1
|
McKeown CR, Ta AC, Marshall CL, McLain NJ, Archuleta KJ, Cline HT. X-Tracker: Automated Analysis of Xenopus Tadpole Visual Avoidance Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617688. [PMID: 39416226 PMCID: PMC11482948 DOI: 10.1101/2024.10.10.617688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Xenopus laevis tadpoles exhibit an avoidance behavior when they encounter a moving visual stimulus. A visual avoidance event occurs when a moving object approaches the eye of a free-swimming animal at an approximately 90-degree angle and the animal turns in response to the encounter. Analysis of this behavior requires tracking both the free-swimming animal and the moving visual stimulus both prior to and after the encounter. Previous automated tracking software does not discriminate the moving animal from the moving stimulus, requiring time-consuming manual analysis. Here we present X-Tracker, an automated behavior tracking code that can detect and discriminate moving visual stimuli and free-swimming animals and score encounters and avoidance events. X-Tracker is as accurate as human analysis without the human time commitment. We also present software improvements to our previous visual stimulus presentation and image capture that optimize videos for automated analysis, and hardware improvements that increase the number of animal-stimulus encounters. X-Tracker is a high throughput, unbiased, and significant time-saving analysis system that will greatly facilitate visual avoidance behavior analysis of Xenopus laevis tadpoles, and potentially other free-swimming organisms. The tool is available at https://github.com/ClineLab/Tadpole-Behavior-Automation.
Collapse
Affiliation(s)
| | - Aaron C Ta
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | | | | | | | - Hollis T Cline
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
2
|
Diarra S, Ghosh S, Cissé L, Coulibaly T, Yalcouyé A, Harmison G, Diallo S, Diallo SH, Coulibaly O, Schindler A, Cissé CAK, Maiga AB, Bamba S, Samassekou O, Khokha MK, Mis EK, Lakhani SA, Donovan FX, Jacobson S, Blackstone C, Guinto CO, Landouré G, Bonifacino JS, Fischbeck KH, Grunseich C. AP2A2 mutation and defective endocytosis in a Malian family with hereditary spastic paraplegia. Neurobiol Dis 2024; 198:106537. [PMID: 38772452 PMCID: PMC11209852 DOI: 10.1016/j.nbd.2024.106537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/17/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Hereditary spastic paraplegia (HSP) comprises a large group of neurogenetic disorders characterized by progressive lower extremity spasticity. Neurological evaluation and genetic testing were completed in a Malian family with early-onset HSP. Three children with unaffected consanguineous parents presented with symptoms consistent with childhood-onset complicated HSP. Neurological evaluation found lower limb weakness, spasticity, dysarthria, seizures, and intellectual disability. Brain MRI showed corpus callosum thinning with cortical and spinal cord atrophy, and an EEG detected slow background in the index patient. Whole exome sequencing identified a homozygous missense variant in the adaptor protein (AP) complex 2 alpha-2 subunit (AP2A2) gene. Western blot analysis showed reduced levels of AP2A2 in patient-iPSC derived neuronal cells. Endocytosis of transferrin receptor (TfR) was decreased in patient-derived neurons. In addition, we observed increased axon initial segment length in patient-derived neurons. Xenopus tropicalis tadpoles with ap2a2 knockout showed cerebral edema and progressive seizures. Immunoprecipitation of the mutant human AP-2-appendage alpha-C construct showed defective binding to accessory proteins. We report AP2A2 as a novel genetic entity associated with HSP and provide functional data in patient-derived neuron cells and a frog model. These findings expand our understanding of the mechanism of HSP and improve the genetic diagnosis of this condition.
Collapse
Affiliation(s)
- Salimata Diarra
- Université des Sciences, des Techniques, et des Technologies de Bamako (USTTB), Bamako, Mali; Neurogenetics Branch, NINDS, NIH, Bethesda, MD, United States; Yale University, Pediatric Genomics Discovery Program, Department of Pediatrics, New Haven, CT, United States
| | - Saikat Ghosh
- Neurosciences and Cellular and Structural Biology Division, NICHD, NIH, Bethesda, MD, United States
| | - Lassana Cissé
- Service de Neurologie, CHU du Point "G", Bamako, Mali
| | - Thomas Coulibaly
- Université des Sciences, des Techniques, et des Technologies de Bamako (USTTB), Bamako, Mali; Neurosciences and Cellular and Structural Biology Division, NICHD, NIH, Bethesda, MD, United States
| | - Abdoulaye Yalcouyé
- Université des Sciences, des Techniques, et des Technologies de Bamako (USTTB), Bamako, Mali; Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - George Harmison
- Neurogenetics Branch, NINDS, NIH, Bethesda, MD, United States
| | | | | | - Oumar Coulibaly
- Service de Chirurgie Pédiatrique, CHU du Gabriel Touré, Bamako, Mali
| | - Alice Schindler
- Neurogenetics Branch, NINDS, NIH, Bethesda, MD, United States
| | - Cheick A K Cissé
- Université des Sciences, des Techniques, et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Alassane B Maiga
- Université des Sciences, des Techniques, et des Technologies de Bamako (USTTB), Bamako, Mali; Service de Neurologie, CHU du Point "G", Bamako, Mali
| | - Salia Bamba
- Université des Sciences, des Techniques, et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Oumar Samassekou
- Université des Sciences, des Techniques, et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Mustafa K Khokha
- Yale University, Pediatric Genomics Discovery Program, Department of Pediatrics, New Haven, CT, United States
| | - Emily K Mis
- Yale University, Pediatric Genomics Discovery Program, Department of Pediatrics, New Haven, CT, United States
| | - Saquib A Lakhani
- Yale University, Pediatric Genomics Discovery Program, Department of Pediatrics, New Haven, CT, United States
| | - Frank X Donovan
- Cancer Genetics and Comparative Genomics Branch, NHGRI, NIH, Bethesda, MD, United States
| | - Steve Jacobson
- Neuroimmunology Division, NINDS, NIH, Bethesda, MD, United States
| | - Craig Blackstone
- Movement Disorders Division, Department of Neurology, Harvard Medicine School, Massachusetts General Hospital, Boston, MA, United States
| | - Cheick O Guinto
- Université des Sciences, des Techniques, et des Technologies de Bamako (USTTB), Bamako, Mali; Service de Neurologie, CHU du Point "G", Bamako, Mali
| | - Guida Landouré
- Université des Sciences, des Techniques, et des Technologies de Bamako (USTTB), Bamako, Mali; Neurogenetics Branch, NINDS, NIH, Bethesda, MD, United States; Service de Neurologie, CHU du Point "G", Bamako, Mali
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, NICHD, NIH, Bethesda, MD, United States
| | | | | |
Collapse
|
3
|
Banerjee S, Szyszka P, Beck CW. Knockdown of NeuroD2 leads to seizure-like behavior, brain neuronal hyperactivity and a leaky blood-brain barrier in a Xenopus laevis tadpole model of DEE75. Genetics 2024; 227:iyae085. [PMID: 38788202 PMCID: PMC11228833 DOI: 10.1093/genetics/iyae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Developmental and Epileptic Encephalopathies (DEE) are a genetically diverse group of severe, early onset seizure disorders. DEE are normally identified clinically in the first six months of life by the presence of frequent, difficult to control seizures and accompanying stalling or regression of development. DEE75 results from de novo mutations of the NEUROD2 gene that result in loss of activity of the encoded transcription factor, and the seizure phenotype was shown to be recapitulated in Xenopus tropicalis tadpoles. We used CRISPR/Cas9 to make a DEE75 model in Xenopus laevis, to further investigate the developmental etiology. NeuroD2.S CRISPR/Cas9 edited tadpoles were more active, swam faster on average, and had more seizures (C-shaped contractions resembling unprovoked C-start escape responses) than their sibling controls. Live imaging of Ca2+ signaling revealed prolongued, strong signals sweeping through the brain, indicative of neuronal hyperactivity. While the resulting tadpole brain appeared grossly normal, the blood-brain barrier (BBB) was found to be leakier than that of controls. Additionally, the TGFβ antagonist Losartan was shown to have a short-term protective effect, reducing neuronal hyperactivity and reducing permeability of the BBB. Treatment of NeuroD2 CRISPant tadpoles with 5 mM Losartan decreased seizure events by more than 4-fold compared to the baseline. Our results support a model of DEE75 resulting from reduced NeuroD2 activity during vertebrate brain development, and indicate that a leaky BBB contributes to epileptogenesis.
Collapse
Affiliation(s)
- Sulagna Banerjee
- Department of Zoology, University of Otago, PO Box56, Dunedin 9016, New Zealand
| | - Paul Szyszka
- Department of Zoology, University of Otago, PO Box56, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Caroline W Beck
- Department of Zoology, University of Otago, PO Box56, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
4
|
Gull M, Schmitt SM, Kälin RE, Brändli AW. Screening of Chemical Libraries Using Xenopus Embryos and Tadpoles for Phenotypic Drug Discovery. Cold Spring Harb Protoc 2023; 2023:098269-pdb.prot. [PMID: 36180216 DOI: 10.1101/pdb.prot098269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Phenotypic drug discovery assesses the effect of small molecules on the phenotype of cells, tissues, or whole organisms without a priori knowledge of the target or pathway. Using vertebrate embryos instead of cell-based assays has the advantage that the screening of small molecules occurs in the context of the complex biology and physiology of the whole organism. Fish and amphibians are the only classes of vertebrates with free-living larvae amenable to high-throughput drug screening in multiwell dishes. For both animal classes, particularly zebrafish and Xenopus, husbandry requirements are straightforward, embryos can be obtained in large numbers, and they develop ex utero so their development can be monitored easily with a dissecting microscope. At 350 million years, the evolutionary distance between amphibians and humans is significantly shorter than that between fish and humans, which is estimated at 450 million years. This increases the likelihood that drugs discovered by screening in amphibian embryos will be active in humans. Here, we describe the basic protocol for the medium- to high-throughput screening of chemical libraries using embryos of the African clawed frog Xenopus laevis Bioactive compounds are identified by observing phenotypic changes in whole embryos and tadpoles. In addition to the discovery of compounds with novel bioactivities, the phenotypic screening protocol also allows for the identification of compounds with in vivo toxicity, eliminating early hits that are poor drug candidates. We also highlight important considerations for designing chemical screens, choosing chemical libraries, and performing secondary screens using whole mount in situ hybridization or immunostaining.
Collapse
Affiliation(s)
- Mazhar Gull
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Stefan M Schmitt
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Roland E Kälin
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - André W Brändli
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| |
Collapse
|
5
|
Chauhan V, Chauhan NK, Dutta S, Pathak D, Nongthomba U. Comparative in-silico analysis of microbial dysbiosis discern potential metabolic link in neurodegenerative diseases. Front Neurosci 2023; 17:1153422. [PMID: 37113148 PMCID: PMC10126365 DOI: 10.3389/fnins.2023.1153422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
A healthy gut flora contains a diverse and stable commensal group of microorganisms, whereas, in disease conditions, there is a shift toward pathogenic microbes, termed microbial dysbiosis. Many studies associate microbial dysbiosis with neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Multiple sclerosis (MS), and Amyotrophic lateral sclerosis (ALS). Although, an overall comparative analysis of microbes and their metabolic involvement in these diseases is still lacking. In this study, we have performed a comparative analysis of microbial composition changes occurring in these four diseases. Our research showed a high resemblance of microbial dysbiosis signatures between AD, PD, and MS. However, ALS appeared dissimilar. The most common population of microbes to show an increase belonged to the phyla, Bacteroidetes, Actinobacteria, Proteobacteria, and Firmicutes. Although, Bacteroidetes and Firmicutes were the only phyla that showed a decrease in their population. The functional analysis of these dysbiotic microbes showed several potential metabolic links which can be involved in the altered microbiome-gut-brain axis in neurodegenerative diseases. For instance, the microbes with elevated populations lack pathways for synthesizing SCFA acetate and butyrate. Also, these microbes have a high capacity for producing L-glutamate, an excitatory neurotransmitter and precursor of GABA. Contrastingly, Tryptophan and histamine have a lower representation in the annotated genome of elevated microbes. Finally, the neuroprotective compound spermidine was less represented in elevated microbes' genomes. Our study provides a comprehensive catalog of potential dysbiotic microbes and their metabolic involvement in neurodegenerative disorders, including AD, PD, MS, and ALS.
Collapse
Affiliation(s)
- Vipin Chauhan
- Developmental and Biomedical Genetics Laboratory, Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Nitin K. Chauhan
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Somit Dutta
- Developmental and Biomedical Genetics Laboratory, Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Dhruv Pathak
- Developmental and Biomedical Genetics Laboratory, Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Upendra Nongthomba
- Developmental and Biomedical Genetics Laboratory, Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
- *Correspondence: Upendra Nongthomba
| |
Collapse
|
6
|
Aquatic Freshwater Vertebrate Models of Epilepsy Pathology: Past Discoveries and Future Directions for Therapeutic Discovery. Int J Mol Sci 2022; 23:ijms23158608. [PMID: 35955745 PMCID: PMC9368815 DOI: 10.3390/ijms23158608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/04/2022] Open
Abstract
Epilepsy is an international public health concern that greatly affects patients’ health and lifestyle. About 30% of patients do not respond to available therapies, making new research models important for further drug discovery. Aquatic vertebrates present a promising avenue for improved seizure drug screening and discovery. Zebrafish (Danio rerio) and African clawed frogs (Xenopus laevis and tropicalis) are increasing in popularity for seizure research due to their cost-effective housing and rearing, similar genome to humans, ease of genetic manipulation, and simplicity of drug dosing. These organisms have demonstrated utility in a variety of seizure-induction models including chemical and genetic methods. Past studies with these methods have produced promising data and generated questions for further applications of these models to promote discovery of drug-resistant seizure pathology and lead to effective treatments for these patients.
Collapse
|
7
|
Ismail V, Zachariassen LG, Godwin A, Sahakian M, Ellard S, Stals KL, Baple E, Brown KT, Foulds N, Wheway G, Parker MO, Lyngby SM, Pedersen MG, Desir J, Bayat A, Musgaard M, Guille M, Kristensen AS, Baralle D. Identification and functional evaluation of GRIA1 missense and truncation variants in individuals with ID: An emerging neurodevelopmental syndrome. Am J Hum Genet 2022; 109:1217-1241. [PMID: 35675825 PMCID: PMC9300760 DOI: 10.1016/j.ajhg.2022.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
GRIA1 encodes the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors, which are ligand-gated ion channels that act as excitatory receptors for the neurotransmitter L-glutamate (Glu). AMPA receptors (AMPARs) are homo- or heteromeric protein complexes with four subunits, each encoded by different genes, GRIA1 to GRIA4. Although GluA1-containing AMPARs have a crucial role in brain function, the human phenotype associated with deleterious GRIA1 sequence variants has not been established. Subjects with de novo missense and nonsense GRIA1 variants were identified through international collaboration. Detailed phenotypic and genetic assessments of the subjects were carried out and the pathogenicity of the variants was evaluated in vitro to characterize changes in AMPAR function and expression. In addition, two Xenopus gria1 CRISPR-Cas9 F0 models were established to characterize the in vivo consequences. Seven unrelated individuals with rare GRIA1 variants were identified. One individual carried a homozygous nonsense variant (p.Arg377Ter), and six had heterozygous missense variations (p.Arg345Gln, p.Ala636Thr, p.Ile627Thr, and p.Gly745Asp), of which the p.Ala636Thr variant was recurrent in three individuals. The cohort revealed subjects to have a recurrent neurodevelopmental disorder mostly affecting cognition and speech. Functional evaluation of major GluA1-containing AMPAR subtypes carrying the GRIA1 variant mutations showed that three of the four missense variants profoundly perturb receptor function. The homozygous stop-gain variant completely destroys the expression of GluA1-containing AMPARs. The Xenopus gria1 models show transient motor deficits, an intermittent seizure phenotype, and a significant impairment to working memory in mutants. These data support a developmental disorder caused by both heterozygous and homozygous variants in GRIA1 affecting AMPAR function.
Collapse
Affiliation(s)
- Vardha Ismail
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Coxford Rd, Southampton SO165YA, UK
| | - Linda G Zachariassen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Annie Godwin
- European Xenopus Resource Centre, School of Biological Sciences, King Henry Building, King Henry I Street, Portsmouth PO1 2DY, UK
| | - Mane Sahakian
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK; University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK
| | - Karen L Stals
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK
| | - Emma Baple
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK; University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK
| | - Kate Tatton Brown
- South-West Thames Clinical Genetics Service, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Nicola Foulds
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Coxford Rd, Southampton SO165YA, UK
| | - Gabrielle Wheway
- Faculty of Medicine, University of Southampton, Duthie Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Matthew O Parker
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| | - Signe M Lyngby
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Miriam G Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Julie Desir
- Département de Génétique Clinique - Institut de Pathologie et de Génétique, Institut de Pathologie et de Génétique, Avenue Georges Lemaître, 25 6041 Gosselies, Belgium
| | - Allan Bayat
- Danish Epilepsy Centre, Department of Epilepsy Genetics and Personalized Medicine, 4293 Dianalund, Denmark; Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Maria Musgaard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 75 Laurier Ave E, Ottawa, ON K1N 6N5, Canada
| | - Matthew Guille
- European Xenopus Resource Centre, School of Biological Sciences, King Henry Building, King Henry I Street, Portsmouth PO1 2DY, UK
| | - Anders S Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Diana Baralle
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Coxford Rd, Southampton SO165YA, UK; Faculty of Medicine, University of Southampton, Duthie Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
8
|
Marcoli M, Cervetto C, Amato S, Fiorucci C, Maura G, Mariottini P, Cervelli M. Transgenic Mouse Overexpressing Spermine Oxidase in Cerebrocortical Neurons: Astrocyte Dysfunction and Susceptibility to Epileptic Seizures. Biomolecules 2022; 12:204. [PMID: 35204705 PMCID: PMC8961639 DOI: 10.3390/biom12020204] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Polyamines are organic polycations ubiquitously present in living cells. Polyamines are involved in many cellular processes, and their content in mammalian cells is tightly controlled. Among their function, these molecules modulate the activity of several ion channels. Spermine oxidase, specifically oxidized spermine, is a neuromodulator of several types of ion channel and ionotropic glutamate receptors, and its deregulated activity has been linked to several brain pathologies, including epilepsy. The Dach-SMOX mouse line was generated using a Cre/loxP-based recombination approach to study the complex and critical functions carried out by spermine oxidase and spermine in the mammalian brain. This mouse genetic model overexpresses spermine oxidase in the neocortex and is a chronic model of excitotoxic/oxidative injury and neuron vulnerability to oxidative stress and excitotoxic, since its phenotype revealed to be more susceptible to different acute oxidative insults. In this review, the molecular mechanisms underlined the Dach-SMOX phenotype, linked to reactive astrocytosis, neuron loss, chronic oxidative and excitotoxic stress, and susceptibility to seizures have been discussed in detail. The Dach-SMOX mouse model overexpressing SMOX may help in shedding lights on the susceptibility to epileptic seizures, possibly helping to understand the mechanisms underlying epileptogenesis in vulnerable individuals and contributing to provide new molecular mechanism targets to search for novel antiepileptic drugs.
Collapse
Affiliation(s)
- Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (S.A.); (G.M.)
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (S.A.); (G.M.)
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (S.A.); (G.M.)
| | - Cristian Fiorucci
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (C.F.); (P.M.)
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (S.A.); (G.M.)
| | - Paolo Mariottini
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (C.F.); (P.M.)
| | - Manuela Cervelli
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (C.F.); (P.M.)
- Neurodevelopment, Neurogenetics and Molecular Neurobiology Unit, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
9
|
Gore SV, James EJ, Huang LC, Park JJ, Berghella A, Thompson AC, Cline HT, Aizenman CD. Role of matrix metalloproteinase-9 in neurodevelopmental deficits and experience-dependent plasticity in Xenopus laevis. eLife 2021; 10:62147. [PMID: 34282726 PMCID: PMC8315794 DOI: 10.7554/elife.62147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 07/18/2021] [Indexed: 02/06/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is a secreted endopeptidase targeting extracellular matrix proteins, creating permissive environments for neuronal development and plasticity. Developmental dysregulation of MMP-9 may also lead to neurodevelopmental disorders (ND). Here, we test the hypothesis that chronically elevated MMP-9 activity during early neurodevelopment is responsible for neural circuit hyperconnectivity observed in Xenopus tadpoles after early exposure to valproic acid (VPA), a known teratogen associated with ND in humans. In Xenopus tadpoles, VPA exposure results in excess local synaptic connectivity, disrupted social behavior and increased seizure susceptibility. We found that overexpressing MMP-9 in the brain copies effects of VPA on synaptic connectivity, and blocking MMP-9 activity pharmacologically or genetically reverses effects of VPA on physiology and behavior. We further show that during normal neurodevelopment MMP-9 levels are tightly regulated by neuronal activity and required for structural plasticity. These studies show a critical role for MMP-9 in both normal and abnormal development.
Collapse
Affiliation(s)
- Sayali V Gore
- Department of Neuroscience, Brown University, Providence, United States
| | - Eric J James
- Department of Neuroscience, Brown University, Providence, United States
| | | | - Jenn J Park
- Department of Neuroscience, Brown University, Providence, United States
| | - Andrea Berghella
- Department of Neuroscience, Brown University, Providence, United States
| | - Adrian C Thompson
- Department of Neuroscience, Brown University, Providence, United States
| | | | - Carlos D Aizenman
- Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
10
|
Liu K, Garcia A, Park JJ, Toliver AA, Ramos L, Aizenman CD. Early Developmental Exposure to Fluoxetine and Citalopram Results in Different Neurodevelopmental Outcomes. Neuroscience 2021; 467:110-121. [PMID: 34048796 DOI: 10.1016/j.neuroscience.2021.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/25/2022]
Abstract
Although selective serotonin reuptake inhibitors are commonly prescribed for prenatal depression, there exists controversy over adverse effects of SSRI use on fetal development. Few studies have adequately isolated outcomes due to SSRI exposure and those due to maternal psychiatric conditions. Here, we directly investigated outcomes of exposure to widely-used SSRIs Fluoxetine and Citalopram on the developing nervous system of Xenopus laevis tadpoles, using an integrative experimental approach. We exposed tadpoles to low doses of Citalopram and Fluoxetine during a critical developmental period and found that different experimental groups displayed opposing behavioral effects. While both groups showed reduced schooling behavior, the Fluoxetine group showed increased seizure susceptibility and reduced startle habituation. In contrast, Citalopram treated tadpoles had decreased seizure susceptibility and increased habituation. Both groups had abnormal dendritic morphology in the optic tectum, a brain area important for behaviors tested. Whole-cell electrophysiological recordings of tectal neurons showed no differences in synaptic function; however, tectal cells from Fluoxetine-treated tadpoles had decreased voltage gated K+ currents while cells in the Citalopram group had increased K+ currents. Both behavioral and electrophysiological findings indicate that cells and circuits in the Fluoxetine treated optic tecta are hyperexcitable, while the Citalopram group exhibits decreased excitability. Taken together, these results show that early developmental exposure to SSRIs is sufficient to induce neurodevelopmental effects, however these effects can be complex and vary depending on the SSRI. This may explain some discrepancies across human studies, and further underscores the importance of serotonergic signaling for the developing nervous system.
Collapse
Affiliation(s)
- Karine Liu
- Department of Neuroscience, Brown University, United States
| | - Alfonso Garcia
- Department of Neuroscience, Brown University, United States
| | - Jenn J Park
- Department of Neuroscience, Brown University, United States
| | | | | | | |
Collapse
|
11
|
Increased polyamine levels and maintenance of γ-aminobutyric acid (Gaba) homeostasis in the gills is indicative of osmotic plasticity in killifish. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110969. [PMID: 33915271 DOI: 10.1016/j.cbpa.2021.110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/23/2022]
Abstract
The Fundulus genus of killifish includes species that inhabit marshes along the U.S. Atlantic coast and the Gulf of Mexico, but differ in their ability to adjust rapidly to fluctuations in salinity. Previous work suggests that euryhaline killifish stimulate polyamine biosynthesis and accumulate putrescine in the gills during acute hypoosmotic challenge. Despite evidence that polyamines have an osmoregulatory role in euryhaline killifish species, their function in marine species is unknown. Furthermore, the consequences of hypoosmotic-induced changes in polyamine synthesis on downstream pathways, such as ƴ-aminobutyric acid (Gaba) production, have yet to be explored. Here, we examined the effects of acute hypoosmotic exposure on polyamine, glutamate, and Gaba levels in the gills of a marine (F. majalis) and two euryhaline killifish species (F. heteroclitus and F. grandis). Fish acclimated to 32 ppt or 12 ppt water were transferred to fresh water, and concentrations of glutamate (Glu), Gaba, and the polyamines putrescine (Put), spermidine (Spd), and spermine (Spm) were measured in the gills using high-performance liquid chromatography. F. heteroclitus and F. grandis exhibited an increase in gill Put concentration, but showed no change in Glu or Gaba levels following freshwater transfer. F. heteroclitus also accumulated Spd in the gills, whereas F. grandis showed transient increases in Spd and Spm levels. In contrast, gill Put, Spm, Glu, and Gaba levels decreased in F. majalis following freshwater transfer. Together, these findings suggest that increasing polyamine levels and maintaining Glu and Gaba levels in the gills may enable euryhaline teleosts to acclimate to shifts in environmental salinity.
Collapse
|
12
|
Polis B, Karasik D, Samson AO. Alzheimer's disease as a chronic maladaptive polyamine stress response. Aging (Albany NY) 2021; 13:10770-10795. [PMID: 33811757 PMCID: PMC8064158 DOI: 10.18632/aging.202928] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/27/2021] [Indexed: 12/21/2022]
Abstract
Polyamines are nitrogen-rich polycationic ubiquitous bioactive molecules with diverse evolutionary-conserved functions. Their activity interferes with numerous genes' expression resulting in cell proliferation and signaling modulation. The intracellular levels of polyamines are precisely controlled by an evolutionary-conserved machinery. Their transient synthesis is induced by heat stress, radiation, and other traumatic stimuli in a process termed the polyamine stress response (PSR). Notably, polyamine levels decline gradually with age; and external supplementation improves lifespan in model organisms. This corresponds to cytoprotective and reactive oxygen species scavenging properties of polyamines. Paradoxically, age-associated neurodegenerative disorders are characterized by upsurge in polyamines levels, indicating polyamine pleiotropic, adaptive, and pathogenic roles. Specifically, arginase overactivation and arginine brain deprivation have been shown to play an important role in Alzheimer's disease (AD) pathogenesis. Here, we assert that a universal short-term PSR associated with acute stimuli is beneficial for survival. However, it becomes detrimental and maladaptive following chronic noxious stimuli, especially in an aging organism. Furthermore, we regard cellular senescence as an adaptive response to stress and suggest that PSR plays a central role in age-related neurodegenerative diseases' pathogenesis. Our perspective on AD proposes an inclusive reassessment of the causal relationships between the classical hallmarks and clinical manifestation. Consequently, we offer a novel treatment strategy predicated upon this view and suggest fine-tuning of arginase activity with natural inhibitors to preclude or halt the development of AD-related dementia.
Collapse
Affiliation(s)
- Baruh Polis
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - David Karasik
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, USA
- Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Abraham O. Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
13
|
Gao J, Shen W. Xenopus in revealing developmental toxicity and modeling human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115809. [PMID: 33096388 DOI: 10.1016/j.envpol.2020.115809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The Xenopus model offers many advantages for investigation of the molecular, cellular, and behavioral mechanisms underlying embryo development. Moreover, Xenopus oocytes and embryos have been extensively used to study developmental toxicity and human diseases in response to various environmental chemicals. This review first summarizes recent advances in using Xenopus as a vertebrate model to study distinct types of tissue/organ development following exposure to environmental toxicants, chemical reagents, and pharmaceutical drugs. Then, the successful use of Xenopus as a model for diseases, including fetal alcohol spectrum disorders, autism, epilepsy, and cardiovascular disease, is reviewed. The potential application of Xenopus in genetic and chemical screening to protect against embryo deficits induced by chemical toxicants and related diseases is also discussed.
Collapse
Affiliation(s)
- Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
14
|
Kang X, Li C, Xie Y, He LL, Xiao F, Zhan KB, Tang YY, Li X, Tang XQ. Hippocampal ornithine decarboxylase/spermidine pathway mediates H 2S-alleviated cognitive impairment in diabetic rats: Involving enhancment of hippocampal autophagic flux. J Adv Res 2020; 27:31-40. [PMID: 33318864 PMCID: PMC7728590 DOI: 10.1016/j.jare.2020.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/14/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction We have previously demonstrated the antagonistic role of hydrogen sulfide (H2S) in the cognitive dysfunction of streptozotocin (STZ)-induced diabetic rats. It has been confirmed that the impaired hippocampal autophagic flux has a key role in the pathogenesis of cognitive impairment and that ornithine decarboxylase (ODC)/spermidine (Spd) pathway plays an important role in the formation of memory by promoting autophagic flux. Objectives To investigate the roles of hippocampal ODC/Spd pathway and autophagic flux in H2S-attenuated cognitive impairment in STZ-induced diabetic rats. Methods Cognitive function is judged by the novel objective recognition task (NOR), the Y-maze, and the Morris water maze (MWM) tests. The ODC/Spd pathway in hippocampus was evaluated using the expression of ODC detected by western blot and the level of Spd assayed by GC-MS. Autophagic flux was assessed using the expressions of Beclin-1, LC3II/I, and P62 detected by western blot, and the number of autophagosomes observed by transmission electron microscope. Results Sodium hydrosulfide (NaHS, a donor of H2S) markedly improved the autophagic flux in the hippocampus of STZ-exposed rats, as evidenced by a decrease in the number of autophagosomes as wells as downregulations in the expressions of LC3-II, Beclin-1, and P62 in the hippocampus of cotreatment with NaHS and STZ rats. NaHS also up-regulated the expression of ODC and the level of Spd in the hippocampus of STZ-induced diabetic rats. Furthermore, inhibited hippocampal ODC/Spd pathway by difluoromethylornithine (DFMO) markedly reversed the protections of NaHS against the hippocampal autophagic flux impairment as well as the cognitive dysfunction in STZ-exposed rats. Conclusion These findings indicated that improving hippocampal autophagic flux plays a key role in H2S-attenuated cognitive impairment in STZ-induced diabetic rats, as results of up-regulating hippocampal ODC/Spd pathway.
Collapse
Affiliation(s)
- Xuan Kang
- Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China.,Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, PR China
| | - Cheng Li
- Department of Emergency Affiliated Nanhua Hospital, University of South China, Hengyang 421001, Hunan, PR China.,Department of Neurology, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Yan Xie
- Department of Neurology, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Ling-Li He
- Department of Neurology, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Fan Xiao
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, PR China
| | - Ke-Bin Zhan
- Department of Neurology, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Yi-Yun Tang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, PR China
| | - Xiang Li
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Xiao-Qing Tang
- Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China.,Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, PR China
| |
Collapse
|
15
|
Kapfhamer D, McKenna J, Yoon CJ, Murray-Stewart T, Casero RA, Gambello MJ. Ornithine decarboxylase, the rate-limiting enzyme of polyamine synthesis, modifies brain pathology in a mouse model of tuberous sclerosis complex. Hum Mol Genet 2020; 29:2395-2407. [PMID: 32588887 PMCID: PMC7424721 DOI: 10.1093/hmg/ddaa121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/18/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare autosomal dominant neurodevelopmental disorder characterized by variable expressivity. TSC results from inactivating variants within the TSC1 or TSC2 genes, leading to constitutive activation of mechanistic target of rapamycin complex 1 signaling. Using a mouse model of TSC (Tsc2-RG) in which the Tsc2 gene is deleted in radial glial precursors and their neuronal and glial descendants, we observed increased ornithine decarboxylase (ODC) enzymatic activity and concentration of its product, putrescine. To test if increased ODC activity and dysregulated polyamine metabolism contribute to the neurodevelopmental defects of Tsc2-RG mice, we used pharmacologic and genetic approaches to reduce ODC activity in Tsc2-RG mice, followed by histologic assessment of brain development. We observed that decreasing ODC activity and putrescine levels in Tsc2-RG mice worsened many of the neurodevelopmental phenotypes, including brain growth and neuronal migration defects, astrogliosis and oxidative stress. These data suggest a protective effect of increased ODC activity and elevated putrescine that modify the phenotype in this developmental Tsc2-RG model.
Collapse
Affiliation(s)
- David Kapfhamer
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - James McKenna
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Caroline J Yoon
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Tracy Murray-Stewart
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert A Casero
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
16
|
Cigdem B, Bolayir A, Celik VK, Kapancik S, Kilicgun H, Gokce SF, Gulunay A. The Role of Reduced Polyamine Synthesis in Ischemic Stroke. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420020038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Pires N, Maiale S, Venturino A, Lascano C. Differential effects of azinphos-methyl and chlorpyrifos on polyamine oxidative metabolism during the embryonic development of Rhinella arenarum and its relation to oxidative stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:14-22. [PMID: 31973851 DOI: 10.1016/j.pestbp.2019.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The organophosphorus pesticides azinphos-methyl (AZM) and chlorpyrifos (CPF) exert their toxic action by inhibition of acetylcholinesterase, but non-target processes such as polyamine metabolism can also be affected. Our objective was to evaluate the effects of different concentrations of AZM (0.5-, 2- and 9 mg L-1) and CPF (0.5- and 1 mg L-1) on polyamine oxidative metabolism along Rhinella arenarum embryonic development and to explore its relationship to oxidative stress. Free and conjugated polyamines were measured by HPLC. The activity of spermine oxidase (SMOX), N1-acetylpolyamine oxidase (PAOX) and diamine oxidase (DAO) were measured through kinetic spectrofluorometry. Free putrescine and spermine were significantly increased in open mouth embryos exposed to AZM. Free polyamine levels were not affected by CPF exposure. In embryos exposed to AZM, DAO was increased in tail bud stage and SMOX was increased in open mouth stage, while embryos exposed to CPF showed an increase of PAOX activity in tail bud stage and a decrease of DAO and SMOX activity in open mouth stage. Polyamine levels and oxidative degradation enzymes respond differently if R. arenarum embryos are exposed to AZM or CPF, despite that both insecticides belong to the same chemical family. The early increase of DAO and PAOX would play a protective role to guarantee the normal progression of embryonic development. The increased production of reactive species might contribute to an oxidative stress situation generated by exposure to the insecticides and to the alteration of the antioxidant defense system. In tail bud stage embryos, PAOX and SMOX were positively correlated to acetylcholinesterase activity and reduced glutathione levels (GSH), and negatively correlated to the antioxidant enzymes catalase (CAT) and glutathione S-transferase (GST). In complete operculum embryos, a negative correlation between antioxidant parameters and polyamine levels and polyamine oxidative metabolism was observed, except for SMOX, which showed a low positive correlation with CAT and GSH and a negative correlation to PAOX and DAO. We suggest the use of DAO and PAOX as biomarkers of exposure to AZM and CPF, respectively, as they respond earlier than the classical biomarker acetylcholinesterase.
Collapse
Affiliation(s)
- Natalia Pires
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), Universidad Nacional del Comahue-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Buenos Aires 1400, 8300 Neuquén, Neuquén, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Comahue. Toschi y Arrayanes, 8324 Cipolletti, Rio Negro, Argentina
| | - Santiago Maiale
- Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (INTECH/UNSAM-CONICET). Av. Intendente Marino, Km 8, 200 CC 164, 7130 Chascomús, Buenos Aires, Argentina
| | - Andrés Venturino
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), Universidad Nacional del Comahue-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Buenos Aires 1400, 8300 Neuquén, Neuquén, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional del Comahue. Ruta 151, Km 12,5, 8303 Cinco Saltos, Rio Negro, Argentina
| | - Cecilia Lascano
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), Universidad Nacional del Comahue-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Buenos Aires 1400, 8300 Neuquén, Neuquén, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional del Comahue. Ruta 151, Km 12,5, 8303 Cinco Saltos, Rio Negro, Argentina.
| |
Collapse
|
18
|
Nenni MJ, Fisher ME, James-Zorn C, Pells TJ, Ponferrada V, Chu S, Fortriede JD, Burns KA, Wang Y, Lotay VS, Wang DZ, Segerdell E, Chaturvedi P, Karimi K, Vize PD, Zorn AM. Xenbase: Facilitating the Use of Xenopus to Model Human Disease. Front Physiol 2019; 10:154. [PMID: 30863320 PMCID: PMC6399412 DOI: 10.3389/fphys.2019.00154] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/08/2019] [Indexed: 01/02/2023] Open
Abstract
At a fundamental level most genes, signaling pathways, biological functions and organ systems are highly conserved between man and all vertebrate species. Leveraging this conservation, researchers are increasingly using the experimental advantages of the amphibian Xenopus to model human disease. The online Xenopus resource, Xenbase, enables human disease modeling by curating the Xenopus literature published in PubMed and integrating these Xenopus data with orthologous human genes, anatomy, and more recently with links to the Online Mendelian Inheritance in Man resource (OMIM) and the Human Disease Ontology (DO). Here we review how Xenbase supports disease modeling and report on a meta-analysis of the published Xenopus research providing an overview of the different types of diseases being modeled in Xenopus and the variety of experimental approaches being used. Text mining of over 50,000 Xenopus research articles imported into Xenbase from PubMed identified approximately 1,000 putative disease- modeling articles. These articles were manually assessed and annotated with disease ontologies, which were then used to classify papers based on disease type. We found that Xenopus is being used to study a diverse array of disease with three main experimental approaches: cell-free egg extracts to study fundamental aspects of cellular and molecular biology, oocytes to study ion transport and channel physiology and embryo experiments focused on congenital diseases. We integrated these data into Xenbase Disease Pages to allow easy navigation to disease information on external databases. Results of this analysis will equip Xenopus researchers with a suite of experimental approaches available to model or dissect a pathological process. Ideally clinicians and basic researchers will use this information to foster collaborations necessary to interrogate the development and treatment of human diseases.
Collapse
Affiliation(s)
- Mardi J Nenni
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Malcolm E Fisher
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Christina James-Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Troy J Pells
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Virgilio Ponferrada
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Stanley Chu
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Joshua D Fortriede
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Kevin A Burns
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Ying Wang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Vaneet S Lotay
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Dong Zhou Wang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Erik Segerdell
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Kamran Karimi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Peter D Vize
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| |
Collapse
|
19
|
Can peri-ovulatory putrescine supplementation improve egg quality in older infertile women? J Assist Reprod Genet 2018; 36:395-402. [PMID: 30467617 DOI: 10.1007/s10815-018-1327-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/28/2018] [Indexed: 10/27/2022] Open
Abstract
The aging-related decline in fertility is an increasingly pressing medical and economic issue in modern society where women are delaying family building. Increasingly sophisticated, costly, and often increasingly invasive, assisted reproductive clinical protocols and laboratory technologies (ART) have helped many older women achieve their reproductive goals. Current ART procedures have not been able to address the fundamental problem of oocyte aging, the increased rate of egg aneuploidy, and the decline of developmental potential of the eggs. Oocyte maturation, which is triggered by luteinizing hormone (LH) in vivo or by injection of human chorionic gonadotropin (hCG) in an in vitro fertilization (IVF) clinic, is the critical stage at which the majority of egg aneuploidies arise and when much of an egg's developmental potential is established. Our proposed strategy focuses on improving egg quality in older women by restoring a robust oocyte maturation process. We have identified putrescine deficiency as one of the causes of poor egg quality in an aged mouse model. Putrescine is a biogenic polyamine naturally produced in peri-ovulatory ovaries. Peri-ovulatory putrescine supplementation has reduced egg aneuploidy, improved embryo quality, and reduced miscarriage rates in aged mice. In this paper, we review the literature on putrescine, its occurrence and physiology in living organisms, and its unique role in oocyte maturation. Preliminary human data demonstrates that there is a maternal aging-related deficiency in ovarian ornithine decarboxylase (ODC), the enzyme responsible for putrescine production. We argue that peri-ovulatory putrescine supplementation holds great promise as a natural and effective therapy for infertility in women of advanced maternal age, applicable in natural conception and in combination with current ART therapies.
Collapse
|
20
|
Sega AG, Mis EK, Lindstrom K, Mercimek-Andrews S, Ji W, Cho MT, Juusola J, Konstantino M, Jeffries L, Khokha MK, Lakhani SA. De novo pathogenic variants in neuronal differentiation factor 2 (NEUROD2) cause a form of early infantile epileptic encephalopathy. J Med Genet 2018; 56:113-122. [PMID: 30323019 DOI: 10.1136/jmedgenet-2018-105322] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/08/2018] [Accepted: 09/22/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Early infantile epileptic encephalopathies are severe disorders consisting of early-onset refractory seizures accompanied often by significant developmental delay. The increasing availability of next-generation sequencing has facilitated the recognition of single gene mutations as an underlying aetiology of some forms of early infantile epileptic encephalopathies. OBJECTIVES This study was designed to identify candidate genes as a potential cause of early infantile epileptic encephalopathy, and then to provide genetic and functional evidence supporting patient variants as causative. METHODS We used whole exome sequencing to identify candidate genes. To model the disease and assess the functional effects of patient variants on candidate protein function, we used in vivo CRISPR/Cas9-mediated genome editing and protein overexpression in frog tadpoles. RESULTS We identified novel de novo variants in neuronal differentiation factor 2 (NEUROD2) in two unrelated children with early infantile epileptic encephalopathy. Depleting neurod2 with CRISPR/Cas9-mediated genome editing induced spontaneous seizures in tadpoles, mimicking the patients' condition. Overexpression of wild-type NEUROD2 induced ectopic neurons in tadpoles; however, patient variants were markedly less effective, suggesting that both variants are dysfunctional and likely pathogenic. CONCLUSION This study provides clinical and functional support for NEUROD2 variants as a cause of early infantile epileptic encephalopathy, the first evidence of human disease caused by NEUROD2 variants.
Collapse
Affiliation(s)
- Annalisa G Sega
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emily K Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kristin Lindstrom
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Saadet Mercimek-Andrews
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | - Monica Konstantino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Saquib Ali Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
21
|
Johan Arief MF, Choo BKM, Yap JL, Kumari Y, Shaikh MF. A Systematic Review on Non-mammalian Models in Epilepsy Research. Front Pharmacol 2018; 9:655. [PMID: 29997502 PMCID: PMC6030834 DOI: 10.3389/fphar.2018.00655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/31/2018] [Indexed: 02/03/2023] Open
Abstract
Epilepsy is a common neurological disorder characterized by seizures which result in distinctive neurobiological and behavioral impairments. Not much is known about the causes of epilepsy, making it difficult to devise an effective cure for epilepsy. Moreover, clinical studies involving epileptogenesis and ictogenesis cannot be conducted in humans due to ethical reasons. As a result, animal models play a crucial role in the replication of epileptic seizures. In recent years, non-mammalian models have been given a primary focus in epilepsy research due to their advantages. This systematic review aims to summarize the importance of non-mammalian models in epilepsy research, such as in the screening of anti-convulsive compounds. The reason for this review is to integrate currently available information on the use and importance of non-mammalian models in epilepsy testing to aid in the planning of future studies as well as to provide an overview of the current state of this field. A PRISMA model was utilized and PubMed, Springer, ScienceDirect and SCOPUS were searched for articles published between January 2007 and November 2017. Fifty-one articles were finalized based on the inclusion/exclusion criteria and were discussed in this review. The results of this review demonstrated the current use of non-mammalian models in epilepsy research and reaffirmed their potential to supplement the typical rodent models of epilepsy in future research into both epileptogenesis and the treatment of epilepsy. This review also revealed a preference for zebrafish and fruit flies in lieu of other non-mammalian models, which is a shortcoming that should be corrected in future studies due to the great potential of these underutilized animal models.
Collapse
Affiliation(s)
- Muhammad Faiz Johan Arief
- MBBS Young Scholars Program, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Brandon Kar Meng Choo
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Jia Ling Yap
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
22
|
Jing YH, Yan JL, Wang QJ, Chen HC, Ma XZ, Yin J, Gao LP. Spermidine ameliorates the neuronal aging by improving the mitochondrial function in vitro. Exp Gerontol 2018; 108:77-86. [PMID: 29649571 DOI: 10.1016/j.exger.2018.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
Abstract
Changes in mitochondrial structure and function are the initial factors of cell aging. Spermidine has an antiaging effect, but its effect on neuronal aging and mitochondrial mechanisms is unclear. In this study, mouse neuroblastoma (N2a) cells were treated with d‑galactose (d‑Gal) to establish cell aging to investigate the antiaging effect and mechanisms of spermidine. Changes in the cell cycle and β-galactosidase activity were analyzed to evaluate the extent of cell aging. Stabilities of mitochondrial mRNA and mitochondrial membrane potential (MMP) were evaluated in the process of cell aging under different treatments. The mitochondrial function was also evaluated using the Seahorse Metabolic Analysis System combined with ATP production. The unfolded protein response (UPR) of the N2a cells was analyzed under different treatments. Results showed that spermidine pretreatment could delay the cell aging and could maintain the mitochondrial stability during d‑Gal treatment. Spermidine increased the proportion of cells in the S phase and maintained the MMP. The oxygen utilization and ATP production in the N2a cells were reduced by d‑Gal treatment but were partially rescued by the spermidine pretreatment. Spermidine ameliorated the N2a cell aging by promoting the autophagy and inhibiting the apoptosis except the UPR. These results showed that spermidine could ameliorate the N2a cell aging by maintaining the mitochondrial mRNA transcription, MMP and oxygen utilization during the d‑Gal treatment.
Collapse
Affiliation(s)
- Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China
| | - Ji-Long Yan
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China
| | - Qing-Jun Wang
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China
| | - Hai-Chao Chen
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China
| | - Xue-Zhu Ma
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China
| | - Jie Yin
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China.
| |
Collapse
|
23
|
Yoo Y, Jung J, Lee YN, Lee Y, Cho H, Na E, Hong J, Kim E, Lee JS, Lee JS, Hong C, Park SY, Wie J, Miller K, Shur N, Clow C, Ebel RS, DeBrosse SD, Henderson LB, Willaert R, Castaldi C, Tikhonova I, Bilgüvar K, Mane S, Kim KJ, Hwang YS, Lee SG, So I, Lim BC, Choi HJ, Seong JY, Shin YB, Jung H, Chae JH, Choi M. GABBR2mutations determine phenotype in rett syndrome and epileptic encephalopathy. Ann Neurol 2017; 82:466-478. [DOI: 10.1002/ana.25032] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Yongjin Yoo
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul Republic of Korea
| | - Jane Jung
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Yoo-Na Lee
- Graduate School of Medicine; Korea University; Seoul Republic of Korea
| | - Youngha Lee
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul Republic of Korea
| | - Hyosuk Cho
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul Republic of Korea
| | - Eunjung Na
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul Republic of Korea
| | - JeaYeok Hong
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Eunjin Kim
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Jin Sook Lee
- Department of Pediatrics, Department of Genome Medicine and Science; Gachon University Gil Medical Center; Incheon Republic of Korea
| | - Je Sang Lee
- Department of Rehabilitation Medicine; Pusan National University College of Medicine; Pusan Republic of Korea
| | - Chansik Hong
- Department of Physiology; Chosun University School of Medicine; Kwangju Republic of Korea
| | - Sang-Yoon Park
- Department of Science in Korean Medicine, Cancer Preventive Material Developmental Research Center, College of Korean Medicine; Kyung Hee University; Seoul Republic of Korea
| | - Jinhong Wie
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul Republic of Korea
- Department of Physiology; Seoul National University College of Medicine; Seoul Republic of Korea
| | | | | | | | - Roseànne S. Ebel
- UH Cleveland Medical Center; Center for Human Genetics; Cleveland OH
| | | | | | | | | | | | - Kaya Bilgüvar
- Yale Center for Genome Analysis; West Haven CT
- Department of Genetics; Yale University School of Medicine; New Haven CT
| | - Shrikant Mane
- Yale Center for Genome Analysis; West Haven CT
- Department of Genetics; Yale University School of Medicine; New Haven CT
| | - Ki Joong Kim
- Department of Pediatrics, Seoul National University College of Medicine; Seoul National University Children's Hospital; Seoul Republic of Korea
| | - Yong Seung Hwang
- Department of Pediatrics, Seoul National University College of Medicine; Seoul National University Children's Hospital; Seoul Republic of Korea
| | - Seok-Geun Lee
- Department of Science in Korean Medicine, Cancer Preventive Material Developmental Research Center, College of Korean Medicine; Kyung Hee University; Seoul Republic of Korea
| | - Insuk So
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul Republic of Korea
- Department of Physiology; Seoul National University College of Medicine; Seoul Republic of Korea
| | - Byung Chan Lim
- Department of Pediatrics, Seoul National University College of Medicine; Seoul National University Children's Hospital; Seoul Republic of Korea
| | - Hee-Jung Choi
- Department of Biological Sciences; Seoul National University College of Natural Sciences; Seoul Republic of Korea
| | - Jae Young Seong
- Graduate School of Medicine; Korea University; Seoul Republic of Korea
| | - Yong Beom Shin
- Department of Rehabilitation Medicine; Pusan National University College of Medicine; Pusan Republic of Korea
| | - Hosung Jung
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine; Seoul National University Children's Hospital; Seoul Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine; Seoul National University Children's Hospital; Seoul Republic of Korea
| |
Collapse
|
24
|
Sadeghi L, Rizvanov AA, Salafutdinov II, Dabirmanesh B, Sayyah M, Fathollahi Y, Khajeh K. Hippocampal asymmetry: differences in the left and right hippocampus proteome in the rat model of temporal lobe epilepsy. J Proteomics 2016; 154:22-29. [PMID: 27932302 DOI: 10.1016/j.jprot.2016.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/24/2016] [Accepted: 11/30/2016] [Indexed: 01/08/2023]
Abstract
The hippocampus is a complex brain structure and undergoes severe sclerosis and gliosis in temporal lobe epilepsy (TLE) as the most common type of epilepsy. The key features of the TLE may be reported in chronic animal models of epilepsy, such as pilocarpine model. Therefore, the current study was conducted in a rat pilocarpine model of acquired epilepsy. Two-dimensional gel electrophoresis based proteomic technique was used to compare the proteome map of the left and right hippocampus in both control and epileptic rats. Generally, 95 differentially expressed spots out of 1300 spots were identified in the hippocampus proteome using MALDI-TOF-TOF/MS. Within identified proteins, some showed asymmetric expression related to the mechanisms underlying TLE imposed by pilocarpine. Assessment of lateralization at the molecular level demonstrated that expression of proteins involved in dopamine synthesis was significantly more in the right hippocampus than the left one. In the epileptic model, reduction in dopamine pathway proteins was accompanied by an increase in the expression of proteins involved in polyamine synthesis, referring to a new regulating mechanism. Our results revealed changes in the laterality of protein expression due to pilocarpine-induced status epilepticus that could present some new proteins as potential candidates for antiepileptic drug design. BIOLOGICAL SIGNIFICANCE In the current study, two-dimensional gel electrophoresis (2-DE) based proteomic technique was used to profile changes in the left and right hippocampus proteome after pilocarpine induced status epilepticus. Spots of proteome maps for two hemispheres were excised and identified with MALDI-TOF-TOF/MS. Analysis of proteome map of the left and right hippocampus revealed a lateralization at the molecular level, in which the expression of proteins involved in dopamine synthesis and release were significantly more in right hippocampi than the left ones in the normal rats. Also, the expression of proteins involved in polyamine synthesis significantly increased in epileptic hippocampus (considerably higher in right hippocampi), whilst the proteins which included in dopamine pathways were decreased. Our results revealed changes in the laterality of protein expression due to pilocarpine-induced status epilepticus that could present some new proteins as potential candidates for antiepileptic drug design.
Collapse
Affiliation(s)
- Leila Sadeghi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | | | | | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Medical Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
25
|
Pratt KG, Hiramoto M, Cline HT. An Evolutionarily Conserved Mechanism for Activity-Dependent Visual Circuit Development. Front Neural Circuits 2016; 10:79. [PMID: 27818623 PMCID: PMC5073143 DOI: 10.3389/fncir.2016.00079] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/26/2016] [Indexed: 12/01/2022] Open
Abstract
Neural circuit development is an activity-dependent process. This activity can be spontaneous, such as the retinal waves that course across the mammalian embryonic retina, or it can be sensory-driven, such as the activation of retinal ganglion cells (RGCs) by visual stimuli. Whichever the source, neural activity provides essential instruction to the developing circuit. Indeed, experimentally altering activity has been shown to impact circuit development and function in many different ways and in many different model systems. In this review, we contemplate the idea that retinal waves in amniotes, the animals that develop either in ovo or utero (namely reptiles, birds and mammals) could be an evolutionary adaptation to life on land, and that the anamniotes, animals whose development is entirely external (namely the aquatic amphibians and fish), do not display retinal waves, most likely because they simply don’t need them. We then review what is known about the function of both retinal waves and visual stimuli on their respective downstream targets, and predict that the experience-dependent development of the tadpole visual system is a blueprint of what will be found in future studies of the effects of spontaneous retinal waves on instructing development of retinorecipient targets such as the superior colliculus (SC) and the lateral geniculate nucleus.
Collapse
Affiliation(s)
- Kara G Pratt
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming Laramie, WY, USA
| | - Masaki Hiramoto
- Department of Molecular and Cellular Neuroscience and The Dorris Neuroscience Center, The Scripps Research Institute La Jolla, CA, USA
| | - Hollis T Cline
- Department of Molecular and Cellular Neuroscience and The Dorris Neuroscience Center, The Scripps Research Institute La Jolla, CA, USA
| |
Collapse
|
26
|
Fragile X mental retardation protein knockdown in the developing Xenopus tadpole optic tectum results in enhanced feedforward inhibition and behavioral deficits. Neural Dev 2016; 11:14. [PMID: 27503008 PMCID: PMC4977860 DOI: 10.1186/s13064-016-0069-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/03/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Fragile X Syndrome is the leading monogenetic cause of autism and most common form of intellectual disability. Previous studies have implicated changes in dendritic spine architecture as the primary result of loss of Fragile X Mental Retardation Protein (FMRP), but recent work has shown that neural proliferation is decreased and cell death is increased with either loss of FMRP or overexpression of FMRP. The purpose of this study was to investigate the effects of loss of FMRP on behavior and cellular activity. METHODS We knocked down FMRP expression using morpholino oligos in the optic tectum of Xenopus laevis tadpoles and performed a series of behavioral and electrophysiological assays. We investigated visually guided collision avoidance, schooling, and seizure propensity. Using single cell electrophysiology, we assessed intrinsic excitability and synaptic connectivity of tectal neurons. RESULTS We found that FMRP knockdown results in decreased swimming speed, reduced schooling behavior and decreased seizure severity. In single cells, we found increased inhibition relative to excitation in response to sensory input. CONCLUSIONS Our results indicate that the electrophysiological development of single cells in the absence of FMRP is largely unaffected despite the large neural proliferation defect. The changes in behavior are consistent with an increase in inhibition, which could be due to either changes in cell number or altered inhibitory drive, and indicate that FMRP can play a significant role in neural development much earlier than previously thought.
Collapse
|
27
|
Skatchkov SN, Antonov SM, Eaton MJ. Glia and glial polyamines. Role in brain function in health and disease. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2016. [DOI: 10.1134/s1990747816010116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Felch DL, Khakhalin AS, Aizenman CD. Multisensory integration in the developing tectum is constrained by the balance of excitation and inhibition. eLife 2016; 5. [PMID: 27218449 PMCID: PMC4912350 DOI: 10.7554/elife.15600] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/23/2016] [Indexed: 11/13/2022] Open
Abstract
Multisensory integration (MSI) is the process that allows the brain to bind together spatiotemporally congruent inputs from different sensory modalities to produce single salient representations. While the phenomenology of MSI in vertebrate brains is well described, relatively little is known about cellular and synaptic mechanisms underlying this phenomenon. Here we use an isolated brain preparation to describe cellular mechanisms underlying development of MSI between visual and mechanosensory inputs in the optic tectum of Xenopus tadpoles. We find MSI is highly dependent on the temporal interval between crossmodal stimulus pairs. Over a key developmental period, the temporal window for MSI significantly narrows and is selectively tuned to specific interstimulus intervals. These changes in MSI correlate with developmental increases in evoked synaptic inhibition, and inhibitory blockade reverses observed developmental changes in MSI. We propose a model in which development of recurrent inhibition mediates development of temporal aspects of MSI in the tectum.
Collapse
Affiliation(s)
- Daniel L Felch
- Department of Neuroscience, Brown University, Providence, United States.,Department of Cell and Molecular Biology, Tulane University, New Orleans, United States
| | - Arseny S Khakhalin
- Department of Neuroscience, Brown University, Providence, United States.,Department of Biology, Bard College, New York, United States
| | - Carlos D Aizenman
- Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
29
|
Ciarleglio CM, Khakhalin AS, Wang AF, Constantino AC, Yip SP, Aizenman CD. Multivariate analysis of electrophysiological diversity of Xenopus visual neurons during development and plasticity. eLife 2015; 4. [PMID: 26568314 PMCID: PMC4728129 DOI: 10.7554/elife.11351] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/12/2015] [Indexed: 12/26/2022] Open
Abstract
Biophysical properties of neurons become increasingly diverse over development, but mechanisms underlying and constraining this diversity are not fully understood. Here we investigate electrophysiological characteristics of Xenopus tadpole midbrain neurons across development and during homeostatic plasticity induced by patterned visual stimulation. We show that in development tectal neuron properties not only change on average, but also become increasingly diverse. After sensory stimulation, both electrophysiological diversity and functional differentiation of cells are reduced. At the same time, the amount of cross-correlations between cell properties increase after patterned stimulation as a result of homeostatic plasticity. We show that tectal neurons with similar spiking profiles often have strikingly different electrophysiological properties, and demonstrate that changes in intrinsic excitability during development and in response to sensory stimulation are mediated by different underlying mechanisms. Overall, this analysis and the accompanying dataset provide a unique framework for further studies of network maturation in Xenopus tadpoles.
Collapse
Affiliation(s)
- Christopher M Ciarleglio
- Biology Program, Brown University, Annandale-on-Hudson, United States.,Department of Neuroscience, Brown University, Providence, United States
| | - Arseny S Khakhalin
- Biology Program, Bard College, Annandale-on-Hudson, United States.,Department of Neuroscience, Brown University, Providence, United States
| | - Angelia F Wang
- Biology Program, Bard College, Annandale-on-Hudson, United States.,Department of Neuroscience, Brown University, Providence, United States
| | - Alexander C Constantino
- Biology Program, Bard College, Annandale-on-Hudson, United States.,Department of Neuroscience, Brown University, Providence, United States
| | - Sarah P Yip
- Biology Program, Bard College, Annandale-on-Hudson, United States.,Department of Neuroscience, Brown University, Providence, United States
| | - Carlos D Aizenman
- Biology Program, Bard College, Annandale-on-Hudson, United States.,Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
30
|
Kim JI, Ganesan S, Luo SX, Wu YW, Park E, Huang EJ, Chen L, Ding JB. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons. Science 2015; 350:102-6. [PMID: 26430123 DOI: 10.1126/science.aac4690] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here, we show that GABA co-release in dopamine neurons does not use the conventional GABA-synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67. Our experiments reveal an evolutionarily conserved GABA synthesis pathway mediated by aldehyde dehydrogenase 1a1 (ALDH1a1). Moreover, GABA co-release is modulated by ethanol (EtOH) at concentrations seen in blood alcohol after binge drinking, and diminished ALDH1a1 leads to enhanced alcohol consumption and preference. These findings provide insights into the functional role of GABA co-release in midbrain dopamine neurons, which may be essential for reward-based behavior and addiction.
Collapse
Affiliation(s)
- Jae-Ick Kim
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Subhashree Ganesan
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sarah X Luo
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA. Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yu-Wei Wu
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Esther Park
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Eric J Huang
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA. Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA. Pathology Service 113B, San Francisco VA Medical Center, San Francisco, CA 94121, USA
| | - Lu Chen
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA. Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| |
Collapse
|
31
|
Grant IM, Balcha D, Hao T, Shen Y, Trivedi P, Patrushev I, Fortriede JD, Karpinka JB, Liu L, Zorn AM, Stukenberg PT, Hill DE, Gilchrist MJ. The Xenopus ORFeome: A resource that enables functional genomics. Dev Biol 2015; 408:345-57. [PMID: 26391338 PMCID: PMC4684507 DOI: 10.1016/j.ydbio.2015.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 08/18/2015] [Accepted: 09/09/2015] [Indexed: 12/18/2022]
Abstract
Functional characterisation of proteins and large-scale, systems-level studies are enabled by extensive sets of cloned open reading frames (ORFs) in an easily-accessible format that enables many different applications. Here we report the release of the first stage of the Xenopus ORFeome, which contains 8673 ORFs from the Xenopus Gene Collection (XGC) for Xenopus laevis, cloned into a Gateway® donor vector enabling rapid in-frame transfer of the ORFs to expression vectors. This resource represents an estimated 7871 unique genes, approximately 40% of the non-redundant X. laevis gene complement, and includes 2724 genes where the human ortholog has an association with disease. Transfer into the Gateway system was validated by 5' and 3' end sequencing of the entire collection and protein expression of a set of test clones. In a parallel process, the underlying ORF predictions from the original XGC collection were re-analysed to verify quality and full-length status, identifying those proteins likely to exhibit truncations when translated. These data are integrated into Xenbase, the Xenopus community database, which associates genomic, expression, function and human disease model metadata to each ORF, enabling end-users to search for ORFeome clones with links to commercial distributors of the collection. When coupled with the experimental advantages of Xenopus eggs and embryos, the ORFeome collection represents a valuable resource for functional genomics and disease modelling.
Collapse
Affiliation(s)
- Ian M Grant
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Dawit Balcha
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yun Shen
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Prasad Trivedi
- University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
| | - Ilya Patrushev
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Joshua D Fortriede
- Xenbase, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - John B Karpinka
- Xenbase, Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Limin Liu
- University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
| | - Aaron M Zorn
- Xenbase, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - P Todd Stukenberg
- University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Michael J Gilchrist
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
32
|
Abstract
We delineate perspectives for the design and discovery of antiepileptic drugs (AEDs) with fewer side effects by focusing on astroglial modulation of spatiotemporal seizure dynamics. It is now recognized that the major inhibitory neurotransmitter of the brain, γ-aminobutyric acid (GABA), can be released through the reversal of astroglial GABA transporters. Synaptic spillover and subsequent glutamate (Glu) uptake in neighboring astrocytes evoke replacement of extracellular Glu for GABA, driving neurons away from the seizure threshold. Attenuation of synaptic signaling by this negative feedback through the interplay of Glu and GABA transporters of adjacent astroglia can result in shortened seizures. By contrast, long-range activation of astroglia through gap junctions may promote recurrent seizures on the model of pharmacoresistant temporal lobe epilepsy. From their first detection to our current understanding, we identify various targets that shape both short- and long-range neuro-astroglia coupling, as these are manifest in epilepsy phenomena and in the associated research promotions of AED.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| |
Collapse
|
33
|
Fachim HA, Mortari MR, Gobbo-Netto L, Dos Santos WF. Neuroprotective activity of parawixin 10, a compound isolated from Parawixia bistriata spider venom (Araneidae: Araneae) in rats undergoing intrahippocampal NMDA microinjection. Pharmacogn Mag 2015; 11:579-85. [PMID: 26246735 PMCID: PMC4522846 DOI: 10.4103/0973-1296.160450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/10/2014] [Accepted: 07/10/2015] [Indexed: 12/22/2022] Open
Abstract
Background: Parawixia bistriata is a semi-colonial spider found mainly in southeastern of Brazil. Parawixin 10 (Pwx 10) a compound isolated from this spider venom has been demonstrated to act as neuroprotective in models of injury regulating the glutamatergic neurotransmission through glutamate transporters. Objectives: The aim of this work was to evaluate the neuroprotective effect of Pwx 10 in a rat model of excitotoxic brain injury by N-methyl-D-aspartate (NMDA) injection. Material and Methods: Male Wistar rats have been used, submitted to stereotaxic surgery for saline or NMDA microinjection into dorsal hippocampus. Two groups of animals were treated with Pwx 10. These treated groups received a daily injection of the Pwx 10 (2.5 mg/μL) in the right lateral ventricle into rats pretreated with NMDA, always at the same time, each one starting the treatment 1 h or 24 h. Nissl staining was performed for evaluating the extension and efficacy of the NMDA injury and the neuroprotective effect of Pwx 10. Results: The treatment with Pwx 10 showed neuroprotective effect, being most pronounced when the compound was administrated from 1 h after NMDA in all hippocampal subfields analyzed (CA1, CA3 and hilus). Conclusion: These results indicated that Pwx 10 may be a good template to develop therapeutic drugs for treating neurodegenerative diseases, reinforcing the importance of continuing studies on its effects in the central nervous system.
Collapse
Affiliation(s)
- Helene Aparecida Fachim
- Department of Biology, Neurobiology and Venoms Laboratory, FFCLRP, Brazil ; Institute of Neuroscience and Behavior, INeC-Ribeirão Preto, São Paulo, Brazil
| | - Marcia Renata Mortari
- Department of Physiological Sciences, Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasilia, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Leonardo Gobbo-Netto
- Department of Physics and Chemistry, Organic Chemistry Laboratory, FCFRP, University of São Paulo, Brazil
| | - Wagner Ferreira Dos Santos
- Department of Biology, Neurobiology and Venoms Laboratory, FFCLRP, Brazil ; Institute of Neuroscience and Behavior, INeC-Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
34
|
Noro T, Namekata K, Kimura A, Guo X, Azuchi Y, Harada C, Nakano T, Tsuneoka H, Harada T. Spermidine promotes retinal ganglion cell survival and optic nerve regeneration in adult mice following optic nerve injury. Cell Death Dis 2015; 6:e1720. [PMID: 25880087 PMCID: PMC4650557 DOI: 10.1038/cddis.2015.93] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/13/2015] [Accepted: 03/02/2015] [Indexed: 12/19/2022]
Abstract
Spermidine acts as an endogenous free radical scavenger and inhibits the action of reactive oxygen species. In this study, we examined the effects of spermidine on retinal ganglion cell (RGC) death in a mouse model of optic nerve injury (ONI). Daily ingestion of spermidine reduced RGC death following ONI and sequential in vivo retinal imaging revealed that spermidine effectively prevented retinal degeneration. Apoptosis signal-regulating kinase-1 (ASK1) is an evolutionarily conserved mitogen-activated protein kinase kinase kinase and has an important role in ONI-induced RGC apoptosis. We demonstrated that spermidine suppresses ONI-induced activation of the ASK1-p38 mitogen-activated protein kinase pathway. Moreover, production of chemokines important for microglia recruitment was decreased with spermidine treatment and, consequently, accumulation of retinal microglia is reduced. In addition, the ONI-induced expression of inducible nitric oxide synthase in the retina was inhibited with spermidine treatment, particularly in microglia. Furthermore, daily spermidine intake enhanced optic nerve regeneration in vivo. Our findings indicate that spermidine stimulates neuroprotection as well as neuroregeneration, and may be useful for treatment of various neurodegenerative diseases including glaucoma.
Collapse
Affiliation(s)
- T Noro
- 1] Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan [2] Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - K Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - A Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - X Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Y Azuchi
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - C Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - T Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - H Tsuneoka
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - T Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
35
|
Abstract
Autism spectrum disorder (ASD) is increasingly thought to result from low-level deficits in synaptic development and neural circuit formation that cascade into more complex cognitive symptoms. However, the link between synaptic dysfunction and behavior is not well understood. By comparing the effects of abnormal circuit formation and behavioral outcomes across different species, it should be possible to pinpoint the conserved fundamental processes that result in disease. Here we use a novel model for neurodevelopmental disorders in which we expose Xenopus laevis tadpoles to valproic acid (VPA) during a critical time point in brain development at which neurogenesis and neural circuit formation required for sensory processing are occurring. VPA is a commonly prescribed antiepileptic drug with known teratogenic effects. In utero exposure to VPA in humans or rodents results in a higher incidence of ASD or ASD-like behavior later in life. We find that tadpoles exposed to VPA have abnormal sensorimotor and schooling behavior that is accompanied by hyperconnected neural networks in the optic tectum, increased excitatory and inhibitory synaptic drive, elevated levels of spontaneous synaptic activity, and decreased neuronal intrinsic excitability. Consistent with these findings, VPA-treated tadpoles also have increased seizure susceptibility and decreased acoustic startle habituation. These findings indicate that the effects of VPA are remarkably conserved across vertebrate species and that changes in neural circuitry resulting from abnormal developmental pruning can cascade into higher-level behavioral deficits.
Collapse
|
36
|
Finding Order in Human Neurological Disorder Using a Tadpole. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Morrison JC, Filer CN. Tritiation and characterization of several polyamine natural products. Appl Radiat Isot 2015; 98:71-3. [DOI: 10.1016/j.apradiso.2015.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/17/2015] [Indexed: 10/24/2022]
|
38
|
Grone BP, Baraban SC. Animal models in epilepsy research: legacies and new directions. Nat Neurosci 2015; 18:339-43. [PMID: 25710835 DOI: 10.1038/nn.3934] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/21/2014] [Indexed: 12/16/2022]
Abstract
Human epilepsies encompass a wide variety of clinical, behavioral and electrical manifestations. Correspondingly, studies of this disease in nonhuman animals have brought forward an equally wide array of animal models; that is, species and acute or chronic seizure induction protocols. Epilepsy research has a long history of comparative anatomical and physiological studies on a range of mostly mammalian species. Nonetheless, a relatively limited number of rodent models have emerged as the primary choices for most investigations. In many cases, these animal models are selected on the basis of convenience or tradition, although technical or experimental rationale does, and should, factor into these decisions. More complex mammalian brains and genetic model organisms including zebrafish have been studied less, but offer substantial advantages that are becoming widely recognized.
Collapse
Affiliation(s)
- Brian P Grone
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Scott C Baraban
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| |
Collapse
|
39
|
Abstract
This review focuses on the roles of glia and polyamines (PAs) in brain function and dysfunction, highlighting how PAs are one of the principal differences between glia and neurons. The novel role of PAs, such as putrescine, spermidine, and spermine and their precursors and derivatives, is discussed. However, PAs have not yet been a focus of much glial research. They affect many neuronal and glial receptors, channels, and transporters. They are therefore key elements in the development of many diseases and syndromes, thus forming the rationale for PA-focused and glia-focused therapy for these conditions.
Collapse
Affiliation(s)
- Serguei N Skatchkov
- Department of Biochemistry, School of Medicine, Universidad, Central del Caribe, PO Box 60-327, Bayamón, PR 00960-6032, USA; Department of Physiology, School of Medicine, Universidad, Central del Caribe, PO Box 60-327, Bayamón, PR 00960-6032, USA.
| | - Michel A Woodbury-Fariña
- Department of Psychiatry, University of Puerto Rico School of Medicine, 307 Calle Eleonor Roosevelt, San Juan, PR 00918-2720, USA
| | - Misty Eaton
- Department of Biochemistry, School of Medicine, Universidad, Central del Caribe, PO Box 60-327, Bayamón, PR 00960-6032, USA
| |
Collapse
|
40
|
Pratt KG, Khakhalin AS. Modeling human neurodevelopmental disorders in the Xenopus tadpole: from mechanisms to therapeutic targets. Dis Model Mech 2013; 6:1057-65. [PMID: 23929939 PMCID: PMC3759326 DOI: 10.1242/dmm.012138] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Xenopus tadpole model offers many advantages for studying the molecular, cellular and network mechanisms underlying neurodevelopmental disorders. Essentially every stage of normal neural circuit development, from axon outgrowth and guidance to activity-dependent homeostasis and refinement, has been studied in the frog tadpole, making it an ideal model to determine what happens when any of these stages are compromised. Recently, the tadpole model has been used to explore the mechanisms of epilepsy and autism, and there is mounting evidence to suggest that diseases of the nervous system involve deficits in the most fundamental aspects of nervous system function and development. In this Review, we provide an update on how tadpole models are being used to study three distinct types of neurodevelopmental disorders: diseases caused by exposure to environmental toxicants, epilepsy and seizure disorders, and autism.
Collapse
Affiliation(s)
- Kara G. Pratt
- University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA
| | | |
Collapse
|
41
|
Arginase and Arginine Decarboxylase - Where Do the Putative Gate Keepers of Polyamine Synthesis Reside in Rat Brain? PLoS One 2013; 8:e66735. [PMID: 23840524 PMCID: PMC3686689 DOI: 10.1371/journal.pone.0066735] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/09/2013] [Indexed: 12/17/2022] Open
Abstract
Polyamines are important regulators of basal cellular functions but also subserve highly specific tasks in the mammalian brain. With this respect, polyamines and the synthesizing and degrading enzymes are clearly differentially distributed in neurons versus glial cells and also in different brain areas. The synthesis of the diamine putrescine may be driven via two different pathways. In the “classical” pathway urea and carbon dioxide are removed from arginine by arginase and ornithine decarboxylase. The alternative pathway, first removing carbon dioxide by arginine decarboxlyase and then urea by agmatinase, may serve the same purpose. Furthermore, the intermediate product of the alternative pathway, agmatine, is an endogenous ligand for imidazoline receptors and may serve as a neurotransmitter. In order to evaluate and compare the expression patterns of the two gate keeper enzymes arginase and arginine decarboxylase, we generated polyclonal, monospecific antibodies against arginase-1 and arginine decarboxylase. Using these tools, we immunocytochemically screened the rat brain and compared the expression patterns of both enzymes in several brain areas on the regional, cellular and subcellular level. In contrast to other enzymes of the polyamine pathway, arginine decarboxylase and arginase are both constitutively and widely expressed in rat brain neurons. In cerebral cortex and hippocampus, principal neurons and putative interneurons were clearly labeled for both enzymes. Labeling, however, was strikingly different in these neurons with respect to the subcellular localization of the enzymes. While with antibodies against arginine decarboxylase the immunosignal was distributed throughout the cytoplasm, arginase-like immunoreactivity was preferentially localized to Golgi stacks. Given the apparent congruence of arginase and arginine decarboxylase distribution with respect to certain cell populations, it seems likely that the synthesis of agmatine rather than putrescine may be the main purpose of the alternative pathway of polyamine synthesis, while the classical pathway supplies putrescine and spermidine/spermine in these neurons.
Collapse
|
42
|
Rapid, activity-independent turnover of vesicular transmitter content at a mixed glycine/GABA synapse. J Neurosci 2013; 33:4768-81. [PMID: 23486948 DOI: 10.1523/jneurosci.5555-12.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The release of neurotransmitter via the fusion of transmitter-filled, presynaptic vesicles is the primary means by which neurons relay information. However, little is known regarding the molecular mechanisms that supply neurotransmitter destined for vesicle filling, the endogenous transmitter concentrations inside presynaptic nerve terminals, or the dynamics of vesicle refilling after exocytosis. We addressed these issues by recording from synaptically coupled pairs of glycine/GABA coreleasing interneurons (cartwheel cells) of the mouse dorsal cochlear nucleus. We find that the plasma membrane transporter GlyT2 and the intracellular enzyme glutamate decarboxylase supply the majority of glycine and GABA, respectively. Pharmacological block of GlyT2 or glutamate decarboxylase led to rapid and complete rundown of transmission, whereas increasing GABA synthesis via intracellular glutamate uncaging dramatically potentiated GABA release within 1 min. These effects were surprisingly independent of exocytosis, indicating that prefilled vesicles re-equilibrated upon acute changes in cytosolic transmitter. Titration of cytosolic transmitter with postsynaptic responses indicated that endogenous, nonvesicular glycine/GABA levels in nerve terminals are 5-7 mm, and that vesicular transport mechanisms are not saturated under basal conditions. Thus, cytosolic transmitter levels dynamically set the strength of inhibitory synapses in a release-independent manner.
Collapse
|
43
|
Spawn A, Aizenman CD. Abnormal visual processing and increased seizure susceptibility result from developmental exposure to the biocide methylisothiazolinone. Neuroscience 2012; 205:194-204. [PMID: 22245758 DOI: 10.1016/j.neuroscience.2011.12.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/23/2011] [Accepted: 12/28/2011] [Indexed: 12/21/2022]
Abstract
Methylisothiazolinone (MIT) is a commonly used biocide known to be neurotoxic in vitro. Brief exposure of cortical neurons in culture to MIT results in increased neurodegeneration, whereas chronic exposure of developing neurons in culture to low concentrations of MIT has been shown to interfere with normal neurite outgrowth. However, the effects of chronic MIT exposure on the developing nervous system have not been tested in vivo. Here we expose Xenopus laevis tadpoles to sub-lethal concentrations of MIT during a critical period in neural development. We find that MIT exposure results in deficits in visually mediated avoidance behavior and increased susceptibility to seizures, as well electrophysiological abnormalities in optic tectal function, without any effects on overall morphology, gross anatomy of the visual projections, overall visual function, and swimming ability. These effects indicate that chronic exposure to low levels of MIT results in neural circuit-level deficits that result in abnormal neurological function without causing increased mortality or even gross anatomical defects. Our findings, combined with the fact that the long-term neurological impacts of environmental exposure to MIT have not been determined, suggest a need for a closer evaluation of the safety of MIT in commercial and industrial products.
Collapse
Affiliation(s)
- A Spawn
- Department of Neuroscience, Box G-LN, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
44
|
Minois N, Carmona-Gutierrez D, Madeo F. Polyamines in aging and disease. Aging (Albany NY) 2011; 3:716-32. [PMID: 21869457 PMCID: PMC3184975 DOI: 10.18632/aging.100361] [Citation(s) in RCA: 337] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 08/16/2011] [Indexed: 01/19/2023]
Abstract
Polyamines are polycations that interact with negatively charged molecules such as DNA, RNA and proteins. They play multiple roles in cell growth, survival and proliferation. Changes in polyamine levels have been associated with aging and diseases. Their levels decline continuously with age and polyamine (spermidine or high-polyamine diet) supplementation increases life span in model organisms. Polyamines have also been involved in stress resistance. On the other hand, polyamines are increased in cancer cells and are a target for potential chemotherapeutic agents. In this review, we bring together these various results and draw a picture of the state of our knowledge on the roles of polyamines in aging, stress and diseases.
Collapse
Affiliation(s)
- Nadège Minois
- University of St Andrews, School of Biology, St Andrews, Fife, UK.
| | | | | |
Collapse
|
45
|
In brief. Nat Rev Neurol 2011. [DOI: 10.1038/nrneurol.2011.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|