriers. The presence of induced dipoles occurs at the interface in all heterojunctions, suggesting the possibility of tuning the junction with external potentials and improving exciton dissociation.
Collapse
Affiliation(s)
- Paul A. Brown
- Center for Bio/Molecular
Science and Engineering, United States Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Jakub Kołacz
- Center for Bio/Molecular
Science and Engineering, United States Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Christopher M. Spillmann
- Center for Bio/Molecular
Science and Engineering, United States Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| |
Collapse
|
5
|
Oka M, Kozako R, Teranishi Y, Yamada Y, Miyake K, Fujimura T, Sasai R, Ikeue T, Iida H. Chiral Supramolecular Organogel Constructed Using Riboflavin and Melamine: Its Application in Photo-Catalyzed Colorimetric Chiral Sensing and Enantioselective Adsorption. Chemistry 2024; 30:e202303353. [PMID: 38012829 DOI: 10.1002/chem.202303353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
The synthesis of a chiral supramolecular organogel via the hierarchical helical self-assembly of optically active riboflavin and melamine derivatives is described herein. Owing to the photocatalysis of riboflavin and the supramolecular chirality induced in the helically stacked riboflavin/melamine complex, the gel is observed to act as a light-stimulated chiral sensor of optically active alcohols by detecting the change in color from yellow to green. The gel also served as an efficient chiral adsorbent, enabling optical resolution of a racemic compound with high chiral recognition ability.
Collapse
Affiliation(s)
- Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryo Kozako
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Yuta Teranishi
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Yuta Yamada
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Kazuhiro Miyake
- Center for Material Research Platform, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takuya Fujimura
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryo Sasai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Takahisa Ikeue
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| |
Collapse
|
6
|
Zhang KL, Yu WH, Zhao KQ, Hu P, Wang BQ, Donnio B. Mesomorphism Modulation of Perfluorinated Janus Triphenylenes by Inhomogeneous Chain Substitution Patterns. Chem Asian J 2024:e202301080. [PMID: 38214422 DOI: 10.1002/asia.202301080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Two isomeric series of compounds with "inverted" chains' substitution patterns, 7,10-dialkoxy-1,2,3,4-tetrafluoro-6,11-dimethoxytriphenylene and 6,11-dialkoxy-1,2,3,4-tetrafluoro-7,10-dimethoxytriphenylene, labelled respectively p-TPFn and m-TPFn, and two non-fluorinated homologous isomers, 3,6-dibutoxy-2,7-dimethoxytriphenylene and 2,7-dibutoxy-3,6-dimethoxytriphenylene, p-TP4 and m-TP4, respectively, were synthesized in three steps and obtained in good yields by the efficient transition-metal-free, fluoroarene nucleophilic substitution via the reaction of appropriate 2,2'-dilithium biphenylenes with either perfluorobenzene, C6 F6 , to yield p-TPFn and m-TPFn, or o-difluorobenzene, C6 H4 F2 , for p-TP4 and m-TP4, respectively. The single-crystal structures of p-TPF4, m-TPF4 and p-TP4, unequivocally confirmed that the cyclization reactions occurred at the expected positions, and that the fluorinated molecules stack up into columns with short separation, a propitious situation for the emergence of columnar mesophases. The mesomorphous properties were found to be greatly affected by both chains' length and positional isomerism: a Colhex phase is found for p-TPF4 and m-TPF4, but mesomorphism vanishes in p-TPF6, and changes for the isomeric homologs m-TPFn, with the induction for n≥6 of a lamello-columnar phase, LamColrec . As expected, both non-fluorinated compounds are deprived of mesomorphism. These compounds emit blue-violet colour in solution, independently of the chains' substitution pattern, and the absolute fluorescence quantum yields can reach up to 46 %. In thin films, fluorescence is slightly redshifted.
Collapse
Affiliation(s)
- Kai-Li Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Wen-Hao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Bertrand Donnio
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg (UMR 7504), F-67034, cedex 2 Strasbourg, France
| |
Collapse
|
7
|
Liu L, Yang Y, Meskers SCJ, Wang Q, Zhang L, Yang C, Zhang J, Zhu L, Zhang Y, Wei Z. Fused-Ring Electron-Acceptor Single Crystals with Chiral 2D Supramolecular Organization for Anisotropic Chiral Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304627. [PMID: 37467489 DOI: 10.1002/adma.202304627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Supramolecular chiral organization gives π-conjugated molecules access to fascinating specific interactions with circularly polarized light (CPL). Such a feature enables the fabrication of high-performance chiral organic electronic devices that detect or emit CPL directly. Herein, it is shown that chiral fused-ring electron-acceptor BTP-4F single-crystal-based phototransistors demonstrate distinguished CPL discrimination capability with current dissymmetry factor exceeding 1.4, one of the highest values among state-of-the-art direct CPL detectors. Theoretical calculations prove that the chirality at the supramolecular level in these enantiomeric single crystals originates from chiral exciton coupling of a unique quasi-2D supramolecular organization consisting of interlaced molecules with opposite helical conformation. Impressively, such supramolecular organization produces a higher dissymmetry factor along the preferred growth direction of the chiral single crystals in comparison to that of the short axis direction. Furthermore, the amplified, inverted, and also anisotropic current dissymmetry compared to optical dissymmetry is studied by finite element simulations. Therefore, a unique chiral supramolecular organization that is responsible for the excellent chiroptical response and anisotropic electronic properties is developed, which not only enables the construction of high-performance CPL detection devices but also allows a better understanding of the structure-property relationships in chiral organic optoelectronics.
Collapse
Affiliation(s)
- Lixuan Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Yang Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Stefan C J Meskers
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. box 513, Eindhoven, NL, 5600 MB, The Netherlands
| | - Qingkai Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Liting Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chen Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lingyun Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yajie Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| |
Collapse
|
8
|
Lijina MP, Benny A, Sebastian E, Hariharan M. Keeping the chromophores crossed: evidence for null exciton splitting. Chem Soc Rev 2023; 52:6664-6679. [PMID: 37606527 DOI: 10.1039/d3cs00176h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Fundamental understanding of the supramolecular assemblies of organic chromophores and the development of design strategies have seen endless ripples of interest owing to their exciting photophysical properties and optoelectronic applications. The independent discovery of dye aggregates by Jelley and Scheibe was the commencement of the remarkable advancement in the field of aggregate photophysics. Subsequent research warranted an exceptional model for defining the exciton interactions in aggregates, proposed by Davydov, Kasha and co-workers, independently, based on the long-range Coulombic coupling. Fascinatingly, the orthogonally cross-stacked molecular transition dipole arrangement was foretold by Kasha to possess null exciton interaction leading to spectroscopically uncoupled molecular assembly, which lacked an experimental signature for decades. There have been several attempts to identify and probe atypical molecular aggregates for decoding their optical behaviour. Herein, we discuss the recent efforts in experimentally verifying the unusual exciton interactions supported with quantum chemical computations, primarily focusing on the less explored null exciton splitting. Exciton engineering can be realized through synthetic modifications that can additionally offer control over the assorted non-covalent interactions for orchestrating precise supramolecular assembly, along with molecular editing. The task of attaining a minimal excitonic coupling through an orthogonally cross-stacked crystalline architecture envisaged to offer a monomer-like optical behaviour was first reported in 1,7-dibromoperylene-3,4,9,10-tetracarboxylic tetrabutylester (PTE-Br2). The attempt to stitch molecules covalently in an orthogonal fashion to possess null excitonic character culminated in a spiro-conjugated perylenediimide dimer exhibiting a monomer-like spectroscopic signature. The computational and experimental efforts to map the emergent properties of the cross-stacked architecture are also discussed here. Using the null aggregates formed by the interference effects between CT-mediated and Coulombic couplings in the molecular array is another strategy for achieving monomer-like spectroscopic properties in molecular assemblies. Moreover, identifying supramolecular assemblies with precise angle-dependent properties can have implications in functional material design, and this review can provide insights into the uncharted realm of null exciton splitting.
Collapse
Affiliation(s)
- M P Lijina
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Alfy Benny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
9
|
Fu J, Miao Y, Zhang D, Zhang Y, Meng L, Ni X, Shen J, Qi W. Polymer-Enabled Assembly of Au Nanoclusters with Luminescence Enhancement and Macroscopic Chirality. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13316-13324. [PMID: 37682809 DOI: 10.1021/acs.langmuir.3c01954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The construction of macroscopic chiral luminescent aggregates with well-defined structures not only contributes to the development of functional materials but also has significant implications for analyzing chiral transfer and amplification in biological systems and self-assembly systems. Meanwhile, achieving water-soluble chiral metal nanoclusters (NCs) with high photoluminescence (PL) intensity through a convenient method remains a challenge. Herein, we reported the enhanced luminescence of gold nanoclusters stabilized by D-/L-penicillamine (D-/L-AuNCs) induced by poly(allylamine hydrochloride) (PAH) through supramolecular self-assembly strategies. FT-IR spectra and zeta potential measurements revealed that supramolecular assembly was driven by the synergistic effect of hydrogen bonds and electrostatic interactions, which effectively limited the intramolecular vibration and rotation of the ligand and reduced nonradiative relaxation, thus improving the luminescence properties of nanoclusters. Interestingly, during the slow solvent evaporation process, chiral entanglement of assemblies was enhanced, forming macroscopic wheat-shaped superstructures. This study enriches the understanding of the self-assembly mechanism of nanoclusters and provides a pathway for constructing NC-based chiroptical materials.
Collapse
Affiliation(s)
- Jing Fu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Yujin Miao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Di Zhang
- Shandong Copolymer Silicone Technology Research Institute, Weifang 261000, P. R. China
| | - Yongjie Zhang
- Shandong Copolymer Silicone Technology Research Institute, Weifang 261000, P. R. China
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu 273155, Shandong, P. R. China
| | - Luyao Meng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Xinrui Ni
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Jinglin Shen
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Wei Qi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| |
Collapse
|
10
|
Woods JF, Gallego L, Maisch A, Renggli D, Cuocci C, Blacque O, Steinfeld G, Kaech A, Spingler B, Vargas Jentzsch A, Rickhaus M. Saddles as rotational locks within shape-assisted self-assembled nanosheets. Nat Commun 2023; 14:4725. [PMID: 37550281 PMCID: PMC10406840 DOI: 10.1038/s41467-023-40475-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023] Open
Abstract
Two-dimensional (2D) materials are a key target for many applications in the modern day. Self-assembly is one approach that can bring us closer to this goal, which usually relies upon strong, directional interactions instead of covalent bonds. Control over less directional forces is more challenging and usually does not result in as well-defined materials. Explicitly incorporating topography into the design as a guiding effect to enhance the interacting forces can help to form highly ordered structures. Herein, we show the process of shape-assisted self-assembly to be consistent across a range of derivatives that highlights the restriction of rotational motion and is verified using a diverse combination of solid state analyses. A molecular curvature governed angle distribution nurtures monomers into loose columns that then arrange to form 2D structures with long-range order observed in both crystalline and soft materials. These features strengthen the idea that shape becomes an important design principle leading towards precise molecular self-assembly and the inception of new materials.
Collapse
Affiliation(s)
- Joseph F Woods
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Lucía Gallego
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Amira Maisch
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Dominik Renggli
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Corrado Cuocci
- Institute of Crystallography, CNR, Via Amendola, 122/O, 70126, Bari, Italy
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | | | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, 8057, Zurich, Switzerland
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Andreas Vargas Jentzsch
- SAMS Research Group, University of Strasbourg, Institut Charles Sadron, CNRS, 67200, Strasbourg, France
| | - Michel Rickhaus
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
11
|
Bayse CA. Stack bonding in polyaromatic hydrocarbons. Phys Chem Chem Phys 2023. [PMID: 37466927 DOI: 10.1039/d3cp02553e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Parallel displacement of π-stacked component molecules enhances the efficiency of organic semiconductors by maximizing interpenetration of the π-densities. Dimers of symmetric polyaromatic hydrocarbons coronene, hexabenzo[bc,de,gh,kl,no,qr]coronene, circumcoronene, kekulene, and circumcircumcoronene are examined using density functional theory from the stack bonding perspective which considers π-stacking interactions in terms of contributions of monomer π-orbital overlap to the character of dimer orbitals. Energetically favored parallel displaced and/or twisted dimer conformations are consistent with patterns of mixing of the monomer molecular orbitals (MOs) that maximize interpenetration of the π densities. The multiple minima found along parallel displacement (PD) coordinates coincide with the formation of dimer MOs formally antibonding between the monomers at the sandwich conformation to bonding at the PD minima. Minima identified with favorable stack bonding are consistent with polymorphs found in large polyaromatic hydrocarbons.
Collapse
Affiliation(s)
- Craig A Bayse
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA.
| |
Collapse
|
12
|
Gurtovenko AA, Nazarychev VM, Glova AD, Larin SV, Lyulin SV. Mesoscale computer modeling of asphaltene aggregation in liquid paraffin. J Chem Phys 2023; 158:234902. [PMID: 37318174 DOI: 10.1063/5.0153741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
Asphaltenes represent a novel class of carbon nanofillers that are of potential interest for many applications, including polymer nanocomposites, solar cells, and domestic heat storage devices. In this work, we developed a realistic coarse-grained Martini model that was refined against the thermodynamic data extracted from atomistic simulations. This allowed us to explore the aggregation behavior of thousands of asphaltene molecules in liquid paraffin on a microsecond time scale. Our computational findings show that native asphaltenes with aliphatic side groups form small clusters that are uniformly distributed in paraffin. The chemical modification of asphaltenes via cutting off their aliphatic periphery changes their aggregation behavior: modified asphaltenes form extended stacks whose size increases with asphaltene concentration. At a certain large concentration (44 mol. %), the stacks of modified asphaltenes partly overlap, leading to the formation of large, disordered super-aggregates. Importantly, the size of such super-aggregates increases with the simulation box due to phase separation in the paraffin-asphaltene system. The mobility of native asphaltenes is systematically lower than that of their modified counterparts since the aliphatic side groups mix with paraffin chains, slowing down the diffusion of native asphaltenes. We also show that diffusion coefficients of asphaltenes are not very sensitive to the system size: enlarging the simulation box results in some increase in diffusion coefficients, with the effect being less pronounced at high asphaltene concentrations. Overall, our findings provide valuable insight into the aggregation behavior of asphaltenes on spatial and time scales that are normally beyond the scales accessible for atomistic simulations.
Collapse
Affiliation(s)
- Andrey A Gurtovenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect V.O. 31, St. Petersburg 199004, Russia
| | - Victor M Nazarychev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect V.O. 31, St. Petersburg 199004, Russia
| | - Artem D Glova
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Sergey V Larin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect V.O. 31, St. Petersburg 199004, Russia
| | - Sergey V Lyulin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect V.O. 31, St. Petersburg 199004, Russia
| |
Collapse
|
13
|
Xie R, Hu Y, Lee SL. A Paradigm Shift from 2D to 3D: Surface Supramolecular Assemblies and Their Electronic Properties Explored by Scanning Tunneling Microscopy and Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300413. [PMID: 36922729 DOI: 10.1002/smll.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2023] [Indexed: 06/15/2023]
Abstract
Exploring supramolecular architectures at surfaces plays an increasingly important role in contemporary science, especially for molecular electronics. A paradigm of research interest in this context is shifting from 2D to 3D that is expanding from monolayer, bilayers, to multilayers. Taking advantage of its high-resolution insight into monolayers and a few layers, scanning tunneling microscopy/spectroscopy (STM/STS) turns out a powerful tool for analyzing such thin films on a solid surface. This review summarizes the representative efforts of STM/STS studies of layered supramolecular assemblies and their unique electronic properties, especially at the liquid-solid interface. The superiority of the 3D molecular networks at surfaces is elucidated and an outlook on the challenges that still lie ahead is provided. This review not only highlights the profound progress in 3D supramolecular assemblies but also provides researchers with unusual concepts to design surface supramolecular structures with increasing complexity and desired functionality.
Collapse
Affiliation(s)
- Rongbin Xie
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yi Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
14
|
Savin AV, Dmitriev SV. Influence of the internal degrees of freedom of coronene molecules on the nonlinear dynamics of a columnar chain. Phys Rev E 2023; 107:054216. [PMID: 37329037 DOI: 10.1103/physreve.107.054216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/29/2023] [Indexed: 06/18/2023]
Abstract
The nonlinear dynamics of a one-dimensional molecular crystal in the form of a chain of planar coronene molecules is analyzed. Using molecular dynamics, it is shown that a chain of coronene molecules supports acoustic solitons, rotobreathers, and discrete breathers. An increase in the size of planar molecules in a chain leads to an increase in the number of internal degrees of freedom. This results in an increase in the rate of emission of phonons from spatially localized nonlinear excitations and a decrease in their lifetime. Presented results contribute to the understanding of the effect of the rotational and internal vibrational modes of molecules on the nonlinear dynamics of molecular crystals.
Collapse
Affiliation(s)
- Alexander V Savin
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
- Plekhanov Russian University of Economics, Moscow 117997, Russia
| | - Sergey V Dmitriev
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of Russian Academy of Sciences, Oktyabrya Ave. 151, 450075 Ufa, Russia
- Ufa State Petroleum Technological University, Kosmonavtov St. 1, 450062 Ufa, Russia
| |
Collapse
|
15
|
Yue Y, Yang J, Zheng B, Huo L, Dong H, Wang J, Jiang L. Asymmetric Wettability Mediated Patterning of Single Crystalline Nematic Liquid Crystal and P-N Heterojunction Toward a Broadband Photodetector. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13371-13379. [PMID: 36862587 DOI: 10.1021/acsami.2c21664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The well aligned and precise patterning of liquid crystals (LCs) are considered as two key challenges for large-scale and high-efficiency integrated optoelectronic devices. However, owing to the uncontrollable liquid flow and dewetting process in the conventional techniques, most of the reported research is mainly focused on simple sematic LCs, which are composed of terthiophenes or benzothieno[3, 2-b][1] benzothiophene backbone; only a few works are carried out on the complicated LCs. Herein, an efficient strategy was introduced to control the liquid flow and alignment of LCs and realized precise and high-quality patterning of A-π-D-π-A BTR, based on the asymmetric wettability interface. Through this strategy, the large-area and well-aligned BTR microwires array was fabricated, which exhibited highly ordered molecular packing and improved charge transport performance. Furthermore, the integration of BTR and PC71BM was achieved to manufacture uniform P-N heterojunction arrays, which still possessed highly ordered alignment of BTR. On the basis of these aligned heterojunction arrays, the high-performance photodetector exhibited an excellent responsivity of 27.56 A W-1 and a specific detectivity of 2.07 × 1012 Jones. This research not only provides an efficient strategy for the fabrication of aligned micropatterns of LCs but also gives a novel insight for the fabrication of high-quality micropatterns of the P-N heterojunction toward integrated optoelectronics.
Collapse
Affiliation(s)
- Yuchen Yue
- CAS Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Jiaxin Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Bing Zheng
- School of Chemistry, Beihang University, Beijing 100190, P. R. China
| | - Lijun Huo
- School of Chemistry, Beihang University, Beijing 100190, P. R. China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jingxia Wang
- CAS Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemistry, Beihang University, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
- Ji Hua Laboratory, Foshan 528000, Guangdong, P. R. China
| |
Collapse
|
16
|
Abstract
With the advent of a new era of smart-technology, the demand for more economic optoelectronic materials that do not compromise with efficiency is gradually on the rise. Organic semiconductors provide greener alternatives to the conventional inorganic ones, but encounter the challenge of balancing charge carrier mobility with processability in devices. Discotic liquid crystals (DLCs), a class of self-assembling soft organic materials, possess the perfect degree of order and dynamics to address this challenge. Providing unidimensional charge carrier pathways through their nanoscale columnar architecture, DLCs can behave as efficient charge transport systems across a wide range of optoelectronic devices. Moreover, DLCs are solution-processable, thus reducing the fabrication cost. In this article, we have discussed the approaches towards developing DLCs as semiconductors, focusing on their molecular design concepts, supramolecular structures and electronic properties in the context of their charge carrier mobilities.
Collapse
Affiliation(s)
- Ritobrata De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Knowledge City, Manauli-140306, India.
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Knowledge City, Manauli-140306, India.
| |
Collapse
|
17
|
Govardhan S, Roy S, Prabhu S, Siddiqui MK. Computation of Neighborhood M-Polynomial of Three Classes of Polycyclic Aromatic Hydrocarbons. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- S. Govardhan
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | - S. Roy
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | - S. Prabhu
- Department of Mathematics, Rajalakshmi Engineering College, Chennai, India
| | | |
Collapse
|
18
|
Franca LG, dos Santos PL, Pander P, Cabral MB, Cristiano R, Cazati T, Monkman AP, Bock H, Eccher J. Delayed Fluorescence by Triplet-Triplet Annihilation from Columnar Liquid Crystal Films. ACS APPLIED ELECTRONIC MATERIALS 2022; 4:3486-3494. [PMID: 35910938 PMCID: PMC9330766 DOI: 10.1021/acsaelm.2c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Delayed fluorescence (DF) by triplet-triplet annihilation (TTA) is observed in solutions of a benzoperylene-imidoester mesogen that shows a hexagonal columnar mesophase at room temperature in the neat state. A similar benzoperylene-imide with a slightly smaller HOMO-LUMO gap, that also is hexagonal columnar liquid crystalline at room temperature, does not show DF in solution, and mixtures of the two mesogens show no DF in solution either, because of collisional quenching of the excited triplet states on the imidoester by the imide. In contrast, DF by TTA from the imide but not from the imidoester is observed in condensed films of such mixtures, even though neat films of either single material are not displaying DF. In contrast to the DF from the monomeric imidoester in solution, DF of the imide occurs from dimeric aggregates in the blend films, assisted by the imidoester. Thus, the close contact of intimately stacked molecules of the two different species in the columnar mesophase leads to a unique mesophase-assisted aggregate DF. This constitutes the first observation of DF by TTA from the columnar liquid crystalline state. If the imide is dispersed in films of polybromostyrene, which provides an external heavy-atom effect facilitating triplet formation, DF is also observed. Organic light-emitting diodes (OLEDs) devices incorporating these liquid crystal molecules demonstrated high external quantum efficiency (EQE). On the basis of the literature and to the best of our knowledge, the EQE reported is the highest among nondoped solution-processed OLED devices using a columnar liquid crystal molecule as the emitting layer.
Collapse
Affiliation(s)
- Larissa G. Franca
- Department
of Physics, Durham University, South Road, Durham, DH1 3LE, United
Kingdom
- Departamento
de Física, Universidade Federal de
Santa Catarina, 88040900, Florianópolis, Santa Catarina, Brazil
| | - Paloma L. dos Santos
- Department
of Physics, Durham University, South Road, Durham, DH1 3LE, United
Kingdom
| | - Piotr Pander
- Department
of Physics, Durham University, South Road, Durham, DH1 3LE, United
Kingdom
- Faculty
of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Marília
G. B. Cabral
- Departamento
de Química, Universidade Federal
da Paraíba, CEP 58051-900, João Pessoa, Paraíba, Brazil
- Centre
de Recherche Paul-Pascal, CNRS & Université
de Bordeaux, 33600, Pessac, France
| | - Rodrigo Cristiano
- Departamento
de Química, Universidade Federal
da Paraíba, CEP 58051-900, João Pessoa, Paraíba, Brazil
| | - Thiago Cazati
- Departamento
de Física, Universidade Federal de
Ouro Preto − UFOP, 35400-000, Ouro Preto, Minas
Gerais, Brazil
| | - Andrew P. Monkman
- Department
of Physics, Durham University, South Road, Durham, DH1 3LE, United
Kingdom
| | - Harald Bock
- Centre
de Recherche Paul-Pascal, CNRS & Université
de Bordeaux, 33600, Pessac, France
| | - Juliana Eccher
- Departamento
de Física, Universidade Federal de
Santa Catarina, 88040900, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
19
|
Woods JF, Gallego L, Pfister P, Maaloum M, Vargas Jentzsch A, Rickhaus M. Shape-assisted self-assembly. Nat Commun 2022; 13:3681. [PMID: 35760814 PMCID: PMC9237116 DOI: 10.1038/s41467-022-31482-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Self-assembly and molecular recognition are critical processes both in life and material sciences. They usually depend on strong, directional non-covalent interactions to gain specificity and to make long-range organization possible. Most supramolecular constructs are also at least partially governed by topography, whose role is hard to disentangle. This makes it nearly impossible to discern the potential of shape and motion in the creation of complexity. Here, we demonstrate that long-range order in supramolecular constructs can be assisted by the topography of the individual units even in the absence of highly directional interactions. Molecular units of remarkable simplicity self-assemble in solution to give single-molecule thin two-dimensional supramolecular polymers of defined boundaries. This dramatic example spotlights the critical function that topography can have in molecular assembly and paves the path to rationally designed systems of increasing sophistication. Self-assembly and molecular recognition usually depend on strong, directional non-covalent interactions but also topography can play a role in the formation of supramolecular constructs which makes it nearly impossible to discern the potential of shape and motion in the creation of complexity. Here, the authors demonstrate that long-range order in supramolecular constructs can be assisted by the topography of the individual units even in the absence of highly directional interactions.
Collapse
Affiliation(s)
- Joseph F Woods
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Lucía Gallego
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Pauline Pfister
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Mounir Maaloum
- SAMS Research Group, University of Strasbourg, Institut Charles Sadron, CNRS, 67200, Strasbourg, France
| | - Andreas Vargas Jentzsch
- SAMS Research Group, University of Strasbourg, Institut Charles Sadron, CNRS, 67200, Strasbourg, France
| | - Michel Rickhaus
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
20
|
Zhang Q, Guo Z, Zheng X. Synthesis of Ag@carbonized polymer dots and their electrochemical sensing of miRNA. ELECTROANAL 2022. [DOI: 10.1002/elan.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Liu Z, Song W, Yang S, Yuan C, Liu Z, Zhang H, Shao X. Marriage of Heterobuckybowls with Triptycene: Molecular Waterwheels for Separating C
60
and C
70. Chemistry 2022; 28:e202200306. [DOI: 10.1002/chem.202200306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Zhe Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Wenru Song
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Shaojie Yang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Chengshan Yuan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Hao‐Li Zhang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| |
Collapse
|
22
|
Du X, Ma T, Ge T, Chang Q, Liu X, Cheng X. Molecular design directs self-assembly of DPP polycatenars into 2D and 3D complex nanostructures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Tan J, Zhang G, Ge C, Liu J, Zhou L, Liu C, Gao X, Narita A, Zou Y, Hu Y. Electron-Deficient Contorted Polycyclic Aromatic Hydrocarbon via One-Pot Annulative π-Extension of Perylene Diimide. Org Lett 2022; 24:2414-2419. [PMID: 35302773 DOI: 10.1021/acs.orglett.2c00690] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of a class of contorted electron-deficient polycyclic aromatic hydrocarbons (PAHs) has been achieved by a one-pot bay annulation of perylene diimide involving a mild Suzuki coupling and subsequent air-mediated, ambient-light-induced photocyclization. X-ray crystallography unambiguously confirmed the contorted PAH structure bearing four imide groups. The photophysical and electronic properties of these contorted PAHs were also analyzed, showing a high fluorescence quantum yield of 86% and moderate electron mobility of 0.017 cm2 V-1 s-1.
Collapse
Affiliation(s)
- Jingyun Tan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.,Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Guanghui Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Congwu Ge
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jun Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Long Zhou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xike Gao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yunbin Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
24
|
Liu T, Tonnelé C, Zhao S, Rondin L, Elias C, Medina-Lopez D, Okuno H, Narita A, Chassagneux Y, Voisin C, Campidelli S, Beljonne D, Lauret JS. Vibronic effect and influence of aggregation on the photophysics of graphene quantum dots. NANOSCALE 2022; 14:3826-3833. [PMID: 35194627 DOI: 10.1039/d1nr08279e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Graphene quantum dots, atomically precise nanopieces of graphene, are promising nano-objects with potential applications in various domains such as photovoltaics, quantum light emitters and bio-imaging. Despite their interesting prospects, precise reports on their photophysical properties remain scarce. Here, we report on a study of the photophysics of C96H24(C12H25) graphene quantum dots. A combination of optical studies down to the single molecule level with advanced molecular modelling demonstrates the importance of coupling to vibrations in the emission process. Optical fingerprints for H-like aggregates are identified. Our combined experimental-theoretical investigations provide a comprehensive description of the light absorption and emission properties of nanographenes, which not only represents an essential step towards precise control of sample production but also paves the way for new exciting physics focused on twisted graphenoids.
Collapse
Affiliation(s)
- Thomas Liu
- Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, LuMIn, Orsay, France.
| | | | - Shen Zhao
- Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, LuMIn, Orsay, France.
| | - Loïc Rondin
- Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, LuMIn, Orsay, France.
| | - Christine Elias
- Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, LuMIn, Orsay, France.
| | - Daniel Medina-Lopez
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France
| | - Hanako Okuno
- University Grenoble Alpes, CEA INAC-MEM, F-38000 Grenoble, France
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yannick Chassagneux
- LPENS, PSL, CNRS, Université de Paris, Sorbonne Université, 75005 Paris, France
| | - Christophe Voisin
- LPENS, PSL, CNRS, Université de Paris, Sorbonne Université, 75005 Paris, France
| | - Stéphane Campidelli
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France
| | | | - Jean-Sébastien Lauret
- Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, LuMIn, Orsay, France.
| |
Collapse
|
25
|
Varadharajan D, Nayani K, Zippel C, Spuling E, Cheng KC, Sarangarajan S, Roh S, Kim J, Trouillet V, Bräse S, Abbott NL, Lahann J. Surfaces Decorated with Enantiomorphically Pure Polymer Nanohelices via Hierarchical Chirality Transfer across Multiple Length Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108386. [PMID: 34918392 DOI: 10.1002/adma.202108386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Mesoscale chiral materials are prepared by lithographic methods, assembly of chiral building blocks, and through syntheses in the presence of polarized light. Typically, these processes result in micrometer-sized structures, require complex top-down manipulation, or rely on tedious asymmetric separation. Chemical vapor deposition (CVD) polymerization of chiral precursors into supported films of liquid crystals (LCs) are discovered to result in superhierarchical arrangements of enantiomorphically pure nanofibers. Depending on the molecular chirality of the 1-hydroxyethyl [2.2]paracyclophane precursor, extended arrays of enantiomorphic nanohelices are formed from achiral nematic templates. Arrays of chiral nanohelices extend over hundreds of micrometers and consistently display enantiomorphic micropatterns. The pitch of individual nanohelices depends on the enantiomeric excess and the purity of the chiral precursor, consistent with the theoretical model of a doubly twisted LC director configuration. During CVD of chiral precursors into cholesteric LC films, aspects of molecular and mesoscale asymmetry combine constructively to form regularly twisted nanohelices. Enantiomorphic surfaces permit the tailoring of a wide range of functional properties, such as the asymmetric induction of weak chiral systems.
Collapse
Affiliation(s)
- Divya Varadharajan
- Institut für Funktionelle Grenzflächen (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Karthik Nayani
- Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, 72701-1201, USA
| | - Christoph Zippel
- Institut für Organische Chemie Karlsruher Institut für Technologie (KIT), 76131, Karlsruhe, Germany
| | - Eduard Spuling
- Institut für Organische Chemie Karlsruher Institut für Technologie (KIT), 76131, Karlsruhe, Germany
| | - Kenneth C Cheng
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48105, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-2102, USA
| | - Swetha Sarangarajan
- Institut für Funktionelle Grenzflächen (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Sangchul Roh
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - John Kim
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48105, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-2102, USA
| | - Vanessa Trouillet
- Institut fuer Angewandte Materialien (IAM-ESS) and Karlsruhe Nano Micro Facility KNMF), 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institut für Organische Chemie Karlsruher Institut für Technologie (KIT), 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Joerg Lahann
- Institut für Funktionelle Grenzflächen (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48105, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-2102, USA
| |
Collapse
|
26
|
Roosta S, Galami F, Elstner M, Xie W. Efficient Surface Hopping Approach for Modeling Charge Transport in Organic Semiconductors. J Chem Theory Comput 2022; 18:1264-1274. [PMID: 35179894 DOI: 10.1021/acs.jctc.1c00944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The trajectory surface hopping (TSH) method is nowadays widely applied to study the charge/exciton transport process in organic semiconductors (OSCs). In the present study, we systematically examine the performance of two approximations in the fewest switched surface hopping (FSSH) simulations for charge transport (CT) in several representative OSCs. These approximations include (i) the substitution of the nuclear velocity scaling along the nonadiabatic coupling vector (NCV) by rescaling the hopping probability with the Boltzmann factor (Boltzmann correction (BC)) and (ii) a phenomenological approach to treat the quantum feedback from the electronic system to the nuclear system (implicit charge relaxation (IR)) in the OSCs. We find that charge mobilities computed by FSSH-BC-IR are in very good agreement with the mobilities obtained by standard FSSH simulations with explicit charge relaxation (FSSH-ER), however, at reduced computational cost. A key parameter determining the charge carrier mobility is the reorganization energy, which is sensitively dependent on DFT functionals applied. By employing the IR approximation, the FSSH method allows systematic investigation of the effect of the reorganization energies obtained by different DFT functionals like B3LYP or ωB97XD on CT in OSCs. In comparison to the experiments, FSSH-BC-IR using ωB97XD reorganization energy underestimates mobilities in the low-coupling regime, which may indicate the lack of nuclear quantum effects (e.g., zero point energy (ZPE)) in the simulations. The mobilities obtained by FSSH-BC-IR using the B3LYP reorganization energy agree well with experimental values in 3 orders of magnitude. The accidental agreement may be the consequence of the underestimation of the reorganization energy by the B3LYP functional, which compensates for the neglect of nuclear ZPE in the simulations.
Collapse
Affiliation(s)
- Sara Roosta
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Farhad Galami
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Weiwei Xie
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
di Nunzio MR, Suzuki Y, Hisaki I, Douhal A. HOFs Built from Hexatopic Carboxylic Acids: Structure, Porosity, Stability, and Photophysics. Int J Mol Sci 2022; 23:1929. [PMID: 35216044 PMCID: PMC8875020 DOI: 10.3390/ijms23041929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/05/2023] Open
Abstract
Hydrogen-bonded organic frameworks (HOFs) have attracted renewed attention as another type of promising candidates for functional porous materials. In most cases of HOF preparation, the applied molecular design principle is based on molecules with rigid π-conjugated skeleton together with more than three H-bonding groups to achieve 2D- or 3D-networked structures. However, the design principle does not always work, but results in formation of unexpected structures, where subtle structural factors of which we are not aware dictate the entire structure of HOFs. In this contribution, we assess recent advances in HOFs, focusing on those composed of hexatopic building block molecules, which can provide robust frameworks with a wide range of topologies and properties. The HOFs described in this work are classified into three types, depending on their H-bonded structural motifs. Here in, we focus on: (1) the chemical aspects that govern their unique fundamental chemistry and structures; and (2) their photophysics at the ensemble and single-crystal levels. The work addresses and discusses how these aspects affect and orient their photonic applicability. We trust that this contribution will provide a deep awareness and will help scientists to build up a systematic series of porous materials with the aim to control both their structural and photodynamical assets.
Collapse
Affiliation(s)
- Maria Rosaria di Nunzio
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain;
| | - Yuto Suzuki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka 565-0871, Japan;
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka 565-0871, Japan;
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain;
| |
Collapse
|
28
|
Li YX, Gao HF, Zhang RB, Gabana K, Chang Q, Gehring GA, Cheng XH, Zeng XB, Ungar G. A case of antiferrochirality in a liquid crystal phase of counter-rotating staircases. Nat Commun 2022; 13:384. [PMID: 35046396 PMCID: PMC8770800 DOI: 10.1038/s41467-022-28024-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
Helical structures continue to inspire, prompted by examples such as DNA double-helix and alpha-helix in proteins. Most synthetic polymers also crystallize as helices, which relieves steric clashes by twisting, while keeping the molecules straight for their ordered packing. In columnar liquid crystals, which often display useful optoelectronic properties, overall helical chirality can be induced by inclusion of chiral chemical groups or dopants; these bias molecular twist to either left or right, analogous to a magnetic field aligning the spins in a paramagnet. In this work, however, we show that liquid-crystalline columns with long-range helical order can form by spontaneous self-assembly of straight- or bent-rod molecules without inclusion of any chiral moiety. A complex lattice with Fddd symmetry and 8 columns per unit cell (4 right-, 4 left-handed) characterizes this "antiferrochiral" structure. In selected compounds it allows close packing of their fluorescent groups reducing their bandgap and giving them promising light-emitting properties.
Collapse
Affiliation(s)
- Ya-Xin Li
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Centre for Soft Matter, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
- School of Chemistry and Chemical Engineering, Henan University of Technology, 450001, Zhengzhou, P. R. China
| | - Hong-Fei Gao
- Key Laboratory of Medicinal Chemistry from Natural Resources, Ministry of Education, Yunnan University, Kunming, P. R. China
| | - Rui-Bin Zhang
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Kutlwano Gabana
- Department of Physics and Astronomy, University of Sheffield, Sheffield, E1 2C, UK
| | - Qing Chang
- Key Laboratory of Medicinal Chemistry from Natural Resources, Ministry of Education, Yunnan University, Kunming, P. R. China
| | - Gillian A Gehring
- Department of Physics and Astronomy, University of Sheffield, Sheffield, E1 2C, UK
| | - Xiao-Hong Cheng
- Key Laboratory of Medicinal Chemistry from Natural Resources, Ministry of Education, Yunnan University, Kunming, P. R. China.
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, P. R. China.
| | - Xiang-Bing Zeng
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| | - Goran Ungar
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Centre for Soft Matter, Xi'an Jiaotong University, 710049, Xi'an, P. R. China.
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| |
Collapse
|
29
|
Deng WJ, Liu S, Lin H, Zhao KX, Bai XY, Zhao KQ, Hu P, Wang BQ, Monobe H, Donnio B. Ditriphenylenothiophene butterfly-shape liquid crystals. The influence of polyarene core topology on self-organization, fluorescence and photoconductivity. NEW J CHEM 2022. [DOI: 10.1039/d2nj00655c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two series of regio-isomeric mesomorphous, luminescent and conductive compounds, based on a ditriphenylenothiophene core (α/β-DTPT), were successfully synthesized by the Suzuki–Miyaura cross-coupling/Scholl cyclo-dehydrogenation reactions tandem.
Collapse
Affiliation(s)
- Wen-Jing Deng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Shuai Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Hang Lin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ke-Xiao Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Xiao-Yan Bai
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Hirosato Monobe
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, 5638577, Japan
| | - Bertrand Donnio
- Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg (UMR 7504), Strasbourg, 67034, France
| |
Collapse
|
30
|
Monolayer and Bilayer Formation of Molecular 2D Networks Assembled at the Liquid/Solid Interfaces by Solution-Based Drop-Cast Method. Molecules 2021; 26:molecules26247707. [PMID: 34946789 PMCID: PMC8706512 DOI: 10.3390/molecules26247707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022] Open
Abstract
In recent years, extending self-assembled structures from two-dimensions (2D) to three-dimensions (3D) has been a paradigm in surface supramolecular chemistry and contemporary nanotechnology. Using organic molecules of p-terphenyl-3,5,3′,5′-tetracarboxylic acid (TPTC), and scanning tunneling microscopy (STM), we present a simple route, that is the control of the solute solubility in a sample solution, to achieve the vertical growth of supramolecular self-assemblies, which would otherwise form monolayers at the organic solvent/graphite interface. Presumably, the bilayer formations were based on π-conjugated overlapped molecular dimers that worked as nuclei to induce the yielding of the second layer. We also tested other molecules, including trimesic acid (TMA) and 1,3,5-tris(4-carboxyphenyl)-benzene (BTB), as well as the further application of our methodology, demonstrating the facile preparation of layered assemblies.
Collapse
|
31
|
Herperger KR, Krumland J, Cocchi C. Laser-Induced Electronic and Vibronic Dynamics in the Pyrene Molecule and Its Cation. J Phys Chem A 2021; 125:9619-9631. [PMID: 34714646 DOI: 10.1021/acs.jpca.1c06538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Among polycyclic aromatic hydrocarbons, pyrene is widely used as an optical probe thanks to its peculiar ultraviolet absorption and infrared emission features. Interestingly, this molecule is also an abundant component of the interstellar medium, where it is detected via its unique spectral fingerprints. In this work, we present a comprehensive first-principles study on the electronic and vibrational response of pyrene and its cation to ultrafast, coherent pulses in resonance with their optically active excitations in the ultraviolet region. The analysis of molecular symmetries, electronic structure, and linear optical spectra is used to interpret transient absorption spectra and kinetic energy spectral densities computed for the systems excited by ultrashort laser fields. By disentangling the effects of the electronic and vibrational dynamics via ad hoc simulations with stationary and moving ions, and, in specific cases, with the aid of auxiliary model systems, we rationalize that the nuclear motion is mainly harmonic in the neutral species, while strong anharmonic oscillations emerge in the cation, driven by electronic coherence. Our results provide additional insights into the ultrafast vibronic dynamics of pyrene and related compounds and set the stage for future investigations on more complex carbon-conjugated molecules.
Collapse
Affiliation(s)
- Katherine R Herperger
- Department of Physics, University of Ottawa, Ottawa ON K1N 6N5, Canada.,Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Jannis Krumland
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Caterina Cocchi
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany.,Institute of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
32
|
Aracena A, Rezende MC, García M, Muñoz-Becerra K, Wrighton-Araneda K, Valdebenito C, Celis F, Vásquez O. Alkylated Benzodithienoquinolizinium Salts as Possible Non-Fullerene Organic N-Type Semiconductors: An Experimental and Theoretical Study. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6239. [PMID: 34771765 PMCID: PMC8584425 DOI: 10.3390/ma14216239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
Three photobicyclized benzodithienoquinolizinium tetrafluoroborates (BPDTQBF4) were prepared and evaluated by UV-Vis and fluorescence spectral, electrochemical analysis, and by theoretical calculations as possible organic n-type semiconductors. Evaluation and comparison of their LUMO levels, HOMO-LUMO energy gaps as monomeric and π-stacked dimers with those of other materials, suggest their potential as organic n-type semiconductors. Calculations of their relative charge carrier mobilities confirmed this potential for one derivative with a long (C-14) alkyl chain appended to the polycyclic planar π-system.
Collapse
Affiliation(s)
- Andrés Aracena
- Instituto de Ciencias Naturales, Universidad de las Américas, Manuel Montt 948, Santiago 7500000, Chile
| | - Marcos Caroli Rezende
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile;
| | - Macarena García
- Laboratorio de Procesos Fotónicos y Electroquímicos, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2340000, Chile; (M.G.); (F.C.)
| | - Karina Muñoz-Becerra
- Dirección de Investigación y Postgrado, Universidad de Aconcagua, Pedro de Villagra 2265, Santiago 7630000, Chile;
| | - Kerry Wrighton-Araneda
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, Santiago 8940577, Chile;
| | - Cristian Valdebenito
- Centro Integrativo de Química y Biología Aplicada (CIBQA), Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago 8320000, Chile;
| | - Freddy Celis
- Laboratorio de Procesos Fotónicos y Electroquímicos, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2340000, Chile; (M.G.); (F.C.)
| | - Octavio Vásquez
- Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8320000, Chile;
| |
Collapse
|
33
|
Li J, Lv J, Hao YC, Chen LW, Zuo Y, Liu Y, Li S, Zhang F, Deng F, Yin AX, Zhou J, Li P, Wang B. Nanoporous Graphene via a Pressing Organization Calcination Strategy for Highly Efficient Electrocatalytic Hydrogen Peroxide Generation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47478-47487. [PMID: 34601863 DOI: 10.1021/acsami.1c11673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoporous graphenes (NPGs) have recently attracted huge attention owing to their designable structures and diverse properties. Many important properties of NPGs are determined by their structural regularity and homogeneity. The mass production of NPGs with periodic well-defined pore structures under a solvent-free green synthesis poses a great challenge and is largely unexplored. A facile synthetic strategy of NPGs via pressing organization calcination (POC) of readily available halogenated polycyclic aromatic hydrocarbons is developed. The gram-scale synthesized NPGs have ordered structures and possess well-defined nanopores, which can be easily exfoliated to few layers and oxidized in controllable approaches. After being decorated with oxygen species, the oxidized NPGs with tunable catalytic centers exhibit high activity, selectivity, and stability toward electrochemical hydrogen peroxide generation.
Collapse
Affiliation(s)
- Jiani Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianning Lv
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yu-Chen Hao
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Li-Wei Chen
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yiming Zuo
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanze Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shuai Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fang Zhang
- Analysis and Testing Center Department, Beijing Institute of Technology, Beijing 100081, China
| | - Fang Deng
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - An-Xiang Yin
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Junwen Zhou
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Pengfei Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250300, China
| |
Collapse
|
34
|
Bujosa S, Greciano EE, Martínez MA, Sánchez L, Soberats B. Unveiling the Role of Hydrogen Bonds in Luminescent N-Annulated Perylene Liquid Crystals. Chemistry 2021; 27:14282-14286. [PMID: 34323342 PMCID: PMC8596826 DOI: 10.1002/chem.202102446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 12/26/2022]
Abstract
We report the liquid-crystalline (LC) and luminescent properties of a series of N-annulated perylenes (1-4) in whose molecular structures amide and ester groups alternate. We found that the LC properties of these compounds not only depend on the number of hydrogen-bonding units, but also on the relative position of the amide linkers in the molecule. The absence of amide groups in compound 1 leads to no LC properties, whereas four amide groups induce the formation of a wide temperature range columnar hexagonal phase in compound 4. Remarkably, compound 3, with two amide groups in the inner part of the structure, stabilizes the columnar LC phases better than its structural isomer 2, with the amide groups in the outer part of the molecule. Similarly, we found that only compounds 1 and 2, which have no hydrogen bonding units in the inner part of the molecule, exhibit luminescence vapochromism upon exposure to organic solvent vapors.
Collapse
Affiliation(s)
- Sergi Bujosa
- Department of ChemistryUniversitat de les Illes BalearsCra. Valldemossa, Km. 7.507122Palma de MallorcaSpain
| | - Elisa E. Greciano
- Departamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de Madrid Ciudad Universitaria, s/n28040MadridSpain
| | - Manuel A. Martínez
- Departamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de Madrid Ciudad Universitaria, s/n28040MadridSpain
| | - Luis Sánchez
- Departamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de Madrid Ciudad Universitaria, s/n28040MadridSpain
| | - Bartolome Soberats
- Department of ChemistryUniversitat de les Illes BalearsCra. Valldemossa, Km. 7.507122Palma de MallorcaSpain
| |
Collapse
|
35
|
Vadivel M, Singh S, Singh DP, Raghunathan VA, Kumar S. Ambipolar Charge Transport Properties of Naphthophenanthridine Discotic Liquid Crystals. J Phys Chem B 2021; 125:10364-10372. [PMID: 34482689 DOI: 10.1021/acs.jpcb.1c06009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of novel naphthophenanthridine derivatives are synthesized via N-annulation of hexabutoxytriphenylene-1-amine with various aliphatic aldehydes through the Pictet-Spengler reaction. The synthesized derivatives have been found to self-assemble into a columnar hexagonal mesophase over a wide temperature range, as validated through polarized optical microscopy, differential scanning calorimetry and X-ray diffraction experiments. The photophysical properties of these compounds were studied using UV-visible and emission spectroscopy. The synthesized compounds exhibit ambipolar charge transport, showing temperature-independent electron and hole mobility on the order of 3 × 10-4 cm2/V s, as evaluated by the time-of-flight technique. These novel N-annulated derivatives can be of immense potential toward semiconducting applications of self-assembling supramolecular systems.
Collapse
Affiliation(s)
- Marichandran Vadivel
- Soft Condensed Matter Group, Raman Research Institute, C.V.Raman Avenue, Bengaluru 560080, India
| | - Shikha Singh
- Soft Condensed Matter Group, Raman Research Institute, C.V.Raman Avenue, Bengaluru 560080, India
| | - Dharmendra Pratap Singh
- Université du Littoral Côte d'Opale, UR 4476, UDSMM, Unité de Dynamique et Structure des Matériaux Moléculaires, Calais F-62228, France
| | - V A Raghunathan
- Soft Condensed Matter Group, Raman Research Institute, C.V.Raman Avenue, Bengaluru 560080, India
| | - Sandeep Kumar
- Soft Condensed Matter Group, Raman Research Institute, C.V.Raman Avenue, Bengaluru 560080, India.,Department of Chemistry, Nitte Meenakshi Institute of Technology (NMIT), Yelahanka, Bengaluru 560064, India
| |
Collapse
|
36
|
Yuan W, Wang C, Wu M, Zhang Z, Chen Z, Liu M, Xie T, He W, Li L, Wang F, Chen Y. Supramolecular Polymerization of C3-Symmetric, Triphenylene-Cored Aza-Polycyclic Aromatic Hydrocarbons with Excellent and Switchable Circularly Polarized Luminescence Performance. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Department of Chemistry, Institute of Molecular Plus, Tianjin University, Tianjin 300354, P. R. China
| | - Cong Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mengjiao Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Department of Chemistry, Institute of Molecular Plus, Tianjin University, Tianjin 300354, P. R. China
| | - Zidan Zhang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ze Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mingyang Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Titi Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Department of Chemistry, Institute of Molecular Plus, Tianjin University, Tianjin 300354, P. R. China
| | - Weiye He
- Department of Chemistry, Institute of Molecular Plus, Tianjin University, Tianjin 300354, P. R. China
| | - Lin Li
- Department of Chemistry, Institute of Molecular Plus, Tianjin University, Tianjin 300354, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yulan Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Department of Chemistry, Institute of Molecular Plus, Tianjin University, Tianjin 300354, P. R. China
| |
Collapse
|
37
|
Sobczak K, Turczyniak-Surdacka S, Lewandowski W, Baginski M, Tupikowska M, González-Rubio G, Wójcik M, Carlsson A, Donten M. STEM Tomography of Au Helical Assemblies. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 28:1-5. [PMID: 34169809 DOI: 10.1017/s1431927621012009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Composite, helical nanostructures formed using cooperative interactions of liquid crystals and Au nanoparticles were studied using a scanning transmission electron microscopy (STEM) mode. The investigated helical assemblies exhibit long-range hierarchical order across length scales, as a result of the crystallization (freezing) directed growth mechanism of nanoparticle-coated twisted nanoribbons and their ability to form organized bundles. Here, STEM methods were used to reproduce the 3D structure of the Au nanoparticle double helix.
Collapse
Affiliation(s)
- Kamil Sobczak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089Warsaw, Poland
| | - Sylwia Turczyniak-Surdacka
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089Warsaw, Poland
| | - Wiktor Lewandowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093Warsaw, Poland
| | - Maciej Baginski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093Warsaw, Poland
| | - Martyna Tupikowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093Warsaw, Poland
| | | | - Michał Wójcik
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093Warsaw, Poland
| | - Anna Carlsson
- Thermo Fisher Scientific, Materials & Structural Analysis, Eindhoven, The Netherlands
| | - Mikołaj Donten
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093Warsaw, Poland
| |
Collapse
|
38
|
di Nunzio MR, Hisaki I, Douhal A. HOFs under light: Relevance to photon-based science and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100418] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Pavithrakumar M, Krishnan S, Senthilkumar K. Charge Transport and Optical Absorption Properties of Dibenzocoronene Tetracarboxdiimide Based Liquid Crystalline Molecules: A Theoretical Study. J Phys Chem A 2021; 125:3852-3862. [PMID: 33938734 DOI: 10.1021/acs.jpca.1c00790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structure, optical absorption, and charge transport properties of dibenzocoronene tetracarboxdiimide (DCDI) based molecules were studied using electronic structure calculations. Based on the optimized neutral, cationic, and anionic geometries the ionized state properties, such as ionization potential, electron affinity, hole extraction potential, electron extraction potentials, and reorganization energy, were calculated. On the basis of the ground state geometry of the studied molecules, the absorption spectra were calculated using the time-dependent density functional theory (TDDFT) method at the PBE0/def-TZVP level of theory. It has been observed that the substitution of different functional groups significantly alters the absorption spectra of DCDI. The methoxy- (OCH3-) substituted DCDI molecule has a maximum absorption wavelength of 529 nm. The charge transport parameters, such as the charge transfer integral, spatial overlap integral, and the site energy, are calculated directly from the Kohn-Sham matrix elements. The reorganization energy for the presence of excess positive and negative charges and the charge transfer rate calculated from Marcus' theory were used to find the mobility of charge carriers. The computed results show that the mobility of charge carriers is strongly influenced by the functional groups present on the DCDI molecule. The effect of intermolecular structural fluctuations on charge transport properties was studied through molecular dynamics and Monte Carlo simulations based on the polaron hopping mechanism. The calculated charge carrier mobility shows that the cyano- (CN-) substituted DCDI molecules are having n-type semiconducting property while, methoxy- (OCH3-) and thiol- (SH-) substituted DCDI molecules exhibit ambipolar semiconducting properties.
Collapse
Affiliation(s)
- M Pavithrakumar
- Department of Physics, Bharathiar University, Coimbatore-641 046, India
| | - S Krishnan
- Department of Physics, Bharathiar University, Coimbatore-641 046, India
| | - K Senthilkumar
- Department of Physics, Bharathiar University, Coimbatore-641 046, India
| |
Collapse
|
40
|
Benny A, Ramakrishnan R, Hariharan M. Mutually exclusive hole and electron transfer coupling in cross stacked acenes. Chem Sci 2021; 12:5064-5072. [PMID: 35356382 PMCID: PMC8895660 DOI: 10.1039/d1sc00520k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 01/05/2023] Open
Abstract
The topology of frontier molecular orbitals (FMOs) induces highly sensitive charge transfer coupling with variation in the intermolecular arrangement. A consistent optoelectronic property correlated to a specific aggregate architecture independent of the nature of the monomer is a rare phenomenon. Our theoretical investigation on stacked dimeric systems of linear [n]acenes (n = 2-5) and selected non-linear acenes with a D2h point group reveals that the Greek cross (+) stacked orientation, irrespective of the molecular candidate, exhibits mutually exclusive hole and electron transfer couplings. The deactivation of either hole or electron transfer coupling is a consequence of the zero inter-orbital overlap between the highest occupied molecular orbitals (HOMOs) or lowest unoccupied molecular orbitals (LUMOs) of the monomers possessing gerade symmetry. In the Greek cross (+) stacked alignment, the (4n + 2) π-electronic acene systems with an odd number of benzenoids exhibit exclusive electron transfer coupling, while the even numbered acenes exhibit selective hole transfer coupling. The trend is reversed for representative 4n π-electronic acene systems. The effect of mutually exclusive charge transfer coupling in the hopping regime of charge transport was evaluated using semiclassical Marcus theory, and selective charge carrier mobility was exhibited by the Greek cross (+) stacks of the considered acene candidates. Additionally, the characteristic charge transfer coupling of the orthogonal acene stacks resulted in negligible short-range exciton coupling, inciting null exciton splitting at short interplanar distances. Engineering chromophores in precise angular orientations ensuring characteristic emergent properties can have tremendous potential in the rational design of advanced optoelectronic materials.
Collapse
Affiliation(s)
- Alfy Benny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram Kerala 695551 India
| | - Remya Ramakrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram Kerala 695551 India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
41
|
Huang S, Yu H, Li Q. Supramolecular Chirality Transfer toward Chiral Aggregation: Asymmetric Hierarchical Self-Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002132. [PMID: 33898167 PMCID: PMC8061372 DOI: 10.1002/advs.202002132] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/21/2020] [Indexed: 05/21/2023]
Abstract
Self-assembly, as a typical bottom-up strategy for the fabrication of functional materials, has been applied to fabricate chiral materials with subtle chiral nanostructures. The chiral nanostructures exhibit great potential in asymmetric catalysis, chiral sensing, chiral electronics, photonics, and even the realization of several biological functions. According to existing studies, the supramolecular chirality transfer process combined with hierarchical self-assembly plays a vital role in the fabrication of multiscale chiral structures. This progress report focuses on the hierarchical self-assembly of chiral or achiral molecules that aggregate with asymmetric spatial structures such as twisted bands, helices, and superhelices in different environments. Herein, recent studies on the chirality transfer induced self-assembly based on a variety of supramolecular interactions are summarized. In addition, the influence of different environments and the states of systems including solutions, condensed states, gel systems, interfaces on the asymmetric hierarchical self-assembly, and the expression of chirality are explored. Moreover, both the driving forces that facilitate chiral bias and the supramolecular interactions that play an important role in the expression, transfer, and amplification of the chiral sense are correspondingly discussed.
Collapse
Affiliation(s)
- Shuai Huang
- School of Materials Science and EngineeringKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationPeking UniversityBeijing100871China
- Institute of Advanced MaterialsSchool of Chemistry and Chemical EngineeringSoutheast UniversityNanjingJiangsu Province211189China
| | - Haifeng Yu
- School of Materials Science and EngineeringKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationPeking UniversityBeijing100871China
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary ProgramKent State UniversityKentOH44242USA
| |
Collapse
|
42
|
Abstract
Buckybowls have concave and convex surfaces with distinct π-electron cloud distribution, and consequently they show unique structural and electronic features as compared to planar aromatic polycycles. Doping the π-framework of buckybowls with heteroatoms is an efficient scheme to tailor inherent properties, because the nature of heteroatoms plays a pivotal role in the structural and electronic characteristics of the resulting hetera-buckybowls. The design, synthesis, and derivatization of hetera-buckybowls open an avenue for obtaining fascinating organic entities not only of fundamental importance but also of promising applications in optoelectronics. In this review, we summarize the advances in hetera-buckybowl chemistry, particularly the synthetic strategies toward these scaffolds.
Collapse
Affiliation(s)
- Wenbo Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Gansu Province, China.
| | | |
Collapse
|
43
|
Bialas D, Kirchner E, Röhr MIS, Würthner F. Perspectives in Dye Chemistry: A Rational Approach toward Functional Materials by Understanding the Aggregate State. J Am Chem Soc 2021; 143:4500-4518. [DOI: 10.1021/jacs.0c13245] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David Bialas
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Eva Kirchner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Merle I. S. Röhr
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
44
|
Zhang J, Tang M, Fu Y, Low K, Ma J, Yang L, Weigand JJ, Liu J, Yam VW, Feng X. One-Pot Synthesis of Boron-Doped Polycyclic Aromatic Hydrocarbons via 1,4-Boron Migration. Angew Chem Int Ed Engl 2021; 60:2833-2838. [PMID: 33112494 PMCID: PMC7898796 DOI: 10.1002/anie.202011237] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 11/16/2022]
Abstract
Herein, we demonstrate a novel one-pot synthetic method towards a series of boron-doped polycyclic aromatic hydrocarbons (B-PAHs, 1 a-1 o), including hitherto unknown B-doped zethrene derivatives, from ortho-aryl substituted diarylalkynes with high atom efficiency and broad substrate scopes. A reaction mechanism is proposed based on the experimental investigation together with the theoretical calculations, which involves a unique 1,4-boron migration process. The resultant benchtop-stable B-PAHs are thoroughly investigated by X-ray crystallography, cyclic voltammetry, UV/Vis absorption, and fluorescence spectroscopies. The blue and green organic light-emitting diode (OLED) devices based on 1 f and 1 k are further fabricated, demonstrating the promising application potential of B-PAHs in organic optoelectronics.
Collapse
Affiliation(s)
- Jin‐Jiang Zhang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Man‐Chung Tang
- Institute of Molecular Functional Materials and Department of ChemistryThe University of Hong KongRokfulam RoadHong KongP. R. China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Kam‐Hung Low
- Institute of Molecular Functional Materials and Department of ChemistryThe University of Hong KongRokfulam RoadHong KongP. R. China
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Jan J. Weigand
- Chair of Inorganic Molecular Chemistry & Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Junzhi Liu
- Institute of Molecular Functional Materials and Department of ChemistryThe University of Hong KongRokfulam RoadHong KongP. R. China
- State Key Laboratory of Synthetic Chemistry and Department of ChemistryThe University of Hong KongRokfulam RoadHong KongP. R. China
| | - Vivian Wing‐Wah Yam
- Institute of Molecular Functional Materials and Department of ChemistryThe University of Hong KongRokfulam RoadHong KongP. R. China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| |
Collapse
|
45
|
Termine R, Golemme A. Charge Mobility in Discotic Liquid Crystals. Int J Mol Sci 2021; 22:E877. [PMID: 33467214 PMCID: PMC7830985 DOI: 10.3390/ijms22020877] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Discotic (disk-shaped) molecules or molecular aggregates may form, within a certain temperature range, partially ordered phases, known as discotic liquid crystals, which have been extensively studied in the recent past. On the one hand, this interest was prompted by the fact that they represent models for testing energy and charge transport theories in organic materials. However, their long-range self-assembling properties, potential low cost, ease of processability with a variety of solvents and the relative ease of tailoring their properties via chemical synthesis, drove the attention of researchers also towards the exploitation of their semiconducting properties in organic electronic devices. This review covers recent research on the charge transport properties of discotic mesophases, starting with an introduction to their phase structure, followed by an overview of the models used to describe charge mobility in organic substances in general and in these systems in particular, and by the description of the techniques most commonly used to measure their charge mobility. The reader already familiar or not interested in such details can easily skip these sections and refer to the core section of this work, focusing on the most recent and significant results regarding charge mobility in discotic liquid crystals.
Collapse
Affiliation(s)
- Roberto Termine
- LASCAMM CR-INSTM, CNR-NANOTEC SS di Rende, Dipartimento di Fisica, Università Della Calabria, 87036 Rende, Italy;
| | | |
Collapse
|
46
|
Zhang J, Tang M, Fu Y, Low K, Ma J, Yang L, Weigand JJ, Liu J, Yam VW, Feng X. One‐Pot Synthesis of Boron‐Doped Polycyclic Aromatic Hydrocarbons via 1,4‐Boron Migration. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011237] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jin‐Jiang Zhang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Man‐Chung Tang
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Rokfulam Road Hong Kong P. R. China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Kam‐Hung Low
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Rokfulam Road Hong Kong P. R. China
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Jan J. Weigand
- Chair of Inorganic Molecular Chemistry & Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Junzhi Liu
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Rokfulam Road Hong Kong P. R. China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Rokfulam Road Hong Kong P. R. China
| | - Vivian Wing‐Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Rokfulam Road Hong Kong P. R. China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| |
Collapse
|
47
|
Clustering behaviour of polyaromatic compounds mimicking natural asphaltenes. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
|
49
|
Lijina MP, Benny A, Ramakrishnan R, Nair NG, Hariharan M. Exciton Isolation in Cross-Pentacene Architecture. J Am Chem Soc 2020; 142:17393-17402. [DOI: 10.1021/jacs.0c06016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- M. P. Lijina
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Alfy Benny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Remya Ramakrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Nanditha G. Nair
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
50
|
Nitrogen-doped graphene quantum dot-based sensing platform for metabolite detection. Mikrochim Acta 2020; 187:532. [PMID: 32864710 DOI: 10.1007/s00604-020-04484-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/05/2020] [Indexed: 01/02/2023]
Abstract
A novel fluorescent sensing platform based on nitrogen-doped graphene quantum dots (N-GQDs) is presented, which is able to detect various metabolites (cholesterol, glucose, lactate, and xanthine) rapidly, sensitively, and selectively. Hg2+ can attach on the surface of N-GQDs, leading to the quenching of N-GQD fluorescence. In the presence of cysteine (Cys), Hg2+ is released from N-GQDs and associates with Cys. Then, the fluorescence of N-GQDs is recovered. Hydrogen peroxide, resulting from the enzymatic oxidation of metabolites, can convert two molecules of Cys into one molecule of cystine, which cannot bind with Hg2+. So, the fluorescence of N-GQDs quenched again. For cholesterol, glucose, lactate, and xanthine, the limits of detection are 0.035 μmol/L, 0.025 μmol/L, 0.07 μmol/L, and 0.04 μmol/L, respectively, and the linear ranges are 1-12 μmol/L, 0.06-3 μmol/L, 0.2-70 μmol/L, and 0.12-17 μmol/L, respectively. The presented method was applied to quantify metabolites in human blood samples with satisfactory results. Graphical abstract.
Collapse
|