1
|
Bramwell G, DeGregori J, Thomas F, Ujvari B. Transmissible cancers, the genomes that do not melt down. Evolution 2024; 78:1205-1211. [PMID: 38656785 DOI: 10.1093/evolut/qpae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Evolutionary theory predicts that the accumulation of deleterious mutations in asexually reproducing organisms should lead to genomic decay. Clonally reproducing cell lines, i.e., transmissible cancers, when cells are transmitted as allografts/xenografts, break these rules and survive for centuries and millennia. The currently known 11 transmissible cancer lineages occur in dogs (canine venereal tumour disease), in Tasmanian devils (devil facial tumor diseases, DFT1 and DFT2), and in bivalves (bivalve transmissible neoplasia). Despite the mutation loads of these cell lines being much higher than observed in human cancers, they have not been eliminated in space and time. Here, we provide potential explanations for how these fascinating cell lines may have overcome the fitness decline due to the progressive accumulation of deleterious mutations and propose that the high mutation load may carry an indirect positive fitness outcome. We offer ideas on how these host-pathogen systems could be used to answer outstanding questions in evolutionary biology. The recent studies on the evolution of these clonal pathogens reveal key mechanistic insight into transmissible cancer genomes, information that is essential for future studies investigating how these contagious cancer cell lines can repeatedly evade immune recognition, evolve, and survive in the landscape of highly diverse hosts.
Collapse
Affiliation(s)
- Georgina Bramwell
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
2
|
Yu H, Han X, Wang W, Zhang Y, Xiang L, Bai D, Zhang L, Weng Z, Lv K, Song L, Luo W, Yin N, Zhang Y, Feng T, Wang L, Xie G. Modified Unit-Mediated Strand Displacement Reactions for Direct Detection of Single Nucleotide Variants in Active Double-Stranded DNA. ACS NANO 2024; 18:12401-12411. [PMID: 38701333 DOI: 10.1021/acsnano.4c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Accurate identification of single nucleotide variants (SNVs) in key driver genes holds a significant value for disease diagnosis and treatment. Fluorescent probes exhibit tremendous potential in specific, high-resolution, and rapid detection of SNVs. However, additional steps are required in most post-PCR assays to convert double-stranded DNA (dsDNA) products into single-stranded DNA (ssDNA), enabling them to possess hybridization activity to trigger subsequent reactions. This process not only prolongs the complexity of the experiment but also introduces the risk of losing target information. In this study, we proposed two strategies for enriching active double-stranded DNA, involving PCR based on obstructive groups and cleavable units. Building upon this, we explored the impact of modified units on the strand displacement reaction (SDR) and assessed their discriminatory efficacy for mutations. The results showed that detection of low variant allele frequencies (VAF) as low as 0.1% can be achieved. The proposed strategy allowed orthogonal identification of 45 clinical colorectal cancer tissue samples with 100% specificity, and the results were generally consistent with sequencing results. Compared to existing methods for enriching active targets, our approach offers a more diverse set of enrichment strategies, characterized by the advantage of being simple and fast and preserving original information to the maximum extent. The objective of this study is to offer an effective solution for the swift and facile acquisition of active double-stranded DNA. We anticipate that our work will facilitate the practical applications of SDR based on dsDNA.
Collapse
Affiliation(s)
- Hongyan Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaole Han
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Weitao Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yangli Zhang
- The Center for Clinical Molecular Medical Detection, Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Linguo Xiang
- The Center for Clinical Molecular Medical Detection, Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dan Bai
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Li Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zhi Weng
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ke Lv
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lin Song
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wang Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Na Yin
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yaoyi Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Tong Feng
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Li Wang
- The Center for Clinical Molecular Medical Detection, Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Chen W, Xu H, Dai S, Wang J, Yang Z, Jin Y, Zou M, Xiao X, Wu T, Yan W, Zhang B, Lin Z, Zhao M. Detection of low-frequency mutations in clinical samples by increasing mutation abundance via the excision of wild-type sequences. Nat Biomed Eng 2023; 7:1602-1613. [PMID: 37500748 DOI: 10.1038/s41551-023-01072-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
The efficiency of DNA-enrichment techniques is often insufficient to detect mutations that occur at low frequencies. Here we report a DNA-excision method for the detection of low-frequency mutations in genomic DNA and in circulating cell-free DNA at single-nucleotide resolution. The method is based on a competitive DNA-binding-and-digestion mechanism, effected by deoxyribonuclease I (DNase) guided by single-stranded phosphorothioated DNA (sgDNase), for the removal of wild-type DNA strands. The sgDNase can be designed against any wild-type DNA sequences, allowing for the uniform enrichment of all the mutations within the target-binding region of single-stranded phosphorothioated DNA at mild-temperature conditions. Pretreatment with sgDNase enriches all mutant strands with initial frequencies down to 0.01% and leads to high discrimination factors for all types of single-nucleotide mismatch in multiple sequence contexts, as we show for the identification of low-abundance mutations in samples of blood or tissue from patients with cancer. The method can be coupled with next-generation sequencing, droplet digital polymerase chain reaction, Sanger sequencing, fluorescent-probe-based assays and other mutation-detection methods.
Collapse
Affiliation(s)
- Wei Chen
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Haiqi Xu
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shenbin Dai
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiayu Wang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ziyu Yang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuewen Jin
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mengbing Zou
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xianjin Xiao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tongbo Wu
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Yan
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Bin Zhang
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Department of Dermatology, Zhengzhou University, Affiliated Children's Hospital, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zhimiao Lin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
4
|
Chung C, Verheijen BM, Navapanich Z, McGann EG, Shemtov S, Lai GJ, Arora P, Towheed A, Haroon S, Holczbauer A, Chang S, Manojlovic Z, Simpson S, Thomas KW, Kaplan C, van Hasselt P, Timmers M, Erie D, Chen L, Gout JF, Vermulst M. Evolutionary conservation of the fidelity of transcription. Nat Commun 2023; 14:1547. [PMID: 36941254 PMCID: PMC10027832 DOI: 10.1038/s41467-023-36525-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/03/2023] [Indexed: 03/23/2023] Open
Abstract
Accurate transcription is required for the faithful expression of genetic information. However, relatively little is known about the molecular mechanisms that control the fidelity of transcription, or the conservation of these mechanisms across the tree of life. To address these issues, we measured the error rate of transcription in five organisms of increasing complexity and found that the error rate of RNA polymerase II ranges from 2.9 × 10-6 ± 1.9 × 10-7/bp in yeast to 4.0 × 10-6 ± 5.2 × 10-7/bp in worms, 5.69 × 10-6 ± 8.2 × 10-7/bp in flies, 4.9 × 10-6 ± 3.6 × 10-7/bp in mouse cells and 4.7 × 10-6 ± 9.9 × 10-8/bp in human cells. These error rates were modified by various factors including aging, mutagen treatment and gene modifications. For example, the deletion or modification of several related genes increased the error rate substantially in both yeast and human cells. This research highlights the evolutionary conservation of factors that control the fidelity of transcription. Additionally, these experiments provide a reasonable estimate of the error rate of transcription in human cells and identify disease alleles in a subunit of RNA polymerase II that display error-prone transcription. Finally, we provide evidence suggesting that the error rate and spectrum of transcription co-evolved with our genetic code.
Collapse
Affiliation(s)
- Claire Chung
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Bert M Verheijen
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Zoe Navapanich
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Eric G McGann
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Sarah Shemtov
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Guan-Ju Lai
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Payal Arora
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Atif Towheed
- Children's hospital of Philadelphia, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, PA, USA
| | - Suraiya Haroon
- Children's hospital of Philadelphia, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, PA, USA
| | - Agnes Holczbauer
- Children's hospital of Philadelphia, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, PA, USA
| | - Sharon Chang
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zarko Manojlovic
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen Simpson
- College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, USA
| | - Kelley W Thomas
- College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, USA
| | - Craig Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter van Hasselt
- Department of Metabolic Disease, University of Utrecht, Utrecht, the Netherlands
| | - Marc Timmers
- Department of Urology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dorothy Erie
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Lin Chen
- Department of Molecular and Cellular Biology, University of Southern California, Los Angeles, CA, USA
| | - Jean-Franćois Gout
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Marc Vermulst
- School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Darbeheshti F, Makrigiorgos GM. Enzymatic Methods for Mutation Detection in Cancer Samples and Liquid Biopsies. Int J Mol Sci 2023; 24:923. [PMID: 36674433 PMCID: PMC9865676 DOI: 10.3390/ijms24020923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Low-level tumor somatic DNA mutations in tissue and liquid biopsies obtained from cancer patients can have profound implications for development of metastasis, prognosis, choice of treatment, follow-up, or early cancer detection. Unless detected, such low-frequency DNA alterations can misinform patient management decisions or become missed opportunities for personalized medicine. Next-generation sequencing technologies and digital-PCR can resolve low-level mutations but require access to specialized instrumentation, time, and resources. Enzymatic-based approaches to detection of low-level mutations provide a simple, straightforward, and affordable alternative to enrich and detect such alterations and is broadly available to low-resource laboratory settings. This review summarizes the traditional uses of enzymatic mutation detection and describes the latest exciting developments, potential, and applications with specific reference to the field of liquid biopsy in cancer.
Collapse
Affiliation(s)
| | - G. Mike Makrigiorgos
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
6
|
Pre-PCR Mutation-Enrichment Methods for Liquid Biopsy Applications. Cancers (Basel) 2022; 14:cancers14133143. [PMID: 35804916 PMCID: PMC9264780 DOI: 10.3390/cancers14133143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023] Open
Abstract
Liquid biopsy is having a remarkable impact on healthcare- and disease-management in the context of personalized medicine. Circulating free DNA (cfDNA) is one of the most instructive liquid-biopsy-based biomarkers and harbors valuable information for diagnostic, predictive, and prognostic purposes. When it comes to cancer, circulating DNA from the tumor (ctDNA) has a wide range of applications, from early cancer detection to the early detection of relapse or drug resistance, and the tracking of the dynamic genomic make-up of tumor cells. However, the detection of ctDNA remains technically challenging, due, in part, to the low frequency of ctDNA among excessive circulating cfDNA originating from normal tissues. During the past three decades, mutation-enrichment methods have emerged to boost sensitivity and enable facile detection of low-level mutations. Although most developed techniques apply mutation enrichment during or following initial PCR, there are a few techniques that allow mutation selection prior to PCR, which provides advantages. Pre-PCR enrichment techniques can be directly applied to genomic DNA and diminish the influence of PCR errors that can take place during amplification. Moreover, they have the capability for high multiplexity and can be followed by established mutation detection and enrichment technologies without changes to their established procedures. The first approaches for pre-PCR enrichment were developed by employing restriction endonucleases directly on genomic DNA in the early 1990s. However, newly developed pre-PCR enrichment methods provide higher sensitivity and versatility. This review describes the available pre-PCR enrichment methods and focuses on the most recently developed techniques (NaME-PrO, UVME, and DEASH/MAESTRO), emphasizing their applications in liquid biopsies.
Collapse
|
7
|
Abstract
Mitochondria are the main source of energy used to maintain cellular homeostasis. This aspect of mitochondrial biology underlies their putative role in age-associated tissue dysfunction. Proper functioning of the electron transport chain (ETC), which is partially encoded by the extra-nuclear mitochondrial genome (mtDNA), is key to maintaining this energy production. The acquisition of de novo somatic mutations that interrupt the function of the ETC have long been associated with aging and common diseases of the elderly. Yet, despite over 30 years of study, the exact role(s) mtDNA mutations play in driving aging and its associated pathologies remains under considerable debate. Furthermore, even fundamental aspects of age-related mtDNA mutagenesis, such as when mutations arise during aging, where and how often they occur across tissues, and the specific mechanisms that give rise to them, remain poorly understood. In this review, we address the current understanding of the somatic mtDNA mutations, with an emphasis of when, where, and how these mutations arise during aging. Additionally, we highlight current limitations in our knowledge and critically evaluate the controversies stemming from these limitations. Lastly, we highlight new and emerging technologies that offer potential ways forward in increasing our understanding of somatic mtDNA mutagenesis in the aging process.
Collapse
Affiliation(s)
- Monica Sanchez-Contreras
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Gussow AB, Koonin EV, Auslander N. Identification of combinations of somatic mutations that predict cancer survival and immunotherapy benefit. NAR Cancer 2021; 3:zcab017. [PMID: 34027407 PMCID: PMC8127965 DOI: 10.1093/narcan/zcab017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/18/2021] [Accepted: 04/28/2021] [Indexed: 11/14/2022] Open
Abstract
Cancer evolves through the accumulation of somatic mutations over time. Although several methods have been developed to characterize mutational processes in cancers, these have not been specifically designed to identify mutational patterns that predict patient prognosis. Here we present CLICnet, a method that utilizes mutational data to cluster patients by survival rate. CLICnet employs Restricted Boltzmann Machines, a type of generative neural network, which allows for the capture of complex mutational patterns associated with patient survival in different cancer types. For some cancer types, clustering produced by CLICnet also predicts benefit from anti-PD1 immune checkpoint blockade therapy, whereas for other cancer types, the mutational processes associated with survival are different from those associated with the improved anti-PD1 survival benefit. Thus, CLICnet has the ability to systematically identify and catalogue combinations of mutations that predict cancer survival, unveiling intricate associations between mutations, survival, and immunotherapy benefit.
Collapse
Affiliation(s)
- Ayal B Gussow
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Noam Auslander
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
9
|
Song J, Hegge JW, Mauk MG, Chen J, Till JE, Bhagwat N, Azink LT, Peng J, Sen M, Mays J, Carpenter EL, van der Oost J, Bau HH. Highly specific enrichment of rare nucleic acid fractions using Thermus thermophilus argonaute with applications in cancer diagnostics. Nucleic Acids Res 2020; 48:e19. [PMID: 31828328 PMCID: PMC7038991 DOI: 10.1093/nar/gkz1165] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022] Open
Abstract
Detection of disease-associated, cell-free nucleic acids in body fluids enables early diagnostics, genotyping and personalized therapy, but is challenged by the low concentrations of clinically significant nucleic acids and their sequence homology with abundant wild-type nucleic acids. We describe a novel approach, dubbed NAVIGATER, for increasing the fractions of Nucleic Acids of clinical interest Via DNA-Guided Argonaute from Thermus thermophilus (TtAgo). TtAgo cleaves specifically guide-complementary DNA and RNA with single nucleotide precision, greatly increasing the fractions of rare alleles and, enhancing the sensitivity of downstream detection methods such as ddPCR, sequencing, and clamped enzymatic amplification. We demonstrated 60-fold enrichment of the cancer biomarker KRAS G12D and ∼100-fold increased sensitivity of Peptide Nucleic Acid (PNA) and Xenonucleic Acid (XNA) clamp PCR, enabling detection of low-frequency (<0.01%) mutant alleles (∼1 copy) in blood samples of pancreatic cancer patients. NAVIGATER surpasses Cas9-based assays (e.g. DASH, Depletion of Abundant Sequences by Hybridization), identifying more mutation-positive samples when combined with XNA-PCR. Moreover, TtAgo does not require targets to contain any specific protospacer-adjacent motifs (PAM); is a multi-turnover enzyme; cleaves ssDNA, dsDNA and RNA targets in a single assay; and operates at elevated temperatures, providing high selectivity and compatibility with polymerases.
Collapse
Affiliation(s)
- Jinzhao Song
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, USA
| | - Jorrit W Hegge
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University,The Netherlands
| | - Michael G Mauk
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, USA
| | - Junman Chen
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, USA
| | - Jacob E Till
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Neha Bhagwat
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lotte T Azink
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University,The Netherlands
| | - Jing Peng
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, USA
| | - Moen Sen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jazmine Mays
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica L Carpenter
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University,The Netherlands
| | - Haim H Bau
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, USA
| |
Collapse
|
10
|
Salk JJ, Kennedy SR. Next-Generation Genotoxicology: Using Modern Sequencing Technologies to Assess Somatic Mutagenesis and Cancer Risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:135-151. [PMID: 31595553 PMCID: PMC7003768 DOI: 10.1002/em.22342] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 05/09/2023]
Abstract
Mutations have a profound effect on human health, particularly through an increased risk of carcinogenesis and genetic disease. The strong correlation between mutagenesis and carcinogenesis has been a driving force behind genotoxicity research for more than 50 years. The stochastic and infrequent nature of mutagenesis makes it challenging to observe and to study. Indeed, decades have been spent developing increasingly sophisticated assays and methods to study these low-frequency genetic errors, in hopes of better predicting which chemicals may be carcinogens, understanding their mode of action, and informing guidelines to prevent undue human exposure. While effective, widely used genetic selection-based technologies have a number of limitations that have hampered major advancements in the field of genotoxicity. Emerging new tools, in the form of enhanced next-generation sequencing platforms and methods, are changing this paradigm. In this review, we discuss rapidly evolving sequencing tools and technologies, such as error-corrected sequencing and single cell analysis, which we anticipate will fundamentally reshape the field. In addition, we consider a variety emerging applications for these new technologies, including the detection of DNA adducts, inference of mutational processes based on genomic site and local sequence contexts, and evaluation of genome engineering fidelity, as well as other cutting-edge challenges for the next 50 years of environmental and molecular mutagenesis research. Environ. Mol. Mutagen. 61:135-151, 2020. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Jesse J. Salk
- Department of Medicine, Division of Medical OncologyUniversity of Washington School of MedicineSeattleWashington
- TwinStrand BiosciencesSeattleWashington
| | - Scott R. Kennedy
- Department of PathologyUniversity of WashingtonSeattleWashington
| |
Collapse
|
11
|
Watanabe M, Toudou M, Uchida T, Yoshikawa M, Aso H, Suemaru K. Change in mutation frequency at a TP53 hotspot during culture of ENU-mutagenised human lymphoblastoid cells. Mutagenesis 2019; 34:331-340. [PMID: 31291449 DOI: 10.1093/mutage/gez014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/14/2019] [Indexed: 11/14/2022] Open
Abstract
Mutations in oncogenes or tumour suppressor genes cause increases in cell growth capacity. In some cases, fully malignant cancer cells develop after additional mutations occur in initially mutated cells. In such instances, the risk of cancer would increase in response to growth of these initially mutated cells. To ascertain whether such a situation might occur in cultured cells, three independent cultures of human lymphoblastoid GM00130 cells were treated with N-ethyl-N-nitrosourea to induce mutations, and the cells were maintained for 12 weeks. Mutant frequencies and spectra of the cells at the MspI and HaeIII restriction sites located at codons 247-250 of the TP53 gene were examined. Mutant frequencies at both sites in the gene exhibited a declining trend during cell culture and reached background levels after 12 weeks; this was also supported by mutation spectra findings. These results indicate that the mutations detected under our assay conditions are disadvantageous to cell growth.
Collapse
Affiliation(s)
| | - Masae Toudou
- School of Pharmacy, Shujitsu University, Naka-ku, Okayama, Japan
| | - Taeko Uchida
- School of Pharmacy, Shujitsu University, Naka-ku, Okayama, Japan
| | - Misato Yoshikawa
- School of Pharmacy, Shujitsu University, Naka-ku, Okayama, Japan
| | - Hiroaki Aso
- School of Pharmacy, Shujitsu University, Naka-ku, Okayama, Japan
| | - Katsuya Suemaru
- School of Pharmacy, Shujitsu University, Naka-ku, Okayama, Japan
| |
Collapse
|
12
|
Dertinger SD, Totsuka Y, Bielas JH, Doherty AT, Kleinjans J, Honma M, Marchetti F, Schuler MJ, Thybaud V, White P, Yauk CL. High information content assays for genetic toxicology testing: A report of the International Workshops on Genotoxicity Testing (IWGT). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403022. [DOI: 10.1016/j.mrgentox.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 12/21/2022]
|
13
|
Hood WR, Williams AS, Hill GE. An Ecologist’s Guide to Mitochondrial DNA Mutations and Senescence. Integr Comp Biol 2019; 59:970-982. [DOI: 10.1093/icb/icz097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Longevity plays a key role in the fitness of organisms, so understanding the processes that underlie variance in senescence has long been a focus of ecologists and evolutionary biologists. For decades, the performance and ultimate decline of mitochondria have been implicated in the demise of somatic tissue, but exactly why mitochondrial function declines as individual’s age has remained elusive. A possible source of decline that has been of intense debate is mutations to the mitochondrial DNA. There are two primary sources of such mutations: oxidative damage, which is widely discussed by ecologists interested in aging, and mitochondrial replication error, which is less familiar to most ecologists. The goal of this review is to introduce ecologists and evolutionary biologists to the concept of mitochondrial replication error and to review the current status of research on the relative importance of replication error in senescence. We conclude by detailing some of the gaps in our knowledge that currently make it difficult to deduce the relative importance of replication error in wild populations and encourage organismal biologists to consider this variable both when interpreting their results and as viable measure to include in their studies.
Collapse
Affiliation(s)
- Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ashley S Williams
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
14
|
Soltys DT, Pereira CP, Rowies FT, Farfel JM, Grinberg LT, Suemoto CK, Leite RE, Rodriguez RD, Ericson NG, Bielas JH, Souza-Pinto NC. Lower mitochondrial DNA content but not increased mutagenesis associates with decreased base excision repair activity in brains of AD subjects. Neurobiol Aging 2019; 73:161-170. [DOI: 10.1016/j.neurobiolaging.2018.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/13/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022]
|
15
|
Lei K, Sun R, Chen LH, Diplas BH, Moure CJ, Wang W, Hansen LJ, Tao Y, Chen X, Chen CPJ, Greer PK, Zhao F, Yan H, Bigner DD, Huang J, He Y. Mutant allele quantification reveals a genetic basis for TP53 mutation-driven castration resistance in prostate cancer cells. Sci Rep 2018; 8:12507. [PMID: 30131529 PMCID: PMC6104024 DOI: 10.1038/s41598-018-30062-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/23/2018] [Indexed: 12/02/2022] Open
Abstract
The concept that human cancer is in essence a genetic disease driven by gene mutations has been well established, yet its utilization in functional studies of cancer genes has not been fully explored. Here, we describe a simple genetics-based approach that can quickly and sensitively reveal the effect of the alteration of a gene of interest on the fate of its host cells within a heterogeneous population, essentially monitoring the genetic selection that is associated with and powers the tumorigenesis. Using this approach, we discovered that loss-of-function of TP53 can promote the development of resistance of castration in prostate cancer cells via both transiently potentiating androgen-independent cell growth and facilitating the occurrence of genome instability. The study thus reveals a novel genetic basis underlying the development of castration resistance in prostate cancer cells and provides a facile genetic approach for studying a cancer gene of interest in versatile experimental conditions.
Collapse
Affiliation(s)
- Kefeng Lei
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA.,General Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, 310014, China
| | - Ran Sun
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA.,Scientific Research Center, China-Japan Union Hospital, Jilin University, Jilin, 130033, China
| | - Lee H Chen
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Bill H Diplas
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Casey J Moure
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Wenzhe Wang
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA.,Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, 310012, China
| | - Landon J Hansen
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yulei Tao
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Xufeng Chen
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Chin-Pu Jason Chen
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Paula K Greer
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA
| | | | - Hai Yan
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Darell D Bigner
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yiping He
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA. .,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
16
|
Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat Rev Genet 2018; 19:269-285. [PMID: 29576615 PMCID: PMC6485430 DOI: 10.1038/nrg.2017.117] [Citation(s) in RCA: 327] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mutations, the fuel of evolution, are first manifested as rare DNA changes within a population of cells. Although next-generation sequencing (NGS) technologies have revolutionized the study of genomic variation between species and individual organisms, most have limited ability to accurately detect and quantify rare variants among the different genome copies in heterogeneous mixtures of cells or molecules. We describe the technical challenges in characterizing subclonal variants using conventional NGS protocols and the recent development of error correction strategies, both computational and experimental, including consensus sequencing of single DNA molecules. We also highlight major applications for low-frequency mutation detection in science and medicine, describe emerging methodologies and provide our vision for the future of DNA sequencing.
Collapse
Affiliation(s)
- Jesse J Salk
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, Divisions of Hematology and Medical Oncology, University of Washington School of Medicine, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - Michael W Schmitt
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, Divisions of Hematology and Medical Oncology, University of Washington School of Medicine, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - Lawrence A Loeb
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
17
|
Nivison MP, Ericson NG, Green VM, Bielas JH, Campbell JS, Horner PJ. Age-related accumulation of phosphorylated mitofusin 2 protein in retinal ganglion cells correlates with glaucoma progression. Exp Neurol 2017; 296:49-61. [PMID: 28684211 PMCID: PMC6021128 DOI: 10.1016/j.expneurol.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 06/26/2017] [Accepted: 07/02/2017] [Indexed: 01/19/2023]
Abstract
Dysregulation of axonal bioenergetics is likely a key mechanism in the initiation and progression of age-related neurodegenerative diseases. Glaucoma is a quintessential neurodegenerative disorder characterized by progressive deterioration of the optic nerve (ON) and eventual death of retinal ganglion cells (RGCs). Age and elevation of intraocular pressure are key risk factors in glaucoma, but the common early hallmarks of decreased axonal transport and increased bioenergetic vulnerability likely underlie disease initiation. We examined the correlation between bioenergetics and axonal transport with mitochondrial mutation frequency and post-translational modifications of mitofusin 2 (Mfn2) in RGCs during glaucoma progression. No increase in the frequency of mtDNA mutations was detected, but we observed significant shifts in mitochondrial protein species. Mfn2 is a fusion protein that functions in mitochondrial biogenesis, maintenance, and mitochondrial transport. We demonstrate that Mfn2 accumulates selectively in RGCs during glaucomatous degeneration, that two novel states of Mfn2 exist in retina and ON, and identify a phosphorylated form that selectively accumulates in RGCs, but is absent in ON. Phosphorylation of Mfn2 is correlated with higher ubiquitination, and failure of the protein to reach the ON. Together, these data suggest that post-translational modification of Mfn2 is associated with its dysregulation during a window of metabolic vulnerability that precedes glaucomatous degeneration. Future work to either manipulate expression of Mfn2 or to prevent its degradation could have therapeutic value in the treatment of neurodegenerative diseases where long-tract axons are vulnerable.
Collapse
Affiliation(s)
- Mary P Nivison
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Nolan G Ericson
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Virginia M Green
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Jason H Bielas
- Department of Pathology, University of Washington, Seattle, WA, USA; Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jean S Campbell
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Philip J Horner
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
| |
Collapse
|
18
|
Ladas I, Fitarelli-Kiehl M, Song C, Adalsteinsson VA, Parsons HA, Lin NU, Wagle N, Makrigiorgos GM. Multiplexed Elimination of Wild-Type DNA and High-Resolution Melting Prior to Targeted Resequencing of Liquid Biopsies. Clin Chem 2017; 63:1605-1613. [PMID: 28679646 PMCID: PMC5914173 DOI: 10.1373/clinchem.2017.272849] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The use of clinical samples and circulating cell-free DNA (cfDNA) collected from liquid biopsies for diagnostic and prognostic applications in cancer is burgeoning, and improved methods that reduce the influence of excess wild-type (WT) portion of the sample are desirable. Here we present enrichment of mutation-containing sequences using enzymatic degradation of WT DNA. Mutation enrichment is combined with high-resolution melting (HRM) performed in multiplexed closed-tube reactions as a rapid, cost-effective screening tool before targeted resequencing. METHODS We developed a homogeneous, closed-tube approach to use a double-stranded DNA-specific nuclease for degradation of WT DNA at multiple targets simultaneously. The No Denaturation Nuclease-assisted Minor Allele Enrichment with Probe Overlap (ND-NaME-PrO) uses WT oligonucleotides overlapping both strands on putative DNA targets. Under conditions of partial denaturation (DNA breathing), the oligonucleotide probes enhance double-stranded DNA-specific nuclease digestion at the selected targets, with high preference toward WT over mutant DNA. To validate ND-NaME-PrO, we used multiplexed HRM, digital PCR, and MiSeq targeted resequencing of mutated genomic DNA and cfDNA. RESULTS Serial dilution of KRAS mutation-containing DNA shows mutation enrichment by 10- to 120-fold and detection of allelic fractions down to 0.01%. Multiplexed ND-NaME-PrO combined with multiplexed PCR-HRM showed mutation scanning of 10-20 DNA amplicons simultaneously. ND-NaME-PrO applied on cfDNA from clinical samples enables mutation enrichment and HRM scanning over 10 DNA targets. cfDNA mutations were enriched up to approximately 100-fold (average approximately 25-fold) and identified via targeted resequencing. CONCLUSIONS Closed-tube homogeneous ND-NaME-PrO combined with multiplexed HRM is a convenient approach to efficiently enrich for mutations on multiple DNA targets and to enable prescreening before targeted resequencing.
Collapse
Affiliation(s)
- Ioannis Ladas
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Mariana Fitarelli-Kiehl
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Chen Song
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | | | - Heather A. Parsons
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Nancy U. Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Nikhil Wagle
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - G. Mike Makrigiorgos
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Correspondence: G. Mike Makrigiorgos, Ph.D., Brigham and Women’s Hospital, Level L2, Radiation Therapy, 75 Francis Street, Boston, MA 02115., Tel: 617-525-7122. Fax: 617-582-6037,
| |
Collapse
|
19
|
Towards precision prevention: Technologies for identifying healthy individuals with high risk of disease. Mutat Res 2017; 800-802:14-28. [PMID: 28458064 DOI: 10.1016/j.mrfmmm.2017.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 12/20/2022]
Abstract
The rise of advanced technologies for characterizing human populations at the molecular level, from sequence to function, is shifting disease prevention paradigms toward personalized strategies. Because minimization of adverse outcomes is a key driver for treatment decisions for diseased populations, developing personalized therapy strategies represent an important dimension of both precision medicine and personalized prevention. In this commentary, we highlight recently developed enabling technologies in the field of DNA damage, DNA repair, and mutagenesis. We propose that omics approaches and functional assays can be integrated into population studies that fuse basic, translational and clinical research with commercial expertise in order to accelerate personalized prevention and treatment of cancer and other diseases linked to aberrant responses to DNA damage. This collaborative approach is generally applicable to efforts to develop data-driven, individualized prevention and treatment strategies for other diseases. We also recommend strategies for maximizing the use of biological samples for epidemiological studies, and for applying emerging technologies to clinical applications.
Collapse
|
20
|
Song C, Liu Y, Fontana R, Makrigiorgos A, Mamon H, Kulke MH, Makrigiorgos GM. Elimination of unaltered DNA in mixed clinical samples via nuclease-assisted minor-allele enrichment. Nucleic Acids Res 2016; 44:e146. [PMID: 27431322 PMCID: PMC5100565 DOI: 10.1093/nar/gkw650] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/27/2016] [Accepted: 07/10/2016] [Indexed: 12/13/2022] Open
Abstract
Presence of excess unaltered, wild-type (WT) DNA providing no information of biological or clinical value often masks rare alterations containing diagnostic or therapeutic clues in cancer, prenatal diagnosis, infectious diseases or organ transplantation. With the surge of high-throughput technologies there is a growing demand for removing unaltered DNA over large pools-of-sequences. Here we present nuclease-assisted minor-allele enrichment with probe-overlap (NaME-PrO), a single-step approach with broad genome coverage that can remove WT-DNA from numerous sequences simultaneously, prior to genomic analysis. NaME-PrO employs a double-strand-DNA-specific nuclease and overlapping oligonucleotide-probes interrogating WT-DNA targets and guiding nuclease digestion to these sites. Mutation-containing DNA creates probe-DNA mismatches that inhibit digestion, thus subsequent DNA-amplification magnifies DNA-alterations at all selected targets. We demonstrate several-hundred-fold mutation enrichment in diverse human samples on multiple clinically relevant targets including tumor samples and circulating DNA in 50-plex reactions. Enrichment enables routine mutation detection at 0.01% abundance while by adjusting conditions it is possible to sequence mutations down to 0.00003% abundance, or to scan tumor-suppressor genes for rare mutations. NaME-PrO introduces a simple and highly parallel process to remove un-informative DNA sequences and unmask clinically and biologically useful alterations.
Collapse
Affiliation(s)
- Chen Song
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yibin Liu
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel Fontana
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Makrigiorgos
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harvey Mamon
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew H Kulke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - G Mike Makrigiorgos
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Taylor PH, Cinquin A, Cinquin O. Quantification of in vivo progenitor mutation accrual with ultra-low error rate and minimal input DNA using SIP-HAVA-seq. Genome Res 2016; 26:1600-1611. [PMID: 27803194 PMCID: PMC5088601 DOI: 10.1101/gr.200501.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 09/13/2016] [Indexed: 01/04/2023]
Abstract
Assaying in vivo accrual of DNA damage and DNA mutations by stem cells and pinpointing sources of damage and mutations would further our understanding of aging and carcinogenesis. Two main hurdles must be overcome. First, in vivo mutation rates are orders of magnitude lower than raw sequencing error rates. Second, stem cells are vastly outnumbered by differentiated cells, which have a higher mutation rate—quantification of stem cell DNA damage and DNA mutations is thus best performed from small, well-defined cell populations. Here we report a mutation detection technique, based on the “duplex sequencing” principle, with an error rate below ∼10−10 and that can start from as little as 50 pg DNA. We validate this technique, which we call SIP-HAVA-seq, by characterizing Caenorhabditis elegans germline stem cell mutation accrual and asking how mating affects that accrual. We find that a moderate mating-induced increase in cell cycling correlates with a dramatic increase in accrual of mutations. Intriguingly, these mutations consist chiefly of deletions in nonexpressed genes. This contrasts with results derived from mutation accumulation lines and suggests that mutation spectrum and genome distribution change with replicative age, chronological age, cell differentiation state, and/or overall worm physiological state. We also identify single-stranded gaps as plausible deletion precursors, providing a starting point to identify the molecular mechanisms of mutagenesis that are most active. SIP-HAVA-seq provides the first direct, genome-wide measurements of in vivo mutation accrual in stem cells and will enable further characterization of underlying mechanisms and their dependence on age and cell state.
Collapse
Affiliation(s)
- Pete H Taylor
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, USA.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California 92697, USA
| | - Amanda Cinquin
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, USA.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California 92697, USA
| | - Olivier Cinquin
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, USA.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
22
|
Schmitt MW, Loeb LA, Salk JJ. The influence of subclonal resistance mutations on targeted cancer therapy. Nat Rev Clin Oncol 2016; 13:335-47. [PMID: 26483300 PMCID: PMC4838548 DOI: 10.1038/nrclinonc.2015.175] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Clinical oncology is being revolutionized by the increasing use of molecularly targeted therapies. This paradigm holds great promise for improving cancer treatment; however, allocating specific therapies to the patients who are most likely to derive a durable benefit continues to represent a considerable challenge. Evidence continues to emerge that cancers are characterized by extensive intratumour genetic heterogeneity, and that patients being considered for treatment with a targeted agent might, therefore, already possess resistance to the drug in a minority of cells. Indeed, multiple examples of pre-existing subclonal resistance mutations to various molecularly targeted agents have been described, which we review herein. Early detection of pre-existing or emerging drug resistance could enable more personalized use of targeted cancer therapy, as patients could be stratified to receive the therapies that are most likely to be effective. We consider how monitoring of drug resistance could be incorporated into clinical practice to optimize the use of targeted therapies in individual patients.
Collapse
Affiliation(s)
- Michael W Schmitt
- Departments of Biochemistry and Pathology, University of Washington, 1959 Northeast Pacific Street, Box 357705, Seattle, WA 98195, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Box 357705, Seattle, WA 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Box 19024, Seattle, WA 98109, USA
| | - Lawrence A Loeb
- Departments of Biochemistry and Pathology, University of Washington, 1959 Northeast Pacific Street, Box 357705, Seattle, WA 98195, USA
| | - Jesse J Salk
- Departments of Biochemistry and Pathology, University of Washington, 1959 Northeast Pacific Street, Box 357705, Seattle, WA 98195, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Box 357705, Seattle, WA 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Box 19024, Seattle, WA 98109, USA
| |
Collapse
|
23
|
Kraytsberg Y, Guo X, Tao S, Kuznetsov A, MacLean C, Ehrlich D, Feldman E, Dombrovsky I, Yang D, Cloutier GJ, Castaneda-Sceppa C, Khrapko K, Khrapko K. Quantitation of Mitochondrial DNA Deletions Via Restriction Digestion/Long-Range Single-Molecule PCR. Methods Mol Biol 2016; 1351:33-46. [PMID: 26530673 DOI: 10.1007/978-1-4939-3040-1_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quantification of deletions in mtDNA is a long-standing problem in mutational analysis. We describe here an approach that combines the power of single-molecule PCR of the entire mitochondrial genome with the enrichment of the deletions by restriction digestion. This approach is indispensable if information about wide range of deletion types in a sample is critical, such as in studies concerning distribution of deletion breakpoints (as opposed to approaches where fraction of a single deletion or a limited set of deletions is used as a proxy for total deletion load). Because deletions in a sample are quantified almost exhaustively, the other important application of this approach involves studies where only small amounts of tissue, such as biopsies, are available.
Collapse
Affiliation(s)
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha, People's Republic of China
| | - Saisai Tao
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | - Evan Feldman
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Deye Yang
- Heart Centre, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Gregory J Cloutier
- Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | | | - Konstantin Khrapko
- Department of Biology, Northeastern University, 300 Huntington Avenue, Boston, MA, 02115, USA.
| | - Konstantin Khrapko
- Department of Biology, Northeastern University, 300 Huntington Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
24
|
Abstract
The mutator phenotype hypothesis proposes that the mutation rate of normal cells is insufficient to account for the large number of mutations found in human cancers. Consequently, human tumors exhibit an elevated mutation rate that increases the likelihood of a tumor acquiring advantageous mutations. The hypothesis predicts that tumors are composed of cells harboring hundreds of thousands of mutations, as opposed to a small number of specific driver mutations, and that malignant cells within a tumor therefore constitute a highly heterogeneous population. As a result, drugs targeting specific mutated driver genes or even pathways of mutated driver genes will have only limited anticancer potential. In addition, because the tumor is composed of such a diverse cell population, tumor cells harboring drug-resistant mutations will exist prior to the administration of any chemotherapeutic agent. We present recent evidence in support of the mutator phenotype hypothesis, major arguments against this concept, and discuss the clinical consequences of tumor evolution fueled by an elevated mutation rate. We also consider the therapeutic possibility of altering the rate of mutation accumulation. Most significantly, we contend that there is a need to fundamentally reconsider current approaches to personalized cancer therapy. We propose that targeting cellular pathways that alter the rate of mutation accumulation in tumors will ultimately prove more effective than attempting to identify and target mutant driver genes or driver pathways.
Collapse
Affiliation(s)
- Edward J Fox
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | | | | |
Collapse
|
25
|
Oxidative stress is not a major contributor to somatic mitochondrial DNA mutations. PLoS Genet 2014; 10:e1003974. [PMID: 24516391 PMCID: PMC3916223 DOI: 10.1371/journal.pgen.1003974] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/09/2013] [Indexed: 01/12/2023] Open
Abstract
The accumulation of somatic mitochondrial DNA (mtDNA) mutations is implicated in aging and common diseases of the elderly, including cancer and neurodegenerative disease. However, the mechanisms that influence the frequency of somatic mtDNA mutations are poorly understood. To develop a simple invertebrate model system to address this matter, we used the Random Mutation Capture (RMC) assay to characterize the age-dependent frequency and distribution of mtDNA mutations in the fruit fly Drosophila melanogaster. Because oxidative stress is a major suspect in the age-dependent accumulation of somatic mtDNA mutations, we also used the RMC assay to explore the influence of oxidative stress on the somatic mtDNA mutation frequency. We found that many of the features associated with mtDNA mutations in vertebrates are conserved in Drosophila, including a comparable somatic mtDNA mutation frequency (∼10(-5)), an increased frequency of mtDNA mutations with age, and a prevalence of transition mutations. Only a small fraction of the mtDNA mutations detected in young or old animals were G∶C to T∶A transversions, a signature of oxidative damage, and loss-of-function mutations in the mitochondrial superoxide dismutase, Sod2, had no detectable influence on the somatic mtDNA mutation frequency. Moreover, a loss-of-function mutation in Ogg1, which encodes a DNA repair enzyme that removes oxidatively damaged deoxyguanosine residues (8-hydroxy-2'-deoxyguanosine), did not significantly influence the somatic mtDNA mutation frequency of Sod2 mutants. Together, these findings indicate that oxidative stress is not a major cause of somatic mtDNA mutations. Our data instead suggests that somatic mtDNA mutations arise primarily from errors that occur during mtDNA replication. Further studies using Drosophila should aid in the identification of factors that influence the frequency of somatic mtDNA mutations.
Collapse
|
26
|
Taylor SD, Ericson NG, Burton JN, Prolla TA, Silber JR, Shendure J, Bielas JH. Targeted enrichment and high-resolution digital profiling of mitochondrial DNA deletions in human brain. Aging Cell 2014; 13:29-38. [PMID: 23911137 PMCID: PMC4068027 DOI: 10.1111/acel.12146] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2013] [Indexed: 12/24/2022] Open
Abstract
Due largely to the inability to accurately quantify and characterize de novo deletion events, the mechanisms underpinning the pathogenic expansion of mtDNA deletions in aging and neuromuscular disorders remain poorly understood. Here, we outline and validate a new tool termed 'Digital Deletion Detection' (3D) that allows for high-resolution analysis of rare deletions occurring at frequencies as low as 1 × 10(-8) . 3D is a three-step process that includes targeted enrichment for deletion-bearing molecules, single-molecule partitioning of genomes into thousands of droplets for direct quantification via droplet digital PCR, and breakpoint characterization using massively parallel sequencing. Using 3D, we interrogated over 8 billion mitochondrial genomes to analyze the age-related dynamics of mtDNA deletions in human brain tissue. We demonstrate that the total deletion load increases with age, while the total number and diversity of unique deletions remain constant. Our data provide support for the hypothesis that expansion of pre-existing mutations is the primary factor contributing to age-related accumulation of mtDNA deletions.
Collapse
Affiliation(s)
- Sean D. Taylor
- Translational Research Program; Public Health Sciences Division; Fred Hutchinson Cancer Research Center; 1100 Fairview Ave Seattle WA 98109 USA
| | - Nolan G. Ericson
- Translational Research Program; Public Health Sciences Division; Fred Hutchinson Cancer Research Center; 1100 Fairview Ave Seattle WA 98109 USA
| | - Joshua N. Burton
- Department of Genome Sciences; University of Washington; 3720 15th Ave NE Seattle WA 98195 USA
| | - Tomas A. Prolla
- Department of Medical Genetics; University of Wisconsin-Madison; 425-G Henry Mall Madison WI 53706 USA
| | - John R. Silber
- Neurological Surgery; University of Washington Medical Center; 1959 NE Pacific St Seattle WA 98195 USA
| | - Jay Shendure
- Department of Genome Sciences; University of Washington; 3720 15th Ave NE Seattle WA 98195 USA
| | - Jason H. Bielas
- Translational Research Program; Public Health Sciences Division; Fred Hutchinson Cancer Research Center; 1100 Fairview Ave Seattle WA 98109 USA
- Human Biology Division; Fred Hutchinson Cancer Research Center; 1100 Fairview Ave Seattle WA 98109 USA
- Department of Pathology; University of Washington Medical Center; 1959 NE Pacific St Seattle WA 98195 USA
| |
Collapse
|
27
|
Scott TL, Rangaswamy S, Wicker CA, Izumi T. Repair of oxidative DNA damage and cancer: recent progress in DNA base excision repair. Antioxid Redox Signal 2014; 20:708-26. [PMID: 23901781 PMCID: PMC3960848 DOI: 10.1089/ars.2013.5529] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) are generated by exogenous and environmental genotoxins, but also arise from mitochondria as byproducts of respiration in the body. ROS generate DNA damage of which pathological consequence, including cancer is well established. Research efforts are intense to understand the mechanism of DNA base excision repair, the primary mechanism to protect cells from genotoxicity caused by ROS. RECENT ADVANCES In addition to the notion that oxidative DNA damage causes transformation of cells, recent studies have revealed how the mitochondrial deficiencies and ROS generation alter cell growth during the cancer transformation. CRITICAL ISSUES The emphasis of this review is to highlight the importance of the cellular response to oxidative DNA damage during carcinogenesis. Oxidative DNA damage, including 7,8-dihydro-8-oxoguanine, play an important role during the cellular transformation. It is also becoming apparent that the unusual activity and subcellular distribution of apurinic/apyrimidinic endonuclease 1, an essential DNA repair factor/redox sensor, affect cancer malignancy by increasing cellular resistance to oxidative stress and by positively influencing cell proliferation. FUTURE DIRECTIONS Technological advancement in cancer cell biology and genetics has enabled us to monitor the detailed DNA repair activities in the microenvironment. Precise understanding of the intracellular activities of DNA repair proteins for oxidative DNA damage should provide help in understanding how mitochondria, ROS, DNA damage, and repair influence cancer transformation.
Collapse
Affiliation(s)
- Timothy L Scott
- Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | |
Collapse
|
28
|
Nouspikel T. Genetic instability in human embryonic stem cells: prospects and caveats. Future Oncol 2013; 9:867-77. [DOI: 10.2217/fon.13.22] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human embryonic stem cells (hESCs) display a leaky G1/S checkpoint and inefficient nucleotide excision repair activity. Maintenance of genomic stability in these cells mostly relies on the elimination of damaged cells by high rates of apoptosis. However, a subpopulation survives and proliferates actively, bypassing DNA damage by translesion synthesis, a known mutagenic process. Indeed, high levels of damage-induced mutations were observed in hESCs, similar to those in repair-deficient cells. The surviving cells also become more resistant to further damage, leading to a progressive enrichment of cultures in mutant cells. In long-term cultures, hESCs display features characteristic of neoplastic progression, including chromosomal anomalies often similar to those observed in embryo carcinoma. The implication of these facts for stem cell-based therapy and cancer research are discussed.
Collapse
Affiliation(s)
- Thierry Nouspikel
- Institute for Cancer Studies, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| |
Collapse
|
29
|
Mitochondrial DNA mutations in exhaled breath condensate of patients with lung cancer. Respir Med 2013; 107:911-8. [DOI: 10.1016/j.rmed.2013.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/09/2013] [Accepted: 02/11/2013] [Indexed: 01/07/2023]
|
30
|
Fuchs J, Schlesiger R, Lehmann L. PCR-basierte Methode zur Bestimmung von Gen-Mutationen. CHEM UNSERER ZEIT 2013. [DOI: 10.1002/ciuz.201390028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
|
32
|
Stevens JB, Abdallah BY, Liu G, Horne SD, Bremer SW, Ye KJ, Huang JY, Kurkinen M, Ye CJ, Heng HHQ. Heterogeneity of cell death. Cytogenet Genome Res 2013; 139:164-73. [PMID: 23548436 DOI: 10.1159/000348679] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell death constitutes a number of heterogeneous processes. Despite the dynamic nature of cell death, studies of cell death have primarily focused on apoptosis, and cell death has often been viewed as static events occurring in linear pathways. In this article we review cell death heterogeneity with specific focus on 4 aspects of cell death: the type of cell death; how it is induced; its mechanism(s); the results of cell death, and the implications of cell death heterogeneity for both basic and clinical research. This specifically reveals that cell death occurs in multiple overlapping forms that simultaneously occur within a population. Network and pathway heterogeneity in cell death is also discussed. Failure to integrate cell death heterogeneity within analyses can lead to inaccurate predictions of the amount of cell death that takes place in a tumor. Similarly, many molecular methods employed in cell death studies homogenize a population removing heterogeneity between individual cells and can be deceiving. Finally, and most importantly, cell death heterogeneity is linked to the formation of new genome systems through induction of aneuploidy and genome chaos (rapid genome reorganization).
Collapse
Affiliation(s)
- J B Stevens
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Mich. 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kraytsberg Y, Nicholas A, Khrapko K. Are somatic mitochondrial DNA mutations relevant to our health? A challenge for mutation analysis techniques. ACTA ACUST UNITED AC 2013; 1:109-16. [PMID: 23489273 DOI: 10.1517/17530059.1.1.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A role of somatic mitochondrial (mt)DNA mutations in ageing and degenerative diseases was postulated decades ago, but this hypothesis remains untested. A substantial number of genetically engineered 'mutator' mouse lines with increased mtDNA mutation rates were expected to test the hypothesis. However, the results of mutator experiments are inconclusive and their interpretations are often contradictory. The authors argue that the problem, to a great extent, is the absence of a universally accepted accurate methodology of mtDNA mutational analysis and hence the lack of consensus with respect to the actual fractions of mtDNA mutations. Estimates by different existing methods vary by more than two orders of magnitude and the reason for this enormous discrepancy has yet to be fully accounted for. Furthermore, studies usually lack the vitally important details, such as the analysis of individual cells and multiple cell types, which is indispensable for rigorous evaluation of the impact of mtDNA mutations. New methods capable of accurate and detailed mutational analysis of mtDNA are in great need. A cell-by-cell mutational analysis may offer a solution.
Collapse
|
34
|
Hiatt JB, Pritchard CC, Salipante SJ, O'Roak BJ, Shendure J. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation. Genome Res 2013; 23:843-54. [PMID: 23382536 PMCID: PMC3638140 DOI: 10.1101/gr.147686.112] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The detection and quantification of genetic heterogeneity in populations of cells is fundamentally important to diverse fields, ranging from microbial evolution to human cancer genetics. However, despite the cost and throughput advances associated with massively parallel sequencing, it remains challenging to reliably detect mutations that are present at a low relative abundance in a given DNA sample. Here we describe smMIP, an assay that combines single molecule tagging with multiplex targeted capture to enable practical and highly sensitive detection of low-frequency or subclonal variation. To demonstrate the potential of the method, we simultaneously resequenced 33 clinically informative cancer genes in eight cell line and 45 clinical cancer samples. Single molecule tagging facilitated extremely accurate consensus calling, with an estimated per-base error rate of 8.4 × 10(-6) in cell lines and 2.6 × 10(-5) in clinical specimens. False-positive mutations in the single molecule consensus base-calls exhibited patterns predominantly consistent with DNA damage, including 8-oxo-guanine and spontaneous deamination of cytosine. Based on mixing experiments with cell line samples, sensitivity for mutations above 1% frequency was 83% with no false positives. At clinically informative sites, we identified seven low-frequency point mutations (0.2%-4.7%), including BRAF p.V600E (melanoma, 0.2% alternate allele frequency), KRAS p.G12V (lung, 0.6%), JAK2 p.V617F (melanoma, colon, two lung, 0.3%-1.4%), and NRAS p.Q61R (colon, 4.7%). We anticipate that smMIP will be broadly adoptable as a practical and effective method for accurately detecting low-frequency mutations in both research and clinical settings.
Collapse
Affiliation(s)
- Joseph B Hiatt
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|
35
|
Abstract
DNA sequencing studies have established that many cancers contain tens of thousands of clonal mutations throughout their genomes, which is difficult to reconcile with the very low rate of mutation in normal human cells. This observation provides strong evidence for the mutator phenotype hypothesis, which proposes that a genome-wide elevation in the spontaneous mutation rate is an early step in carcinogenesis. An elevated mutation rate implies that cancers undergo continuous evolution, generating multiple subpopulations of cells that differ from one another in DNA sequence. The extensive heterogeneity in DNA sequence and continual tumor evolution that would occur in the context of a mutator phenotype have important implications for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Michael W Schmitt
- Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
36
|
Affiliation(s)
| | - Joann B. Sweasy
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
37
|
Decreased mitochondrial DNA mutagenesis in human colorectal cancer. PLoS Genet 2012; 8:e1002689. [PMID: 22685414 PMCID: PMC3369930 DOI: 10.1371/journal.pgen.1002689] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/20/2012] [Indexed: 01/05/2023] Open
Abstract
Genome instability is regarded as a hallmark of cancer. Human tumors frequently carry clonally expanded mutations in their mitochondrial DNA (mtDNA), some of which may drive cancer progression and metastasis. The high prevalence of clonal mutations in tumor mtDNA has commonly led to the assumption that the mitochondrial genome in cancer is genetically unstable, yet this hypothesis has not been experimentally tested. In this study, we directly measured the frequency of non-clonal (random) de novo single base substitutions in the mtDNA of human colorectal cancers. Remarkably, tumor tissue exhibited a decreased prevalence of these mutations relative to adjacent non-tumor tissue. The difference in mutation burden was attributable to a reduction in C:G to T:A transitions, which are associated with oxidative damage. We demonstrate that the lower random mutation frequency in tumor tissue was also coupled with a shift in glucose metabolism from oxidative phosphorylation to anaerobic glycolysis, as compared to non-neoplastic colon. Together these findings raise the intriguing possibility that fidelity of mitochondrial genome is, in fact, increased in cancer as a result of a decrease in reactive oxygen species-mediated mtDNA damage.
Collapse
|
38
|
Kamath-Loeb AS, Shen JC, Schmitt MW, Loeb LA. The Werner syndrome exonuclease facilitates DNA degradation and high fidelity DNA polymerization by human DNA polymerase δ. J Biol Chem 2012; 287:12480-90. [PMID: 22351772 DOI: 10.1074/jbc.m111.332577] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA Polymerase δ (Pol δ) and the Werner syndrome protein, WRN, are involved in maintaining cellular genomic stability. Pol δ synthesizes the lagging strand during replication of genomic DNA and also functions in the synthesis steps of DNA repair and recombination. WRN is a member of the RecQ helicase family, loss of which results in the premature aging and cancer-prone disorder, Werner syndrome. Both Pol δ and WRN encode 3' → 5' DNA exonuclease activities. Pol δ exonuclease removes 3'-terminal mismatched nucleotides incorporated during replication to ensure high fidelity DNA synthesis. WRN exonuclease degrades DNA containing alternate secondary structures to prevent formation and enable resolution of stalled replication forks. We now observe that similarly to WRN, Pol δ degrades alternate DNA structures including bubbles, four-way junctions, and D-loops. Moreover, WRN and Pol δ form a complex with enhanced ability to hydrolyze these structures. We also present evidence that WRN can proofread for Pol δ; WRN excises 3'-terminal mismatches to enable primer extension by Pol δ. Consistent with our in vitro observations, we show that WRN contributes to the maintenance of DNA synthesis fidelity in vivo. Cells expressing limiting amounts (∼10% of normal) of WRN have elevated mutation frequencies compared with wild-type cells. Together, our data highlight the importance of WRN exonuclease activity and its cooperativity with Pol δ in preserving genome stability, which is compromised by the loss of WRN in Werner syndrome.
Collapse
|
39
|
Poovathingal SK, Gruber J, Ng LF, Halliwell B, Gunawan R. Maximizing signal-to-noise ratio in the random mutation capture assay. Nucleic Acids Res 2011; 40:e35. [PMID: 22180539 PMCID: PMC3300001 DOI: 10.1093/nar/gkr1221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ‘Random Mutation Capture’ assay allows for the sensitive quantitation of DNA mutations at extremely low mutation frequencies. This method is based on PCR detection of mutations that render the mutated target sequence resistant to restriction enzyme digestion. The original protocol prescribes an end-point dilution to about 0.1 mutant DNA molecules per PCR well, such that the mutation burden can be simply calculated by counting the number of amplified PCR wells. However, the statistical aspects associated with the single molecular nature of this protocol and several other molecular approaches relying on binary (on/off) output can significantly affect the quantification accuracy, and this issue has so far been ignored. The present work proposes a design of experiment (DoE) using statistical modeling and Monte Carlo simulations to obtain a statistically optimal sampling protocol, one that minimizes the coefficient of variance in the measurement estimates. Here, the DoE prescribed a dilution factor at about 1.6 mutant molecules per well. Theoretical results and experimental validation revealed an up to 10-fold improvement in the information obtained per PCR well, i.e. the optimal protocol achieves the same coefficient of variation using one-tenth the number of wells used in the original assay. Additionally, this optimization equally applies to any method that relies on binary detection of a small number of templates.
Collapse
Affiliation(s)
- Suresh Kumar Poovathingal
- Department of Biochemistry, Neurobiology and Ageing Program, Centre for Life Science (CeLS), 28 Medical Drive, 117456 Singapore, Singapore
| | | | | | | | | |
Collapse
|
40
|
Li W, Vijg J. Measuring genome instability in aging - a mini-review. Gerontology 2011; 58:129-38. [PMID: 22156741 DOI: 10.1159/000334368] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/13/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND There is mounting evidence for an age-dependent accumulation of somatic mutations as a result of the inherent imperfection of DNA replication and repair. A possible age-related decline in genome maintenance systems may exacerbate this age-related loss of genome integrity. A review of the current methods of mutation detection is timely in view of the lack of insight as to the magnitude of somatic mutation accumulation, the types of mutations that accumulate, and their functional consequences. OBJECTIVE In this paper we review the current methods for measuring genome instability in organisms during aging or in relation to life span. METHODS The review is based on established and novel concepts from the existing literature, with some examples from our own laboratory. RESULTS Studies using cytogenetic assays and endogenous or transgenic mutation reporter assays provide strong evidence for age-related increases of different types of mutations in animals and humans during aging. This increase in DNA mutations is tissue-specific and also differs between species. CONCLUSION Today, our knowledge of somatic mutation profiles in aging is mainly derived from cytogenetics and the use of endogenous and transgenic mutation reporter assays. The emergence of new approaches, most notably massively parallel sequencing, will give us deeper insight into the nature of spontaneous genome instability and its possible causal relationship to aging and age-related disease.
Collapse
Affiliation(s)
- Wenge Li
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
41
|
Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A 2011; 108:9530-5. [PMID: 21586637 PMCID: PMC3111315 DOI: 10.1073/pnas.1105422108] [Citation(s) in RCA: 863] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The identification of mutations that are present in a small fraction of DNA templates is essential for progress in several areas of biomedical research. Although massively parallel sequencing instruments are in principle well suited to this task, the error rates in such instruments are generally too high to allow confident identification of rare variants. We here describe an approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose. The keys to this approach, called the Safe-Sequencing System ("Safe-SeqS"), are (i) assignment of a unique identifier (UID) to each template molecule, (ii) amplification of each uniquely tagged template molecule to create UID families, and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are considered mutant ("supermutants") only if ≥95% of them contain the identical mutation. We illustrate the utility of this approach for determining the fidelity of a polymerase, the accuracy of oligonucleotides synthesized in vitro, and the prevalence of mutations in the nuclear and mitochondrial genomes of normal cells.
Collapse
Affiliation(s)
- Isaac Kinde
- The Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231
| | - Jian Wu
- The Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231
| | - Nick Papadopoulos
- The Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231
| | - Kenneth W. Kinzler
- The Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231
| | - Bert Vogelstein
- The Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231
| |
Collapse
|
42
|
Abstract
Recent data on DNA sequencing of human tumours have established that cancer cells contain thousands of mutations. These data support the concept that cancer cells express a mutator phenotype. This Perspective considers the evidence supporting the mutator phenotype hypothesis, the origin and consequences of a mutator phenotype, the implications for personalized medicine and the feasibility of ablating tumours by error catastrophe.
Collapse
Affiliation(s)
- Lawrence A Loeb
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| |
Collapse
|
43
|
Gruber J, Ng LF, Fong S, Wong YT, Koh SA, Chen CB, Shui G, Cheong WF, Schaffer S, Wenk MR, Halliwell B. Mitochondrial changes in ageing Caenorhabditis elegans--what do we learn from superoxide dismutase knockouts? PLoS One 2011; 6:e19444. [PMID: 21611128 PMCID: PMC3097207 DOI: 10.1371/journal.pone.0019444] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/29/2011] [Indexed: 11/18/2022] Open
Abstract
One of the most popular damage accumulation theories of ageing is the mitochondrial free radical theory of ageing (mFRTA). The mFRTA proposes that ageing is due to the accumulation of unrepaired oxidative damage, in particular damage to mitochondrial DNA (mtDNA). Within the mFRTA, the “vicious cycle” theory further proposes that reactive oxygen species (ROS) promote mtDNA mutations, which then lead to a further increase in ROS production. Recently, data have been published on Caenorhabditis elegans mutants deficient in one or both forms of mitochondrial superoxide dismutase (SOD). Surprisingly, even double mutants, lacking both mitochondrial forms of SOD, show no reduction in lifespan. This has been interpreted as evidence against the mFRTA because it is assumed that these mutants suffer from significantly elevated oxidative damage to their mitochondria. Here, using a novel mtDNA damage assay in conjunction with related, well established damage and metabolic markers, we first investigate the age-dependent mitochondrial decline in a cohort of ageing wild-type nematodes, in particular testing the plausibility of the “vicious cycle” theory. We then apply the methods and insights gained from this investigation to a mutant strain for C. elegans that lacks both forms of mitochondrial SOD. While we show a clear age-dependent, linear increase in oxidative damage in WT nematodes, we find no evidence for autocatalytic damage amplification as proposed by the “vicious cycle” theory. Comparing the SOD mutants with wild-type animals, we further show that oxidative damage levels in the mtDNA of SOD mutants are not significantly different from those in wild-type animals, i.e. even the total loss of mitochondrial SOD did not significantly increase oxidative damage to mtDNA. Possible reasons for this unexpected result and some implications for the mFRTA are discussed.
Collapse
Affiliation(s)
- Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wright JH, Modjeski KL, Bielas JH, Preston BD, Fausto N, Loeb LA, Campbell JS. A random mutation capture assay to detect genomic point mutations in mouse tissue. Nucleic Acids Res 2011; 39:e73. [PMID: 21459851 PMCID: PMC3113589 DOI: 10.1093/nar/gkr142] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Herein, a detailed protocol for a random mutation capture (RMC) assay to measure nuclear point mutation frequency in mouse tissue is described. This protocol is a simplified version of the original method developed for human tissue that is easier to perform, yet retains a high sensitivity of detection. In contrast to assays relying on phenotypic selection of reporter genes in transgenic mice, the RMC assay allows direct detection of mutations in endogenous genes in any mouse strain. Measuring mutation frequency within an intron of a transcribed gene, we show this assay to be highly reproducible. We analyzed mutation frequencies from the liver tissue of animals with a mutation within the intrinsic exonuclease domains of the two major DNA polymerases, δ and ε. These mice exhibited significantly higher mutation frequencies than did wild-type animals. A comparison with a previous analysis of these genotypes in Big Blue mice revealed the RMC assay to be more sensitive than the Big Blue assay for this application. As RMC does not require analysis of a particular gene, simultaneous analysis of mutation frequency at multiple genetic loci is feasible. This assay provides a versatile alternative to transgenic mouse models for the study of mutagenesis in vivo.
Collapse
Affiliation(s)
- Jocelyn H Wright
- Department of Pathology, University of Washington and Department of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Thompson EA, Zhu S, Hall JR, House JS, Ranjan R, Burr JA, He YY, Owens DM, Smart RC. C/EBPα expression is downregulated in human nonmelanoma skin cancers and inactivation of C/EBPα confers susceptibility to UVB-induced skin squamous cell carcinomas. J Invest Dermatol 2011; 131:1339-46. [PMID: 21346772 DOI: 10.1038/jid.2011.31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human epidermis is routinely subjected to DNA damage induced by UVB solar radiation. Cell culture studies have revealed an unexpected role for C/EBPα (CCAAT/enhancer-binding protein-α) in the DNA damage response network, where C/EBPα is induced following UVB DNA damage, regulates the G(1) checkpoint, and diminished or ablated expression of C/EBPα results in G(1) checkpoint failure. In the current study we observed that C/EBPα is induced in normal human epidermal keratinocytes and in the epidermis of human subjects exposed to UVB radiation. The analysis of human skin precancerous and cancerous lesions (47 cases) for C/EBPα expression was conducted. Actinic keratoses, a precancerous benign skin growth and precursor to squamous cell carcinoma (SCC), expressed levels of C/EBPα similar to normal epidermis. Strikingly, all invasive SCCs no longer expressed detectable levels of C/EBPα. To determine the significance of C/EBPα in UVB-induced skin cancer, SKH-1 mice lacking epidermal C/EBPα (CKOα) were exposed to UVB. CKOα mice were highly susceptible to UVB-induced SCCs and exhibited accelerated tumor progression. CKOα mice displayed keratinocyte cell cycle checkpoint failure in vivo in response to UVB that was characterized by abnormal entry of keratinocytes into S phase. Our results demonstrate that C/EBPα is silenced in human SCC and loss of C/EBPα confers susceptibility to UVB-induced skin SCCs involving defective cell cycle arrest in response to UVB.
Collapse
Affiliation(s)
- Elizabeth A Thompson
- Cell Signaling and Cancer Group, Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695-7633, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Prindle MJ, Fox EJ, Loeb LA. The mutator phenotype in cancer: molecular mechanisms and targeting strategies. Curr Drug Targets 2011; 11:1296-303. [PMID: 20840072 DOI: 10.2174/1389450111007011296] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/01/2010] [Indexed: 02/04/2023]
Abstract
Normal human cells replicate their DNA with exceptional accuracy. It has been estimated that approximately one error occurs during DNA replication for each 10(9) to 10(10) nucleotides polymerized. In contrast, malignant cells exhibit multiple chromosomal abnormalities and contain tens of thousands of alterations in the nucleotide sequence of nuclear DNA. To account for the disparity between the rarity of mutations in normal cells and the large numbers of mutations present in cancer, we have hypothesized that during tumor development, cancer cells exhibit a mutator phenotype. As a defining feature of cancer, the mutator phenotype remains an as-yet unexplored therapeutic target: by reducing the rate at which mutations accumulate it may be possible to significantly delay tumor development; conversely, the large number of mutations in cancer may make cancer cells more sensitive to cell killing by increasing the mutation rate. Here we summarize the evidence for the mutator phenotype hypothesis in cancer and explore how the increased frequency of random mutations during the evolution of human tumors provides new approaches for the design of cancer chemotherapy.
Collapse
Affiliation(s)
- Marc J Prindle
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
47
|
Parsons BL, Myers MB, Meng F, Wang Y, McKinzie PB. Oncomutations as biomarkers of cancer risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:836-850. [PMID: 20740637 DOI: 10.1002/em.20600] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cancer risk assessment impacts a range of societal needs, from the regulation of chemicals to achieving the best possible human health outcomes. Because oncogene and tumor suppressor gene mutations are necessary for the development of cancer, such mutations are ideal biomarkers to use in cancer risk assessment. Consequently, DNA-based methods to quantify particular tumor-associated hotspot point mutations (i.e., oncomutations) have been developed, including allele-specific competitive blocker-PCR (ACB-PCR). Several studies using ACB-PCR and model mutagens have demonstrated that significant induction of tumor-associated oncomutations are measureable at earlier time points than are used to score tumors in a bioassay. In the particular case of benzo[a]pyrene induction of K-Ras codon 12 TGT mutation in the A/J mouse lung, measurement of tumor-associated oncomutation was shown to be an earlier and more sensitive endpoint than tumor response. The measurement of oncomutation by ACB-PCR led to two unexpected findings. First, oncomutations are present in various tissues of control rodents and "normal" human colonic mucosa samples at relatively high frequencies. Approximately 60% of such samples (88/146) have mutant fractions (MFs) >10(-5), and some have MFs as high as 10(-3) or 10(-4). Second, preliminary data indicate that oncomutations are present frequently as subpopulations in tumors. These findings are integrated into a hypothesis that the predominant preexisting mutations in particular tissues may be useful as generic reporters of carcinogenesis. Future research opportunities using oncomutation as an endpoint are described, including rodent to human extrapolation, dose-response assessment, and personalized medicine.
Collapse
Affiliation(s)
- Barbara L Parsons
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA.
| | | | | | | | | |
Collapse
|
48
|
Kulawiec M, Salk JJ, Ericson NG, Wanagat J, Bielas JH. Generation, function, and prognostic utility of somatic mitochondrial DNA mutations in cancer. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:427-439. [PMID: 20544883 DOI: 10.1002/em.20582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exciting new studies are increasingly strengthening the link between mitochondrial mutagenesis and tumor progression. Here we provide a comprehensive review and meta-analysis of studies reporting on mitochondrial DNA mutations in common human cancers. We discuss possible mechanisms by which mitochondrial DNA mutations may influence carcinogenesis, outline important caveats for interpreting the detected mutations--particularly differentiating causality from association--and suggest how new mutational assays may help resolve fundamental controversies in the field and delineate the origin and expansion of neoplastic cell lineages. Finally, we discuss the potential clinical utility of mtDNA mutations for improving the sensitivity of early cancer diagnosis, rapidly detecting cancer recurrence, and predicting the disease outcome.
Collapse
Affiliation(s)
- Mariola Kulawiec
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
49
|
De Grassi A, Segala C, Iannelli F, Volorio S, Bertario L, Radice P, Bernard L, Ciccarelli FD. Ultradeep sequencing of a human ultraconserved region reveals somatic and constitutional genomic instability. PLoS Biol 2010; 8:e1000275. [PMID: 20052272 PMCID: PMC2794366 DOI: 10.1371/journal.pbio.1000275] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 11/24/2009] [Indexed: 12/27/2022] Open
Abstract
Ultradeep sequencing of genomes permits the detection of very low-level genomic instability in non-neoplastic tissues of patients with the most common form of inherited colorectal cancer. Early detection of cancer-associated genomic instability is crucial, particularly in tumour types in which this instability represents the essential underlying mechanism of tumourigenesis. Currently used methods require the presence of already established neoplastic cells because they only detect clonal mutations. In principle, parallel sequencing of single DNA filaments could reveal the early phases of tumour initiation by detecting low-frequency mutations, provided an adequate depth of coverage and an effective control of the experimental error. We applied ultradeep sequencing to estimate the genomic instability of individuals with hereditary non-polyposis colorectal cancer (HNPCC). To overcome the experimental error, we used an ultraconserved region (UCR) of the human genome as an internal control. By comparing the mutability outside and inside the UCR, we observed a tendency of the ultraconserved element to accumulate significantly fewer mutations than the flanking segments in both neoplastic and nonneoplastic HNPCC samples. No difference between the two regions was detectable in cells from healthy donors, indicating that all three HNPCC samples have mutation rates higher than the healthy genome. This is the first, to our knowledge, direct evidence of an intrinsic genomic instability of individuals with heterozygous mutations in mismatch repair genes, and constitutes the proof of principle for the development of a more sensitive molecular assay of genomic instability. In hereditary non-polyposis colorectal cancer (HNPCC), a germline mutation in one allele of a gene responsible for repairing DNA damage predisposes the host to cancer, because subsequent somatic inactivation of the one wild-type allele leads to genomic instability that favours tumourigenesis. Nonneoplastic tissues of HNPCC individuals are believed to repair DNA normally, as they are heterozygous and thus are thought to be genomically stable. However, methods used to date are known to be incapable of detecting very low levels of genome instability. Here, we present a more sensitive procedure based on the resequencing of a HNPCC genomic region using next-generation sequencing technology. With this approach, we show that genomic instability is in fact detectable in nonneoplastic tissues of HNPCC patients compared with healthy donors. This constitutional instability may predispose them to acquiring the second somatic mutation event needed for cancer development.
Collapse
Affiliation(s)
- Anna De Grassi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Cinzia Segala
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Fabio Iannelli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Sara Volorio
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, IFOM-IEO Campus, Milan, Italy
| | - Lucio Bertario
- Hereditary Colorectal Tumor Registry; Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Radice
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, IFOM-IEO Campus, Milan, Italy
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loris Bernard
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | |
Collapse
|
50
|
Abstract
Cancer recapitulates Darwinian evolution. Mutations acquired during life that provide cells with a growth or survival advantage will preferentially multiply to form a tumor. As a result of The Cancer Genome Atlas Project, we have gathered detailed information on the nucleotide sequence changes in a number of human cancers. The sources of mutations in cancer are diverse, and the complexity of those found to be clonally present in tumors has increasingly made it difficult to identify key rate-limiting genes for tumor growth that could serve as potential targets for directed therapies. The impact of DNA sequencing on future cancer research and personalized therapy is likely to be profound and merits critical evaluation.
Collapse
Affiliation(s)
- Jesse J Salk
- Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|