1
|
Yan J, Chen L, Warshel A, Bai C. Exploring the Activation Process of the Glycine Receptor. J Am Chem Soc 2024; 146:26297-26312. [PMID: 39279763 DOI: 10.1021/jacs.4c08489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Glycine receptors (GlyR) conduct inhibitory glycinergic neurotransmission in the spinal cord and the brainstem. They play an important role in muscle tone, motor coordination, respiration, and pain perception. However, the mechanism underlying GlyR activation remains unclear. There are five potential glycine binding sites in α1 GlyR, and different binding patterns may cause distinct activation or desensitization behaviors. In this study, we investigated the coupling of protein conformational changes and glycine binding events to elucidate the influence of binding patterns on the activation and desensitization processes of α1 GlyRs. Subsequently, we explored the energetic distinctions between the apical and lateral pathways during α1 GlyR conduction to identify the pivotal factors in the ion conduction pathway preference. Moreover, we predicted the mutational effects of the key residues and verified our predictions using electrophysiological experiments. For the mutants that can be activated by glycine, the predictions of the mutational directions were all correct. The strength of the mutational effects was assessed using Pearson's correlation coefficient, yielding a value of -0.77 between the calculated highest energy barriers and experimental maximum current amplitudes. These findings contribute to our understanding of GlyR activation, identify the key residues of GlyRs, and provide guidance for mechanistic studies on other pLGICs.
Collapse
Affiliation(s)
- Junfang Yan
- School of Medicine, Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Chen Bai
- School of Medicine, Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Chenzhu (MoMeD) Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
2
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
3
|
Chan ES, Ge Y, So YW, Bai YF, Liu L, Wang YT. Allosteric potentiation of GABAA receptor single-channel conductance by netrin-1 during neuronal-excitation-induced inhibitory synaptic homeostasis. Cell Rep 2022; 41:111584. [DOI: 10.1016/j.celrep.2022.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/13/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
|
4
|
Glutamate and GABA A receptor crosstalk mediates homeostatic regulation of neuronal excitation in the mammalian brain. Signal Transduct Target Ther 2022; 7:340. [PMID: 36184627 PMCID: PMC9527238 DOI: 10.1038/s41392-022-01148-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/29/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Maintaining a proper balance between the glutamate receptor-mediated neuronal excitation and the A type of GABA receptor (GABAAR) mediated inhibition is essential for brain functioning; and its imbalance contributes to the pathogenesis of many brain disorders including neurodegenerative diseases and mental illnesses. Here we identify a novel glutamate-GABAAR interaction mediated by a direct glutamate binding of the GABAAR. In HEK293 cells overexpressing recombinant GABAARs, glutamate and its analog ligands, while producing no current on their own, potentiate GABA-evoked currents. This potentiation is mediated by a direct binding at a novel glutamate binding pocket located at the α+/β− subunit interface of the GABAAR. Moreover, the potentiation does not require the presence of a γ subunit, and in fact, the presence of γ subunit significantly reduces the potency of the glutamate potentiation. In addition, the glutamate-mediated allosteric potentiation occurs on native GABAARs in rat neurons maintained in culture, as evidenced by the potentiation of GABAAR-mediated inhibitory postsynaptic currents and tonic currents. Most importantly, we found that genetic impairment of this glutamate potentiation in knock-in mice resulted in phenotypes of increased neuronal excitability, including decreased thresholds to noxious stimuli and increased seizure susceptibility. These results demonstrate a novel cross-talk between excitatory transmitter glutamate and inhibitory GABAAR. Such a rapid and short feedback loop between the two principal excitatory and inhibitory neurotransmission systems may play a critical homeostatic role in fine-tuning the excitation-inhibition balance (E/I balance), thereby maintaining neuronal excitability in the mammalian brain under both physiological and pathological conditions.
Collapse
|
5
|
Abohalaka R, Bozkurt TE, Reçber T, Onder SC, Nemutlu E, Kır S, Sahin-Erdemli I. The effects of systemic and local fatty acid amide hydrolase and monoacylglycerol lipase inhibitor treatments on the metabolomic profile of lungs. Biomed Chromatogr 2021; 36:e5231. [PMID: 34449902 DOI: 10.1002/bmc.5231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/06/2022]
Abstract
The contribution of the endocannabinoid system to both physiology and pathological processes in the respiratory system makes it a promising target for inflammatory airway diseases. Previously, we have shown that increasing the tissue endocannabinoid levels by fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) inhibitors can prevent airway inflammation and hyperreactivity. In this study, the changes in the levels of major metabolites of endocannabinoids by systemic and local FAAH or MAGL inhibitor treatments were evaluated. Mice were treated with either the FAAH inhibitor URB597 or the MAGL inhibitor JZL184 by local (intranasal) or systemic (intraperitoneal) application. Bronchoalveolar lavage (BAL) fluids and lungs were isolated afterward in order to perform histopathological and metabolomic analyses. There were no significant histopathological changes in the lungs and neutrophil, and macrophage and lymphocyte numbers in BAL fluid were not altered after local and systemic treatments. However, GC-MS-based metabolomics profile allowed us to identify 102 metabolites in lung samples, among which levels of 75 metabolites were significantly different from the control. The metabolites whose levels were changed by treatments were mostly related to the endocannabinoid system and energy metabolism. Therefore, these changes may contribute to the anti-inflammatory effects of URB597 and JZL184 treatments in mice.
Collapse
Affiliation(s)
- Reshed Abohalaka
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Turgut Emrah Bozkurt
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sevgen Celik Onder
- Department of Medical Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sedef Kır
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Inci Sahin-Erdemli
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Aubrey KR, Sheipouri D, Balle T, Vandenberg RJ, Otsu Y. Glutamate, d-(-)-2-Amino-5-Phosphonopentanoic Acid, and N-Methyl-d-Aspartate Do Not Directly Modulate Glycine Receptors. Mol Pharmacol 2020; 98:719-729. [PMID: 33051383 DOI: 10.1124/molpharm.120.000127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022] Open
Abstract
Replication studies play an essential role in corroborating research findings and ensuring that subsequent experimental works are interpreted correctly. A previously published paper indicated that the neurotransmitter glutamate, along with the compounds N-methyl-d-aspartate (NMDA) and d-(-)-2-amino-5-phosphonopentanoic acid (AP5), acts as positive allosteric modulators of inhibitory glycine receptors. The paper further suggested that this form of modulation would play a role in setting the spinal inhibitory tone and influencing sensory signaling, as spillover of glutamate onto nearby glycinergic synapses would permit rapid crosstalk between excitatory and inhibitory synapses. Here, we attempted to replicate this finding in primary cultured spinal cord neurons, spinal cord slice, and Xenopus laevis oocytes expressing recombinant human glycine receptors. Despite extensive efforts, we were unable to reproduce the finding that glutamate, AP5, and NMDA positively modulate glycine receptor currents. We paid careful attention to critical aspects of the original study design and took into account receptor saturation and protocol deviations such as animal species. Finally, we explored possible explanations for the experimental discrepancy. We found that solution contamination with a high-affinity modulator such as zinc is most likely to account for the error, and we suggest methods for preventing this kind of misinterpretation in future studies aimed at characterizing high-affinity modulators of the glycine receptor. SIGNIFICANCE STATEMENT: A previous study indicates that glutamate spillover onto inhibitory synapses can directly interact with glycine receptors to enhance inhibitory signalling. This finding has important implications for baseline spinal transmission and may play a role when chronic pain develops. However, we failed to replicate the results and did not observe glutamate, d-(-)-2-amino-5-phosphonopentanoic acid, or N-methyl-d-aspartate modulation of native or recombinant glycine receptors. We ruled out various sources for the discrepancy and found that the most likely cause is solution contamination.
Collapse
Affiliation(s)
- Karin R Aubrey
- Pain Management Research Institute (K.R.A., Y.O.), Kolling Institute of Medical Research, Royal North Shore Hospital and Northern Clinical School, Faculty of Medicine and Health (K.R.A., Y.O.), Pharmacology, Faculty of Medicine and Health (D.S., R.J.V.), Sydney Pharmacy School, Faculty of Medicine and Health (T.B.), and Brain and Mind Centre (T.B.), The University of Sydney, Sydney, Australia
| | - Diba Sheipouri
- Pain Management Research Institute (K.R.A., Y.O.), Kolling Institute of Medical Research, Royal North Shore Hospital and Northern Clinical School, Faculty of Medicine and Health (K.R.A., Y.O.), Pharmacology, Faculty of Medicine and Health (D.S., R.J.V.), Sydney Pharmacy School, Faculty of Medicine and Health (T.B.), and Brain and Mind Centre (T.B.), The University of Sydney, Sydney, Australia
| | - Thomas Balle
- Pain Management Research Institute (K.R.A., Y.O.), Kolling Institute of Medical Research, Royal North Shore Hospital and Northern Clinical School, Faculty of Medicine and Health (K.R.A., Y.O.), Pharmacology, Faculty of Medicine and Health (D.S., R.J.V.), Sydney Pharmacy School, Faculty of Medicine and Health (T.B.), and Brain and Mind Centre (T.B.), The University of Sydney, Sydney, Australia
| | - Robert J Vandenberg
- Pain Management Research Institute (K.R.A., Y.O.), Kolling Institute of Medical Research, Royal North Shore Hospital and Northern Clinical School, Faculty of Medicine and Health (K.R.A., Y.O.), Pharmacology, Faculty of Medicine and Health (D.S., R.J.V.), Sydney Pharmacy School, Faculty of Medicine and Health (T.B.), and Brain and Mind Centre (T.B.), The University of Sydney, Sydney, Australia
| | - Yo Otsu
- Pain Management Research Institute (K.R.A., Y.O.), Kolling Institute of Medical Research, Royal North Shore Hospital and Northern Clinical School, Faculty of Medicine and Health (K.R.A., Y.O.), Pharmacology, Faculty of Medicine and Health (D.S., R.J.V.), Sydney Pharmacy School, Faculty of Medicine and Health (T.B.), and Brain and Mind Centre (T.B.), The University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
Abstract
The inhibitory glycine receptor is a member of the Cys-loop superfamily of ligand-gated ion channels. It is the principal mediator of rapid synaptic inhibition in the spinal cord and brainstem and plays an important role in the modulation of higher brain functions including vision, hearing, and pain signaling. Glycine receptor function is controlled by only a few agonists, while the number of antagonists and positive or biphasic modulators is steadily increasing. These modulators are important for the study of receptor activation and regulation and have found clinical interest as potential analgesics and anticonvulsants. High-resolution structures of the receptor have become available recently, adding to our understanding of structure-function relationships and revealing agonistic, inhibitory, and modulatory sites on the receptor protein. This Review presents an overview of compounds that activate, inhibit, or modulate glycine receptor function in vitro and in vivo.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo 11835, Egypt
| | | |
Collapse
|
8
|
Hussein RA, Ahmed M, Breitinger HG, Breitinger U. Modulation of Glycine Receptor-Mediated Pain Signaling in vitro and in vivo by Glucose. Front Mol Neurosci 2019; 12:280. [PMID: 31824259 PMCID: PMC6883931 DOI: 10.3389/fnmol.2019.00280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/01/2019] [Indexed: 11/27/2022] Open
Abstract
The inhibitory glycine receptor (GlyR) plays an important role in rapid synaptic inhibition in mammalian spinal cord, brainstem, higher brain centers, and is involved in transmission of nociceptive signals. Glucose and related mono- and disaccharides potentiate currents mediated by recombinant α1, α1-β, and α3 GlyRs. Here, we confirmed the specific potentiation of α3 GlyR signaling by glucose through: (i) patch-clamp electrophysiology on recombinant receptors; and (ii) by verifying in vitro data in a mouse model in vivo. Mice were intraperitoneally (IP) injected with glucose (2 g/kg) or vehicle, and then challenged with sublethal doses of strychnine (0.2 mg/kg and 0.5 mg/kg). Pain-related behavior was assessed using two established models: (i) touch sensitivity tests using von Frey filaments; and (ii) hotplate assay. We observed a reduction of pain sensitivity in glucose-treated mice relative to vehicle-treated control mice. Injection of strychnine resulted in an increased sensitivity to tactile and heat stimuli, which was reversed in the presence of glucose. Analgesic effects of glucose were more pronounced in von Frey experiments, consistent with the established use of this model for neuropathic pain. Overall, glucose showed mild analgesic effects and was able to compensate for strychnine-induced allodynia in mice. Since the action of strychnine is specific for GlyR, these experiments show for the first time an in vivo potentiation of GlyR activity by glucose and suggest a molecular mechanism for glucose-mediated analgesia.
Collapse
Affiliation(s)
| | - Marwa Ahmed
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | | | - Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| |
Collapse
|
9
|
Winters BD, Golding NL. Glycinergic Inhibitory Plasticity in Binaural Neurons Is Cumulative and Gated by Developmental Changes in Action Potential Backpropagation. Neuron 2018; 98:166-178.e2. [PMID: 29576388 PMCID: PMC5886803 DOI: 10.1016/j.neuron.2018.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/09/2018] [Accepted: 02/28/2018] [Indexed: 11/20/2022]
Abstract
Utilization of timing-based sound localization cues by neurons in the medial superior olive (MSO) depends critically on glycinergic inhibitory inputs. After hearing onset, the strength and subcellular location of these inhibitory inputs are dramatically altered, but the cellular processes underlying this experience-dependent refinement are unknown. Here we reveal a form of inhibitory long-term potentiation (iLTP) in MSO neurons that is dependent on spiking and synaptic activation but is not affected by their fine-scale relative timing at higher frequencies prevalent in auditory circuits. We find that iLTP reinforces inhibitory inputs coactive with binaural excitation in a cumulative manner, likely well suited for networks featuring persistent high-frequency activity. We also show that a steep drop in action potential size and backpropagation limits induction of iLTP to the first 2 weeks of hearing. These intrinsic changes would deprive more distal inhibitory synapses of reinforcement, conceivably establishing the mature, soma-biased pattern of inhibition.
Collapse
Affiliation(s)
- Bradley D Winters
- The University of Texas at Austin, Department of Neuroscience and Center for Learning and Memory, 1 University Station C7000, Austin TX 78712-0248, USA
| | - Nace L Golding
- The University of Texas at Austin, Department of Neuroscience and Center for Learning and Memory, 1 University Station C7000, Austin TX 78712-0248, USA.
| |
Collapse
|
10
|
A Missense Mutation A384P Associated with Human Hyperekplexia Reveals a Desensitization Site of Glycine Receptors. J Neurosci 2018; 38:2818-2831. [PMID: 29440552 DOI: 10.1523/jneurosci.0674-16.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 11/21/2022] Open
Abstract
Hyperekplexia, an inherited neuronal disorder characterized by exaggerated startle responses with unexpected sensory stimuli, is caused by dysfunction of glycinergic inhibitory transmission. From analysis of newly identified human hyperekplexia mutations in the glycine receptor (GlyR) α1 subunit, we found that an alanine-to-proline missense mutation (A384P) resulted in substantially higher desensitization level and lower agonist sensitivity of homomeric α1 GlyRs when expressed in HEK cells. The incorporation of the β subunit fully reversed the reduction in agonist sensitivity and partially reversed the desensitization of α1A384P The heteromeric α1A384Pβ GlyRs showed enhanced desensitization but unchanged agonist-induced maximum responses, surface expression, main channel conductance, and voltage dependence compared with that of the wild-type α1β (α1WTβ) GlyRs. Coexpression of the R392H and A384P mutant α1 subunits, which mimic the expression of the compound heterozygous mutation in a hyperekplexia patient, resulted in channel properties similar to those with α1A384P subunit expression alone. In comparison, another human hyperekplexia mutation α1P250T, which was previously reported to enhance desensitization, caused a strong reduction in maximum currents in addition to the altered desensitization. These results were further confirmed by overexpression of α1P250T or α1A384P subunits in cultured neurons isolated from SD rats of either sex. Moreover, the IPSC-like responses of cells expressing α1A384Pβ induced by repeated glycine pulses showed a stronger frequency-dependent reduction than those expressing α1WTβ. Together, our findings demonstrate that A384 is associated with the desensitization site of the α1 subunit and its proline mutation produced enhanced desensitization of GlyRs, which contributes to the pathogenesis of human hyperekplexia.SIGNIFICANCE STATEMENT Human startle disease is caused by impaired synaptic inhibition in the brainstem and spinal cord, which is due to either direct loss of GlyR channel function or reduced number of synaptic GlyRs. Considering that fast decay kinetics of GlyR-mediated inhibitory synaptic responses, the question was raised whether altered desensitization of GlyRs will cause dysfunction of glycine transmission and disease phenotypes. Here, we found that the α1 subunit mutation A384P, identified from startle disease patients, results in enhanced desensitization and leads to rapidly decreasing responses in the mutant GlyRs when they are activated repeatedly by the synaptic-like simulation. These observations suggest that the enhanced desensitization of postsynaptic GlyRs could be the primary pathogenic mechanism of human startle disease.
Collapse
|
11
|
Ge Y, Kang Y, Cassidy RM, Moon KM, Lewis R, Wong ROL, Foster LJ, Craig AM. Clptm1 Limits Forward Trafficking of GABA A Receptors to Scale Inhibitory Synaptic Strength. Neuron 2018; 97:596-610.e8. [PMID: 29395912 DOI: 10.1016/j.neuron.2017.12.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 11/17/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022]
Abstract
In contrast with numerous studies of glutamate receptor-associated proteins and their involvement in the modulation of excitatory synapses, much less is known about mechanisms controlling postsynaptic GABAA receptor (GABAAR) numbers. Using tandem affinity purification from tagged GABAAR γ2 subunit transgenic mice and proteomic analysis, we isolated several GABAAR-associated proteins, including Cleft lip and palate transmembrane protein 1 (Clptm1). Clptm1 interacted with all GABAAR subunits tested and promoted GABAAR trapping in the endoplasmic reticulum. Overexpression of Clptm1 reduced GABAAR-mediated currents in a recombinant system, in cultured hippocampal neurons, and in brain, with no effect on glycine or AMPA receptor-mediated currents. Conversely, knockdown of Clptm1 increased phasic and tonic inhibitory transmission with no effect on excitatory synaptic transmission. Furthermore, altering the expression level of Clptm1 mimicked activity-induced inhibitory synaptic scaling. Thus, in complement to other GABAAR-associated proteins that promote receptor surface expression, Clptm1 limits GABAAR forward trafficking and regulates inhibitory homeostatic plasticity.
Collapse
Affiliation(s)
- Yuan Ge
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Yunhee Kang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Robert M Cassidy
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Renate Lewis
- Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
12
|
Sparling BA, DiMauro EF. Progress in the discovery of small molecule modulators of the Cys-loop superfamily receptors. Bioorg Med Chem Lett 2017; 27:3207-3218. [DOI: 10.1016/j.bmcl.2017.04.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
|
13
|
Lynch JW, Zhang Y, Talwar S, Estrada-Mondragon A. Glycine Receptor Drug Discovery. ADVANCES IN PHARMACOLOGY 2017; 79:225-253. [DOI: 10.1016/bs.apha.2017.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Lara CO, Murath P, Muñoz B, Marileo AM, Martín LS, San Martín VP, Burgos CF, Mariqueo TA, Aguayo LG, Fuentealba J, Godoy P, Guzman L, Yévenes GE. Functional modulation of glycine receptors by the alkaloid gelsemine. Br J Pharmacol 2016; 173:2263-77. [PMID: 27128379 DOI: 10.1111/bph.13507] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Gelsemine is one of the principal alkaloids produced by the Gelsemium genus of plants belonging to the Loganiaceae family. The extracts of these plants have been used for many years, for a variety of medicinal purposes. Coincidentally, recent studies have shown that gelsemine exerts anxiolytic and analgesic effects on behavioural models. Several lines of evidence have suggested that these beneficial actions were dependent on glycine receptors, which are inhibitory neurotransmitter-gated ion channels of the CNS. However, it is currently unknown whether gelsemine can directly modulate the function of glycine receptors. EXPERIMENTAL APPROACH We examined the functional effects of gelsemine on glycine receptors expressed in transfected HEK293 cells and in cultured spinal neurons by electrophysiological techniques. KEY RESULTS Gelsemine directly modulated recombinant and native glycine receptors and exerted conformation-specific and subunit-selective effects. Gelsemine modulation was voltage-independent and was associated with differential changes in the apparent affinity for glycine and in the open probability of the ion channel. In addition, the alkaloid preferentially targeted glycine receptors in spinal neurons and showed only minor effects on GABAA and AMPA receptors. Furthermore, gelsemine significantly diminished the frequency of glycinergic and glutamatergic synaptic events without altering the amplitude. CONCLUSIONS AND IMPLICATIONS Our results provide a pharmacological basis to explain, at least in part, the glycine receptor-dependent, beneficial and toxic effects of gelsemine in animals and humans. In addition, the pharmacological profile of gelsemine may open new approaches to the development of subunit-selective modulators of glycine receptors.
Collapse
Affiliation(s)
- Cesar O Lara
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Pablo Murath
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Braulio Muñoz
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Ana M Marileo
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Loreto San Martín
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Victoria P San Martín
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Carlos F Burgos
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | | | - Luis G Aguayo
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Jorge Fuentealba
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Leonardo Guzman
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Gonzalo E Yévenes
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| |
Collapse
|
15
|
Breitinger U, Raafat KM, Breitinger HG. Glucose is a positive modulator for the activation of human recombinant glycine receptors. J Neurochem 2015; 134:1055-66. [DOI: 10.1111/jnc.13215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry; The German University in Cairo; New Cairo Egypt
| | - Karim M. Raafat
- Department of Biochemistry; The German University in Cairo; New Cairo Egypt
| | | |
Collapse
|
16
|
Sun H, Lu L, Zuo Y, Wang Y, Jiao Y, Zeng WZ, Huang C, Zhu MX, Zamponi GW, Zhou T, Xu TL, Cheng J, Li Y. Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation. Nat Commun 2014; 5:4980. [PMID: 25236484 PMCID: PMC4199113 DOI: 10.1038/ncomms5980] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/13/2014] [Indexed: 01/21/2023] Open
Abstract
Surface expression and regulated endocytosis of glycine receptors (GlyRs) play a critical function in balancing neuronal excitability. SUMOylation (SUMO modification) is of critical importance for maintaining neuronal function in the central nervous system. Here we show that activation of kainate receptors (KARs) causes GlyR endocytosis in a calcium- and protein kinase C (PKC)-dependent manner, leading to reduced GlyR-mediated synaptic activity in cultured spinal cord neurons and the superficial dorsal horn of rat spinal cord slices. This effect requires SUMO1/sentrin-specific peptidase 1 (SENP1)-mediated deSUMOylation of PKC, indicating that the crosstalk between KARs and GlyRs relies on the SUMOylation status of PKC. SENP1-mediated deSUMOylation of PKC is involved in the kainate-induced GlyR endocytosis and thus plays an important role in the anti-homeostatic regulation between excitatory and inhibitory ligand-gated ion channels. Altogether, we have identified a SUMOylation-dependent regulatory pathway for GlyR endocytosis, which may have important physiological implications for proper neuronal excitability. Maintenance of proper membrane excitability is vital to neuronal function and in several neuronal types this relies on a balance between receptor-mediated excitation and inhibition. Here the authors report a crosstalk between excitatory kainate receptors and inhibitory glycine receptors that relies on the SUMOylation status of PKC.
Collapse
Affiliation(s)
- Hao Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong Zuo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingfu Jiao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Zheng Zeng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chao Huang
- Center for Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary T2N 4 N1, Alberta, Canada
| | - Tong Zhou
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Tian-Le Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
17
|
The GLRA1 missense mutation W170S associates lack of Zn2+ potentiation with human hyperekplexia. J Neurosci 2013; 33:17675-81. [PMID: 24198360 DOI: 10.1523/jneurosci.3240-13.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hyperekplexia is a neurological disorder associated primarily with mutations in the α1 subunit of glycine receptors (GlyRs) that lead to dysfunction of glycinergic inhibitory transmission. To date, most of the identified mutations result in disruption of surface expression or altered channel properties of α1-containing GlyRs. Little evidence has emerged to support an involvement of allosteric GlyR modulation in human hyperekplexia. Here, we report that recombinant human GlyRs containing α1 or α1β subunits with a missense mutation in the α1 subunit (W170S), previously identified from familial hyperekplexia, caused remarkably reduced potentiation and enhanced inhibition by Zn(2+). Interestingly, mutant α1(W170S)β GlyRs displayed no significant changes in potency or maximum response to glycine, taurine, or β-alanine. By temporally separating the potentiating and the inhibitory effects of Zn(2+), we found that the enhancement of Zn(2+) inhibition resulted from a loss of Zn(2+)-mediated potentiation. The W170S mutation on the background of H107N, which was previously reported to selectively disrupt Zn(2+) inhibition, showed remarkable attenuation of Zn(2+)-mediated potentiation and thus indicated that W170 is an important residue for the Zn(2+)-mediated GlyR potentiation. Moreover, overexpressing the α1(W170S) subunit in cultured rat neurons confirmed the results from heterologous expression. Together, our results reveal a new zinc potentiation site on α1 GlyRs and a strong link between Zn(2+) modulation and human disease.
Collapse
|
18
|
IeongTou W, Chang SS, Wu D, Lai TW, Wang YT, Hsu CY, Yu-ChianChen C. Molecular level activation insights from a NR2A/NR2B agonist. J Biomol Struct Dyn 2013; 32:683-93. [DOI: 10.1080/07391102.2013.787371] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Abstract
Strychnine-sensitive glycine receptors (GlyRs) mediate synaptic inhibition in the spinal cord, brainstem, and other regions of the mammalian central nervous system. In this minireview, we summarize our current view of the structure, ligand-binding sites, and chloride channel of these receptors and discuss recently emerging functions of distinct GlyR isoforms. GlyRs not only regulate the excitability of motor and afferent sensory neurons, including pain fibers, but also are involved in the processing of visual and auditory signals. Hence, GlyRs constitute promising targets for the development of therapeutically useful compounds.
Collapse
Affiliation(s)
- Sébastien Dutertre
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cord-Michael Becker
- the Institute of Biochemistry, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Heinrich Betz
- the Max-Planck-Institute for Medical Research, 69120 Heidelberg, Germany, and
- the Department of Molecular Neurobiology, Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany
| |
Collapse
|
20
|
Fernández-López B, Villar-Cerviño V, Valle-Maroto SM, Barreiro-Iglesias A, Anadón R, Rodicio MC. The glutamatergic neurons in the spinal cord of the sea lamprey: an in situ hybridization and immunohistochemical study. PLoS One 2012; 7:e47898. [PMID: 23110124 PMCID: PMC3478272 DOI: 10.1371/journal.pone.0047898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 09/18/2012] [Indexed: 12/22/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter involved in spinal cord circuits in vertebrates, but in most groups the distribution of glutamatergic spinal neurons is still unknown. Lampreys have been extensively used as a model to investigate the neuronal circuits underlying locomotion. Glutamatergic circuits have been characterized on the basis of the excitatory responses elicited in postsynaptic neurons. However, the presence of glutamatergic neurochemical markers in spinal neurons has not been investigated. In this study, we report for the first time the expression of a vesicular glutamate transporter (VGLUT) in the spinal cord of the sea lamprey. We also study the distribution of glutamate in perikarya and fibers. The largest glutamatergic neurons found were the dorsal cells and caudal giant cells. Two additional VGLUT-positive gray matter populations, one dorsomedial consisting of small cells and another one lateral consisting of small and large cells were observed. Some cerebrospinal fluid-contacting cells also expressed VGLUT. In the white matter, some edge cells and some cells associated with giant axons (Müller and Mauthner axons) and the dorsolateral funiculus expressed VGLUT. Large lateral cells and the cells associated with reticulospinal axons are in a key position to receive descending inputs involved in the control of locomotion. We also compared the distribution of glutamate immunoreactivity with that of γ-aminobutyric acid (GABA) and glycine. Colocalization of glutamate and GABA or glycine was observed in some small spinal cells. These results confirm the glutamatergic nature of various neuronal populations, and reveal new small-celled glutamatergic populations, predicting that some glutamatergic neurons would exert complex actions on postsynaptic neurons.
Collapse
Affiliation(s)
- Blanca Fernández-López
- Department of Cell Biology and Ecology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Verona Villar-Cerviño
- Department of Cell Biology and Ecology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Silvia M. Valle-Maroto
- Department of Cell Biology and Ecology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Cell Biology and Ecology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ramón Anadón
- Department of Cell Biology and Ecology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Celina Rodicio
- Department of Cell Biology and Ecology, University of Santiago de Compostela, Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
21
|
Abstract
Glutamate-gated chloride channels (GluCls) are found only in protostome invertebrate phyla but are closely related to mammalian glycine receptors. They have a number of roles in these animals, controlling locomotion and feeding and mediating sensory inputs into behavior. In nematodes and arthropods, they are targeted by the macrocyclic lactone family of anthelmintics and pesticides, making the GluCls of considerable medical and economic importance. Recently, the three-dimensional structure of a GluCl was solved, the first for any eukaryotic ligand-gated anion channel, revealing a macrocyclic lactone-binding site between the channel domains of adjacent subunits. This minireview will highlight some unique features of the GluCls and illustrate their contribution to our knowledge of the entire Cys loop ligand-gated ion channel superfamily.
Collapse
|
22
|
Abstract
Every type of neural rhythm has its own operational range of frequency. Neuronal mechanisms underlying rhythms at different frequencies, however, are poorly understood. We use a simple aquatic vertebrate, the two-day-old Xenopus tadpole, to investigate how the brainstem and spinal circuits generate swimming rhythms of different speeds. We first determined that the basic motor output pattern was not altered with varying swimming frequencies. The firing reliability of different types of rhythmic neuron involved in swimming was then analyzed. The results showed that there was a drop in the firing reliability in some inhibitory interneurons when fictive swimming slowed. We have recently established that premotor excitatory interneurons [descending interneurons (dINs)] are critical in rhythmically driving activity in the swimming circuit. Voltage-clamp recordings from dINs showed higher frequency swimming correlated with stronger background excitation and phasic inhibition, but did not correlate with phasic excitation. Two parallel mechanisms have been proposed for tadpole swimming maintenance: postinhibition rebound firing and NMDAR-dependent pacemaker firing in dINs. Rebound tests in dINs in this study showed that greater background depolarization and phasic inhibition led to faster rebound firing. Higher depolarization was previously shown to accelerate dIN pacemaker firing in the presence of NMDA. Here we show that enhancing dIN background excitation during swimming speeds up fictive swimming frequency while weakening phasic inhibition without changing background excitation slows down swimming rhythms. We conclude that both strong background excitation and phasic inhibition can promote faster tadpole swimming.
Collapse
|
23
|
Abstract
Inhibitory (or strychnine sensitive) glycine receptors (GlyRs) are anion-selective transmitter-gated ion channels of the cys-loop superfamily, which includes among others also the inhibitory γ-aminobutyric acid receptors (GABA(A) receptors). While GABA mediates fast inhibitory neurotransmission throughout the CNS, the action of glycine as a fast inhibitory neurotransmitter is more restricted. This probably explains why GABA(A) receptors constitute a group of extremely successful drug targets in the treatment of a wide variety of CNS diseases, including anxiety, sleep disorders and epilepsy, while drugs specifically targeting GlyRs are virtually lacking. However, the spatially more restricted distribution of glycinergic inhibition may be advantageous in situations when a more localized enhancement of inhibition is sought. Inhibitory GlyRs are particularly relevant for the control of excitability in the mammalian spinal cord, brain stem and a few selected brain areas, such as the cerebellum and the retina. At these sites, GlyRs regulate important physiological functions, including respiratory rhythms, motor control, muscle tone and sensory as well as pain processing. In the hippocampus, RNA-edited high affinity extrasynaptic GlyRs may contribute to the pathology of temporal lobe epilepsy. Although specific modulators have not yet been identified, GlyRs still possess sites for allosteric modulation by a number of structurally diverse molecules, including alcohols, neurosteroids, cannabinoids, tropeines, general anaesthetics, certain neurotransmitters and cations. This review summarizes the present knowledge about this modulation and the molecular bases of the interactions involved.
Collapse
Affiliation(s)
- Gonzalo E Yevenes
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
24
|
Couchman K, Grothe B, Felmy F. Functional localization of neurotransmitter receptors and synaptic inputs to mature neurons of the medial superior olive. J Neurophysiol 2012; 107:1186-98. [DOI: 10.1152/jn.00586.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons of the medial superior olive (MSO) code for the azimuthal location of low-frequency sound sources via a binaural coincidence detection system operating on microsecond time scales. These neurons are morphologically simple and stereotyped, and anatomical studies have indicated a functional segregation of excitatory and inhibitory inputs between cellular compartments. It is thought that this morphological arrangement holds important implications for the computational task of these cells. To date, however, there has been no functional investigation into synaptic input sites or functional receptor distributions on mature neurons of the MSO. Here, functional neurotransmitter receptor maps for amino-3-hydroxyl-5-methyl-4-isoxazole propionate (AMPA), N-methyl-d-aspartate (NMDA), glycine (Gly), and ionotropic γ-aminobutyric acid (GABAA) receptors (Rs) were compared and complemented by their corresponding synaptic input map. We find in MSO neurons from postnatal day 20–35 gerbils that AMPARs and their excitatory inputs target the soma and dendrites. Functional GlyRs and their inhibitory inputs are predominantly refined to the somata, although a pool of functional GlyRs is present extrasynaptically on MSO dendrites. GABAAR responses are present throughout the cell but lack direct synaptic contact indicating an involvement in volume transmission. NMDARs are present both synaptically and extrasynaptically with an overall distribution similar to GlyRs. Interestingly, even at physiological temperatures these functional NMDARs can be potentiated by synaptically released Gly. The functional receptor and synaptic input maps produced here led to the identification of a cross talk between transmitter systems and raises the possibility that extrasynaptic receptors could be modulating leak conductances as a homeostatic mechanism.
Collapse
Affiliation(s)
- Kiri Couchman
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität Munich, and
| | - Benedikt Grothe
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität Munich, and
- Bernstein Centre for Computational Neuroscience Munich, Martinsried, Germany
| | - Felix Felmy
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität Munich, and
| |
Collapse
|
25
|
Daniels BA, Wood L, Tremblay F, Baldridge WH. Functional evidence for D-serine inhibition of non-N-methyl-D-aspartate ionotropic glutamate receptors in retinal neurons. Eur J Neurosci 2011; 35:56-65. [PMID: 22128843 DOI: 10.1111/j.1460-9568.2011.07925.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
D-Serine is an important signaling molecule throughout the central nervous system, acting as an N-methyl-D-aspartate (NMDA) receptor coagonist. This study investigated the D-serine modulation of non-NMDA ionotropic glutamate receptors expressed by inner retinal neurons. We first identified that the degradation of endogenous retinal D-serine, by application of D-amino acid oxidase, caused an enhancement of kainate- and α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptor-mediated calcium responses from the ganglion cell layer of the isolated rat retina and light-evoked responses obtained by multi-electrode array recordings from the guinea pig retina. Approximately 30-45% of cells were endogenously inhibited by D-serine, as suggested by the effect of D-amino acid oxidase. Conversely, bath application of D-serine caused a reduction in multi-electrode array recorded responses and decreased kainate, but not potassium-induced calcium responses, in a concentration-dependent manner (IC(50), 280 μm). Using cultured retinal ganglion cells to reduce network influences, D-serine reduced kainate-induced calcium responses and AMPA induced whole-cell currents. Finally, the inhibitory effect of D-serine on the kainate-induced calcium response was abolished by IEM 1460, thereby identifying calcium-permeable AMPA receptors as a potential target for D-serine. To our knowledge, this is the first study to address specifically the effect of D-serine on AMPA/kainate receptors in intact central nervous system tissue, to identify its effect on calcium permeable AMPA receptors and to report the endogenous inhibition of AMPA/kainate receptors.
Collapse
Affiliation(s)
- Bryan A Daniels
- Department of Anatomy and Neurobiology, Dalhousie University, Sir Charles Tupper Building, 5850 College Street, Halifax, NS, Canada B3H 4R2
| | | | | | | |
Collapse
|
26
|
Borghese CM, Blednov YA, Quan Y, Iyer SV, Xiong W, Mihic SJ, Zhang L, Lovinger DM, Trudell JR, Homanics GE, Harris RA. Characterization of two mutations, M287L and Q266I, in the α1 glycine receptor subunit that modify sensitivity to alcohols. J Pharmacol Exp Ther 2011; 340:304-16. [PMID: 22037201 DOI: 10.1124/jpet.111.185116] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycine receptors (GlyRs) are inhibitory ligand-gated ion channels. Ethanol potentiates glycine activation of the GlyR, and putative binding sites for alcohol are located in the transmembrane (TM) domains between and within subunits. To alter alcohol sensitivity of GlyR, we introduced two mutations in the GlyR α1 subunit, M287L (TM3) and Q266I (TM2). After expression in Xenopus laevis oocytes, both mutants showed a reduction in glycine sensitivity and glycine-induced maximal currents. Activation by taurine, another endogenous agonist, was almost abolished in the M287L GlyR. The ethanol potentiation of glycine currents was reduced in the M287L GlyR and eliminated in Q266I. Physiological levels of zinc (100 nM) potentiate glycine responses in wild-type GlyR and also enhance the ethanol potentiation of glycine responses. Although zinc potentiation of glycine responses was unchanged in both mutants, zinc enhancement of ethanol potentiation of glycine responses was absent in M287L GlyRs. The Q266I mutation decreased conductance but increased mean open time (effects not seen in M287L). Two lines of knockin mice bearing these mutations were developed. Survival of homozygous knockin mice was impaired, probably as a consequence of impaired glycinergic transmission. Glycine showed a decreased capacity for displacing strychnine binding in heterozygous knockin mice. Electrophysiology in isolated neurons of brain stem showed decreased glycine-mediated currents and decreased ethanol potentiation in homozygous knockin mice. Molecular models of the wild-type and mutant GlyRs show a smaller water-filled cavity within the TM domains of the Q266I α1 subunit. The behavioral characterization of these knockin mice is presented in a companion article (J Pharmacol Exp Ther 340:317-329, 2012).
Collapse
Affiliation(s)
- Cecilia M Borghese
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-0159, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Maternal voluntary drinking in C57BL/6J mice: Advancing a model for fetal alcohol spectrum disorders. Behav Brain Res 2011; 223:376-87. [DOI: 10.1016/j.bbr.2011.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/03/2011] [Accepted: 05/06/2011] [Indexed: 01/25/2023]
|
28
|
Erratum: Corrigendum: Allosteric potentiation of glycine receptor chloride currents by glutamate. Nat Neurosci 2011. [DOI: 10.1038/nn0911-1217c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Kingwell K. Neurotransmission: A new take on glutamate. Nat Rev Neurosci 2010; 11:732. [PMID: 20979319 DOI: 10.1038/nrn2932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glutamate can facilitate inhibitory glycine receptor signalling in the spinal cord and brainstem through allosteric modulation.
Collapse
|