1
|
Tsirigoni AM, Goktas M, Atris Z, Valleriani A, Vila Verde A, Blank KG. Chain Sliding versus β-Sheet Formation upon Shearing Single α-Helical Coiled Coils. Macromol Biosci 2023; 23:e2200563. [PMID: 36861255 DOI: 10.1002/mabi.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Indexed: 03/03/2023]
Abstract
Coiled coils (CCs) are key building blocks of biogenic materials and determine their mechanical response to large deformations. Of particular interest is the observation that CC-based materials display a force-induced transition from α-helices to mechanically stronger β-sheets (αβT). Steered molecular dynamics simulations predict that this αβT requires a minimum, pulling speed-dependent CC length. Here, de novo designed CCs with a length between four to seven heptads are utilized to probe if the transition found in natural CCs can be mimicked with synthetic sequences. Using single-molecule force spectroscopy and molecular dynamics simulations, these CCs are mechanically loaded in shear geometry and their rupture forces and structural responses to the applied load are determined. Simulations at the highest pulling speed (0.01 nm ns-1 ) show the appearance of β-sheet structures for the five- and six-heptad CCs and a concomitant increase in mechanical strength. The αβT is less probable at a lower pulling speed of 0.001 nm ns-1 and is not observed in force spectroscopy experiments. For CCs loaded in shear geometry, the formation of β-sheets competes with interchain sliding. β-sheet formation is only possible in higher-order CC assemblies or in tensile-loading geometries where chain sliding and dissociation are prohibited.
Collapse
Affiliation(s)
- Anna-Maria Tsirigoni
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany.,Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Melis Goktas
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Zeynep Atris
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany.,Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Angelo Valleriani
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Ana Vila Verde
- University of Duisburg-Essen, Faculty of Physics, Lotharstrasse 1, 47057, Duisburg, Germany
| | - Kerstin G Blank
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany.,Johannes Kepler University Linz, Institute of Experimental Physics, Department of Biomolecular & Selforganizing Matter, Altenberger Strasse 69, Linz, 4040, Austria
| |
Collapse
|
2
|
Zhang Y, Yin D, Pang X, Deng Z, Yan S. Biomechanical properties of honeybee abdominal muscles during stretch activation. J Mech Behav Biomed Mater 2023; 138:105639. [PMID: 36577321 DOI: 10.1016/j.jmbbm.2022.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The mechanical properties of the honeybee's abdominal muscles endow its abdomen with movement flexibility to perform various activities. However, the biomechanical properties of abdominal muscles during stretch activation remain unclear. To clarify this issue, we observed the microstructures of the abdominal muscles to obtain structural information. The similarity and symmetry of abdominal muscle distribution contribute to the ability to drive abdominal movement. Combined with the segmented structure characteristics, an experimental device to measure muscle stretch measurement of honeybees was developed to investigate the mechanical properties of the abdominal muscles. During measurement, the muscles were kept in a solution to maintain a physiological environment. The mechanical properties of abdominal muscles included phases: the ascending phase with proportional increase, stable phase with slight fluctuation, and decay phase with parabolic decline. These findings indicate that the nonlinear and rate-sensitive mechanical properties of the abdominal muscles enable them to rapidly adapt to environmental changes. The stretch force and stiffness coefficient reached 0.660 ± 0.139 mN and 14.364 ± 2.961 N/m, respectively. A simplified biomechanical model of the muscle fiber considering the hierarchical microstructure was introduced, in which the mechanical properties were consistent with the experimental data. Further analysis of the effects of the activation probability and the effective range of binding sites on the mechanical properties demonstrated the critical role in force generation, revealing the mechanism of underlying muscle stretch activation in the honeybee abdomen. The findings can provide a new reference for studying the biomechanical properties of the muscles of other arthropod insects.
Collapse
Affiliation(s)
- Yuling Zhang
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Danni Yin
- School of Materials and Mechanical Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Xu Pang
- School of Engineering and Technology, China University of Geosciences (Beijing), 100083, Beijing, PR China
| | - Zhizhong Deng
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Shaoze Yan
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
3
|
Fernández-Ramírez MDC, Ng KKS, Menéndez M, Laurents DV, Hervás R, Carrión-Vázquez M. Expanded Conformations of Monomeric Tau Initiate Its Amyloidogenesis. Angew Chem Int Ed Engl 2022; 62:e202209252. [PMID: 36542681 DOI: 10.1002/anie.202209252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Understanding early amyloidogenesis is key to rationally develop therapeutic strategies. Tau protein forms well-characterized pathological deposits but its aggregation mechanism is still poorly understood. Using single-molecule force spectroscopy based on a mechanical protection strategy, we studied the conformational landscape of the monomeric tau repeat domain (tau-RD244-368 ). We found two sets of conformational states, whose frequency is influenced by mutations and the chemical context. While pathological mutations Δ280K and P301L and a pro-amyloidogenic milieu favored expanded conformations and destabilized local structures, an anti-amyloidogenic environment promoted a compact ensemble, including a conformer whose topology might mask two amyloidogenic segments. Our results reveal that to initiate aggregation, monomeric tau-RD244-368 decreases its polymorphism adopting expanded conformations. This could account for the distinct structures found in vitro and across tauopathies.
Collapse
Affiliation(s)
- María Del Carmen Fernández-Ramírez
- Instituto Cajal, IC-CSIC, Avda. Doctor Arce 37, 28002, Madrid, Spain.,Current address: Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin Kan-Shing Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Margarita Menéndez
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, 28006, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Respiratorias (CIBERES), Spain
| | - Douglas V Laurents
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, 28006, Madrid, Spain
| | - Rubén Hervás
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | |
Collapse
|
4
|
Freitag M, Jaklin S, Padovani F, Radzichevici E, Zernia S, Schmoller KM, Stigler J. Single-molecule experiments reveal the elbow as an essential folding guide in SMC coiled-coil arms. Biophys J 2022; 121:4702-4713. [PMID: 36242515 PMCID: PMC9748247 DOI: 10.1016/j.bpj.2022.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/16/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022] Open
Abstract
Structural maintenance of chromosome (SMC) complexes form ring-like structures through exceptional elongated coiled-coils (CCs). Recent studies found that variable CC conformations, including open and collapsed forms, which might result from discontinuities in the CC, facilitate the diverse functions of SMCs in DNA organization. However, a detailed description of the SMC CC architecture is still missing. Here, we study the structural composition and mechanical properties of SMC proteins with optical tweezers unfolding experiments using the isolated Psm3 CC as a model system. We find a comparatively unstable protein with three unzipping intermediates, which we could directly assign to CC features by crosslinking experiments and state-of-the-art prediction software. Particularly, the CC elbow is shown to be a flexible, potentially non-structured feature, which divides the CC into sections, induces a pairing shift from one CC strand to the other and could facilitate large-scale conformational changes, most likely via thermal fluctuations of the flanking CC sections. A replacement of the elbow amino acids hinders folding of the consecutive CC region and frequently leads to non-native misalignments, revealing the elbow as a guide for proper folding. Additional in vivo manipulation of the elbow flexibility resulted in impaired cohesin complexes, which directly link the sensitive CC architecture to the biological function of cohesin.
Collapse
Affiliation(s)
- Marvin Freitag
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sigrun Jaklin
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Sarah Zernia
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Johannes Stigler
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
5
|
Afanasyev AY, Onufriev AV. Stretching of Long Double-Stranded DNA and RNA Described by the Same Approach. J Chem Theory Comput 2022; 18:3911-3920. [PMID: 35544776 DOI: 10.1021/acs.jctc.1c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose an approach to help interpret polymer force-extension curves that exhibit plateau regimes. When coupled to a bead-spring dynamic model, the approach accurately reproduces a variety of experimental force-extension curves of long double-stranded DNA and RNA, including torsionally constrained and unconstrained DNA and negatively supercoiled DNA. A key feature of the model is a specific nonconvex energy function of the spring. We provide an algorithm to obtain the five required parameters of the model from experimental force-extension curves. The applicability of the approach to the force-extension curves of double-stranded (ds) DNA of variable GC content as well as to a DNA/RNA hybrid structure is explored and confirmed. We use the approach to explain counterintuitive sequence-dependent trends and make predictions. In the plateau region of the force-extension curves, our molecular dynamics simulations show that the polymer separates into a mix of weakly and strongly stretched states without forming macroscopically distinct phases. The distribution of these states is predicted to depend on the sequence.
Collapse
Affiliation(s)
- Alexander Y Afanasyev
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Alexey V Onufriev
- Departments of Computer Science and Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
6
|
Ferenczy GG, Kellermayer M. Contribution of Hydrophobic Interactions to Protein Mechanical Stability. Comput Struct Biotechnol J 2022; 20:1946-1956. [PMID: 35521554 PMCID: PMC9062142 DOI: 10.1016/j.csbj.2022.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/07/2022] [Accepted: 04/17/2022] [Indexed: 11/26/2022] Open
Abstract
The role of hydrophobic and polar interactions in providing thermodynamic stability to folded proteins has been intensively studied, but the relative contribution of these interactions to the mechanical stability is less explored. We used steered molecular dynamics simulations with constant-velocity pulling to generate force-extension curves of selected protein domains and monitor hydrophobic surface unravelling upon extension. Hydrophobic contribution was found to vary between one fifth and one third of the total force while the rest of the contribution is attributed primarily to hydrogen bonds. Moreover, hydrophobic force peaks were shifted towards larger protein extensions with respect to the force peaks attributed to hydrogen bonds. The higher importance of hydrogen bonds compared to hydrophobic interactions in providing mechanical resistance is in contrast with the relative importance of the hydrophobic interactions in providing thermodynamic stability of proteins. The different contributions of these interactions to the mechanical stability are explained by the steeper free energy dependence of hydrogen bonds compared to hydrophobic interactions on the relative positions of interacting atoms. Comparative analyses for several protein domains revealed that the variation of hydrophobic forces is modest, while the contribution of hydrogen bonds to the force peaks becomes increasingly important for mechanically resistant protein domains.
Collapse
|
7
|
Synakewicz M, Eapen RS, Perez-Riba A, Rowling PJE, Bauer D, Weißl A, Fischer G, Hyvönen M, Rief M, Itzhaki LS, Stigler J. Unraveling the Mechanics of a Repeat-Protein Nanospring: From Folding of Individual Repeats to Fluctuations of the Superhelix. ACS NANO 2022. [PMID: 35258937 DOI: 10.1101/2021.03.27.437344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Tandem-repeat proteins comprise small secondary structure motifs that stack to form one-dimensional arrays with distinctive mechanical properties that are proposed to direct their cellular functions. Here, we use single-molecule optical tweezers to study the folding of consensus-designed tetratricopeptide repeats (CTPRs), superhelical arrays of short helix-turn-helix motifs. We find that CTPRs display a spring-like mechanical response in which individual repeats undergo rapid equilibrium fluctuations between partially folded and unfolded conformations. We rationalize the force response using Ising models and dissect the folding pathway of CTPRs under mechanical load, revealing how the repeat arrays form from the center toward both termini simultaneously. Most strikingly, we also directly observe the protein's superhelical tertiary structure in the force signal. Using protein engineering, crystallography, and single-molecule experiments, we show that the superhelical geometry can be altered by carefully placed amino acid substitutions, and we examine how these sequence changes affect intrinsic repeat stability and inter-repeat coupling. Our findings provide the means to dissect and modulate repeat-protein stability and dynamics, which will be essential for researchers to understand the function of natural repeat proteins and to exploit artificial repeats proteins in nanotechnology and biomedical applications.
Collapse
Affiliation(s)
- Marie Synakewicz
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Rohan S Eapen
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Albert Perez-Riba
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Pamela J E Rowling
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Daniela Bauer
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Andreas Weißl
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Matthias Rief
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Johannes Stigler
- Gene Center Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 München, Germany
| |
Collapse
|
8
|
Synakewicz M, Eapen RS, Perez-Riba A, Rowling PJE, Bauer D, Weißl A, Fischer G, Hyvönen M, Rief M, Itzhaki LS, Stigler J. Unraveling the Mechanics of a Repeat-Protein Nanospring: From Folding of Individual Repeats to Fluctuations of the Superhelix. ACS NANO 2022; 16:3895-3905. [PMID: 35258937 PMCID: PMC8944806 DOI: 10.1021/acsnano.1c09162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Tandem-repeat proteins comprise small secondary structure motifs that stack to form one-dimensional arrays with distinctive mechanical properties that are proposed to direct their cellular functions. Here, we use single-molecule optical tweezers to study the folding of consensus-designed tetratricopeptide repeats (CTPRs), superhelical arrays of short helix-turn-helix motifs. We find that CTPRs display a spring-like mechanical response in which individual repeats undergo rapid equilibrium fluctuations between partially folded and unfolded conformations. We rationalize the force response using Ising models and dissect the folding pathway of CTPRs under mechanical load, revealing how the repeat arrays form from the center toward both termini simultaneously. Most strikingly, we also directly observe the protein's superhelical tertiary structure in the force signal. Using protein engineering, crystallography, and single-molecule experiments, we show that the superhelical geometry can be altered by carefully placed amino acid substitutions, and we examine how these sequence changes affect intrinsic repeat stability and inter-repeat coupling. Our findings provide the means to dissect and modulate repeat-protein stability and dynamics, which will be essential for researchers to understand the function of natural repeat proteins and to exploit artificial repeats proteins in nanotechnology and biomedical applications.
Collapse
Affiliation(s)
- Marie Synakewicz
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Rohan S. Eapen
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Albert Perez-Riba
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Pamela J. E. Rowling
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Daniela Bauer
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Andreas Weißl
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Gerhard Fischer
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Marko Hyvönen
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Matthias Rief
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Laura S. Itzhaki
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Johannes Stigler
- Gene
Center Munich, Ludwig-Maximilians-Universität
München, Feodor-Lynen-Straße 25, 81377 München, Germany
| |
Collapse
|
9
|
Jahed Z, Domkam N, Ornowski J, Yerima G, Mofrad MRK. Molecular models of LINC complex assembly at the nuclear envelope. J Cell Sci 2021; 134:269219. [PMID: 34152389 DOI: 10.1242/jcs.258194] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Large protein complexes assemble at the nuclear envelope to transmit mechanical signals between the cytoskeleton and nucleoskeleton. These protein complexes are known as the linkers of the nucleoskeleton and cytoskeleton complexes (LINC complexes) and are formed by the interaction of SUN and KASH domain proteins in the nuclear envelope. Ample evidence suggests that SUN-KASH complexes form higher-order assemblies to withstand and transfer forces across the nuclear envelope. Herein, we present a review of recent studies over the past few years that have shed light on the mechanisms of SUN-KASH interactions, their higher order assembly, and the molecular mechanisms of force transfer across these complexes.
Collapse
Affiliation(s)
- Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.,Department of Nanoengineering, Jacobs School of Engineering, University of California, San Diego, CA 92039, USA
| | - Nya Domkam
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Jessica Ornowski
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Ghafar Yerima
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Devaux F, Li X, Sluysmans D, Maurizot V, Bakalis E, Zerbetto F, Huc I, Duwez AS. Single-molecule mechanics of synthetic aromatic amide helices: Ultrafast and robust non-dissipative winding. Chem 2021. [DOI: 10.1016/j.chempr.2021.02.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Hervás R, Del Carmen Fernández-Ramírez M, Galera-Prat A, Suzuki M, Nagai Y, Bruix M, Menéndez M, Laurents DV, Carrión-Vázquez M. Divergent CPEB prion-like domains reveal different assembly mechanisms for a generic amyloid-like fold. BMC Biol 2021; 19:43. [PMID: 33706787 PMCID: PMC7953810 DOI: 10.1186/s12915-021-00967-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Amyloids are ordered, insoluble protein aggregates, characterized by a cross-β sheet quaternary structure in which molecules in a β-strand conformation are stacked along the filament axis via intermolecular interactions. While amyloids are typically associated with pathological conditions, functional amyloids have also been identified and are present in a wide variety of organisms ranging from bacteria to humans. The cytoplasmic polyadenylation element-binding (CPEB) prion-like protein is an mRNA-binding translation regulator, whose neuronal isoforms undergo activity-dependent aggregation, a process that has emerged as a plausible biochemical substrate for memory maintenance. CPEB aggregation is driven by prion-like domains (PLD) that are divergent in sequence across species, and it remains unknown whether such divergent PLDs follow a similar aggregating assembly pathway. Here, we describe the amyloid-like features of the neuronal Aplysia CPEB (ApCPEB) PLD and compare them to those of the Drosophila ortholog, Orb2 PLD. RESULTS Using in vitro single-molecule and bulk biophysical methods, we find transient oligomers and mature amyloid-like filaments that suggest similarities in the late stages of the assembly pathway for both ApCPEB and Orb2 PLDs. However, while prior to aggregation the Orb2 PLD monomer remains mainly as a random coil in solution, ApCPEB PLD adopts a diversity of conformations comprising α-helical structures that evolve to coiled-coil species, indicating structural differences at the beginning of their amyloid assembly pathways. CONCLUSION Our results indicate that divergent PLDs of CPEB proteins from different species retain the ability to form a generic amyloid-like fold through different assembly mechanisms.
Collapse
Affiliation(s)
- Rubén Hervás
- Instituto Cajal, IC-CSIC, Avda. Doctor Arce 37, E-28002, Madrid, Spain. .,Present address: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | | | | | - Mari Suzuki
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Present address: Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Present address: Department of Neurology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Marta Bruix
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, E-28006, Madrid, Spain
| | - Margarita Menéndez
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, E-28006, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Respiratorias (CIBERES), C/ Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Douglas V Laurents
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, E-28006, Madrid, Spain
| | | |
Collapse
|
12
|
Utterström J, Naeimipour S, Selegård R, Aili D. Coiled coil-based therapeutics and drug delivery systems. Adv Drug Deliv Rev 2021; 170:26-43. [PMID: 33378707 DOI: 10.1016/j.addr.2020.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022]
Abstract
Coiled coils are characterized by an arrangement of two or more α-helices into a superhelix and one of few protein motifs where the sequence-to-structure relationship to a large extent have been decoded and understood. The abundance of both natural and de novo designed coil coils provides a rich molecular toolbox for self-assembly of elaborate bespoke molecular architectures, nanostructures, and materials. Leveraging on the numerous possibilities to tune both affinities and preferences for polypeptide oligomerization, coiled coils offer unique possibilities to design modular and dynamic assemblies that can respond in a predictable manner to biomolecular interactions and subtle physicochemical cues. In this review, strategies to use coiled coils in design of novel therapeutics and advanced drug delivery systems are discussed. The applications of coiled coils for generating drug carriers and vaccines, and various aspects of using coiled coils for controlling and triggering drug release, and for improving drug targeting and drug uptake are described. The plethora of innovative coiled coil-based molecular systems provide new knowledge and techniques for improving efficacy of existing drugs and can facilitate development of novel therapeutic strategies.
Collapse
|
13
|
Lapenta F, Aupič J, Vezzoli M, Strmšek Ž, Da Vela S, Svergun DI, Carazo JM, Melero R, Jerala R. Self-assembly and regulation of protein cages from pre-organised coiled-coil modules. Nat Commun 2021; 12:939. [PMID: 33574245 PMCID: PMC7878516 DOI: 10.1038/s41467-021-21184-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/13/2021] [Indexed: 11/09/2022] Open
Abstract
Coiled-coil protein origami (CCPO) is a modular strategy for the de novo design of polypeptide nanostructures. CCPO folds are defined by the sequential order of concatenated orthogonal coiled-coil (CC) dimer-forming peptides, where a single-chain protein is programmed to fold into a polyhedral cage. Self-assembly of CC-based nanostructures from several chains, similarly as in DNA nanotechnology, could facilitate the design of more complex assemblies and the introduction of functionalities. Here, we show the design of a de novo triangular bipyramid fold comprising 18 CC-forming segments and define the strategy for the two-chain self-assembly of the bipyramidal cage from asymmetric and pseudo-symmetric pre-organised structural modules. In addition, by introducing a protease cleavage site and masking the interfacial CC-forming segments in the two-chain bipyramidal cage, we devise a proteolysis-mediated conformational switch. This strategy could be extended to other modular protein folds, facilitating the construction of dynamic multi-chain CC-based complexes. Coiled-coil protein origami is a strategy for the de novo design of polypeptide nanostructures based on coiled-coil dimer forming peptides, where a single chain protein folds into a polyhedral cage. Here, the authors design a single-chain triangular bipyramid and also demonstrate that the bipyramid can be self-assembled as a heterodimeric complex, comprising pre-defined subunits.
Collapse
Affiliation(s)
- Fabio Lapenta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Jana Aupič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marco Vezzoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Žiga Strmšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | | | - Roberto Melero
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia. .,EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Sapra KT, Qin Z, Dubrovsky-Gaupp A, Aebi U, Müller DJ, Buehler MJ, Medalia O. Nonlinear mechanics of lamin filaments and the meshwork topology build an emergent nuclear lamina. Nat Commun 2020; 11:6205. [PMID: 33277502 PMCID: PMC7718915 DOI: 10.1038/s41467-020-20049-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/11/2020] [Indexed: 01/16/2023] Open
Abstract
The nuclear lamina—a meshwork of intermediate filaments termed lamins—is primarily responsible for the mechanical stability of the nucleus in multicellular organisms. However, structural-mechanical characterization of lamin filaments assembled in situ remains elusive. Here, we apply an integrative approach combining atomic force microscopy, cryo-electron tomography, network analysis, and molecular dynamics simulations to directly measure the mechanical response of single lamin filaments in three-dimensional meshwork. Endogenous lamin filaments portray non-Hookean behavior – they deform reversibly at a few hundred picoNewtons and stiffen at nanoNewton forces. The filaments are extensible, strong and tough similar to natural silk and superior to the synthetic polymer Kevlar®. Graph theory analysis shows that the lamin meshwork is not a random arrangement of filaments but exhibits small-world properties. Our results suggest that lamin filaments arrange to form an emergent meshwork whose topology dictates the mechanical properties of individual filaments. The quantitative insights imply a role of meshwork topology in laminopathies. Mechanical strength of in situ assembled nuclear lamin filaments arranged in a 3D meshwork is unclear. Here, using mechanical, structural and simulation tools, the authors report the hierarchical organization of the lamin meshwork that imparts strength and toughness to lamin filaments at par with silk and Kevlar®
Collapse
Affiliation(s)
- K Tanuj Sapra
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Department of Biosystems Science and Bioengineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Anna Dubrovsky-Gaupp
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ueli Aebi
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Bioengineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
15
|
Bergues-Pupo AE, Lipowsky R, Vila Verde A. Unfolding mechanism and free energy landscape of single, stable, alpha helices at low pull speeds. SOFT MATTER 2020; 16:9917-9928. [PMID: 33030193 DOI: 10.1039/d0sm01166e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single alpha helices (SAHs) stable in isolated form are often found in motor proteins where they bridge functional domains. Understanding the mechanical response of SAHs is thus critical to understand their function. The quasi-static force-extension relation of a small number of SAHs is known from single-molecule experiments. Unknown, or still controversial, are the molecular scale details behind those observations. We show that the deformation mechanism of SAHs pulled from the termini at pull speeds approaching the quasi-static limit differs from that of typical helices found in proteins, which are stable only when interacting with other protein domains. Using molecular dynamics simulations with atomistic resolution at low pull speeds previously inaccessible to simulation, we show that SAHs start unfolding from the termini at all pull speeds we investigated. Unfolding proceeds residue-by-residue and hydrogen bond breaking is not the main event determining the barrier to unfolding. We use the molecular simulation data to test the cooperative sticky chain model. This model yields excellent fits of the force-extension curves and quantifies the distance, xE = 0.13 nm, to the transition state, the natural frequency of bond vibration, ν0 = 0.82 ns-1, and the height, V0 = 2.9 kcal mol-1, of the free energy barrier associated with the deformation of single residues. Our results demonstrate that the sticky chain model could advantageously be used to analyze experimental force-extension curves of SAHs and other biopolymers.
Collapse
Affiliation(s)
- Ana Elisa Bergues-Pupo
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Ana Vila Verde
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
16
|
Wang H, Shen B, Song Y, Lee M, Zhang W. Nanomechanical Properties of a Supramolecular Helix Stabilized by Non-Covalent Interactions. Macromol Rapid Commun 2020; 41:e2000453. [PMID: 32902027 DOI: 10.1002/marc.202000453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/30/2020] [Indexed: 11/06/2022]
Abstract
Supramolecular helices have unique properties and many potential applications, such as chiral separation and asymmetric catalysis. Mechanical property (stability) of the supramolecular helix plays important roles in their functions. Due to the limitation of detection method, it is quite challenging to investigate nanomechanical properties of individual supramolecular helices stabilized by pure supramolecular interactions. Here atomic force microscopy (AFM)-based single molecule force spectroscopy (SMFS) is used to study the nanomechanical properties of a thermal-responsive supramolecular helix. The unwinding force plateau is observed in the force-extension curve, and the rupture force of the helix is dependent on the loading rate. In addition, the force-induced unwinding process is reversible and there is almost no energy dissipation in the process. Furthermore, the result of thermal shape-fluctuation analysis shows that the persistence length of the supramolecular helix is about 222 nm, which is much larger than helical structure formed by double-stranded DNA (dsDNA). However, because of its unique backbone structure, the supramolecular helix exhibits higher dynamic flexibility during force-induced deformation, since the persistence length determined from the stretching experiment is much smaller (1.1 nm).
Collapse
Affiliation(s)
- Huijie Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bowen Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yu Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Myongsoo Lee
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
17
|
Kodera N, Ando T. High-Speed Atomic Force Microscopy to Study Myosin Motility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:127-152. [PMID: 32451858 DOI: 10.1007/978-3-030-38062-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High-speed atomic force microscopy (HS-AFM) is a unique tool that enables imaging of protein molecules during their functional activity at sub-100 ms temporal and submolecular spatial resolution. HS-AFM is suited for the study of highly dynamic proteins, including myosin motors. HS-AFM images of myosin V walking on actin filaments provide irrefutable evidence for the swinging lever arm motion propelling the molecule forward. Moreover, molecular behaviors that have not been noticed before are also displayed on the AFM movies. This chapter describes the principle, underlying techniques and performance of HS-AFM, filmed images of myosin V, and mechanistic insights into myosin motility provided from the filmed images.
Collapse
Affiliation(s)
- Noriyuki Kodera
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
18
|
Abstract
LINC complexes (Linker of Nucleoskeleton and Cytoskeleton), consisting of inner nuclear membrane SUN (Sad1, UNC-84) proteins and outer nuclear membrane KASH (Klarsicht, ANC-1, and Syne Homology) proteins, are essential for nuclear positioning, cell migration and chromosome dynamics. To test the in vivo functions of conserved interfaces revealed by crystal structures, Cain et al used a combination of Caenorhabditis elegans genetics, imaging in cultured NIH 3T3 fibroblasts, and Molecular Dynamic simulations, to study SUN-KASH interactions. Conserved aromatic residues at the -7 position of the C-termini of KASH proteins and conserved disulfide bonds in LINC complexes play important roles in force transmission across the nuclear envelope. Other properties of LINC complexes, such as the helices preceding the SUN domain, the longer coiled-coils spanning the perinuclear space and higher-order organization may also function to transmit mechanical forces generated by the cytoskeleton across the nuclear envelope.
Collapse
Affiliation(s)
- Hongyan Hao
- a Department of Molecular and Cellular Biology , University of California , Davis , CA USA
| | - Daniel A Starr
- a Department of Molecular and Cellular Biology , University of California , Davis , CA USA
| |
Collapse
|
19
|
Chaimovich A, Leitold C, Dellago C. The generic unfolding of a biomimetic polymer during force spectroscopy. SOFT MATTER 2020; 16:3941-3951. [PMID: 32267254 DOI: 10.1039/c9sm02545f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the help of force spectroscopy, several analytical theories aim at estimating the rate coefficient of folding for various proteins. Nevertheless, a chief bottleneck lies in the fact that there is still no perfect consensus on how does a force generally perturb the crystal-coil transition. Consequently, the goal of our work is in clarifying the generic behavior of most proteins in force spectroscopy; in other words, what general signature does an arbitrary protein exhibit for its rate coefficient as a function of the applied force? By employing a biomimetic polymer in molecular simulations, we focus on evaluating its respective activation energy for unfolding, while pulling on various pairs of its monomers. Above all, we find that in the vicinity of the force-free scenario, this activation energy possesses a negative slope and a negative curvature as a function of the applied force. Our work is in line with the most recent theories for unfolding, which suggest that such a signature is expected for most proteins, and thus, we further reiterate that many of the classical formulae, that estimate the rate coefficient of the crystal-coil transition, are inadequate. Besides, we also present here an analytical expression which experimentalists can use for approximating the activation energy for unfolding; importantly, it is based on measurements for the mean and variance of the distance between the beads which are being pulled. In summary, our work presents an interesting view for protein folding in force spectroscopy.
Collapse
Affiliation(s)
- Aviel Chaimovich
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
20
|
Sluysmans D, Willet N, Thevenot J, Lecommandoux S, Duwez AS. Single-molecule mechanical unfolding experiments reveal a critical length for the formation of α-helices in peptides. NANOSCALE HORIZONS 2020; 5:671-678. [PMID: 32226978 DOI: 10.1039/d0nh00036a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
α-Helix is the most predominant secondary structure in proteins and supports many functions in biological machineries. The conformation of the helix is dictated by many factors such as its primary sequence, intramolecular interactions, or the effect of the close environment. Several computational studies have proposed that there is a critical maximum length for the formation of intact compact helical structures, supporting the fact that most intact α-helices in proteins are constituted of a small number of amino acids. To obtain a detailed picture on the formation of α-helices in peptides and their mechanical stability, we have synthesized a long homopolypeptide of about 90 amino acids, poly(γ-benzyl-l-glutamate), and investigated its mechanical behaviour by AFM-based single-molecule force spectroscopy. The characteristic plateaus observed in the force-extension curves reveal the unfolding of a series of small helices (from 1 to 4) of about 20 amino acid residues connected to each other, rather than a long helix of 90 residues. Our results suggest the formation of a tertiary structure made of short helices with kinks, instead of an intact compact helical structure for sequences of more than 20 amino acid residues. To our knowledge, this is the first experimental evidence supporting the concept of a helical critical length previously proposed by several computational studies.
Collapse
Affiliation(s)
- Damien Sluysmans
- Molecular Systems Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium.
| | - Nicolas Willet
- Molecular Systems Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium. and Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Julie Thevenot
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | | | - Anne-Sophie Duwez
- Molecular Systems Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium.
| |
Collapse
|
21
|
Radhakrishnan K, Singh SP. Force driven transition of a globular polyelectrolyte. J Chem Phys 2019; 151:174902. [PMID: 31703517 DOI: 10.1063/1.5121407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have systematically studied behavior of a flexible polyelectrolyte (PE) chain with explicit counterions, subjected to a constant force at the terminal ends. Our simulations reveal that in the hydrophobic regime, a PE globule abruptly opens to a coil state beyond a critical force Fc. At the transition point, the polymer shape shows large scale fluctuations that are quantified in terms of end-to-end distance Re. These fluctuations suggest that the system coexists in globule and coil states at the transition, which is also confirmed from the bimodal distribution of Re. Moreover, the critical force associated with the globule coil transition exhibits a nonmonotonic behavior, where surprisingly, Fc decreases with Bjerrum length lB in the limit of small lB, followed by an increase in the larger lB limit. Furthermore, this behavior is also validated from a theory adopted for the PE. From the free energy analysis, we have demonstrated that predominantly, the competition between the intrachain repulsive energy, counterion's translational entropy, and adsorption energy leads to the novel feature of nonmonotonic behavior of force.
Collapse
Affiliation(s)
- Keerthi Radhakrishnan
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India
| | - Sunil P Singh
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
22
|
Li Q, Scholl ZN, Marszalek PE. Unraveling the Mechanical Unfolding Pathways of a Multidomain Protein: Phosphoglycerate Kinase. Biophys J 2019; 115:46-58. [PMID: 29972811 DOI: 10.1016/j.bpj.2018.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/31/2018] [Accepted: 05/21/2018] [Indexed: 01/12/2023] Open
Abstract
Phosphoglycerate kinase (PGK) is a highly conserved enzyme that is crucial for glycolysis. PGK is a monomeric protein composed of two similar domains and has been the focus of many studies for investigating interdomain interactions within the native state and during folding. Previous studies used traditional biophysical methods (such as circular dichroism, tryptophan fluorescence, and NMR) to measure signals over a large ensemble of molecules, which made it difficult to observe transient changes in stability or structure during unfolding and refolding of single molecules. Here, we unfold single molecules of PGK using atomic force spectroscopy and steered molecular dynamic computer simulations to examine the conformational dynamics of PGK during its unfolding process. Our results show that after the initial forced separation of its domains, yeast PGK (yPGK) does not follow a single mechanical unfolding pathway; instead, it stochastically follows two distinct pathways: unfolding from the N-terminal domain or unfolding from the C-terminal domain. The truncated yPGK N-terminal domain unfolds via a transient intermediate, whereas the structurally similar isolated C-terminal domain has no detectable intermediates throughout its mechanical unfolding process. The N-terminal domain in the full-length yPGK displays a strong unfolding intermediate 13% of the time, whereas the truncated domain (yPGKNT) transitions through the intermediate 81% of the time. This effect indicates that the mechanical properties of yPGK cannot be simply deduced from the mechanical properties of its constituents. We also find that Escherichia coli PGK is significantly less mechanically stable as compared to yPGK, contrary to bulk unfolding measurements. Our results support the growing body of observations that the folding behavior of multidomain proteins is difficult to predict based solely on the studies of isolated domains.
Collapse
Affiliation(s)
- Qing Li
- Center for Biologically Inspired Materials and Material Systems, Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, North Carolina.
| | - Zackary N Scholl
- Program in Computational Biology and Bioinformatics, Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, North Carolina.
| | - Piotr E Marszalek
- Center for Biologically Inspired Materials and Material Systems, Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, North Carolina.
| |
Collapse
|
23
|
Yuan C, Wang Z, Borg TK, Ye T, Baicu C, Bradshaw A, Zile M, Runyan RB, Shao Y, Gao BZ. Changes in the crystallographic structures of cardiac myosin filaments detected by polarization-dependent second harmonic generation microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:3183-3195. [PMID: 31360597 PMCID: PMC6640825 DOI: 10.1364/boe.10.003183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
Detecting the structural changes caused by volume and pressure overload is critical to comprehending the mechanisms of physiologic and pathologic hypertrophy. This study explores the structural changes at the crystallographic level in myosin filaments in volume- and pressure-overloaded myocardia through polarization-dependent second harmonic generation microscopy. Here, for the first time, we report that the ratio of nonlinear susceptibility tensor components d33/d15 increased significantly in volume- and pressure-overloaded myocardial tissues compared with the ratio in normal mouse myocardial tissues. Through cell stretch experiments, we demonstrated that mechanical tension plays an important role in the increase of d33/d15 in volume- and pressure-overloaded myocardial tissues.
Collapse
Affiliation(s)
- Cai Yuan
- Department of Bioengineering, Clemson University, Clemson, South Carolina, 29634, USA
| | - Zhonghai Wang
- Department of Bioengineering, Clemson University, Clemson, South Carolina, 29634, USA
| | - Thomas K. Borg
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina Charleston, South Carolina, 29425, USA
| | - Tong Ye
- Department of Bioengineering, Clemson University, Clemson, South Carolina, 29634, USA
| | - Catalin Baicu
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Amy Bradshaw
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Michael Zile
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Raymond B. Runyan
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona, 85724, USA
| | - Yonghong Shao
- College of Optoelectronics Engineering, Shenzhen University, Shenzhen, 518061, China
| | - Bruce Z. Gao
- Department of Bioengineering, Clemson University, Clemson, South Carolina, 29634, USA
| |
Collapse
|
24
|
Torres-Sánchez A, Vanegas JM, Purohit PK, Arroyo M. Combined molecular/continuum modeling reveals the role of friction during fast unfolding of coiled-coil proteins. SOFT MATTER 2019; 15:4961-4975. [PMID: 31172154 DOI: 10.1039/c9sm00117d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Coiled-coils are filamentous proteins that form the basic building block of important force-bearing cellular elements, such as intermediate filaments and myosin motors. In addition to their biological importance, coiled-coil proteins are increasingly used in new biomaterials including fibers, nanotubes, or hydrogels. Coiled-coils undergo a structural transition from an α-helical coil to an unfolded state upon extension, which allows them to sustain large strains and is critical for their biological function. By performing equilibrium and out-of-equilibrium all-atom molecular dynamics (MD) simulations of coiled-coils in explicit solvent, we show that two-state models based on Kramers' or Bell's theories fail to predict the rate of unfolding at high pulling rates. We further show that an atomistically informed continuum rod model accounting for phase transformations and for the hydrodynamic interactions with the solvent can reconcile two-state models with our MD results. Our results show that frictional forces, usually neglected in theories of fibrous protein unfolding, reduce the thermodynamic force acting on the interface, and thus control the dynamics of unfolding at different pulling rates. Our results may help interpret MD simulations at high pulling rates, and could be pertinent to cytoskeletal networks or protein-based artificial materials subjected to shocks or blasts.
Collapse
|
25
|
Hayama R, Sorci M, Keating IV JJ, Hecht LM, Plawsky JL, Belfort G, Chait BT, Rout MP. Interactions of nuclear transport factors and surface-conjugated FG nucleoporins: Insights and limitations. PLoS One 2019; 14:e0217897. [PMID: 31170242 PMCID: PMC6553764 DOI: 10.1371/journal.pone.0217897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/21/2019] [Indexed: 11/18/2022] Open
Abstract
Protein-protein interactions are central to biological processes. In vitro methods to examine protein-protein interactions are generally categorized into two classes: in-solution and surface-based methods. Here, using the multivalent interactions between nucleocytoplasmic transport factors and intrinsically disordered FG repeat containing nuclear pore complex proteins as a model system, we examined the utility of three surface-based methods: atomic force microscopy, quartz crystal microbalance with dissipation, and surface plasmon resonance. Although results were comparable to those of previous reports, the apparent effect of mass transport limitations was demonstrated. Additional experiments with a loss-of-interaction FG repeat mutant variant demonstrated that the binding events that take place on surfaces can be unexpectedly complex, suggesting particular care must be exercised in interpretation of such data.
Collapse
Affiliation(s)
- Ryo Hayama
- Laboratory of Cellular and Structural Biology, the Rockefeller University, New York, NY, United States of America
| | - Mirco Sorci
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - John J. Keating IV
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Lee M. Hecht
- Laboratory of Cellular and Structural Biology, the Rockefeller University, New York, NY, United States of America
| | - Joel L. Plawsky
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Georges Belfort
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
- * E-mail: (GB); (BTC); (MPR)
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Chemistry, the Rockefeller University, New York, NY, United States of America
- * E-mail: (GB); (BTC); (MPR)
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, the Rockefeller University, New York, NY, United States of America
- * E-mail: (GB); (BTC); (MPR)
| |
Collapse
|
26
|
Bergues-Pupo AE, Blank KG, Lipowsky R, Vila Verde A. Trimeric coiled coils expand the range of strength, toughness and dynamics of coiled coil motifs under shear. Phys Chem Chem Phys 2018; 20:29105-29115. [PMID: 30426982 DOI: 10.1039/c8cp04896g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Coiled coils are widespread protein motifs in nature, and promising building blocks for bio-inspired nanomaterials and nanoscale force sensors. Detailed structural insight into their mechanical response is required to understand their role in tissues and to design building blocks for applications. We use all-atom molecular dynamics simulations to elucidate the mechanical response of two types of coiled coils under shear: dimers and trimers. The amino acid sequences of both systems are similar, thus enabling universal (vs. system-specific) features to be identified. The trimer is mechanically more stable - it is both stronger and tougher - than the dimer, withstanding higher forces (127 pN vs. 49 pN at v = 10-3 nm ns-1) and dissipating up to five times more energy before rupture. The deformation mechanism of the trimer at all pull speeds is dominated by progressive helix unfolding. In contrast, at the lowest pull speeds, dimers deform by unfolding/refolding-assisted sliding. The additional helix in the trimer thus both determines the stability of the structure and affects the deformation mechanism, preventing helix sliding. The mechanical response of the coiled coils is not only sensitive to the oligomerization state but also to helix stability: preventing helix unfolding doubles the mechanical strength of the trimer, but decreases its toughness to half. Our results show that coiled coil trimers expand the range of coiled coil responses to an applied shear force. Altering the stability of individual helices against deformation emerges as one possible route towards fine-tuning this response, enabling the use of these motifs as nanomechanical building blocks.
Collapse
Affiliation(s)
- Ana E Bergues-Pupo
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, 14424 Potsdam, Germany.
| | | | | | | |
Collapse
|
27
|
Portale G, Torbet J. Complex strain induced structural changes observed in fibrin assembled in human plasma. NANOSCALE 2018; 10:10063-10072. [PMID: 29781019 DOI: 10.1039/c8nr00353j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The structure of the core scaffold of blood clots, the interlinked 3-dimensional network of fibrin fibers, is modified by mechanical forces generated by platelet driven clot retraction, wound repair and shear stress through blood flow. Here X-ray diffraction is used to investigate how uniaxial strain, ε (ε = extension/original length), alters fiber structure in highly aligned human plasma clots covalently cross-linked by Factor XIIIa. Three stretch sensitive axially repeating structures are identified. Firstly, the foundation structure with an initial ≈22 nm axial repeat stretches, fades then disappears at ε ≈ 0.40. A second, lengthened transitory structure emerges at the low strains (ε ≈ 0.20) believed to be developed by cells. Finally, a third shortened structure appears after relaxation. Simultaneously as strain progresses an increasing fraction of molecules become axially disordered. Weak off-axis diffraction maxima indicate the presence of lateral ordering up to ε = 0.40 that partially recovers after relaxation. The reappearance of both axial and lateral order on relaxation demonstrates a surprising resilience in structure. In view of the range and importance of fibrin's functions, this structural heterogeneity, triggered in vivo by cell traction or shear stress, is likely to be of clinical significance.
Collapse
Affiliation(s)
- G Portale
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
| | - J Torbet
- Dutch-Belgian Beamline (DUBBLE), ESRF - The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France
| |
Collapse
|
28
|
Nadler H, Shaulov L, Blitsman Y, Mordechai M, Jopp J, Sal-Man N, Berkovich R. Deciphering the Mechanical Properties of Type III Secretion System EspA Protein by Single Molecule Force Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6261-6270. [PMID: 29726683 DOI: 10.1021/acs.langmuir.8b01198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacterial pathogens inject virulence factors into host cells during bacterial infections using type III secretion systems. In enteropathogenic Escherichia coli, this system contains an external filament, formed by a self-oligomerizing protein called E. coli secreted protein A (EspA). The EspA filament penetrates the thick viscous mucus layer to facilitate the attachment of the bacteria to the gut-epithelium. To do that, the EspA filament requires noteworthy mechanical endurance considering the mechanical shear stresses found within the intestinal tract. To date, the mechanical properties of the EspA filament and the structural and biophysical knowledge of monomeric EspA are very limited, mostly due to the strong tendency of the protein to self-oligomerize. To overcome this limitation, we employed a single molecule force spectroscopy (SMFS) technique and studied the mechanical properties of EspA. Force extension dynamic of (I91)4-EspA-(I91)4 chimera revealed two structural unfolding events occurring at low forces during EspA unfolding, thus indicating no unique mechanical stability of the monomeric protein. SMFS examination of purified monomeric EspA protein, treated by a gradually refolding protocol, exhibited similar mechanical properties as the EspA protein within the (I91)4-EspA-(I91)4 chimera. Overall, our results suggest that the mechanical integrity of the EspA filament likely originates from the interactions between EspA monomers and not from the strength of an individual monomer.
Collapse
Affiliation(s)
- Hila Nadler
- Department of Chemical Engineering , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Lihi Shaulov
- Department of Microbiology, Immunology and Genetics , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Yossi Blitsman
- Department of Chemical Engineering , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Moran Mordechai
- Department of Chemical Engineering , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Jürgen Jopp
- The Ilse Katz Institute for Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Neta Sal-Man
- Department of Microbiology, Immunology and Genetics , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Ronen Berkovich
- Department of Chemical Engineering , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
- The Ilse Katz Institute for Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| |
Collapse
|
29
|
Goktas M, Luo C, Sullan RMA, Bergues-Pupo AE, Lipowsky R, Vila Verde A, Blank KG. Molecular mechanics of coiled coils loaded in the shear geometry. Chem Sci 2018; 9:4610-4621. [PMID: 29899954 PMCID: PMC5969510 DOI: 10.1039/c8sc01037d] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/19/2018] [Indexed: 01/25/2023] Open
Abstract
Coiled coils are important nanomechanical building blocks in biological and biomimetic materials. A mechanistic molecular understanding of their structural response to mechanical load is essential for elucidating their role in tissues and for utilizing and tuning these building blocks in materials applications. Using a combination of single-molecule force spectroscopy (SMFS) and steered molecular dynamics (SMD) simulations, we have investigated the mechanics of synthetic heterodimeric coiled coils of different length (3-4 heptads) when loaded in shear geometry. Upon shearing, we observe an initial rise in the force, which is followed by a constant force plateau and ultimately strand separation. The force required for strand separation depends on the coiled coil length and the applied loading rate, suggesting that coiled coil shearing occurs out of equilibrium. This out-of-equilibrium behaviour is determined by a complex structural response which involves helix uncoiling, uncoiling-assisted sliding of the helices relative to each other in the direction of the applied force as well as uncoiling-assisted dissociation perpendicular to the force axis. These processes follow a hierarchy of timescales with helix uncoiling being faster than sliding and sliding being faster than dissociation. In SMFS experiments, strand separation is dominated by uncoiling-assisted dissociation and occurs at forces between 25-45 pN for the shortest 3-heptad coiled coil and between 35-50 pN for the longest 4-heptad coiled coil. These values are highly similar to the forces required for shearing apart short double-stranded DNA oligonucleotides, reinforcing the potential role of coiled coils as nanomechanical building blocks in applications where protein-based structures are desired.
Collapse
Affiliation(s)
- Melis Goktas
- Max Planck Institute of Colloids and Interfaces , Mechano(bio)chemistry , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Chuanfu Luo
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Ruby May A Sullan
- Max Planck Institute of Colloids and Interfaces , Mechano(bio)chemistry , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Ana E Bergues-Pupo
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Ana Vila Verde
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Kerstin G Blank
- Max Planck Institute of Colloids and Interfaces , Mechano(bio)chemistry , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| |
Collapse
|
30
|
Hou R, Wang N, Bao W, Wang Z. Mechanical transduction via a single soft polymer. Phys Rev E 2018; 97:042504. [PMID: 29758660 DOI: 10.1103/physreve.97.042504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 06/08/2023]
Abstract
Molecular machines from biology and nanotechnology often depend on soft structures to perform mechanical functions, but the underlying mechanisms and advantages or disadvantages over rigid structures are not fully understood. We report here a rigorous study of mechanical transduction along a single soft polymer based on exact solutions to the realistic three-dimensional wormlike-chain model and augmented with analytical relations derived from simpler polymer models. The results reveal surprisingly that a soft polymer with vanishingly small persistence length below a single chemical bond still transduces biased displacement and mechanical work up to practically significant amounts. This "soft" approach possesses unique advantages over the conventional wisdom of rigidity-based transduction, and potentially leads to a unified mechanism for effective allosterylike transduction and relay of mechanical actions, information, control, and molecules from one position to another in molecular devices and motors. This study also identifies an entropy limit unique to the soft transduction, and thereby suggests a possibility of detecting higher efficiency for kinesin motor and mutants in future experiments.
Collapse
Affiliation(s)
- Ruizheng Hou
- School of Science and Institute of Quantum Optics and Quantum Information, Xi'an Jiaotong University, Shaan Xi 710049, China
| | - Nan Wang
- Department of Mathematics, National University of Singapore, Singapore 119076
| | - Weizhu Bao
- Department of Mathematics, National University of Singapore, Singapore 119076
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119076
| | - Zhisong Wang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119076
- Department of Physics, National University of Singapore, Singapore 117542
| |
Collapse
|
31
|
Puglisi G, De Tommasi D, Pantano MF, Pugno NM, Saccomandi G. Micromechanical model for protein materials: From macromolecules to macroscopic fibers. Phys Rev E 2018; 96:042407. [PMID: 29347475 DOI: 10.1103/physreve.96.042407] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 11/07/2022]
Abstract
We propose a model for the mechanical behavior of protein materials. Based on a limited number of experimental macromolecular parameters (persistence and contour length) we obtain the macroscopic behavior of keratin fibers (human, cow, and rabbit hair), taking into account the damage and residual stretches effects that are fundamental in many functions of life. We also show the capability of our approach to describe the main dissipation and permanent strain effects observed in the more complex spider silk fibers. The comparison between our results and the data obtained experimentally from cyclic tests demonstrates that our model is robust and is able to reproduce with a remarkable accuracy the experimental behavior of all protein materials we tested.
Collapse
Affiliation(s)
- G Puglisi
- Dipartimento di Scienze dell'Ingegneria Civile e dell'Architettura, Via Re David 200, 700126, Politecnico di Bari, Italy
| | - D De Tommasi
- Dipartimento di Scienze dell'Ingegneria Civile e dell'Architettura, Via Re David 200, 700126, Politecnico di Bari, Italy
| | - M F Pantano
- Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
| | - N M Pugno
- Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy; Ket Lab, Edoardo Amaldi Foundation, Italian Space Agency, Via del Politecnico snc, 00133 Rome, Italy; and School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - G Saccomandi
- Dipartimento di Ingegneria, Universita degli Studi di Perugia, piazza Universita, 1, 06123 Perugia and School of Mathematics, Statistics and Applied Mathematics, NUI Galway, University Road, Galway, Ireland
| |
Collapse
|
32
|
Singh RR, Dunn JW, Qadan MM, Hall N, Wang KK, Root DD. Whole length myosin binding protein C stabilizes myosin S2 as measured by gravitational force spectroscopy. Arch Biochem Biophys 2017; 638:41-51. [PMID: 29229286 DOI: 10.1016/j.abb.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/21/2023]
Abstract
The mechanical stability of the myosin subfragment-2 (S2) was tested with simulated force spectroscopy (SFS) and gravitational force spectroscopy (GFS). Experiments examined unzipping S2, since it required less force than stretching parallel to the coiled coil. Both GFS and SFS demonstrated that the force required to destabilize the light meromyosin (LMM) was greater than the force required to destabilize the coiled coil at each of three different locations along S2. GFS data also conveyed that the mechanical stability of the S2 region is independent from its association with the myosin thick filament using cofilaments of myosin tail and a single intact myosin. The C-terminal end of myosin binding protein C (MyBPC) binds to LMM and the N-terminal end can bind either S2 or actin. The force required to destabilize the myosin coiled coil molecule was 3 times greater in the presence of MyBPC than in its absence. Furthermore, the in vitro motility assay with full length slow skeletal MyBPC slowed down the actin filament sliding over myosin thick filaments. This study demonstrates that skeletal MyBPC both enhanced the mechanical stability of the S2 coiled coil and reduced the sliding velocity of actin filaments over polymerized myosin filaments.
Collapse
Affiliation(s)
- Rohit R Singh
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - James W Dunn
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - Motamed M Qadan
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - Nakiuda Hall
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - Kathy K Wang
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - Douglas D Root
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
33
|
Minin KA, Zhmurov A, Marx KA, Purohit PK, Barsegov V. Dynamic Transition from α-Helices to β-Sheets in Polypeptide Coiled-Coil Motifs. J Am Chem Soc 2017; 139:16168-16177. [PMID: 29043794 DOI: 10.1021/jacs.7b06883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We carried out dynamic force manipulations in silico on a variety of coiled-coil protein fragments from myosin, chemotaxis receptor, vimentin, fibrin, and phenylalanine zippers that vary in size and topology of their α-helical packing. When stretched along the superhelical axis, all superhelices show elastic, plastic, and inelastic elongation regimes and undergo a dynamic transition from the α-helices to the β-sheets, which marks the onset of plastic deformation. Using the Abeyaratne-Knowles formulation of phase transitions, we developed a new theoretical methodology to model mechanical and kinetic properties of protein coiled-coils under mechanical nonequilibrium conditions and to map out their energy landscapes. The theory was successfully validated by comparing the simulated and theoretical force-strain spectra. We derived the scaling laws for the elastic force and the force for α-to-β transition, which can be used to understand natural proteins' properties as well as to rationally design novel biomaterials of required mechanical strength with desired balance between stiffness and plasticity.
Collapse
Affiliation(s)
- Kirill A Minin
- Moscow Institute of Physics and Technology , Dolgoprudny 141701, Russia
| | - Artem Zhmurov
- Moscow Institute of Physics and Technology , Dolgoprudny 141701, Russia
| | - Kenneth A Marx
- Department of Chemistry, University of Massachusetts , Lowell, Massachusetts 01854, United States
| | - Prashant K Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Valeri Barsegov
- Moscow Institute of Physics and Technology , Dolgoprudny 141701, Russia.,Department of Chemistry, University of Massachusetts , Lowell, Massachusetts 01854, United States
| |
Collapse
|
34
|
Biomolecular stiffness detection based on positive frequency shift of CMOS compatible gigahertz solidly mounted resonators. Biosens Bioelectron 2017; 96:206-212. [DOI: 10.1016/j.bios.2017.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 01/15/2023]
|
35
|
Fu J, Guerette PA, Pavesi A, Horbelt N, Lim CT, Harrington MJ, Miserez A. Artificial hagfish protein fibers with ultra-high and tunable stiffness. NANOSCALE 2017; 9:12908-12915. [PMID: 28832693 DOI: 10.1039/c7nr02527k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Stiff fibers are used as reinforcing phases in a wide range of high-performance composite materials. Silk is one of the most widely studied bio-fibers, but alternative materials with specific advantages are also being explored. Among these, native hagfish (Eptatretus stoutii) slime thread is an attractive protein-based polymer. These threads consist of coiled-coil intermediate filaments (IFs) as nano-scale building blocks, which can be transformed into extended β-sheet-containing chains upon draw-processing, resulting in fibers with impressive mechanical performance. Here, we report artificial hagfish threads produced by recombinant protein expression, which were subsequently self-assembled into coiled-coil nanofilaments, concentrated, and processed into β-sheet-rich fibers by a "picking-up" method. These artificial fibers experienced mechanical performance enhancement during draw-processing. We exploited the lysine content to covalently cross-link the draw-processed fibers and obtained moduli values (E) in tension as high as ∼20 GPa, which is stiffer than most reported artificial proteinaceous materials.
Collapse
Affiliation(s)
- Jing Fu
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798
| | | | | | | | | | | | | |
Collapse
|
36
|
Driver JW, Geyer EA, Bailey ME, Rice LM, Asbury CL. Direct measurement of conformational strain energy in protofilaments curling outward from disassembling microtubule tips. eLife 2017. [PMID: 28628007 PMCID: PMC5515574 DOI: 10.7554/elife.28433] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Disassembling microtubules can generate movement independently of motor enzymes, especially at kinetochores where they drive chromosome motility. A popular explanation is the 'conformational wave' model, in which protofilaments pull on the kinetochore as they curl outward from a disassembling tip. But whether protofilaments can work efficiently via this spring-like mechanism has been unclear. By modifying a previous assay to use recombinant tubulin and feedback-controlled laser trapping, we directly demonstrate the spring-like elasticity of curling protofilaments. Measuring their mechanical work output suggests they carry ~25% of the energy of GTP hydrolysis as bending strain, enabling them to drive movement with efficiency similar to conventional motors. Surprisingly, a β-tubulin mutant that dramatically slows disassembly has no effect on work output, indicating an uncoupling of disassembly speed from protofilament strain. These results show the wave mechanism can make a major contribution to kinetochore motility and establish a direct approach for measuring tubulin mechano-chemistry.
Collapse
Affiliation(s)
- Jonathan W Driver
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Elisabeth A Geyer
- Department of Biophysics, UT Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, UT Southwestern Medical Center, Dallas, United States
| | - Megan E Bailey
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Luke M Rice
- Department of Biophysics, UT Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, UT Southwestern Medical Center, Dallas, United States
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| |
Collapse
|
37
|
Zhou T, Fleming JR, Franke B, Bogomolovas J, Barsukov I, Rigden DJ, Labeit S, Mayans O. CARP interacts with titin at a unique helical N2A sequence and at the domain Ig81 to form a structured complex. FEBS Lett 2016; 590:3098-110. [PMID: 27531639 DOI: 10.1002/1873-3468.12362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 11/07/2022]
Abstract
The cardiac ankyrin repeat protein (CARP) is up-regulated in the myocardium during cardiovascular disease and in response to mechanical or toxic stress. Stress-induced CARP interacts with the N2A spring region of the titin filament to modulate muscle compliance. We characterize the interaction between CARP and titin-N2A and show that the binding site in titin spans the dual domain UN2A-Ig81. We find that the unique sequence UN2A is not structurally disordered, but that it has a stable, elongated α-helical fold that possibly acts as a constant force spring. Our findings portray CARP/titin-N2A as a structured node and help to rationalize the molecular basis of CARP mechanosensing in the sarcomeric I-band.
Collapse
Affiliation(s)
- Tiankun Zhou
- Department of Biology, University of Konstanz, Germany.,Institute of Integrative Biology, University of Liverpool, UK
| | - Jennifer R Fleming
- Department of Biology, University of Konstanz, Germany.,Institute of Integrative Biology, University of Liverpool, UK
| | | | - Julius Bogomolovas
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Igor Barsukov
- Institute of Integrative Biology, University of Liverpool, UK
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, UK
| | - Siegfried Labeit
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Olga Mayans
- Department of Biology, University of Konstanz, Germany. .,Institute of Integrative Biology, University of Liverpool, UK.
| |
Collapse
|
38
|
Significance of 1B and 2B domains in modulating elastic properties of lamin A. Sci Rep 2016; 6:27879. [PMID: 27301336 PMCID: PMC4908593 DOI: 10.1038/srep27879] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
Nuclear lamins are type V intermediate filament proteins which form an elastic
meshwork underlying the inner nuclear membrane. Lamins directly contribute to
maintain the nuclear shape and elasticity. More than 400 mutations have been
reported in lamin A that are involved in diseases known as laminopathies. These
mutations are scattered mainly in the lamin rod domain along with some in its
C-terminal domain. The contribution of the rod domain towards the elasticity of
lamin A molecule was hitherto unknown. Here, we have elucidated the significance of
the 1B and 2B domains of the rod in modulating the elastic behavior of lamin A by
single-molecule force spectroscopy. In addition, we have also studied the network
forming capacity of these domains and their corresponding viscoelastic behavior. We
have shown that the 1B domain has the ability to form a lamin-like network and
resists larger deformation. However at the single-molecular level, both the domains
have comparable mechanical properties. The self-assembly of the 1B domain
contributes to the elasticity of the lamin A network.
Collapse
|
39
|
Papachristos K, Muench SP, Paci E. Characterization of the flexibility of the peripheral stalk of prokaryotic rotary A-ATPases by atomistic simulations. Proteins 2016; 84:1203-12. [PMID: 27177595 PMCID: PMC4988496 DOI: 10.1002/prot.25066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022]
Abstract
Rotary ATPases are involved in numerous physiological processes, with the three distinct types (F/A/V‐ATPases) sharing functional properties and structural features. The basic mechanism involves the counter rotation of two motors, a soluble ATP hydrolyzing/synthesizing domain and a membrane‐embedded ion pump connected through a central rotor axle and a stator complex. Within the A/V‐ATPase family conformational flexibility of the EG stators has been shown to accommodate catalytic cycling and is considered to be important to function. For the A‐ATPase three EG structures have been reported, thought to represent conformational states of the stator during different stages of rotary catalysis. Here we use long, detailed atomistic simulations to show that those structures are conformers explored through thermal fluctuations, but do not represent highly populated states of the EG stator in solution. We show that the coiled coil tail domain has a high persistence length (∼100 nm), but retains the ability to adapt to different conformational states through the presence of two hinge regions. Moreover, the stator network of the related V‐ATPase has been suggested to adapt to subunit interactions in the collar region in addition to the nucleotide occupancy of the catalytic domain. The MD simulations reported here, reinforce this observation showing that the EG stators have enough flexibility to adapt to significantly different structural re‐arrangements and accommodate structural changes in the catalytic domain whilst resisting the large torque generated by catalytic cycling. These results are important to understand the role the stators play in the rotary‐ATPase mechanism. Proteins 2016; 84:1203–1212. © 2016 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kostas Papachristos
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, England.,School of Molecular and Cellular Biology, University of Leeds, Leeds, England
| | - Stephen P Muench
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, England.,School of Biomedical Sciences, University of Leeds, Leeds, England
| | - Emanuele Paci
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, England.,School of Molecular and Cellular Biology, University of Leeds, Leeds, England
| |
Collapse
|
40
|
Arivalagan J, Marie B, Sleight VA, Clark MS, Berland S, Marie A. Shell matrix proteins of the clam, Mya truncata: Roles beyond shell formation through proteomic study. Mar Genomics 2016; 27:69-74. [DOI: 10.1016/j.margen.2016.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/13/2016] [Accepted: 03/11/2016] [Indexed: 11/30/2022]
|
41
|
Jahed Z, Shams H, Mofrad MRK. A Disulfide Bond Is Required for the Transmission of Forces through SUN-KASH Complexes. Biophys J 2016; 109:501-9. [PMID: 26244732 DOI: 10.1016/j.bpj.2015.06.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/08/2015] [Accepted: 06/29/2015] [Indexed: 11/28/2022] Open
Abstract
Numerous biological functions of a cell, including polarization, differentiation, division, and migration, rely on its ability to endure mechanical forces generated by the cytoskeleton on the nucleus. Coupling of the cytoskeleton and nucleoskeleton is ultimately mediated by LINC complexes that are formed via a strong interaction between SUN- and KASH-domain-containing proteins in the nuclear envelope. These complexes are mechanosensitive and essential for the transmission of forces between the cytoskeleton and nucleoskeleton, and the progression of cellular mechanotransduction. Herein, using molecular dynamics, we examine the effect of tension on the human SUN2-KASH2 complex and show that it is remarkably stable under physiologically relevant tensile forces and large strains. However, a covalent disulfide bond between two highly conserved cysteine residues of SUN2 and KASH2 is crucial for the stability of this interaction and the transmission of forces through the complex.
Collapse
Affiliation(s)
- Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California
| | - Hengameh Shams
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| |
Collapse
|
42
|
Eeftens JM, Katan AJ, Kschonsak M, Hassler M, de Wilde L, Dief EM, Haering CH, Dekker C. Condensin Smc2-Smc4 Dimers Are Flexible and Dynamic. Cell Rep 2016; 14:1813-8. [PMID: 26904946 PMCID: PMC4785793 DOI: 10.1016/j.celrep.2016.01.063] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/21/2015] [Accepted: 01/20/2016] [Indexed: 12/20/2022] Open
Abstract
Structural maintenance of chromosomes (SMC) protein complexes, including cohesin and condensin, play key roles in the regulation of higher-order chromosome organization. Even though SMC proteins are thought to mechanistically determine the function of the complexes, their native conformations and dynamics have remained unclear. Here, we probe the topology of Smc2-Smc4 dimers of the S. cerevisiae condensin complex with high-speed atomic force microscopy (AFM) in liquid. We show that the Smc2-Smc4 coiled coils are highly flexible polymers with a persistence length of only ∼ 4 nm. Moreover, we demonstrate that the SMC dimers can adopt various architectures that interconvert dynamically over time, and we find that the SMC head domains engage not only with each other, but also with the hinge domain situated at the other end of the ∼ 45-nm-long coiled coil. Our findings reveal structural properties that provide insights into the molecular mechanics of condensin complexes.
Collapse
Affiliation(s)
- Jorine M Eeftens
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft 2628 CJ, the Netherlands
| | - Allard J Katan
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft 2628 CJ, the Netherlands
| | - Marc Kschonsak
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Markus Hassler
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Liza de Wilde
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft 2628 CJ, the Netherlands
| | - Essam M Dief
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft 2628 CJ, the Netherlands
| | - Christian H Haering
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft 2628 CJ, the Netherlands.
| |
Collapse
|
43
|
Hoffmann PM. How molecular motors extract order from chaos (a key issues review). REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:032601. [PMID: 26863000 DOI: 10.1088/0034-4885/79/3/032601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Molecular motors are the workhorses of living cells. Seemingly by 'magic', these molecules are able to complete purposeful tasks while being immersed in a sea of thermal chaos. Here, we review the current understanding of how these machines work, present simple models based on thermal ratchets, discuss implications for statistical physics, and provide an overview of ongoing research in this important and fascinating field of study.
Collapse
Affiliation(s)
- Peter M Hoffmann
- Department of Physics and Astronomy, Wayne State University, 666 W Hancock, Detroit, MI 48201, USA
| |
Collapse
|
44
|
O'Donohoe TJ, Schrale RG, Ketheesan N. The role of anti-myosin antibodies in perpetuating cardiac damage following myocardial infarction. Int J Cardiol 2016; 209:226-33. [PMID: 26897075 DOI: 10.1016/j.ijcard.2016.02.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 12/21/2015] [Accepted: 02/02/2016] [Indexed: 12/17/2022]
Abstract
Recent improvements in the medical and surgical management of myocardial infarction mean that many patients are now surviving with greater impairment of cardiac function. Despite appropriate management, some of these patients subsequently develop pathological ventricular remodelling, which compounds their contractile dysfunction and can lead to congestive cardiac failure (CCF). The pathophysiological mechanism underpinning this process remains incompletely understood. One hypothesis suggests that a post-infarction autoimmune response, directed against constituents of cardiac myocytes, including cardiac myosin, may make an important contribution. Our review summarises the current literature related to the formation and clinical relevance of anti-myosin antibodies (AMAs) in patients with myocardial infarction. This discussion is supplemented with reference to a number of important animal studies, which provide evidence of the potential mechanisms underlying AMA formation and autoantibody mediated cardiac dysfunction.
Collapse
Affiliation(s)
- Tom J O'Donohoe
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; Department of Cardiology, The Townsville Hospital and Health Service, Townsville, Queensland 4811, Australia
| | - Ryan G Schrale
- Department of Cardiology, The Townsville Hospital and Health Service, Townsville, Queensland 4811, Australia; College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Natkunam Ketheesan
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4811, Australia.
| |
Collapse
|
45
|
Min D, Jefferson RE, Bowie JU, Yoon TY. Mapping the energy landscape for second-stage folding of a single membrane protein. Nat Chem Biol 2015; 11:981-7. [PMID: 26479439 DOI: 10.1038/nchembio.1939] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/14/2015] [Indexed: 12/15/2022]
Abstract
Membrane proteins are designed to fold and function in a lipid membrane, yet folding experiments within a native membrane environment are challenging to design. Here we show that single-molecule forced unfolding experiments can be adapted to study helical membrane protein folding under native-like bicelle conditions. Applying force using magnetic tweezers, we find that a transmembrane helix protein, Escherichia coli rhomboid protease GlpG, unfolds in a highly cooperative manner, largely unraveling as one physical unit in response to mechanical tension above 25 pN. Considerable hysteresis is observed, with refolding occurring only at forces below 5 pN. Characterizing the energy landscape reveals only modest thermodynamic stability (ΔG = 6.5 kBT) but a large unfolding barrier (21.3 kBT) that can maintain the protein in a folded state for long periods of time (t1/2 ∼3.5 h). The observed energy landscape may have evolved to limit the existence of troublesome partially unfolded states and impart rigidity to the structure.
Collapse
Affiliation(s)
- Duyoung Min
- National Creative Research Initiative Center for Single-Molecule Systems Biology, KAIST, Daejeon, South Korea.,Department of Physics, KAIST, Daejeon, South Korea
| | - Robert E Jefferson
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, USA
| | - Tae-Young Yoon
- National Creative Research Initiative Center for Single-Molecule Systems Biology, KAIST, Daejeon, South Korea.,Department of Physics, KAIST, Daejeon, South Korea
| |
Collapse
|
46
|
Gáspári Z, Nyitray L. Coiled coils as possible models of protein structure evolution. Biomol Concepts 2015; 2:199-210. [PMID: 25962029 DOI: 10.1515/bmc.2011.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 03/01/2011] [Indexed: 01/05/2023] Open
Abstract
Coiled coils are formed by two or more α-helices wrapped around one another. This structural motif often guides di-, tri- or multimerization of proteins involved in diverse biological processes such as membrane fusion, signal transduction and the organization of the cytoskeleton. Although coiled coil motifs seem conceptually simple and their existence was proposed in the early 1950s, the high variability of the motif makes coiled coil prediction from sequence a difficult task. They might be confused with intrinsically disordered sequences and even more with a recently described structural motif, the charged single α-helix. By contrast, the versatility of coiled coil structures renders them an ideal candidate for protein (re)design and many novel variants have been successfully created to date. In this paper, we review coiled coils in the light of protein evolution by putting our present understanding of the motif and its variants in the context of structural interconversions. We argue that coiled coils are ideal subjects for studies of subtle and large-scale structural changes because of their well-characterized and versatile nature.
Collapse
|
47
|
Hierarchical cascades of instability govern the mechanics of coiled coils: helix unfolding precedes coil unzipping. Biophys J 2015; 107:477-484. [PMID: 25028889 DOI: 10.1016/j.bpj.2014.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/13/2014] [Accepted: 06/03/2014] [Indexed: 12/31/2022] Open
Abstract
Coiled coils are a fundamental emergent motif in proteins found in structural biomaterials, consisting of α-helical secondary structures wrapped in a supercoil. A fundamental question regarding the thermal and mechanical stability of coiled coils in extreme environments is the sequence of events leading to the disassembly of individual oligomers from the universal coiled-coil motifs. To shed light on this phenomenon, here we report atomistic simulations of a trimeric coiled coil in an explicit water solvent and investigate the mechanisms underlying helix unfolding and coil unzipping in the assembly. We employ advanced sampling techniques involving steered molecular dynamics and metadynamics simulations to obtain the free-energy landscapes of single-strand unfolding and unzipping in a three-stranded assembly. Our comparative analysis of the free-energy landscapes of instability pathways shows that coil unzipping is a sequential process involving multiple intermediates. At each intermediate state, one heptad repeat of the coiled coil first unfolds and then unzips due to the loss of contacts with the hydrophobic core. This observation suggests that helix unfolding facilitates the initiation of coiled-coil disassembly, which is confirmed by our 2D metadynamics simulations showing that unzipping of one strand requires less energy in the unfolded state compared with the folded state. Our results explain recent experimental findings and lay the groundwork for studying the hierarchical molecular mechanisms that underpin the thermomechanical stability/instability of coiled coils and similar protein assemblies.
Collapse
|
48
|
Samejima K, Platani M, Wolny M, Ogawa H, Vargiu G, Knight PJ, Peckham M, Earnshaw WC. The Inner Centromere Protein (INCENP) Coil Is a Single α-Helix (SAH) Domain That Binds Directly to Microtubules and Is Important for Chromosome Passenger Complex (CPC) Localization and Function in Mitosis. J Biol Chem 2015; 290:21460-72. [PMID: 26175154 PMCID: PMC4571873 DOI: 10.1074/jbc.m115.645317] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Indexed: 11/06/2022] Open
Abstract
The chromosome passenger complex (CPC) is a master regulator of mitosis. Inner centromere protein (INCENP) acts as a scaffold regulating CPC localization and activity. During early mitosis, the N-terminal region of INCENP forms a three-helix bundle with Survivin and Borealin, directing the CPC to the inner centromere where it plays essential roles in chromosome alignment and the spindle assembly checkpoint. The C-terminal IN box region of INCENP is responsible for binding and activating Aurora B kinase. The central region of INCENP has been proposed to comprise a coiled coil domain acting as a spacer between the N- and C-terminal domains that is involved in microtubule binding and regulation of the spindle checkpoint. Here we show that the central region (213 residues) of chicken INCENP is not a coiled coil but a ∼ 32-nm-long single α-helix (SAH) domain. The N-terminal half of this domain directly binds to microtubules in vitro. By analogy with previous studies of myosin 10, our data suggest that the INCENP SAH might stretch up to ∼ 80 nm under physiological forces. Thus, the INCENP SAH could act as a flexible "dog leash," allowing Aurora B to phosphorylate dynamic substrates localized in the outer kinetochore while at the same time being stably anchored to the heterochromatin of the inner centromere. Furthermore, by achieving this flexibility via an SAH domain, the CPC avoids a need for dimerization (required for coiled coil formation), which would greatly complicate regulation of the proximity-induced trans-phosphorylation that is critical for Aurora B activation.
Collapse
Affiliation(s)
- Kumiko Samejima
- From The Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom and
| | - Melpomeni Platani
- From The Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom and
| | - Marcin Wolny
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Hiromi Ogawa
- From The Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom and
| | - Giulia Vargiu
- From The Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom and
| | - Peter J Knight
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Michelle Peckham
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - William C Earnshaw
- From The Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom and
| |
Collapse
|
49
|
Bonilla LL, Carpio A, Prados A. Theory of force-extension curves for modular proteins and DNA hairpins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052712. [PMID: 26066204 DOI: 10.1103/physreve.91.052712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Indexed: 06/04/2023]
Abstract
We study a model describing the force-extension curves of modular proteins, nucleic acids, and other biomolecules made out of several single units or modules. At a mesoscopic level of description, the configuration of the system is given by the elongations of each of the units. The system free energy includes a double-well potential for each unit and an elastic nearest-neighbor interaction between them. Minimizing the free energy yields the system equilibrium properties whereas its dynamics is given by (overdamped) Langevin equations for the elongations, in which friction and noise amplitude are related by the fluctuation-dissipation theorem. Our results, both for the equilibrium and the dynamical situations, include analytical and numerical descriptions of the system force-extension curves under force or length control and agree very well with actual experiments in biomolecules. Our conclusions also apply to other physical systems comprising a number of metastable units, such as storage systems or semiconductor superlattices.
Collapse
Affiliation(s)
- L L Bonilla
- G. Millán Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - A Carpio
- Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - A Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| |
Collapse
|
50
|
Zhang R, Yang J, Chu TW, Hartley JM, Kopeček J. Multimodality imaging of coiled-coil mediated self-assembly in a "drug-free" therapeutic system. Adv Healthc Mater 2015; 4:1054-65. [PMID: 25612325 DOI: 10.1002/adhm.201400679] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/15/2014] [Indexed: 01/23/2023]
Abstract
Two complementary coiled-coil peptides CCE/CCK are used to develop a "drug free" therapeutic system, which can specifically kill cancer cells without a drug. CCE is attached to the Fab' fragment of anti-CD20 1F5 antibody (Fab'-CCE), and CCK is conjugated in multiple grafts to poly[N-(2-hydroxypropyl)methacrylamide] (P-(CCK)x ). Two conjugates are consecutively administered: First, Fab'-CCE coats peptide CCE at CD20 antigen of lymphoma cell surface; second, CCE/CCK biorecognition between Fab'-CCE and P-(CCK)x leads to coiled-coil formation, CD20 crosslinking, membrane reorganization, and ultimately cell apoptosis. To prove that two conjugates can assemble at cell surface, multiple fluorescence imaging studies are performed, including 2-channel FMT, 3D confocal microscopy, and 4-color FACS. Confocal microscopy shows colocalization of two fluorescently labeled conjugates on non-Hodgkin's lymphoma (NHL) Raji cell surface, indicating "two-step" targeting specificity. The fluorescent images also reveal that these two conjugates can disrupt normal membrane lipid distribution and form lipid raft clusters, leading to cancer cell apoptosis. This "two-step" biorecognition capacity is further demonstrated in a NHL xenograft model, using fluorescent images at whole-body, tissue and cell levels. It is also found that delaying injection of P-(CCK)x can significantly enhance targeting efficacy. This high-specificity therapeutics provide a safe option to treat NHL and other B cell malignancies.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
| | - Te-Wei Chu
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
| | - Jonathan M. Hartley
- Department of Bioengineering; University of Utah; Salt Lake City UT 84112 USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
- Department of Bioengineering; University of Utah; Salt Lake City UT 84112 USA
| |
Collapse
|