1
|
Wang B, Wang T, Cui D, Li T, Xiao R. From biomass to power: High-performance reactor design for coking-resistant operation. BIORESOURCE TECHNOLOGY 2024; 416:131763. [PMID: 39515432 DOI: 10.1016/j.biortech.2024.131763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Biomass gasification coupled with solid oxide fuel cell (SOFC) technology utilizes the gas generated from biomass gasification directly as fuel for SOFC, thereby realizing power generation from solid waste. This technology combines the carbon-neutral feature of biomass with the high efficiency and low emissions of SOFC, making it a promising route for clean energy generation. However, biomass gasification syngas possesses a complex composition, including a high concentration of inert gases, which imposes higher requirements on SOFC. This study developed a multi-channel, hierarchical structural design based on the commercial NiO-yttria-stabilized zirconia (YSZ) material system, realizing high-performance power generation using biomass gasification syngas. The results showed that the combination of a unique structural design and an enhanced interface electrochemical reaction effectively mitigates the influence from inert composition dilution. When operating in gasification syngas with nearly 60 % inert components, the power density can reach 2.07 W·cm-2 (750 °C). In addition, due to the spatial separation of the inert support region and the electrochemically active region, the effect of controlling the position of carbon deposits was achieved, demonstrating 100 h stable operation with dry biomass gasification syngas. Hence, the combination of micro-tubular SOFC with distinctive structural regulation and biomass gasification exhibits promising prospects for further development.
Collapse
Affiliation(s)
- Bin Wang
- MOE Key Laboratory of Energy Thermal Conversion & Control, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Tong Wang
- MOE Key Laboratory of Energy Thermal Conversion & Control, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Dongxu Cui
- MOE Key Laboratory of Energy Thermal Conversion & Control, School of Energy and Environment, Southeast University, Nanjing 210096, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Li
- MOE Key Laboratory of Energy Thermal Conversion & Control, School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Rui Xiao
- MOE Key Laboratory of Energy Thermal Conversion & Control, School of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|
2
|
Li Z, Mao X, Feng D, Li M, Xu X, Luo Y, Zhuang L, Lin R, Zhu T, Liang F, Huang Z, Liu D, Yan Z, Du A, Shao Z, Zhu Z. Prediction of perovskite oxygen vacancies for oxygen electrocatalysis at different temperatures. Nat Commun 2024; 15:9318. [PMID: 39472575 PMCID: PMC11522418 DOI: 10.1038/s41467-024-53578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Efficient catalysts are imperative to accelerate the slow oxygen reaction kinetics for the development of emerging electrochemical energy systems ranging from room-temperature alkaline water electrolysis to high-temperature ceramic fuel cells. In this work, we reveal the role of cationic inductive interactions in predetermining the oxygen vacancy concentrations of 235 cobalt-based and 200 iron-based perovskite catalysts at different temperatures, and this trend can be well predicted from machine learning techniques based on the cationic lattice environment, requiring no heavy computational and experimental inputs. Our results further show that the catalytic activity of the perovskites is strongly correlated with their oxygen vacancy concentration and operating temperatures. We then provide a machine learning-guided route for developing oxygen electrocatalysts suitable for operation at different temperatures with time efficiency and good prediction accuracy.
Collapse
Affiliation(s)
- Zhiheng Li
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
- School of Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Xin Mao
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Australia
| | - Desheng Feng
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
| | - Mengran Li
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Australia.
| | - Xiaoyong Xu
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia.
- School of Chemical Engineering, The University of Adelaide, Adelaide, Australia.
| | - Yadan Luo
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.
| | - Linzhou Zhuang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
| | - Tianjiu Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
| | - Fengli Liang
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
| | - Zi Huang
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Dong Liu
- School of Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Zifeng Yan
- School of Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Australia
| | - Zongping Shao
- WASM: Minerals, Energy and Chemical Engineering, Curtin University, Perth, Australia.
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
3
|
Wang X, Zhang Q, Li X, Meng F, Chen S, Chen Z, Cong Y, Boyko T, Regier T, Guo EJ, Xiao Y, Li L, Li G, Feng S, Wu YA. Unraveling the Oxygen Vacancy-Performance Relationship in Perovskite Oxides at Atomic Precision via Precise Synthesis. J Am Chem Soc 2024. [PMID: 39443293 DOI: 10.1021/jacs.4c08643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Understanding the fundamental effect of the oxygen vacancy atomic structure in perovskite oxides on catalytic properties remains challenging due to diverse facets, surface sites, defects, etc. in traditional powder catalysts and the inherent structural complexity. Through quantitative synthesis of tetrahedral (LaCoO2.5-T), pyramidal (LaCoO2.5-P), and octahedral (LaCoO3) epitaxial thin films as model catalysts, we demonstrate the reactivity orders of active-site geometrical configurations in oxygen-deficient perovskites during the CO oxidation model reaction: CoO4 tetrahedron > CoO6 octahedron > CoO5 pyramid. Ambient-pressure Co L-edge and O K-edge XAS spectra clarify the dynamic evolutions of active-site electronic structures during realistic catalytic processes and highlight the important roles of defect geometrical structures. In addition, in situ XAS and resonant inelastic X-ray scattering spectra and density functional theory calculations directly reveal the nature of high reactivity for CoO4 sites and that the derived shallow-acceptor defect levels in the band structure facilitate the adsorption and activation of reactive gases, resulting in more than 23-fold enhancement for catalytic reaction rates than CoO5 sites.
Collapse
Affiliation(s)
- Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinbo Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Fanqi Meng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shengru Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zuolong Chen
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yingge Cong
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Teak Boyko
- Canadian Light Source, Saskatoon SK S7N 2 V3, Canada
| | - Tom Regier
- Canadian Light Source, Saskatoon SK S7N 2 V3, Canada
| | - Er-Jia Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Xiao
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Liping Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Guangshe Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
4
|
Song Y, Yi Y, Ran R, Zhou W, Wang W. Recent Advances in Barium Cobaltite-Based Perovskite Oxides as Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406627. [PMID: 39363828 DOI: 10.1002/smll.202406627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Solid oxide fuel cells (SOFCs) are considered as advanced energy conversion technologies due to the high efficiency, fuel flexibility, and all-solid structure. Nevertheless, their widespread applications are strongly hindered by the high operational temperatures, limited material selection choices, inferior long-term stability, and relatively high costs. Therefore, reducing operational temperatures of SOFCs to intermediate-temperature (IT, 500-800 °C) range can remarkably promote the practical applications by enabling the use of low-cost materials and enhancing the cell stability. Nevertheless, the conventional cathodes for high-temperature SOFCs display inferior electrocatalytic activity for oxygen reduction reaction (ORR) at reduced temperatures. Barium cobaltite (BaCoO3-δ)-based perovskite oxides are regarded as promising cathodes for IT-SOFCs because of the high free lattice volume and large oxygen vacancy content. However, BaCoO3-δ-based perovskite oxides suffer from poor structural stability, inferior thermal compatibility, and insufficient ionic conductivity. Herein, an in-time review about the recent advances in BaCoO3-δ-based cathodes for IT-SOFCs is presented by emphasizing the material design strategies including functional/selectively doping, deficiency control, and (nano)composite construction to enhance the ORR activity/durability and thermal compatibility. Finally, the currently existed challenges and future research trends are presented. This review will provide valuable insights for the development of BaCoO3-δ-based electrocatalysts for various energy conversion/storage technologies.
Collapse
Affiliation(s)
- Yufei Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yongning Yi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, P. R. China
| | - Ran Ran
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, P. R. China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, P. R. China
| | - Wei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, P. R. China
| |
Collapse
|
5
|
Shin Y, Poeppelmeier KR, Rondinelli JM. Informatics-Based Learning of Oxygen Vacancy Ordering Principles in Oxygen-Deficient Perovskites. Inorg Chem 2024; 63:12785-12802. [PMID: 38954760 DOI: 10.1021/acs.inorgchem.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Ordered oxygen vacancies (OOVs) in perovskites can exhibit long-range order and may be used to direct materials properties through modifications in electronic structures and broken symmetries. Based on the various vacancy patterns observed in previously known compounds, we explore the ordering principles of oxygen-deficient perovskite oxides with ABO2.5 stoichiometry to identify other OOV variants. We performed first-principles calculations to assess the OOV stability on a data set of 50 OOV structures generated from our bespoke algorithm. The algorithm employs uniform planar vacancy patterns on (111) pseudocubic perovskite layers and the approach proves effective for generating stable OOV patterns with minimal computational loads. We find as expected that the major factors determining the stability of OOV structures include coordination preferences of transition metals and elastic penalties resulting from the assemblies of polyhedra. Cooperative rotational modes of polyhedra within the OOV structures reduce elastic instabilities by optimizing the bond valence of A- and B cations. This finding explains the observed formation of vacancy channels along low-index crystallographic directions in prototypical OOV phases. The identified ordering principles enable us to devise other stable vacancy patterns with longer periodicity for targeted property design in yet to be synthesized compounds.
Collapse
Affiliation(s)
- Yongjin Shin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Kenneth R Poeppelmeier
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Jang I, S A Carneiro J, Crawford JO, Cho YJ, Parvin S, Gonzalez-Casamachin DA, Baltrusaitis J, Lively RP, Nikolla E. Electrocatalysis in Solid Oxide Fuel Cells and Electrolyzers. Chem Rev 2024; 124:8233-8306. [PMID: 38885684 DOI: 10.1021/acs.chemrev.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Interest in energy-to-X and X-to-energy (where X represents green hydrogen, carbon-based fuels, or ammonia) technologies has expanded the field of electrochemical conversion and storage. Solid oxide electrochemical cells (SOCs) are among the most promising technologies for these processes. Their unmatched conversion efficiencies result from favorable thermodynamics and kinetics at elevated operating temperatures (400-900 °C). These solid-state electrochemical systems exhibit flexibility in reversible operation between fuel cell and electrolysis modes and can efficiently utilize a variety of fuels. However, electrocatalytic materials at SOC electrodes remain nonoptimal for facilitating reversible operation and fuel flexibility. In this Review, we explore the diverse range of electrocatalytic materials utilized in oxygen-ion-conducting SOCs (O-SOCs) and proton-conducting SOCs (H-SOCs). We examine their electrochemical activity as a function of composition and structure across different electrochemical reactions to highlight characteristics that lead to optimal catalytic performance. Catalyst deactivation mechanisms under different operating conditions are discussed to assess the bottlenecks in performance. We conclude by providing guidelines for evaluating the electrochemical performance of electrode catalysts in SOCs and for designing effective catalysts to achieve flexibility in fuel usage and mode of operation.
Collapse
Affiliation(s)
- Inyoung Jang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Juliana S A Carneiro
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Joshua O Crawford
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Yoon Jin Cho
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sahanaz Parvin
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Diego A Gonzalez-Casamachin
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Ryan P Lively
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Eranda Nikolla
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Abdalla AM, Azad AT, Madian AB, Omeiza LA, Subramanian Y, Wei B, Taweekun J, Khairat Dawood MM, Azad AK. All-protonic fuel cell designs and developments fuelled by ammonia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46769-46789. [PMID: 38970631 DOI: 10.1007/s11356-024-34090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/19/2024] [Indexed: 07/08/2024]
Abstract
Ammonia is a gas that produces zero carbon emissions when used in energy storage systems. Hence, there is increasing interest for the application of ammonia as fuel in various energy storage devices, specifically solid oxide fuel cells (SOFCs), as it has the potential to be efficient and environmentally friendly. In addition, compared to other fuel cells, SOFCs fed with ammonia offer various benefits such as such as sustainability and safety. This review compares and contrasts the opportunities and challenges of ammonia fuel cell technologies and helps to analyze their working principles. The main goal of this review is to investigate the viability of an "all-protonic" fuel cell using ammonia fuel while also highlighting the key challenges and limitations of implementing such technology.
Collapse
Affiliation(s)
- Abdalla M Abdalla
- Mechanical Engineering Department, Faculty of Engineering, Suez Canal University, Ismailia, 41522, Egypt.
| | - Atia Tasfiah Azad
- School of Chemistry, University of St Andrews, St Andrews, ST, KY16 9, UK
| | - Adriel B Madian
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Lukman Ahmed Omeiza
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Yathavan Subramanian
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Bo Wei
- School of Physics, Harbin Institute of Technology, 92 West Dazhi Str., Harbin, 150001, China
| | - Juantakan Taweekun
- Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Prince of Songkla University, Hatyai, Songkhla, 90112, Thailand
| | | | - Abul K Azad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, 1410, Brunei Darussalam
| |
Collapse
|
8
|
Hesse F, da Silva I, Bos JWG. Oxygen Migration Pathways in Layered LnBaCo 2O 6-δ (Ln = La - Y) Perovskites. JACS AU 2024; 4:1538-1549. [PMID: 38665656 PMCID: PMC11040552 DOI: 10.1021/jacsau.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
Layered LnBaCo2O6-δ perovskites are important mixed ionic-electronic conductors, exhibiting outstanding catalytic properties for the oxygen evolution/reduction reaction. These phases exhibit considerable structural complexity, in particular, near room temperature, where a number of oxygen vacancy ordered superstructures are found. This study uses bond valence site energy calculations to demonstrate the key underlying structural features that favor facile ionic migration. BVSE calculations show that the 1D vacancy ordering for Ln = Sm-Tb could be beneficial at low temperatures as new pathways with reduced barriers emerge. By contrast, the 2D vacancy ordering for Ln = Dy and Y is not beneficial for ionic transport with the basic layered parent material having lower migration barriers. Overall, the key criterion for low migration barriers is an expanded ab plane, supported by Ba, coupled to a small Ln size. Hence, Ln = Y should be the best composition, but this is stymied by the low temperature 2D vacancy ordering and moderate temperature stability. The evolution of the oxygen cycling capability of these materials is also reported.
Collapse
Affiliation(s)
- Fabian Hesse
- Institute
of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Ivan da Silva
- ISIS
Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, U.K.
| | - Jan-Willem G. Bos
- EaStCHEM
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| |
Collapse
|
9
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
10
|
Zhao Z, Chen G, Escobar Cano G, Kißling PA, Stölting O, Breidenstein B, Polarz S, Bigall NC, Weidenkaff A, Feldhoff A. Multiplying Oxygen Permeability of a Ruddlesden-Popper Oxide by Orientation Control via Magnets. Angew Chem Int Ed Engl 2024; 63:e202312473. [PMID: 37987465 DOI: 10.1002/anie.202312473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Ruddlesden-Popper-type oxides exhibit remarkable chemical stability in comparison to perovskite oxides. However, they display lower oxygen permeability. We present an approach to overcome this trade-off by leveraging the anisotropic properties of Nd2 NiO4+δ . Its (a,b)-plane, having oxygen diffusion coefficient and surface exchange coefficient several orders of magnitude higher than its c-axis, can be aligned perpendicular to the gradient of oxygen partial pressure by a magnetic field (0.81 T). A stable and high oxygen flux of 1.40 mL min-1 cm-2 was achieved for at least 120 h at 1223 K by a textured asymmetric disk membrane with 1.0 mm thickness under the pure CO2 sweeping. Its excellent operational stability was also verified even at 1023 K in pure CO2 . These findings highlight the significant enhancement in oxygen permeation membrane performance achievable by adjusting the grain orientation. Consequently, Nd2 NiO4+δ emerges as a promising candidate for industrial applications in air separation, syngas production, and CO2 capture under harsh conditions.
Collapse
Affiliation(s)
- Zhijun Zhao
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3A, 30167, Hannover, Germany
| | - Guoxing Chen
- Fraunhofer Research Institution for Materials Recycling and Resource Strategies IWKS, Brentanostr. 2a, 63755, Alzenau, Germany
| | - Giamper Escobar Cano
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3A, 30167, Hannover, Germany
| | - Patrick A Kißling
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3A, 30167, Hannover, Germany
| | - Oliver Stölting
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | - Bernd Breidenstein
- Institute of Production Engineering and Machine Tools, Leibniz University Hannover, An der Universität 2, 30823, Garbsen, Germany
| | - Sebastian Polarz
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | - Nadja C Bigall
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3A, 30167, Hannover, Germany
| | - Anke Weidenkaff
- Fraunhofer Research Institution for Materials Recycling and Resource Strategies IWKS, Brentanostr. 2a, 63755, Alzenau, Germany
- Department of Materials and Earth Sciences, Technical University Darmstadt, Peter-Grünberg-Str. 2, 64287, Darmstadt, Germany
| | - Armin Feldhoff
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3A, 30167, Hannover, Germany
| |
Collapse
|
11
|
Zhu S, Fan J, Li Z, Wu J, Xiao M, Du P, Wang X, Jia L. Metal exsolution from perovskite-based anodes in solid oxide fuel cells. Chem Commun (Camb) 2024; 60:1062-1071. [PMID: 38167745 DOI: 10.1039/d3cc05688k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Solid oxide fuel cells (SOFCs) are highly efficient and environmentally friendly devices for converting fuel into electrical energy. In this regard, metal nanoparticles (NPs) loaded onto the anode oxide play a crucial role due to their exceptional catalytic activity. NPs synthesized through exsolution exhibit excellent dispersion and stability, garnering significant attention for comprehending the exsolution process mechanism and consequently improving synthesis effectiveness. This review presents recent advancements in the exsolution process, focusing on the influence of oxygen vacancies, A-site defects, lattice strain, and phase transformation on the variation of the octahedral crystal field in perovskites. Moreover, we offer insights into future research directions to further enhance our understanding of the mechanism and achieve significant exsolution of NPs on perovskites.
Collapse
Affiliation(s)
- Shasha Zhu
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Junde Fan
- Yueyang Yumeikang Biotechnology Co., Ltd., Yueyang, 414100, P. R. China
| | - Zongbao Li
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Jun Wu
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Mengqin Xiao
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Pengxuan Du
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Xin Wang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Lichao Jia
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
12
|
Liu Z, Shimada H. Visualization of the structural transformation of NiO/YSZ/BZY nanocomposite particles using in situ gas environmental transmission electron microscopy. NANOSCALE 2024; 16:1890-1896. [PMID: 38167724 DOI: 10.1039/d3nr04525k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
This study focused on investigating the dynamic structural transformations of spherical NiO/YSZ/BZY triple-phase nanocomposite particles, commonly employed for cermet anodes, during the hydrogen reduction reaction. We utilized both spherical aberration (Cs) corrected transmission electron microscopy (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) observation modes under a controlled gaseous environment. The environmental gas pressure was set to 1 atm (760 Torr), mirroring real-world conditions. To elucidate pre- and post-hydrogen reduction compositional alterations, we conducted elemental mapping using energy-dispersive X-ray spectroscopy (EDS). Our findings indicated that NiO nanoparticles underwent reduction to Ni particles upon heat treatments in an environment containing H2 gas. Significantly, this reduction of NiO led to the migration of Ni along the external surface of each composite particle, ultimately resulting in the agglomeration at the interparticle spaces among the three NiO/YSZ/BZY nanocomposite particles.
Collapse
Affiliation(s)
- Zheng Liu
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 4-205 Sakurazaka, Moriyama-ku, Nagoya, Aichi, 463-8560, Japan.
| | - Hiroyuki Shimada
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 4-205 Sakurazaka, Moriyama-ku, Nagoya, Aichi, 463-8560, Japan.
| |
Collapse
|
13
|
Hu F, Chen K, Ling Y, Huang Y, Zhao S, Wang S, Gui L, He B, Zhao L. Smart Dual-Exsolved Self-Assembled Anode Enables Efficient and Robust Methane-Fueled Solid Oxide Fuel Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306845. [PMID: 37985567 PMCID: PMC10787062 DOI: 10.1002/advs.202306845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Indexed: 11/22/2023]
Abstract
Perovskite oxides have emerged as alternative anode materials for hydrocarbon-fueled solid oxide fuel cells (SOFCs). Nevertheless, the sluggish kinetics for hydrocarbon conversion hinder their commercial applications. Herein, a novel dual-exsolved self-assembled anode for CH4 -fueled SOFCs is developed. The designed Ru@Ru-Sr2 Fe1.5 Mo0.5 O6-δ (SFM)/Ru-Gd0.1 Ce0.9 O2-δ (GDC) anode exhibits a unique hierarchical structure of nano-heterointerfaces exsolved on submicron skeletons. As a result, the Ru@Ru-SFM/Ru-GDC anode-based single cell achieves high peak power densities of 1.03 and 0.63 W cm-2 at 800 °C under humidified H2 and CH4 , surpassing most reported perovskite-based anodes. Moreover, this anode demonstrates negligible degradation over 200 h in humidified CH4 , indicating high resistance to carbon deposition. Density functional theory calculations reveal that the created metal-oxide heterointerfaces of Ru@Ru-SFM and Ru@Ru-GDC have higher intrinsic activities for CH4 conversion compared to pristine SFM. These findings highlight a viable design of the dual-exsolved self-assembled anode for efficient and robust hydrocarbon-fueled SOFCs.
Collapse
Affiliation(s)
- Feng Hu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Kongfa Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yihan Ling
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yonglong Huang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Sunce Zhao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Sijiao Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Liangqi Gui
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Beibei He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Zhejiang Institute, China University of Geosciences (Wuhan), Hangzhou, 311305, China
- Shenzhen Research Institute, China University of Geosciences, Shenzhen, 518000, China
| | - Ling Zhao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Zhejiang Institute, China University of Geosciences (Wuhan), Hangzhou, 311305, China
- Shenzhen Research Institute, China University of Geosciences, Shenzhen, 518000, China
| |
Collapse
|
14
|
Wang Z, Tan T, Du K, Zhang Q, Liu M, Yang C. A High-Entropy Layered Perovskite Coated with In Situ Exsolved Core-Shell CuFe@FeO x Nanoparticles for Efficient CO 2 Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2312119. [PMID: 38088211 DOI: 10.1002/adma.202312119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Indexed: 12/20/2023]
Abstract
Solid oxide electrolysis cells (SOECs) are promising energy conversion devices capable of efficiently transforming CO2 into CO, reducing CO2 emissions, and alleviating the greenhouse effect. However, the development of a suitable cathode material remains a critical challenge. Here a new SOEC cathode is reported for CO2 electrolysis consisting of high-entropy Pr0.8 Sr1.2 (CuFe)0.4 Mo0.2 Mn0.2 Nb0.2 O4-δ (HE-PSCFMMN) layered perovskite uniformly coated with in situ exsolved core-shell structured CuFe alloy@FeOx (CFA@FeO) nanoparticles. Single cells with the HE-PSCFMMN-CFA@FeO cathode exhibit a consistently high current density of 1.95 A cm-2 for CO2 reduction at 1.5 V while maintaining excellent stability for up to 200 h under 0.75 A cm-2 at 800 °C in pure CO2 . In situ X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations confirm that the exsolution of CFA@FeO nanoparticles introduces additional oxygen vacancies within HE-PSCFMMN substrate, acting as active reaction sites. More importantly, the abundant oxygen vacancies in FeOx shell, in contrast to conventional in situ exsolved nanoparticles, enable the extension of the triple-phase boundary (TPB), thereby enhancing the kinetics of CO2 adsorption, dissociation, and reduction.
Collapse
Affiliation(s)
- Ziming Wang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ting Tan
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ke Du
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Qimeng Zhang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Meilin Liu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Chenghao Yang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
15
|
Yang K, Lu Y, Hu Y, Xu Z, Zheng J, Chen H, Wang J, Yu Y, Zhang H, Liu Z, Lu Q. Differentiating Oxygen Exchange Reaction Mechanisms across Phase Boundaries. J Am Chem Soc 2023; 145:25806-25814. [PMID: 37971728 DOI: 10.1021/jacs.3c09693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Triggering phase transitions by controlling the anion stoichiometry is an effective method of tuning the electrocatalytic activity of the functional oxides. However, understanding the potential differences in the reaction mechanism(s) of different phases requires the accurate mapping of phase boundaries during the electrochemical reactions, which can be quite challenging. In this work, we have established a feasible electrochemical method based on the measurement of chemical capacitance to resolve the critical stoichiometry at phase boundaries under operando conditions. We select a simple binary oxide PrOx as a proof-of-principle model system, which shows excellent activity for high-temperature oxygen incorporation and evolution reactions (OIR/OER). We show that the phase transition can be sensitively probed by quantifying the chemical capacitance, which can be further used for differentiating the OIR/OER mechanisms across the phase boundary of PrOx. Therefore, our findings provide a new framework for exploring phase engineering as a tool for the design of electrocatalysts.
Collapse
Affiliation(s)
- Kaichuang Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Ying Lu
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Yang Hu
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Zihan Xu
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Jieping Zheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Haowen Chen
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Jingle Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Yi Yu
- School of Physical Science and Technology and Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Hui Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhi Liu
- School of Physical Science and Technology and Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Qiyang Lu
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
16
|
Liu J, Qi J, Yu W, Hu X, Qiao S, Shang J, Liu L, Zhao Z, Tang L, Zhang W. Nonreducing Ambient Atmosphere: Pulsed Electric Current Treatment of Co/Ni Doped Perovskite Oxides to Achieve Exsolution Enhanced Electrochemical Performance. J Phys Chem Lett 2023; 14:9690-9697. [PMID: 37874672 DOI: 10.1021/acs.jpclett.3c02413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Exsolution of metal nanoparticles (NPs) on the surface of perovskite oxides is a promising approach for developing advanced catalytic materials through a "bottom-up" design strategy. Under a nonreducing ambient atmosphere utilizing pulsed electric current (PEC) treatment to promote the exsolution of perovskite oxides effectively overcomes the limitations inherent in conventional high-temperature vapor phase reduction (HTVPR) in situ exsolution methods. This paper presents the successful synthesis of (La0.7Sr0.3)0.8Ti0.93Ni0.07O3 (LSTN) perovskite oxide and (La0.7Sr0.3)0.8Ti0.93Co0.07O3 (LSTC) perovskite oxide using the sol-gel method, followed by PEC treatment at 600 V, 3 Hz, and 90 s. Utilizing various characterization techniques to confirm that PEC treatment can promote the exsolution of Co and Ni NPs under a nonreducing ambient atmosphere, the results indicated that the exsolved perovskite oxides exhibited significantly improved electrochemical properties. Furthermore, compared to the LSTN-PEC, LSTC-PEC demonstrates a lower onset potential of 1.504 V, a Tafel slope of 87.16 mV dec-1, lower impedance, higher capacitance, superior catalytic activity, and long-term stability.
Collapse
Affiliation(s)
- Juntao Liu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Jingang Qi
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Wenwen Yu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Xin Hu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Sifan Qiao
- School of Materials Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Jian Shang
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Liang Liu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Zuofu Zhao
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Lidan Tang
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Wei Zhang
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
- School of Materials Science and Engineering, and Electror Microscopy Center, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
17
|
Rabia M, Elsayed AM, Abdallah Alnuwaiser M. Cr 2S 3-Cr 2O 3/Poly-2-aminobenzene-1-thiol as a Highly Photocatalytic Material for Green Hydrogen Generation from Sewage Water. MICROMACHINES 2023; 14:1567. [PMID: 37630103 PMCID: PMC10456251 DOI: 10.3390/mi14081567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023]
Abstract
This study highlights the utilization of the Cr2S3-Cr2O3/P2ABT nanocomposite photoelectrode for efficient and highly sensitive photon absorption, enabling the generation of green hydrogen through the production of hot electrons upon illumination. The nanocomposite is synthesized via a one-pot reaction using K2Cr2O7 and 2-aminobenzene-1-thiol monomer, and the presence of Cr2S3-Cr2O3 is confirmed by XRD and XPS analysis within the composite. The optical properties of the Cr2S3-Cr2O3/poly-2-aminobenzene-1-thiol composite exhibit wide spectral coverage from UV to IR, with a bandgap of 1.6 eV. The diverse morphological behavior observed in the composite correlates with its optical properties, with the cleft spherical particles of the pure polymer transforming into rod-like structures embedded within the polymer matrix. The generated hydrogen gas demonstrates an impressive efficiency of 40.5 mole/10.cm2.h through electrochemical testing. The current density (Jph) values are evaluated under different light frequencies using optical filters ranging from 730 to 340 nm, resulting in Jph values of 0.012 and 0.014 mA.cm-2, respectively. These findings present a promising avenue as green hydrogen for industrial applications, leveraging the potential of the Cr2S3-Cr2O3/P2ABT nanocomposite photoelectrode.
Collapse
Affiliation(s)
- Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Asmaa M. Elsayed
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Maha Abdallah Alnuwaiser
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
18
|
He J, Xu X, Li M, Zhou S, Zhou W. Recent advances in perovskite oxides for non-enzymatic electrochemical sensors: A review. Anal Chim Acta 2023; 1251:341007. [PMID: 36925293 DOI: 10.1016/j.aca.2023.341007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Non-enzymatic electrochemical sensors with significant advantages of high sensitivity, long-term stability, and excellent reproducibility, are one promising technology to solve many challenges, such as the detection of toxic substances and viruses. Among various materials, perovskite oxides have become a promising candidate for use in non-enzymatic electrochemical sensors because of their low cost, flexible structure, and high intrinsic catalytic activity. A comprehensive overview of the recent advances in perovskite oxides for non-enzymatic electrochemical sensors is provided, which includes the synthesis methods of nanostructured perovskites and the electrocatalytic mechanisms of perovskite catalysts. The better sensing performance of perovskite oxides is mainly due to the lattice O vacancies and superoxide oxygen ions (O22-/O-), which are generated by the transfer of lattice oxygen to adsorbed -OH and have performed excellent properties suitable for electrooxidation of analytes. However, the limited electron transfer kinetics, stability, and selectivity of perovskite oxides alone make perovskite oxides far from ready for scientific development. Therefore, composites of perovskite oxides with other materials like graphitic carbon, metals, metal compounds, conducting organics, and biomolecules are summarized. Furthermore, a brief section describing the future challenges and the corresponding recommendation is presented in this review.
Collapse
Affiliation(s)
- Juan He
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia.
| | - Meisheng Li
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China.
| | - Shouyong Zhou
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China.
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| |
Collapse
|
19
|
Wang Y, Wu C, Zhao S, Guo Z, Han M, Zhao T, Zu B, Du Q, Ni M, Jiao K. Boosting the performance and durability of heterogeneous electrodes for solid oxide electrochemical cells utilizing a data-driven powder-to-power framework. Sci Bull (Beijing) 2023; 68:516-527. [PMID: 36841731 DOI: 10.1016/j.scib.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023]
Abstract
Solid oxide electrochemical cells (SOCs) hold potential as a critical component in the future landscape of renewable energy storage and conversion systems. However, the commercialization of SOCs still requires further breakthroughs in new material development and engineering designs to achieve high performance and durability. In this study, a data-driven powder-to-power framework has been presented, fully digitizing the morphology evolution of heterogeneous electrodes from fabrication to long-term operation. This framework enables accurate performance prediction over the full life cycle. The intrinsic correlation between microstructural parameters and electrode durability is elucidated through parameter analysis. Rational control of the ion-conducting phase volume fraction can effectively suppress Ni coarsening and mitigate the excessive ohmic loss caused by Ni migration. The initial and degraded electrode performances are attributed to the interplay of multiple parameters. A practical optimization strategy to enhance the initial performance and durability of the electrode is proposed through the construction of the surrogate model and the application of the optimization algorithm. The optimal electrode parameters are determined to accommodate various maximum operation time requirements. By implementing the data-driven powder-to-power framework, it is possible to reduce the degradation rate of Ni-based electrodes from 2.132% to 0.703% kh-1 with a required maximum operation time of over 50,000 h.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China; Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), Hong Kong Polytechnic University, Hong Kong, China; National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300350, China
| | - Chengru Wu
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China; Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), Hong Kong Polytechnic University, Hong Kong, China
| | - Siyuan Zhao
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), Hong Kong Polytechnic University, Hong Kong, China
| | - Zengjia Guo
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), Hong Kong Polytechnic University, Hong Kong, China
| | - Minfang Han
- Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Tianshou Zhao
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bingfeng Zu
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Qing Du
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China; National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300350, China.
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), Hong Kong Polytechnic University, Hong Kong, China.
| | - Kui Jiao
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China; National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
20
|
Wang X, Huang K, Wu X, Yuan L, Li L, Li G, Feng S. Manipulation and observation of atomic-scale superlattices in perovskite manganate. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
21
|
Choolaei M, Jakubczyk E, Horri BA. Synthesis and characterisation of a ceria-based cobalt-zinc anode nanocomposite for low-temperature solid oxide fuel cells (LT-SOFCs). Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
22
|
Qian B, Wang S, Zheng Y, Ni Q, Chen H, Ge L, Yang J. Ca-Fe co-doped La0.75Sr0.25Cr0.5Mn0.5O3 cathodes with high electrocatalytic activity for direct CO2 electrolysis in solid oxide electrolysis cells. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Yang X, Sun K, Sun W, Ma M, Ren R, Qiao J, Wang Z, Zhen S, Xu C. Surface Reconstruction of Defective SrTi0.7Cu0.2Mo0.1O3-δ Perovskite Oxide Induced by In-Situ Copper Nanoparticle Exsolution for High-Performance Direct CO2 Electrolysis. Ann Ital Chir 2023. [DOI: 10.1016/j.jeurceramsoc.2023.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Wang T, Wang R, Xie X, Chang S, Wei T, Dong D, Wang Z. Robust Direct Hydrocarbon Solid Oxide Fuel Cells with Exsolved Anode Nanocatalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56735-56742. [PMID: 36515640 DOI: 10.1021/acsami.2c16284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Perovskite anodes with in situ exsolved nanocatalysts have been proven to overcome carbon deposition and increase anode catalytic activity as an alternative to conventional Ni/YSZ anodes for direct hydrocarbon solid oxide fuel cells (SOFCs). This study, for the first time, demonstrates the state-of-the-art exsolution over cathode-supported SOFCs, which achieve the highest cell performance compared to conventional electrolyte-supported SOFCs with perovskite anodes using CH4 as a fuel. The dendritic channel structure of cathode supports retains a high active surface during high-temperature electrolyte sintering. Sr2Ti0.8Co0.2FeO6-δ perovskite ceramic is employed as anodes, and Co-Fe alloy nanoparticles are exsolved after reduction, which increases the cell power output by about 40%. The peak power densities of the cells are 0.82, 0.59, 0.43, and 0.33 W cm-2 at 800 °C using hydrogen, methane, methanol, and ethanol, respectively. The SOFCs with the exsolved nanocatalysts demonstrate stable power generation up to 110 h using methane, methanol, and ethanol fuels. Interestingly, the perovskite anodes show high methane fuel utilization by the complete oxidation of methane, which is in contrast to the partial oxidation over Ni catalysts. Robust hydrocarbon SOFCs have been developed by coupling anode catalyst exsolution with dendritically channeled cathode supports.
Collapse
Affiliation(s)
- Tengpeng Wang
- School of Materials Science and Engineering University of Jinan, Jinan 250022, P. R. China
| | - Runze Wang
- School of Materials Science and Engineering University of Jinan, Jinan 250022, P. R. China
| | - Xiaoyu Xie
- School of Materials Science and Engineering University of Jinan, Jinan 250022, P. R. China
| | - Shuo Chang
- School of Materials Science and Engineering University of Jinan, Jinan 250022, P. R. China
| | - Tao Wei
- School of Materials Science and Engineering University of Jinan, Jinan 250022, P. R. China
| | - Dehua Dong
- School of Materials Science and Engineering University of Jinan, Jinan 250022, P. R. China
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Zhi Wang
- School of Materials Science and Engineering University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
25
|
Qiao J, Chen X, Ai C, Wang Z, Sun W, Sun K, Xu C. Fe-Based Layered Double Perovskite Anode with in Situ Exsolved Nanoparticles for Direct Carbon Solid Oxide Fuel Cells. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jinshuo Qiao
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Xiangjun Chen
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Chengyi Ai
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Zhenhua Wang
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Wang Sun
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Kening Sun
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Chunming Xu
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
26
|
Zhang W, Yashima M. Recent developments in oxide ion conductors: focusing on Dion-Jacobson phases. Chem Commun (Camb) 2022; 59:134-152. [PMID: 36510789 DOI: 10.1039/d2cc05288a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxide-ion conductors, also known as "oxygen ion conductors," have garnered significant attention in recent years due to their extensive applications in a variety of electrochemical devices, including oxygen concentrators, solid-oxide fuel cells (SOFCs), and solid oxide electrolysis cells. The key to improving the performance of these devices is the creation of novel oxide-ion conductors. In this feature article, we discuss the recent developments of new structural families of oxide-ion conductors and of the Dion-Jacobson-type layered oxide-ion conductors with a particular emphasis on CsM2Ti2NbO10-δ (M = Bi and lanthanoids; δ represents oxygen-vacancy content) and their solid solutions. CsBi2Ti2NbO10-δ is the first example of an oxide-ion conductor with a Dion-Jacobson-type layered perovskite structure, and the structural characteristics of these materials are extracted here. We have proposed an original concept that the large sized Cs+ cations and M3+ displacements yield the large bottlenecks for oxide-ion migration, which would facilitate the discovery of novel oxide-ion conductors. This article presents evidence that Dion-Jacobson-type layered perovskites are superior oxide-ion conductors. We also demonstrate how the information gleaned from these studies can be applied to the design of novel oxide-ion conductors.
Collapse
Affiliation(s)
- Wenrui Zhang
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 W4-17 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan.
| | - Masatomo Yashima
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 W4-17 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan.
| |
Collapse
|
27
|
Enhancing the electrocatalytic activity of perovskite electrodes by atomic layer-deposited doped CeO2 for symmetrical solid oxide fuel cells. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Zheng K, Albrycht M, Chen M, Qi K, Czaja P. Tailoring the Stability of Ti-Doped Sr 2Fe 1.4Ti xMo 0.6-xO 6-δ Electrode Materials for Solid Oxide Fuel Cells. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8268. [PMID: 36431752 PMCID: PMC9698536 DOI: 10.3390/ma15228268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
In this work, the stability of Sr2(FeMo)O6-δ-type perovskites was tailored by the substitution of Mo with Ti. Redox stable Sr2Fe1.4TixMo0.6-xO6-δ (x = 0.1, 0.2 and 0.3) perovskites were successfully obtained and evaluated as potential electrode materials for SOFCs. The crystal structure as a function of temperature, microstructure, redox stability, and thermal expansion properties in reducing and oxidizing atmospheres, oxygen content change, and transport properties in air and reducing conditions, as well as chemical stability and compatibility towards typical electrolytes have been systematically studied. All Sr2Fe1.4TixMo0.6-xO6-δ compounds exhibit a regular crystal structure with Pm-3m space group, showing excellent stability in oxidizing and reducing conditions. The increase of Ti-doping content in materials increases the thermal expansion coefficient (TEC), oxygen content change, and electrical conductivity in air, while it decreases the conductivity in reducing condition. All three materials are stable and compatible with studied electrolytes. Interestingly, redox stable Sr2Fe1.4Ti0.1Mo0.5O6-δ, possessing 1 μm grain size, low TEC (15.3 × 10-6 K-1), large oxygen content change of 0.72 mol·mol-1 between 30 and 900 °C, satisfactory conductivity of 4.1-7.3 S·cm-1 in 5% H2 at 600-800 °C, and good transport coefficients D and k, could be considered as a potential anode material for SOFCs, and are thus of great interest for further studies.
Collapse
Affiliation(s)
- Kun Zheng
- Department of Hydrogen Energy, Faculty of Energy and Fuels, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
- AGH Centre of Energy, AGH University of Science and Technology, ul. Czarnowiejska 36, 30-054 Krakow, Poland
| | - Maciej Albrycht
- Decentralised Hydrogen–Maciej Albrycht, ul. Wały Dwernickiego 21/23a, lok. 8, 42-200 Częstochowa, Poland
| | - Min Chen
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, China
| | - Paweł Czaja
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
| |
Collapse
|
29
|
Fuel Cell Reactors for the Clean Cogeneration of Electrical Energy and Value-Added Chemicals. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractFuel cell reactors can be tailored to simultaneously cogenerate value-added chemicals and electrical energy while releasing negligible CO2 emissions or other pollution; moreover, some of these reactors can even “breathe in” poisonous gas as feedstock. Such clean cogeneration favorably offsets the fast depletion of fossil fuel resources and eases growing environmental concerns. These unique reactors inherit advantages from fuel cells: a high energy conversion efficiency and high selectivity. Compared with similar energy conversion devices with sandwich structures, fuel cell reactors have successfully “hit three birds with one stone” by generating power, producing chemicals, and maintaining eco-friendliness. In this review, we provide a systematic summary on the state of the art regarding fuel cell reactors and key components, as well as the typical cogeneration reactions accomplished in these reactors. Most strategies fall short in reaching a win–win situation that meets production demand while concurrently addressing environmental issues. The use of fuel cells (FCs) as reactors to simultaneously produce value-added chemicals and electrical power without environmental pollution has emerged as a promising direction. The FC reactor has been well recognized due to its “one stone hitting three birds” merit, namely, efficient chemical production, electrical power generation, and environmental friendliness. Fuel cell reactors for cogeneration provide multidisciplinary perspectives on clean chemical production, effective energy utilization, and even pollutant treatment, with far-reaching implications for the wider scientific community and society. The scope of this review focuses on unique reactors that can convert low-value reactants and/or industrial wastes to value-added chemicals while simultaneously cogenerating electrical power in an environmentally friendly manner.
Graphical Abstract
A schematic diagram for the concept of fuel cell reactors for cogeneration of electrical energy and value-added chemicals
Collapse
|
30
|
Zheng K, Lach J, Zhao H, Huang X, Qi K. Magnesium-Doped Sr 2(Fe,Mo)O 6-δ Double Perovskites with Excellent Redox Stability as Stable Electrode Materials for Symmetrical Solid Oxide Fuel Cells. MEMBRANES 2022; 12:membranes12101006. [PMID: 36295767 PMCID: PMC9611669 DOI: 10.3390/membranes12101006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 05/27/2023]
Abstract
In this work, magnesium-doped Sr2Fe1.2Mg0.2Mo0.6O6-δ and Sr2Fe0.9Mg0.4Mo0.7O6-δ double perovskites with excellent redox stability have been successfully obtained. The physicochemical properties including: crystal structure properties, redox stability, thermal expansion properties in oxidizing and reducing conditions, oxygen content as a function of temperature and transport properties, as well as the chemical compatibility with typical electrolytes have been systematically investigated. The in situ oxidation of reduced samples using high-temperature XRD studies shows the crystal structure of materials stable at up to a high-temperature range. The in situ reduction and oxidation of sinters with dilatometer measurements prove the excellent redox stability of materials, with the thermal expansion coefficients measured comparable with electrolytes. The oxygen nonstoichiometry δ of compounds was determined and recorded in air and argon up to 900 °C. Sr2Fe1.2Mg0.2Mo0.6O6-δ oxide presents satisfactory values of electrical conductivity in air (56.2 S·cm-1 at 600 °C) and reducing conditions (10.3 S·cm-1 at 800 °C), relatively high coefficients D and k, and good ionic conductivity (cal. 0.005 S·cm-1 at 800 °C). The stability studies show that both compounds are compatible with Ce0.8Gd0.2O1.9 but react with the La0.8Sr0.2Ga0.8Mg0.2O3-d electrolyte. Therefore, the magnesium-doped double perovskites with excellent redox stability can be potentially qualified as electrode materials for symmetrical SOFCs and are of great interest for further investigations.
Collapse
Affiliation(s)
- Kun Zheng
- Department of Hydrogen Energy, Faculty of Energy and Fuels, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
- AGH Centre of Energy, AGH University of Science and Technology, ul. Czarnowiejska 36, 30-054 Krakow, Poland
| | - Jakub Lach
- Department of Hydrogen Energy, Faculty of Energy and Fuels, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Hailei Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Lab of New Energy Materials and Technology, Beijing 100083, China
| | - Xiubing Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, China
| |
Collapse
|
31
|
Choi Y, Cho HJ, Kim J, Kang JY, Seo J, Kim JH, Jeong SJ, Lim DK, Kim ID, Jung W. Nanofiber Composites as Highly Active and Robust Anodes for Direct-Hydrocarbon Solid Oxide Fuel Cells. ACS NANO 2022; 16:14517-14526. [PMID: 36006905 DOI: 10.1021/acsnano.2c04927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Direct utilization of methane fuels in solid oxide fuel cells (SOFCs) is a key technology to realize the immediate inclusion of such high-efficiency fuel cells into the current electricity generation infrastructure. However, the broad commercialization of direct-methane fueled SOFCs is critically hindered by the inadequate electrode activity and their poor longevity, which primarily stems from the carbon build-up issues. To make the technology more competitive, a novel electrode structure that can dramatically improve the tolerance against coking is essential. Herein, we present highly active and robust core-shell nanofiber anodes, La0.75Sr0.25Cr0.5Mn0.5O3@Sm0.2Ce0.8O1.9 (LSCM@SDC), directly obtained with a single-nozzle electrospinning process through the use of two immiscible polymers. The intimate coverage of SDC on LSCM not only increases the active reaction sites but also promotes resistance toward carbon deposition and thermal aggregation. As such, the electrode polarization resistance obtained with LSCM@SDC NFs is among the lowest value ever reported with LSCM derivatives (∼0.11 Ω cm2 in wet H2 at 800 °C). The facile fabrication process of such complex heterostructures developed in this work is attractive for the design of not only SOFC electrodes but also other solid-state devices such as electrolysis cells, membrane reformers, and protonic cells.
Collapse
Affiliation(s)
- Yoonseok Choi
- High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34101, Republic of Korea
| | - Hee-Jin Cho
- Korea Advanced Institute of Science and Technology (KAIST), Department of Materials Science and Engineering, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinwook Kim
- Korea Advanced Institute of Science and Technology (KAIST), Department of Materials Science and Engineering, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Joon-Young Kang
- Korea Advanced Institute of Science and Technology (KAIST), Department of Materials Science and Engineering, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jongsu Seo
- Korea Advanced Institute of Science and Technology (KAIST), Department of Materials Science and Engineering, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jun Hyuk Kim
- Department of Chemical Engineering, Hongik University, Wausan-ro 94, Mapo-gu, Seoul 04066, Republic of Korea
| | - Seung Jin Jeong
- Korea Advanced Institute of Science and Technology (KAIST), Department of Materials Science and Engineering, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dae-Kwang Lim
- Korea Advanced Institute of Science and Technology (KAIST), Department of Materials Science and Engineering, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Korea Advanced Institute of Science and Technology (KAIST), Department of Materials Science and Engineering, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - WooChul Jung
- Korea Advanced Institute of Science and Technology (KAIST), Department of Materials Science and Engineering, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
32
|
La0.5Ba0.5CuxFe1−xO3−δ as cathode for high-performance proton-conducting solid oxide fuel cell. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Effect of Mn Doping on the Optical and Electrical Properties of Double Perovskite Sr2TiCoO6. MATERIALS 2022; 15:ma15155123. [PMID: 35897555 PMCID: PMC9330016 DOI: 10.3390/ma15155123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022]
Abstract
A new series of Sr2TiCo1−xMnxO6 (0.0 ≤ x ≤ 0.7) materials has been synthesized using the conventional solid-state method. In this research, X-ray diffraction (XRD) results showed that Mn was successfully doped at the Co site in a cubic structure with monoclinic P21/n space group. The effect of Mn cation substitution on the structural, optical and electrical performance of Sr2TiCo1−xMnxO6 double perovskite was investigated. The optical study revealed a nonlinearity pattern of the band gap that is referred to as the band gap bowing trend. Results from optical and Rietveld refinement supports that the band gap bowing trend is correlated with the charge distribution that produces unique effects on structural and size changes due to the Co-Mn compositions. The morphological scanning electron microscopy studies also showed that larger crystallite sizes were developed when dopant was added. Furthermore, increases in the conductivities support the lowering band gap of Mn-doped samples. Here, the intermixing of the atomic orbitals of Co-Mn provides an efficient interlink electrical pathway to improve conductivity and exhibits a high dielectric property at room temperature. These values are strong evidence that STCM material will be suitable for applications in the semiconductor industry.
Collapse
|
34
|
Seo J, Jeon S, Lee S, Lim DK, Kim JH, Kim JH, Ahn S, Jung W. Oxidative Strong Metal–Support Interaction Induced by an Amorphous TiO x Seed Layer Boosts the Electrochemical Performance and High-Temperature Durability of Pt Nanocatalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jongsu Seo
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - SungHyun Jeon
- Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Siwon Lee
- Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Current address: Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dae-Kwang Lim
- Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Current address: New Energy Technology Laboratory, Korea Electric Power Corp. Research Institute, Daejeon 34056, Republic of Korea
| | - Jun Hyuk Kim
- Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Current address: Department of Chemical Engineering, Hongik University, Wausan-ro 94, Mapo-gu, Seoul 04066, Republic of Korea
| | - Jeong Hwan Kim
- Materials Science and Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Republic of Korea
| | - Sejong Ahn
- Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - WooChul Jung
- Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
35
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 213] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
36
|
Co-generation of liquid chemicals and electricity over Co-Fe alloy/perovskite anode catalyst in a propane fueled solid oxide fuel cell. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Vu THQ, Bondzior B, Stefańska D, Dereń PJ. An Er 3+ doped Ba 2MgWO 6 double perovskite: a phosphor for low-temperature thermometry. Dalton Trans 2022; 51:8056-8065. [PMID: 35575033 DOI: 10.1039/d2dt00554a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A bifunctional luminescent material is one of the most intriguing topics in recent years with significant growth in the number of investigations. Herein, we report the potential of Ba2MgWO6 doped with Er3+ as a candidate for white-light emitting phosphor and noncontact luminescent thermometry. The synthesis of the samples was carried out by the co-precipitation method. The influence of the dopant concentration on the emission intensity, as well as the capability of temperature readout, was investigated for the first time. The highest emission intensity exhibits a sample comprising 4% Er3+; above it, the concentration quenching process by the dipole-dipole interaction occurs. However, high quality white light generates Ba2MgWO6 with 0.5% of Er3+ due to the coexistence of the host and erbium ion emission with a CIE of (0.30, 0.35). To construct a non-contact luminescent thermometer based on Er3+, the ratio of the emission from 4I11/2 → 4I15/2 to the host emission was examined. The highest sensitivity Sr of the obtained luminescent thermometers was 2.78% K-1 at 198 K. The repeatability of the calculated results and the uncertainty δT of the temperature readout were investigated.
Collapse
Affiliation(s)
- T H Q Vu
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| | - B Bondzior
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| | - D Stefańska
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| | - P J Dereń
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| |
Collapse
|
38
|
Yu W, Zhang D, Zhang X, Liu T, Wang Y. Advanced Ru‐Infiltrated Perovskite Oxide Electrodes for Boosting the Performance of Syngas Fueled Solid Oxide Fuel Cell. ChemElectroChem 2022. [DOI: 10.1002/celc.202200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wenqing Yu
- Key Laboratory of Hydraulic Machinery Transients (Wuhan University) Ministry of Education School of Power and Mechanical Engineering Wuhan University Wuhan Hubei 430072 PR China
| | - Dong Zhang
- Key Laboratory of Hydraulic Machinery Transients (Wuhan University) Ministry of Education School of Power and Mechanical Engineering Wuhan University Wuhan Hubei 430072 PR China
| | - Xiaoyu Zhang
- Key Laboratory of Hydraulic Machinery Transients (Wuhan University) Ministry of Education School of Power and Mechanical Engineering Wuhan University Wuhan Hubei 430072 PR China
| | - Tong Liu
- Key Laboratory of Hydraulic Machinery Transients (Wuhan University) Ministry of Education School of Power and Mechanical Engineering Wuhan University Wuhan Hubei 430072 PR China
- School of Chemical Engineering ane Pharmarcy Wuhan Institute of Technology Wuhan Hubei 430205 China
| | - Yao Wang
- Key Laboratory of Hydraulic Machinery Transients (Wuhan University) Ministry of Education School of Power and Mechanical Engineering Wuhan University Wuhan Hubei 430072 PR China
| |
Collapse
|
39
|
Effect of Au Plasmonic Material on Poly M-Toluidine for Photoelectrochemical Hydrogen Generation from Sewage Water. Polymers (Basel) 2022; 14:polym14040768. [PMID: 35215683 PMCID: PMC8878796 DOI: 10.3390/polym14040768] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
This study provides H2 gas as a renewable energy source from sewage water splitting reaction using a PMT/Au photocathode. So, this study has a dual benefit for hydrogen generation; at the same time, it removes the contaminations of sewage water. The preparation of the PMT is carried out through the polymerization process from an acid medium. Then, the Au sputter was carried out using the sputter device under different times (1 and 2 min) for PMT/Au-1 min and PMT/Au-2min, respectively. The complete analyses confirm the chemical structure, such as XRD, FTIR, HNMR, SEM, and Vis-UV optical analyses. The prepared electrode PMT/Au is used for the hydrogen generation reaction using Na2S2O3 or sewage water as an electrolyte. The PMT crystalline size is 15 nm. The incident photon to current efficiency (IPCE) efficiency increases from 2.3 to 3.6% (at 390 nm), and the number of H2 moles increases from 8.4 to 33.1 mmol h−1 cm−2 for using Na2S2O3 and sewage water as electrolyte, respectively. Moreover, all the thermodynamic parameters, such as activation energy (Ea), enthalpy (ΔH*), and entropy (ΔS*), were calculated; additionally, a simple mechanism is mentioned for the water-splitting reaction.
Collapse
|
40
|
Hesse F, da Silva I, Bos JWG. Insights into Oxygen Migration in LaBaCo 2O 6-δ Perovskites from In Situ Neutron Powder Diffraction and Bond Valence Site Energy Calculations. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:1191-1202. [PMID: 35431436 PMCID: PMC9007454 DOI: 10.1021/acs.chemmater.1c03726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Layered cobalt oxide perovskites are important mixed ionic and electronic conductors. Here, we investigate LaBaCo2O6-δ using in situ neutron powder diffraction. This composition is unique because it can be prepared in cubic, layered, and vacancy-ordered forms. Thermogravimetric analysis and diffraction reveal that layered and disordered samples have near-identical oxygen cycling capacities. Migration barriers for oxide ion conduction calculated using the bond valence site energy approach vary from E b ∼ 2.8 eV for the cubic perovskite to E b ∼ 1.5 eV for 2D transport in the layered system. Vacancy-ordered superstructures were observed at low temperatures, 350-400 °C for δ = 0.25 and δ = 0.5. The vacancy ordering at δ = 0.5 is different from the widely reported structure and involves oxygen sites in both CoO2 and LaO planes. Vacancy ordering leads to the emergence of additional migration pathways with low-energy barriers, for example, 1D channels with E b = 0.5 eV and 3D channels with E b = 2.2 eV. The emergence of these channels is caused by the strong orthorhombic distortion of the crystal structure. These results demonstrate that there is potential scope to manipulate ionic transport in vacancy-ordered LnBaCo2O6-δ perovskites with reduced symmetry.
Collapse
Affiliation(s)
- Fabian Hesse
- Institute
of Chemical Sciences, Centre for Advanced Energy Storage and Recovery,
School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Ivan da Silva
- ISIS
Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, U.K.
| | - Jan-Willem G. Bos
- Institute
of Chemical Sciences, Centre for Advanced Energy Storage and Recovery,
School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| |
Collapse
|
41
|
Venkatesan SV, Mostaghimi AHB, Thangadurai V, Siahrostami S. Cu‐doped Ba
0.5
Sr
0.5
FeO
3‐δ
for electrochemical synthesis of hydrogen peroxide via a 2‐electron oxygen reduction reaction
1. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
42
|
Memon SA, Shaikh H, Raza R, Mughal ZUN, Memon AA, Memon S. Graphene incorporated mesoporous perovskite with excellent conductivity and catalytic activity for low temperature solid oxide fuel cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj01917e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In modern times, energy transformation sources with superior efficacy and eco-friendliness have become remarkably attractive in terms of fuel cell technology.
Collapse
Affiliation(s)
- Saeed Ahmed Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Huma Shaikh
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Rizwan Raza
- Department of Physics, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Zaib un Nisa Mughal
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Shahabuddin Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| |
Collapse
|
43
|
Enhancing the performance of symmetrical solid oxide fuel cells with Sr2Fe1.5Mo0.5O6-δ electrodes via infiltration of Pr6O11 bifunctional catalyst. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139569] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Hu H, Li M, Min H, Zhou X, Li J, Wang X, Lu Y, Ding X. Enhancing the Catalytic Activity and Coking Tolerance of the Perovskite Anode for Solid Oxide Fuel Cells through In Situ Exsolution of Co-Fe Nanoparticles. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haibo Hu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Mingze Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Huihua Min
- Electron Microscope Lab, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xinghong Zhou
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jun Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Yi Lu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Xifeng Ding
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
45
|
Zhang Q, Meng F, Gao A, Li X, Jin Q, Lin S, Chen S, Shang T, Zhang X, Guo H, Wang C, Jin K, Wang X, Su D, Gu L, Guo EJ. Dynamics of Anisotropic Oxygen-Ion Migration in Strained Cobaltites. NANO LETTERS 2021; 21:10507-10515. [PMID: 34870440 DOI: 10.1021/acs.nanolett.1c04057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Orientation control of the oxygen vacancy channel (OVC) is highly desirable for tailoring oxygen diffusion as it serves as a fast transport channel in ion conductors, which is widely exploited in solid-state fuel cells, catalysts, and ion-batteries. Direct observation of oxygen-ion hopping toward preferential vacant sites is a key to clarifying migration pathways. Here we report anisotropic oxygen-ion migration mediated by strain in ultrathin cobaltites via in situ thermal activation in atomic-resolved transmission electron microscopy. Oxygen migration pathways are constructed on the basis of the atomic structure during the OVC switching, which is manifested as the vertical-to-horizontal OVC switching under tensile strain but the horizontal-to-diagonal switching under compression. We evaluate the topotactic structural changes to the OVC, determine the crucial role of the tolerance factor for OVC stability, and establish the strain-dependent phase diagram. Our work provides a practical guide for engineering OVC orientation that is applicable to ionic-oxide electronics.
Collapse
Affiliation(s)
- Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Yangtze River Delta Physics Research Center Co. Ltd., Liyang 213300, China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ang Gao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyan Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Lin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengru Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtong Shang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haizhong Guo
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Xuefeng Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Er-Jia Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
46
|
Yadav P, Yadav S, Atri S, Tomar R. A Brief Review on Key Role of Perovskite Oxides as Catalyst. ChemistrySelect 2021. [DOI: 10.1002/slct.202102292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pinky Yadav
- Department of Chemistry Faculty of Science SGT University Gurugram Haryana 122505 India
| | - Sangeeta Yadav
- Department of Chemistry Faculty of Science SGT University Gurugram Haryana 122505 India
| | - Shalu Atri
- Department of Chemistry Faculty of Science SGT University Gurugram Haryana 122505 India
| | - Ravi Tomar
- Department of Chemistry Faculty of Science SGT University Gurugram Haryana 122505 India
| |
Collapse
|
47
|
Kim H, Lim C, Kwon O, Oh J, Curnan MT, Jeong HY, Choi S, Han JW, Kim G. Unveiling the key factor for the phase reconstruction and exsolved metallic particle distribution in perovskites. Nat Commun 2021; 12:6814. [PMID: 34819509 PMCID: PMC8613209 DOI: 10.1038/s41467-021-26739-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022] Open
Abstract
To significantly increase the amount of exsolved particles, the complete phase reconstruction from simple perovskite to Ruddlesden-Popper (R-P) perovskite is greatly desirable. However, a comprehensive understanding of key parameters affecting the phase reconstruction to R-P perovskite is still unexplored. Herein, we propose the Gibbs free energy for oxygen vacancy formation in Pr0.5(Ba/Sr)0.5TO3-δ (T = Mn, Fe, Co, and Ni) as the important factor in determining the type of phase reconstruction. Furthermore, using in-situ temperature & environment-controlled X-ray diffraction measurements, we report the phase diagram and optimum 'x' range required for the complete phase reconstruction to R-P perovskite in Pr0.5Ba0.5-xSrxFeO3-δ system. Among the Pr0.5Ba0.5-xSrxFeO3-δ, (Pr0.5Ba0.2Sr0.3)2FeO4+δ - Fe metal demonstrates the smallest size of exsolved Fe metal particles when the phase reconstruction occurs under reducing condition. The exsolved nano-Fe metal particles exhibit high particle density and are well-distributed on the perovskite surface, showing great catalytic activity in fuel cell and syngas production.
Collapse
Affiliation(s)
- Hyunmin Kim
- grid.42687.3f0000 0004 0381 814XSchool of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Chaesung Lim
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Ohhun Kwon
- grid.25879.310000 0004 1936 8972Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Jinkyung Oh
- grid.42687.3f0000 0004 0381 814XSchool of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Matthew T. Curnan
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Hu Young Jeong
- grid.42687.3f0000 0004 0381 814XDepartment of Materials Science and Engineering and UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Sihyuk Choi
- Department of Mechanical Engineering (Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, Gyeongbuk, 39177, Republic of Korea.
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Guntae Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
48
|
Zhao J, Chen K, Li SE, Zhang Q, Wang JO, Guo EJ, Qian H, Gu L, Qian T, Ibrahim K, Fan Z, Guo H. Electronic-structure evolution of SrFeO 3-xduring topotactic phase transformation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:064001. [PMID: 34740209 DOI: 10.1088/1361-648x/ac36fd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Oxygen-vacancy-induced topotactic phase transformation between the ABO2.5brownmillerite structure and the ABO3perovskite structure attracts ever-increasing attention due to the perspective applications in catalysis, clean energy field, and memristors. However, a detailed investigation of the electronic-structure evolution during the topotactic phase transformation for understanding the underlying mechanism is highly desired. In this work, multiple analytical methods were used to explore evolution of the electronic structure of SrFeO3-xthin films during the topotactic phase transformation. The results indicate that the increase in oxygen content induces a new unoccupied state of O 2pcharacter near the Fermi energy, inducing the insulator-to-metal transition. More importantly, the hole states are more likely constrained to thedx2-y2orbital than to thed3z2-r2orbital. Our results reveal an unambiguous evolution of the electronic structure of SrFeO3-xfilms during topotactic phase transformation, which is crucial not only for fundamental understanding but also for perspective applications such as solid-state oxide fuel cells, catalysts, and memristor devices.
Collapse
Affiliation(s)
- Jiali Zhao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Kaihui Chen
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Shi-En Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jia-Ou Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Er-Jia Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Haijie Qian
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Tian Qian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Kurash Ibrahim
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhen Fan
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Haizhong Guo
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, People's Republic of China
| |
Collapse
|
49
|
Chen H, Lim C, Zhou M, He Z, Sun X, Li X, Ye Y, Tan T, Zhang H, Yang C, Han JW, Chen Y. Activating Lattice Oxygen in Perovskite Oxide by B-Site Cation Doping for Modulated Stability and Activity at Elevated Temperatures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102713. [PMID: 34658158 PMCID: PMC8596113 DOI: 10.1002/advs.202102713] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/02/2021] [Indexed: 05/07/2023]
Abstract
Doping perovskite oxide with different cations is used to improve its electro-catalytic performance for various energy and environment devices. In this work, an activated lattice oxygen activity in Pr0.4 Sr0.6 Cox Fe0.9- x Nb0.1 O3- δ (PSCxFN, x = 0, 0.2, 0.7) thin film model system by B-site cation doping is reported. As Co doping level increases, PSCxFN thin films exhibit higher concentration of oxygen vacancies ( V o • • ) as revealed by X-ray diffraction and synchrotron-based X-ray photoelectron spectroscopy. Density functional theory calculation results suggest that Co doping leads to more distortion in FeO octahedra and weaker metaloxygen bonds caused by the increase of antibonding state, thereby lowering V o • • formation energy. As a consequence, PSCxFN thin film with higher Co-doping level presents larger amount of exsolved particles on the surface. Both the facilitated V o • • formation and B-site cation exsolution lead to the enhanced hydrogen oxidation reaction (HOR) activity. Excessive Co doping until 70%, nevertheless, results in partial decomposition of thin film and degrades the stability. Pr0.4 Sr0.6 (Co0.2 Fe0.7 Nb0.1 )O3 with moderate Co doping level displays both good HOR activity and stability. This work clarifies the critical role of B-site cation doping in determining the V o • • formation process, the surface activity, and structure stability of perovskite oxides.
Collapse
Affiliation(s)
- Huijun Chen
- School of Environment and EnergyState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Chaesung Lim
- Department of Chemical EngineeringPohang University of Science and TechnologyPohangGyeongbuk37673Republic of Korea
| | - Mengzhen Zhou
- School of Environment and EnergyState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Zuyun He
- School of Environment and EnergyState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Xiang Sun
- School of Environment and EnergyState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Xiaobao Li
- State Key Laboratory of Functional Materials for InformaticsShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Yongjian Ye
- School of Environment and EnergyState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Ting Tan
- School of Environment and EnergyState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Hui Zhang
- State Key Laboratory of Functional Materials for InformaticsShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Chenghao Yang
- School of Environment and EnergyState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Jeong Woo Han
- Department of Chemical EngineeringPohang University of Science and TechnologyPohangGyeongbuk37673Republic of Korea
| | - Yan Chen
- School of Environment and EnergyState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouGuangdong510006China
| |
Collapse
|
50
|
Abstract
AbstractSemiconductors and the associated methodologies applied to electrochemistry have recently grown as an emerging field in energy materials and technologies. For example, semiconductor membranes and heterostructure fuel cells are new technological trend, which differ from the traditional fuel cell electrochemistry principle employing three basic functional components: anode, electrolyte, and cathode. The electrolyte is key to the device performance by providing an ionic charge flow pathway between the anode and cathode while preventing electron passage. In contrast, semiconductors and derived heterostructures with electron (hole) conducting materials have demonstrated to be much better ionic conductors than the conventional ionic electrolytes. The energy band structure and alignment, band bending and built-in electric field are all important elements in this context to realize the necessary fuel cell functionalities. This review further extends to semiconductor-based electrochemical energy conversion and storage, describing their fundamentals and working principles, with the intention of advancing the understanding of the roles of semiconductors and energy bands in electrochemical devices for energy conversion and storage, as well as applications to meet emerging demands widely involved in energy applications, such as photocatalysis/water splitting devices, batteries and solar cells. This review provides new ideas and new solutions to problems beyond the conventional electrochemistry and presents new interdisciplinary approaches to develop clean energy conversion and storage technologies.
Graphic Abstract
Collapse
|