1
|
Marshall LJ, Wallace M, Mahmoudi N, Ciccone G, Wilson C, Vassalli M, Adams DJ. Hierarchical Composite Self-Sorted Supramolecular Gel Noodles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211277. [PMID: 36720202 PMCID: PMC11475401 DOI: 10.1002/adma.202211277] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Indexed: 05/17/2023]
Abstract
Multicomponent supramolecular systems can be used to achieve different properties and new behaviors compared to their corresponding single component systems. Here, a two-component system is used, showing that a non-gelling component modifies the assembly of the gelling component, allowing access to co-assembled structures that cannot be formed from the gelling component alone. The systems are characterized across multiple length scales, from the molecular level by NMR and CD spectroscopy to the microstructure level by SANS and finally to the material level using nanoindentation and rheology. By exploiting the enhanced mechanical properties achieved through addition of the second component, multicomponent noodles are formed with superior mechanical properties to those formed by the single-component system. Furthermore, the non-gelling component can be triggered to crystallize within the multicomponent noodles, allowing the preparation of new types of hierarchical composite noodles.
Collapse
Affiliation(s)
| | - Matthew Wallace
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Najet Mahmoudi
- ISIS Neutron and Muon SourceRutherford Appleton LaboratoryDidcotOX11 0QXUK
| | - Giuseppe Ciccone
- Centre for the Cellular MicroenvironmentAdvanced Research CentreUniversity of GlasgowGlasgowG11 6EWUK
| | - Claire Wilson
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | - Massimo Vassalli
- Centre for the Cellular MicroenvironmentAdvanced Research CentreUniversity of GlasgowGlasgowG11 6EWUK
| | - Dave J. Adams
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
2
|
McDowall D, Walker M, Vassalli M, Cantini M, Khunti N, Edwards-Gayle CJC, Cowieson N, Adams DJ. Controlling the formation and alignment of low molecular weight gel 'noodles'. Chem Commun (Camb) 2021; 57:8782-8785. [PMID: 34378594 PMCID: PMC8447933 DOI: 10.1039/d1cc03378f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We show how to control the formation and alignment of gel ‘noodles’. Nanostructure alignment can be achieved reproducibly by extensional deformation as the filaments form. Using a spinning technique, very long and highly aligned filaments can be made. The Young's moduli of the gel noodles are similar to that of a bulk gel. By using two syringe pumps in a concentric flow setup, we show that a filament-in-filament morphology can be created. Extensional deformations induce nanostructure alignment in low molecular weight gel noodles during injection.![]()
Collapse
Affiliation(s)
- Daniel McDowall
- Joseph Black Building, University Place, Glasgow, G12 8QQ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Shahrokhinia A, Biswas P, Reuther JF. Orthogonal synthesis and modification of polymer materials. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210345] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ali Shahrokhinia
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts USA
| | - Priyanka Biswas
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts USA
| | - James F. Reuther
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts USA
| |
Collapse
|
4
|
Abstract
In only a few decades, lithium-ion batteries have revolutionized technologies, enabling the proliferation of portable devices and electric vehicles1, with substantial benefits for society. However, the rapid growth in technology has highlighted the ethical and environmental challenges of mining lithium, cobalt and other mineral ore resources, and the issues associated with the safe usage and non-hazardous disposal of batteries2. Only a small fraction of lithium-ion batteries are recycled, further exacerbating global material supply of strategic elements3-5. A potential alternative is to use organic-based redox-active materials6-8 to develop rechargeable batteries that originate from ethically sourced, sustainable materials and enable on-demand deconstruction and reconstruction. Making such batteries is challenging because the active materials must be stable during operation but degradable at end of life. Further, the degradation products should be either environmentally benign or recyclable for reconstruction into a new battery. Here we demonstrate a metal-free, polypeptide-based battery, in which viologens and nitroxide radicals are incorporated as redox-active groups along polypeptide backbones to function as anode and cathode materials, respectively. These redox-active polypeptides perform as active materials that are stable during battery operation and subsequently degrade on demand in acidic conditions to generate amino acids, other building blocks and degradation products. Such a polypeptide-based battery is a first step to addressing the need for alternative chemistries for green and sustainable batteries in a future circular economy.
Collapse
|
5
|
Shang Y, Wang Z, Zhang R, Li X, Zhang S, Gao J, Li X, Yang Z. A novel thermogel system of self-assembling peptides manipulated by enzymatic dephosphorylation. Chem Commun (Camb) 2019; 55:5123-5126. [DOI: 10.1039/c9cc00401g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel thermogel system of self-assembling peptides was created by enzyme-instructed self-assembly (EISA), which was useful for 3D cell culture.
Collapse
Affiliation(s)
- Yuna Shang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
| | - Zhongyan Wang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
| | - Renshu Zhang
- Department Institute of Biomedical Engineering
- School of Ophthalmology & Optometry and Eye Hospital
- Wenzhou Medical University
- Wenzhou 325027
- P. R. China
| | - Xinxin Li
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
| | - Shuhao Zhang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
| | - Xingyi Li
- Department Institute of Biomedical Engineering
- School of Ophthalmology & Optometry and Eye Hospital
- Wenzhou Medical University
- Wenzhou 325027
- P. R. China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
| |
Collapse
|
6
|
|
7
|
Nie Y, Zhi X, Du H, Yang J. Zn(OAc)₂-Catalyzing Ring-Opening Polymerization of N-Carboxyanhydrides for the Synthesis of Well-Defined Polypeptides. Molecules 2018; 23:E760. [PMID: 29587473 PMCID: PMC6017970 DOI: 10.3390/molecules23040760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 11/16/2022] Open
Abstract
Despite notable progress, the fabrication of well-defined polypeptides via controlled ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs) using convenient catalysts under mild conditions in a relatively short polymerization time is still challenging. Herein, an easily obtained catalyst system composed of zinc acetate and aniline was explored to mediate the fast ROP of γ-benzyl-l-glutamate-N-carboxyanhydride (BLG-NCA) monomer, to produce poly(γ-benzyl-l-glutamates) (PBLGs) with controllable molecular weights and narrow dispersity. Considering the excellent cooperative action of zinc acetate and a broad scope of aniline derivatives with different functional groups to control ROP of BLG-NCA, this method may offer a useful platform enabling the rapid generation of end-functionalized PBLG and block copolymers for numerous biomedical applications.
Collapse
Affiliation(s)
- Yanzhao Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinmei Zhi
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Zhang H, Nie Y, Zhi X, Du H, Yang J. Controlled ring-opening polymerization of α-amino acid N-carboxy-anhydride by frustrated amine/borane Lewis pairs. Chem Commun (Camb) 2018; 53:5155-5158. [PMID: 28439585 DOI: 10.1039/c7cc01440f] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this communication, we presented a novel strategy to control the ROP of α-amino acid N-carboxy-anhydrides using the concept of frustrated Lewis pairs (FLPs). An FLP intermediate containing an interaction between the bulky borane Lewis acid and the amine groups of the propagation chain end is essential to accomplish the polypeptide synthesis with well-defined structures under mild conditions.
Collapse
Affiliation(s)
- Hongyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | | | | | |
Collapse
|
9
|
Sung B, Kim MH. Liquid-crystalline nanoarchitectures for tissue engineering. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:205-215. [PMID: 29441265 PMCID: PMC5789436 DOI: 10.3762/bjnano.9.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/21/2017] [Indexed: 05/03/2023]
Abstract
Hierarchical orders are found throughout all levels of biosystems, from simple biopolymers, subcellular organelles, single cells, and macroscopic tissues to bulky organs. Especially, biological tissues and cells have long been known to exhibit liquid crystal (LC) orders or their structural analogues. Inspired by those native architectures, there has recently been increased interest in research for engineering nanobiomaterials by incorporating LC templates and scaffolds. In this review, we introduce and correlate diverse LC nanoarchitectures with their biological functionalities, in the context of tissue engineering applications. In particular, the tissue-mimicking LC materials with different LC phases and the regenerative potential of hard and soft tissues are summarized. In addition, the multifaceted aspects of LC architectures for developing tissue-engineered products are envisaged. Lastly, a perspective on the opportunities and challenges for applying LC nanoarchitectures in tissue engineering fields is discussed.
Collapse
Affiliation(s)
- Baeckkyoung Sung
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Min-Ho Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
10
|
Fan J, Borguet YP, Su L, Nguyen TP, Wang H, He X, Zou J, Wooley KL. Two-Dimensional Controlled Syntheses of Polypeptide Molecular Brushes via N-Carboxyanhydride Ring-Opening Polymerization and Ring-Opening Metathesis Polymerization. ACS Macro Lett 2017; 6:1031-1035. [PMID: 28966880 PMCID: PMC5617330 DOI: 10.1021/acsmacrolett.7b00603] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/07/2017] [Indexed: 11/29/2022]
Abstract
Well-defined molecular brushes bearing polypeptides as side chains were prepared by a "grafting through" synthetic strategy with two-dimensional control over the brush molecular architectures. By integrating N-carboxyanhydride ring-opening polymerizations (NCA ROPs) and ring-opening metathesis polymerizations (ROMPs), desirable segment lengths of polypeptide side chains and polynorbornene brush backbones were independently constructed in controlled manners. The N2 flow accelerated NCA ROP was utilized to prepare polypeptide macromonomers with different lengths initiated from a norbornene-based primary amine, and those macromonomers were then polymerized via ROMP. It was found that a mixture of dichloromethane and an ionic liquid were required as the solvent system to allow for construction of molecular brush polymers having densely-grafted peptide chains emanating from a polynorbornene backbone, poly(norbornene-graft-poly(β-benzyl-l-aspartate)) (P(NB-g-PBLA)). Highly efficient postpolymerization modification was achieved by aminolysis of PBLA side chains for facile installment of functional moieties onto the molecular brushes.
Collapse
Affiliation(s)
- Jingwei Fan
- Departments of Chemistry,
Chemical Engineering, Materials Science and Engineering, and Laboratory
for Synthetic-Biologic Interactions, Texas
A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842, United
States
| | - Yannick P. Borguet
- Departments of Chemistry,
Chemical Engineering, Materials Science and Engineering, and Laboratory
for Synthetic-Biologic Interactions, Texas
A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842, United
States
| | - Lu Su
- Departments of Chemistry,
Chemical Engineering, Materials Science and Engineering, and Laboratory
for Synthetic-Biologic Interactions, Texas
A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842, United
States
| | - Tan P. Nguyen
- Departments of Chemistry,
Chemical Engineering, Materials Science and Engineering, and Laboratory
for Synthetic-Biologic Interactions, Texas
A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842, United
States
| | - Hai Wang
- Departments of Chemistry,
Chemical Engineering, Materials Science and Engineering, and Laboratory
for Synthetic-Biologic Interactions, Texas
A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842, United
States
| | - Xun He
- Departments of Chemistry,
Chemical Engineering, Materials Science and Engineering, and Laboratory
for Synthetic-Biologic Interactions, Texas
A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842, United
States
| | - Jiong Zou
- Departments of Chemistry,
Chemical Engineering, Materials Science and Engineering, and Laboratory
for Synthetic-Biologic Interactions, Texas
A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842, United
States
| | - Karen L. Wooley
- Departments of Chemistry,
Chemical Engineering, Materials Science and Engineering, and Laboratory
for Synthetic-Biologic Interactions, Texas
A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842, United
States
| |
Collapse
|
11
|
Fan J, Li R, Wang H, He X, Nguyen TP, Letteri RA, Zou J, Wooley KL. Multi-responsive polypeptide hydrogels derived from N-carboxyanhydride terpolymerizations for delivery of nonsteroidal anti-inflammatory drugs. Org Biomol Chem 2017; 15:5145-5154. [PMID: 28574067 PMCID: PMC5551480 DOI: 10.1039/c7ob00931c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A polypeptide-based hydrogel system, when prepared from a diblock polymer with a ternary copolypeptide as one block, exhibited thermo-, mechano- and enzyme-responsive properties, which enabled the encapsulation of naproxen (Npx) during the sol-gel transition and its release in the gel state. Statistical terpolymerizations of l-alanine (Ala), glycine (Gly) and l-isoleucine (Ile) NCAs at a 1 : 1 : 1 feed ratio initiated by monomethoxy monoamino-terminated poly(ethylene glycol) afforded a series of methoxy poly(ethylene glycol)-block-poly(l-alanine-co-glycine-co-l-isoleucine) (mPEG-b-P(A-G-I)) block polymers. β-Sheets were the dominant secondary structures within the polypeptide segments, which facilitated a heat-induced sol-to-gel transition, resulting from the supramolecular assembly of β-sheets into nanofibrils. Deconstruction of the three-dimensional networks by mechanical force (sonication) triggered the reverse gel-to-sol transition. Certain enzymes could accelerate the breakdown of the hydrogel, as determined by in vitro gel weight loss profiles. The hydrogels were able to encapsulate and release Npx over 6 days, demonstrating the potential application of these polypeptide hydrogels as an injectable local delivery system for small molecule drugs.
Collapse
Affiliation(s)
- Jingwei Fan
- Departments of Chemistry, Chemical Engineering, Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Taxes A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX 77842, USA.
| | - Richen Li
- Departments of Chemistry, Chemical Engineering, Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Taxes A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX 77842, USA.
| | - Hai Wang
- Departments of Chemistry, Chemical Engineering, Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Taxes A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX 77842, USA.
| | - Xun He
- Departments of Chemistry, Chemical Engineering, Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Taxes A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX 77842, USA.
| | - Tan P Nguyen
- Departments of Chemistry, Chemical Engineering, Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Taxes A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX 77842, USA.
| | - Rachel A Letteri
- Departments of Chemistry, Chemical Engineering, Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Taxes A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX 77842, USA.
| | - Jiong Zou
- Departments of Chemistry, Chemical Engineering, Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Taxes A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX 77842, USA.
| | - Karen L Wooley
- Departments of Chemistry, Chemical Engineering, Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Taxes A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX 77842, USA.
| |
Collapse
|
12
|
de Souza JF, Pontes KDS, Alves TFR, Amaral VA, Rebelo MDA, Hausen MA, Chaud MV. Spotlight on Biomimetic Systems Based on Lyotropic Liquid Crystal. Molecules 2017; 22:E419. [PMID: 28272377 PMCID: PMC6155424 DOI: 10.3390/molecules22030419] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/28/2017] [Indexed: 12/31/2022] Open
Abstract
The behavior of lyotropic biomimetic systems in drug delivery was reviewed. These behaviors are influenced by drug properties, the initial water content, type of lyotropic liquid crystals (LLC), swell ability, drug loading rate, the presence of ions with higher or less kosmotropic or chaotropic force, and the electrostatic interaction between the drug and the lipid bilayers. The in vivo interaction between LCC-drugs, and the impact on the bioavailability of drugs, was reviewed. The LLC with a different architecture can be formed by the self-assembly of lipids in aqueous medium, and can be tuned by the structures and physical properties of the emulsion. These LLC lamellar phase, cubic phase, and hexagonal phase, possess fascinating viscoelastic properties, which make them useful as a dispersion technology, and a highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix for drug delivery. In addition, the biodegradable and biocompatible nature of lipids demonstrates a minimum toxicity and thus, they are used for various routes of administration. This review is not intended to provide a comprehensive overview, but focuses on the advantages over non modified conventional materials and LLC biomimetic properties.
Collapse
Affiliation(s)
- Juliana F de Souza
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba (UNISO), Sorocaba, SP 18078-005, Brazil.
| | - Katiusca da S Pontes
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba (UNISO), Sorocaba, SP 18078-005, Brazil.
| | - Thais F R Alves
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba (UNISO), Sorocaba, SP 18078-005, Brazil.
| | - Venâncio A Amaral
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba (UNISO), Sorocaba, SP 18078-005, Brazil.
| | - Márcia de A Rebelo
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba (UNISO), Sorocaba, SP 18078-005, Brazil.
| | - Moema A Hausen
- Laboratory of Post-Graduate Program in Biotechnology and Environmental Monitoring (PPGBMA), University of São Carlos (UFSCAR), Sorocaba, SP 18052-780, Brazil.
- Laboratory of Biomaterials (LABIOMAT), Pontificial University Catholic (PUC), Sorocaba, SP 18030-070, Brazil.
| | - Marco V Chaud
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba (UNISO), Sorocaba, SP 18078-005, Brazil.
| |
Collapse
|
13
|
Mohamed MG, Tu JH, Huang SH, Chiang YW, Kuo SW. Hydrogen bonding interactions affect the hierarchical self-assembly and secondary structures of comb-like polypeptide supramolecular complexes displaying photoresponsive behavior. RSC Adv 2016. [DOI: 10.1039/c6ra07907e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hierarchical lamellae-within-lamellae structure for the PTyr/AzoPy-C16 supramolecular complex, featuring long-range-ordered lamellae arising from the PTyr within lamellae arising from AzoPy-C16 units oriented in a perpendicular manner.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science
- Center for Functional Polymers and Supramolecular Materials
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Jia-Huei Tu
- Department of Materials and Optoelectronic Science
- Center for Functional Polymers and Supramolecular Materials
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Shih-Hung Huang
- Department of Materials and Optoelectronic Science
- Center for Functional Polymers and Supramolecular Materials
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Yeo-Wan Chiang
- Department of Materials and Optoelectronic Science
- Center for Functional Polymers and Supramolecular Materials
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science
- Center for Functional Polymers and Supramolecular Materials
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| |
Collapse
|
14
|
He X, Fan J, Wooley KL. Stimuli-Triggered Sol-Gel Transitions of Polypeptides Derived from α-Amino Acid N
-Carboxyanhydride (NCA) Polymerizations. Chem Asian J 2015; 11:437-47. [DOI: 10.1002/asia.201500957] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Xun He
- Departments of Chemistry, Chemical Engineering; and Materials Science and Engineering; Laboratory for Synthetic-Biologic Interactions; Texas A&M University; 3255 TAMU College Station TX 77842 USA
| | - Jingwei Fan
- Departments of Chemistry, Chemical Engineering; and Materials Science and Engineering; Laboratory for Synthetic-Biologic Interactions; Texas A&M University; 3255 TAMU College Station TX 77842 USA
| | - Karen L. Wooley
- Departments of Chemistry, Chemical Engineering; and Materials Science and Engineering; Laboratory for Synthetic-Biologic Interactions; Texas A&M University; 3255 TAMU College Station TX 77842 USA
| |
Collapse
|
15
|
Fan J, Li R, He X, Seetho K, Zhang F, Zou J, Wooley KL. Construction of a versatile and functional nanoparticle platform derived from a helical diblock copolypeptide-based biomimetic polymer. Polym Chem 2014; 5:3977-3981. [PMID: 25013459 PMCID: PMC4084918 DOI: 10.1039/c4py00628c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequential polymerization of N-carboxyanhydrides accelerated by nitrogen flow is utilized to generate a novel well-defined diblock copolypeptide (PDI = 1.08), with incorporation of alkyne-functionalized side-chain groups allowing for rapid and efficient thiol-yne click-type modifications, followed by self-assembly into nanopure water to construct a helical polypeptide-based versatile and functional nanoparticle platform.
Collapse
Affiliation(s)
- Jingwei Fan
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842 (USA)
| | - Richen Li
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842 (USA)
| | - Xun He
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842 (USA)
| | - Kellie Seetho
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842 (USA)
| | - Fuwu Zhang
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842 (USA)
| | - Jiong Zou
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842 (USA)
| | - Karen L. Wooley
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842 (USA)
| |
Collapse
|
16
|
Zou J, Fan J, He X, Zhang S, Wang H, Wooley KL. A facile glovebox-free strategy to significantly accelerate the syntheses of well-defined polypeptides by N-carboxyanhydride (NCA) ring opening polymerizations. Macromolecules 2013; 46:4223-4226. [PMID: 23794753 PMCID: PMC3686519 DOI: 10.1021/ma4007939] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A facile N2 flow-accelerated N-carboxyanhydride ring opening polymerization (NCA ROP) is demonstrated, herein, with rigorous kinetic studies to evaluate the methodology in detail. By using n-hexylamine as initiator and γ-benzyl-L-glutamate N-carboxyanhydride (BLG-NCA) as monomer, the NCA ROP via a normal amine mechanism (NAM) reached 90% conversion in 2 h under N2 flow at room temperature in a fume hood, much shorter than the time required for the same polymerization conducted in a glove box (14 h). The efficient removal of CO2 from the reaction by N2 flow drove the carbamic acid-amine equilibrium toward the formation of active nucleophilic amino termini and promoted polymerization. The detailed kinetic studies of the polymerization with different feed ratios and N2 flow rates were conducted, demonstrating the living feature of the NCA ROP and the tuning of the polymerization rate by simply changing the flow rate of N2. Maintenance of the reactivity of the amino ω-chain terminus and control during a subsequent polymerization were confirmed by performing chain extension reactions. The N2 flow method provides a new straightforward strategy to synthesize well-defined polypeptides with predictable molecular weights and narrow molecular weight distributions (PDI < 1.19).
Collapse
Affiliation(s)
| | | | - Xun He
- Department of Chemistry and Department of Chemical Engineering, Texas A&M University, P. O. Box 30012, 3255 TAMU, College Station, TX 77842 (USA)
| | - Shiyi Zhang
- Department of Chemistry and Department of Chemical Engineering, Texas A&M University, P. O. Box 30012, 3255 TAMU, College Station, TX 77842 (USA)
| | - Hai Wang
- Department of Chemistry and Department of Chemical Engineering, Texas A&M University, P. O. Box 30012, 3255 TAMU, College Station, TX 77842 (USA)
| | - Karen L. Wooley
- Department of Chemistry and Department of Chemical Engineering, Texas A&M University, P. O. Box 30012, 3255 TAMU, College Station, TX 77842 (USA)
| |
Collapse
|
17
|
Pooyan P, Kim IT, Jacob KI, Tannenbaum R, Garmestani H. Design of a cellulose-based nanocomposite as a potential polymeric scaffold in tissue engineering. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.01.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Moshaverinia A, Roohpour N, Chee WWL, Schricker SR. A review of polyelectrolyte modifications in conventional glass-ionomer dental cements. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm14880c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Dutta S, Shome A, Kar T, Das PK. Counterion-induced modulation in the antimicrobial activity and biocompatibility of amphiphilic hydrogelators: influence of in-situ-synthesized Ag-nanoparticle on the bactericidal property. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5000-5008. [PMID: 21446701 DOI: 10.1021/la104903z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The necessity for the development of new antimicrobial agents due to the ever increasing threat from microbes is causing a rapid surge in research. In the present work, we have shown the efficient antimicrobial activity of a series of amino acid-based hydrogelating amphiphiles through alteration in their counterion. The subtle variation in the counterion from chloride to various organic carboxylates had a significant impact on the antimicrobial properties with notable improvement in biocompatibility toward mammalian cells. Incorporation of a hydrophobic moiety in the counterion augmented the antibacterial property of the amphiphilic hydrogelator as minimum inhibitory concentration (MIC) against the Gram-positive bacterial strain, Bacillus subtilis decreased up to 5-fold (with respect to the chloride) in the case of n-hexanoate. These counterion-varied amphiphilic hydrogelators were also found to be effective against fungal strains (Candida albicans and Saccharomyces cerevisiae) where they exhibited MICs in the range of 1.0-12.5 μg/mL. To widen the spectrum of antibacterial activity, particularly against Gram-negative bacteria, silver nanoparticles (AgNPs) were synthesized in situ within the supramolecular assemblies of the carboxylate hydrogelators. These AgNP-amphiphile soft-nanocomposites showed bactericidal property against both Gram-positive and Gram-negative bacteria. Encouragingly, these carboxylate hydrogelators showed superior biocompatibility toward mammalian cells, HepG2 and NIH3T3, as compared to the chloride analogue at a concentration range of 10-200 μg/mL. Importantly, the AgNP composites also showed sufficient viability to mammalian cells. Because of the intrinsic hydrogelation ability of these counterion-varied amphiphiles, the resulting soft materials and the nanocomposites could find applications in biomedicine and tissue engineering.
Collapse
Affiliation(s)
- Sounak Dutta
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | | | | | | |
Collapse
|
20
|
Peptide-Based and Polypeptide-Based Hydrogels for Drug Delivery and Tissue Engineering. Top Curr Chem (Cham) 2011; 310:135-67. [DOI: 10.1007/128_2011_206] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Tao T, Glushenkov AM, Zhang C, Zhang H, Zhou D, Guo Z, Liu HK, Chen Q, Hu H, Chen Y. MoO3 nanoparticles dispersed uniformly in carbon matrix: a high capacity composite anode for Li-ion batteries. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm10220f] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|