1
|
Yun S, Chekuri A, Art J, Kondabolu K, Slaugenhaupt SA, Zeltner N, Kleinstiver BP, Morini E, Alves CRR. Engineered CRISPR-Base Editors as a Permanent Treatment for Familial Dysautonomia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625322. [PMID: 39651221 PMCID: PMC11623606 DOI: 10.1101/2024.11.27.625322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Familial dysautonomia (FD) is a fatal autosomal recessive congenital neuropathy caused by a T-to-C mutation in intron 20 of the Elongator acetyltransferase complex subunit 1 (ELP1) gene, which causes tissue-specific skipping of exon 20 and reduction of ELP1 protein. Here, we developed a base editor (BE) approach to precisely correct this mutation. By optimizing Cas9 variants and screening multiple gRNAs, we identified a combination that was able to promote up to 70% on-target editing in HEK293T cells harboring the ELP1 T-to-C mutation. These editing levels were sufficient to restore exon 20 inclusion in the ELP1 transcript. Moreover, we optimized an engineered dual intein-split system to deliver these constructs in vivo. Mediated by adeno-associated virus (AAV) delivery, this BE strategy effectively corrected the liver and brain ELP1 splicing defects in a humanized FD mouse model carrying the ELP1 T-to-C mutation and rescued the FD phenotype in iPSC-derived sympathetic neurons. Importantly, we observed minimal off-target editing demonstrating high levels of specificity with these optimized base editors. These findings establish a novel and highly precise BE-based therapeutic approach to correct the FD mutation and associated splicing defects and provide the foundation for the development of a transformative, permanent treatment for this devastating disease.
Collapse
Affiliation(s)
- Shuqi Yun
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Anil Chekuri
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Jennifer Art
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
- Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA, USA
| | - Krishnakanth Kondabolu
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Susan A. Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Elisabetta Morini
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- These authors contributed equally to this work
| | - Christiano R. R. Alves
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- These authors contributed equally to this work
| |
Collapse
|
2
|
Morikawa R, Rodrigues TM, Schreyer HM, Cowan CS, Nadeau S, Graff-Meyer A, Patino-Alvarez CP, Khani MH, Jüttner J, Roska B. The sodium-bicarbonate cotransporter Slc4a5 mediates feedback at the first synapse of vision. Neuron 2024; 112:3715-3733.e9. [PMID: 39317184 PMCID: PMC11602199 DOI: 10.1016/j.neuron.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 07/22/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
Feedback at the photoreceptor synapse is the first neuronal circuit computation in vision, which influences downstream activity patterns within the visual system. Yet, the identity of the feedback signal and the mechanism of synaptic transmission are still not well understood. Here, we combined perturbations of cell-type-specific genes of mouse horizontal cells with two-photon imaging of the result of light-induced feedback in cones and showed that the electrogenic bicarbonate transporter Slc4a5, but not the electroneutral bicarbonate transporter Slc4a3, both expressed specifically in horizontal cells, is necessary for horizontal cell-to-cone feedback. Pharmacological blockage of bicarbonate transporters and buffering pH also abolished the feedback but blocking sodium-proton exchangers and GABA receptors did not. Our work suggests an unconventional mechanism of feedback at the first visual synapse: changes in horizontal cell voltage modulate bicarbonate transport to the cell, via Slc4a5, which leads to the modulation of feedback to cones.
Collapse
Affiliation(s)
- Rei Morikawa
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Tiago M Rodrigues
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | | | - Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Sarah Nadeau
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Alexandra Graff-Meyer
- Facility for Advanced Imaging and Microscopy, Friedrich Miescher Institute for Biomedical Research, 4056 Basel, Switzerland
| | | | | | - Josephine Jüttner
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
3
|
James RE, Hamilton NR, Huffman LN, Brown MP, Neckles VN, Pasterkamp RJ, Goff LA, Kolodkin AL. Retinal ganglion cell-derived semaphorin 6A segregates starburst amacrine cell dendritic scaffolds to organize the mouse inner retina. Development 2024; 151:dev204293. [PMID: 39495936 PMCID: PMC11634039 DOI: 10.1242/dev.204293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024]
Abstract
To form functional circuits, neurons must settle in their appropriate cellular locations, and then project and elaborate neurites to contact their target synaptic neuropils. Laminar organization within the vertebrate retinal inner plexiform layer (IPL) facilitates pre- and postsynaptic neurite targeting, yet the precise mechanisms underlying establishment of functional IPL subdomains are not well understood. Here, we explore mechanisms defining the compartmentalization of OFF and ON neurites generally, and OFF and ON direction-selective neurites specifically, within the developing mouse IPL. We show that semaphorin 6A (Sema6A), a repulsive axon guidance cue, is required for delineation of OFF versus ON circuits within the IPL: in the Sema6a null IPL, the boundary between OFF and ON domains is blurred. Furthermore, Sema6A expressed by retinal ganglion cells (RGCs) directs laminar segregation of OFF and ON starburst amacrine cell dendritic scaffolds, which themselves serve as a substrate upon which other retinal neurites elaborate. These results demonstrate that RGCs, the first type of neuron born within the retina, play an active role in functional specialization of the IPL.
Collapse
Affiliation(s)
- Rebecca E. James
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Natalie R. Hamilton
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Lola Nicole Huffman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Matthew P. Brown
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Victoria N. Neckles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - R. Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Loyal A. Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Wang C, Lin Y, Li S, Guan J. Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data. BMC Genomics 2024; 25:875. [PMID: 39294558 PMCID: PMC11409548 DOI: 10.1186/s12864-024-10728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND The widely adopted bulk RNA-seq measures the gene expression average of cells, masking cell type heterogeneity, which confounds downstream analyses. Therefore, identifying the cellular composition and cell type-specific gene expression profiles (GEPs) facilitates the study of the underlying mechanisms of various biological processes. Although single-cell RNA-seq focuses on cell type heterogeneity in gene expression, it requires specialized and expensive resources and currently is not practical for a large number of samples or a routine clinical setting. Recently, computational deconvolution methodologies have been developed, while many of them only estimate cell type composition or cell type-specific GEPs by requiring the other as input. The development of more accurate deconvolution methods to infer cell type abundance and cell type-specific GEPs is still essential. RESULTS We propose a new deconvolution algorithm, DSSC, which infers cell type-specific gene expression and cell type proportions of heterogeneous samples simultaneously by leveraging gene-gene and sample-sample similarities in bulk expression and single-cell RNA-seq data. Through comparisons with the other existing methods, we demonstrate that DSSC is effective in inferring both cell type proportions and cell type-specific GEPs across simulated pseudo-bulk data (including intra-dataset and inter-dataset simulations) and experimental bulk data (including mixture data and real experimental data). DSSC shows robustness to the change of marker gene number and sample size and also has cost and time efficiencies. CONCLUSIONS DSSC provides a practical and promising alternative to the experimental techniques to characterize cellular composition and heterogeneity in the gene expression of heterogeneous samples.
Collapse
Affiliation(s)
- Chenqi Wang
- Department of Automation, Xiamen University, Xiamen, China
| | - Yifan Lin
- Department of Automation, Xiamen University, Xiamen, China
| | - Shuchao Li
- Department of Automation, Xiamen University, Xiamen, China
| | - Jinting Guan
- Department of Automation, Xiamen University, Xiamen, China.
- Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
5
|
Zhou Y, Zhou W, Rao Y, He J, Huang Y, Zhao P, Li J. Dysregulated energy and protein homeostasis and the loss of GABAergic amacrine cells in aging retina. Exp Eye Res 2024; 245:109985. [PMID: 38945518 DOI: 10.1016/j.exer.2024.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Aging is a major risk factor for the development or the worsening of retinal degenerative conditions. The intricate network of the neural retina determined that the retinal aging is a complicated process. The aim of this study is to delineate the transcriptomic changes of major retinal neurons during aging in C57BL/6 mice at single-cell level. We analyzed the transcriptional profiles of the photoreceptor, bipolar, amacrine, and Müller glial cells of 1.5-2 and 24-30 months old mice using single-cell RNA sequencing technique. We selectively confirmed the differences in gene expression using immunofluorescence staining and RNA in situ hybridization analysis. We found that each retinal cell type had unique changes upon aging. However, they all showed signs of dysregulated glucose and energy metabolism, and perturbed proteostasis. In particular, old Müller glia exhibited the most profound changes, including the upregulation of cell metabolism, stress-responses, antigen-presentation and immune responses and metal ion homeostasis. The dysregulated gliogenesis and differentiation was confirmed by the presence of Müller glia expressing rod-specific genes in the inner nuclear layer and the outer plexiform layer of the old retina. We further pinpointed the specific loss of GABAergic amacrine cells in old retina. Our study emphasized changes of amacrine and Müller glia during retinal aging, provided resources for further research on the molecular and cellular regulatory mechanisms underlying aging-associated retinal deterioration.
Collapse
Affiliation(s)
- Yutong Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yue Huang
- Department of Ophthalmology, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 202150, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
6
|
Li J, Choi J, Cheng X, Ma J, Pema S, Sanes JR, Mardon G, Frankfort BJ, Tran NM, Li Y, Chen R. Comprehensive single-cell atlas of the mouse retina. iScience 2024; 27:109916. [PMID: 38812536 PMCID: PMC11134544 DOI: 10.1016/j.isci.2024.109916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of cellular heterogeneity by characterizing cell types across tissues and species. While several mouse retinal scRNA-seq datasets exist, each dataset is either limited in cell numbers or focused on specific cell classes, thereby hindering comprehensive gene expression analysis across all retina types. To fill the gap, we generated the largest retinal scRNA-seq dataset to date, comprising approximately 190,000 single cells from C57BL/6J mouse retinas, enriched for rare population cells via antibody-based magnetic cell sorting. Integrating this dataset with public datasets, we constructed the Mouse Retina Cell Atlas (MRCA) for wild-type mice, encompassing over 330,000 cells, characterizing 12 major classes and 138 cell types. The MRCA consolidates existing knowledge, identifies new cell types, and is publicly accessible via CELLxGENE, UCSC Cell Browser, and the Broad Single Cell Portal, providing a user-friendly resource for the mouse retina research community.
Collapse
Affiliation(s)
- Jin Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jongsu Choi
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuesen Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justin Ma
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shahil Pema
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA
| | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin J. Frankfort
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas M. Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Xu Y, Tummala SR, Chen X, Vardi N. VDAC in Retinal Health and Disease. Biomolecules 2024; 14:654. [PMID: 38927058 PMCID: PMC11201675 DOI: 10.3390/biom14060654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The retina, a tissue of the central nervous system, is vital for vision as its photoreceptors capture light and transform it into electrical signals, which are further processed before they are sent to the brain to be interpreted as images. The retina is unique in that it is continuously exposed to light and has the highest metabolic rate and demand for energy amongst all the tissues in the body. Consequently, the retina is very susceptible to oxidative stress. VDAC, a pore in the outer membrane of mitochondria, shuttles metabolites between mitochondria and the cytosol and normally protects cells from oxidative damage, but when a cell's integrity is greatly compromised it initiates cell death. There are three isoforms of VDAC, and existing evidence indicates that all three are expressed in the retina. However, their precise localization and function in each cell type is unknown. It appears that most retinal cells express substantial amounts of VDAC2 and VDAC3, presumably to protect them from oxidative stress. Photoreceptors express VDAC2, HK2, and PKM2-key proteins in the Warburg pathway that also protect these cells. Consistent with its role in initiating cell death, VDAC is overexpressed in the retinal degenerative diseases retinitis pigmentosa, age related macular degeneration (AMD), and glaucoma. Treatment with antioxidants or inhibiting VDAC oligomerization reduced its expression and improved cell survival. Thus, VDAC may be a promising therapeutic candidate for the treatment of these diseases.
Collapse
Affiliation(s)
- Ying Xu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (Y.X.); (X.C.)
| | - Shanti R. Tummala
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Xiongmin Chen
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (Y.X.); (X.C.)
| | - Noga Vardi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Zhang Q, Jiang Y, Deng C, Wang J. Effects and potential mechanisms of exercise and physical activity on eye health and ocular diseases. Front Med (Lausanne) 2024; 11:1353624. [PMID: 38585147 PMCID: PMC10995365 DOI: 10.3389/fmed.2024.1353624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
In the field of eye health, the profound impact of exercise and physical activity on various ocular diseases has become a focal point of attention. This review summarizes and elucidates the positive effects of exercise and physical activities on common ocular diseases, including dry eye disease (DED), cataracts, myopia, glaucoma, diabetic retinopathy (DR), and age-related macular degeneration (AMD). It also catalogues and offers exercise recommendations based on the varying impacts that different types and intensities of physical activities may have on specific eye conditions. Beyond correlations, this review also compiles potential mechanisms through which exercise and physical activity beneficially affect eye health. From mitigating ocular oxidative stress and inflammatory responses, reducing intraocular pressure, enhancing mitochondrial function, to promoting ocular blood circulation and the release of protective factors, the complex biological effects triggered by exercise and physical activities reveal their substantial potential in preventing and even assisting in the treatment of ocular diseases. This review aims not only to foster awareness and appreciation for how exercise and physical activity can improve eye health but also to serve as a catalyst for further exploration into the specific mechanisms and key targets through which exercise impacts ocular health. Such inquiries are crucial for advancing innovative strategies for the treatment of eye diseases, thereby holding significant implications for the development of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Chaohua Deng
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junming Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Li J, Choi J, Cheng X, Ma J, Pema S, Sanes JR, Mardon G, Frankfort BJ, Tran NM, Li Y, Chen R. Comprehensive single-cell atlas of the mouse retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577060. [PMID: 38328114 PMCID: PMC10849744 DOI: 10.1101/2024.01.24.577060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of cellular heterogeneity at the single-cell resolution by classifying and characterizing cell types in multiple tissues and species. While several mouse retinal scRNA-seq reference datasets have been published, each dataset either has a relatively small number of cells or is focused on specific cell classes, and thus is suboptimal for assessing gene expression patterns across all retina types at the same time. To establish a unified and comprehensive reference for the mouse retina, we first generated the largest retinal scRNA-seq dataset to date, comprising approximately 190,000 single cells from C57BL/6J mouse whole retinas. This dataset was generated through the targeted enrichment of rare population cells via antibody-based magnetic cell sorting. By integrating this new dataset with public datasets, we conducted an integrated analysis to construct the Mouse Retina Cell Atlas (MRCA) for wild-type mice, which encompasses over 330,000 single cells. The MRCA characterizes 12 major classes and 138 cell types. It captured consensus cell type characterization from public datasets and identified additional new cell types. To facilitate the public use of the MRCA, we have deposited it in CELLxGENE, UCSC Cell Browser, and the Broad Single Cell Portal for visualization and gene expression exploration. The comprehensive MRCA serves as an easy-to-use, one-stop data resource for the mouse retina communities.
Collapse
Affiliation(s)
- Jin Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jongsu Choi
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xuesen Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Justin Ma
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shahil Pema
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02130, USA
| | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin J. Frankfort
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Nicholas M. Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
10
|
Chang L, Ran Y, Yang M, Auferkorte O, Butz E, Hüser L, Haverkamp S, Euler T, Schubert T. Spike desensitisation as a mechanism for high-contrast selectivity in retinal ganglion cells. Front Cell Neurosci 2024; 17:1337768. [PMID: 38269116 PMCID: PMC10806099 DOI: 10.3389/fncel.2023.1337768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
In the vertebrate retina, several dozens of parallel channels relay information about the visual world to the brain. These channels are represented by the different types of retinal ganglion cells (RGCs), whose responses are rendered selective for distinct sets of visual features by various mechanisms. These mechanisms can be roughly grouped into synaptic interactions and cell-intrinsic mechanisms, with the latter including dendritic morphology as well as ion channel complement and distribution. Here, we investigate how strongly ion channel complement can shape RGC output by comparing two mouse RGC types, the well-described ON alpha cell and a little-studied ON cell that is EGFP-labelled in the Igfbp5 mouse line and displays an unusual selectivity for stimuli with high contrast. Using patch-clamp recordings and computational modelling, we show that a higher activation threshold and a pronounced slow inactivation of the voltage-gated Na+ channels contribute to the distinct contrast tuning and transient responses in ON Igfbp5 RGCs, respectively. In contrast, such a mechanism could not be observed in ON alpha cells. This study provides an example for the powerful role that the last stage of retinal processing can play in shaping RGC responses.
Collapse
Affiliation(s)
- Le Chang
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Mingpo Yang
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Elisabeth Butz
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Laura Hüser
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Silke Haverkamp
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Westhaus A, Eamegdool SS, Fernando M, Fuller-Carter P, Brunet AA, Miller AL, Rashwan R, Knight M, Daniszewski M, Lidgerwood GE, Pébay A, Hewitt A, Santilli G, Thrasher AJ, Carvalho LS, Gonzalez-Cordero A, Jamieson RV, Lisowski L. AAV capsid bioengineering in primary human retina models. Sci Rep 2023; 13:21946. [PMID: 38081924 PMCID: PMC10713676 DOI: 10.1038/s41598-023-49112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Adeno-associated viral (AAV) vector-mediated retinal gene therapy is an active field of both pre-clinical as well as clinical research. As with other gene therapy clinical targets, novel bioengineered AAV variants developed by directed evolution or rational design to possess unique desirable properties, are entering retinal gene therapy translational programs. However, it is becoming increasingly evident that predictive preclinical models are required to develop and functionally validate these novel AAVs prior to clinical studies. To investigate if, and to what extent, primary retinal explant culture could be used for AAV capsid development, this study performed a large high-throughput screen of 51 existing AAV capsids in primary human retina explants and other models of the human retina. Furthermore, we applied transgene expression-based directed evolution to develop novel capsids for more efficient transduction of primary human retina cells and compared the top variants to the strongest existing benchmarks identified in the screening described above. A direct side-by-side comparison of the newly developed capsids in four different in vitro and ex vivo model systems of the human retina allowed us to identify novel AAV variants capable of high transgene expression in primary human retina cells.
Collapse
Affiliation(s)
- Adrian Westhaus
- Translational Vectorology Research Unit, Faculty of Medicine and Health, Children's Medical Research Institute, The University of Sydney, Westmead, Australia
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- Genethon, Evry, France
| | - Steven S Eamegdool
- Eye Genetics Research Unit, Faculty of Medicine and Health, Children's Medical Research Institute and Sydney Children's Hospitals Network, The University of Sydney, Westmead, Australia
| | - Milan Fernando
- Stem Cell and Organoid Facility, Faculty of Medicine and Health, Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | | | - Alicia A Brunet
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, Australia
| | - Annie L Miller
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, Australia
| | | | - Maddison Knight
- Translational Vectorology Research Unit, Faculty of Medicine and Health, Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | - Maciej Daniszewski
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Grace E Lidgerwood
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Alex Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Giorgia Santilli
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Livia S Carvalho
- Lions Eye Institute, Nedlands, Australia
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, Australia
| | - Anai Gonzalez-Cordero
- Stem Cell and Organoid Facility, Faculty of Medicine and Health, Children's Medical Research Institute, The University of Sydney, Westmead, Australia
- Stem Cell Medicine Group, Faculty of Medicine and Health, Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | - Robyn V Jamieson
- Eye Genetics Research Unit, Faculty of Medicine and Health, Children's Medical Research Institute and Sydney Children's Hospitals Network, The University of Sydney, Westmead, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Faculty of Medicine and Health, Children's Medical Research Institute, The University of Sydney, Westmead, Australia.
- Australian Genome Therapeutics Centre, Children's Medical Research Institute and Sydney Children's Hospitals Network, Westmead, NSW, 2145, Australia.
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warsaw, Poland.
| |
Collapse
|
12
|
Herrera I, Fernandes JAL, Shir-Mohammadi K, Levesque J, Mattar P. Lamin A upregulation reorganizes the genome during rod photoreceptor degeneration. Cell Death Dis 2023; 14:701. [PMID: 37880237 PMCID: PMC10600220 DOI: 10.1038/s41419-023-06224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Neurodegenerative diseases are accompanied by dynamic changes in gene expression, including the upregulation of hallmark stress-responsive genes. While the transcriptional pathways that impart adaptive and maladaptive gene expression signatures have been the focus of intense study, the role of higher order nuclear organization in this process is less clear. Here, we examine the role of the nuclear lamina in genome organization during the degeneration of rod photoreceptors. Two proteins had previously been shown to be necessary and sufficient to tether heterochromatin at the nuclear envelope. The lamin B receptor (Lbr) is expressed during development, but downregulates upon rod differentiation. A second tether is the intermediate filament lamin A (LA), which is not normally expressed in murine rods. Here, we show that in the rd1 model of retinitis pigmentosa, LA ectopically upregulates in rod photoreceptors at the onset of degeneration. LA upregulation correlated with increased heterochromatin tethering at the nuclear periphery in rd1 rods, suggesting that LA reorganizes the nucleus. To determine how heterochromatin tethering affects the genome, we used in vivo electroporation to misexpress LA or Lbr in mature rods in the absence of degeneration, resulting in the restoration of conventional nuclear architecture. Using scRNA-seq, we show that reorganizing the nucleus via LA/Lbr misexpression has relatively minor effects on rod gene expression. Next, using ATAC-seq, we show that LA and Lbr both lead to marked increases in genome accessibility. Novel ATAC-seq peaks tended to be associated with stress-responsive genes. Together, our data reveal that heterochromatin tethers have a global effect on genome accessibility, and suggest that heterochromatin tethering primes the photoreceptor genome to respond to stress.
Collapse
Affiliation(s)
- Ivana Herrera
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - José Alex Lourenço Fernandes
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Khatereh Shir-Mohammadi
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Jasmine Levesque
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Pierre Mattar
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
13
|
Maes ME, Colombo G, Schoot Uiterkamp FE, Sternberg F, Venturino A, Pohl EE, Siegert S. Mitochondrial network adaptations of microglia reveal sex-specific stress response after injury and UCP2 knockout. iScience 2023; 26:107780. [PMID: 37731609 PMCID: PMC10507162 DOI: 10.1016/j.isci.2023.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023] Open
Abstract
Mitochondrial networks remodel their connectivity, content, and subcellular localization to support optimized energy production in conditions of increased environmental or cellular stress. Microglia rely on mitochondria to respond to these stressors, however our knowledge about mitochondrial networks and their adaptations in microglia in vivo is limited. Here, we generate a mouse model that selectively labels mitochondria in microglia. We identify that mitochondrial networks are more fragmented with increased content and perinuclear localization in vitro vs. in vivo. Mitochondrial networks adapt similarly in microglia closest to the injury site after optic nerve crush. Preventing microglial UCP2 increase after injury by selective knockout induces cellular stress. This results in mitochondrial hyperfusion in male microglia, a phenotype absent in females due to circulating estrogens. Our results establish the foundation for mitochondrial network analysis of microglia in vivo, emphasizing the importance of mitochondrial-based sex effects of microglia in other pathologies.
Collapse
Affiliation(s)
- Margaret E. Maes
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Gloria Colombo
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | | | - Felix Sternberg
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Alessandro Venturino
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Elena E. Pohl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Sandra Siegert
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
14
|
Norrie JL, Lupo M, Shirinifard A, Djekidel N, Ramirez C, Xu B, Dundee JM, Dyer MA. Latent Epigenetic Programs in Müller Glia Contribute to Stress, Injury, and Disease Response in the Retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562396. [PMID: 37905050 PMCID: PMC10614790 DOI: 10.1101/2023.10.15.562396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Previous studies have demonstrated the dynamic changes in chromatin structure during retinal development that correlate with changes in gene expression. However, a major limitation of those prior studies was the lack of cellular resolution. Here, we integrate single-cell (sc) RNA-seq and scATAC-seq with bulk retinal data sets to identify cell type-specific changes in the chromatin structure during development. Although most genes' promoter activity is strongly correlated with chromatin accessibility, we discovered several hundred genes that were transcriptionally silent but had accessible chromatin at their promoters. Most of those silent/accessible gene promoters were in the Müller glial cells. The Müller cells are radial glia of the retina and perform a variety of essential functions to maintain retinal homeostasis and respond to stress, injury, or disease. The silent/accessible genes in Müller glia are enriched in pathways related to inflammation, angiogenesis, and other types of cell-cell signaling and were rapidly activated when we tested 15 different physiologically relevant conditions to mimic retinal stress, injury, or disease in human and murine retinae. We refer to these as "pliancy genes" because they allow the Müller glia to rapidly change their gene expression and cellular state in response to different types of retinal insults. The Müller glial cell pliancy program is established during development, and we demonstrate that pliancy genes are necessary and sufficient for regulating inflammation in the murine retina in vivo. In zebrafish, Müller glia can de-differentiate and form retinal progenitor cells that replace lost neurons. The pro-inflammatory pliancy gene cascade is not activated in zebrafish Müller glia following injury, and we propose a model in which species-specific pliancy programs underly the differential response to retinal damage in species that can regenerate retinal neurons (zebrafish) versus those that cannot (humans and mice).
Collapse
|
15
|
Zhang L, Abedin M, Jo HN, Levey J, Dinh QC, Chen Z, Angers S, Junge HJ. A Frizzled4-LRP5 agonist promotes blood-retina barrier function by inducing a Norrin-like transcriptional response. iScience 2023; 26:107415. [PMID: 37559903 PMCID: PMC10407957 DOI: 10.1016/j.isci.2023.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/22/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023] Open
Abstract
Norrin (NDP) and WNT7A/B induce and maintain the blood-brain and blood-retina barrier (BBB, BRB) by stimulating the Frizzled4-LDL receptor related protein 5/6 (FZD4-LRP5/6) complex to induce beta-catenin-dependent signaling in endothelial cells (ECs). Recently developed agonists for the FZD4-LRP5 complex have therapeutic potential in retinal and neurological diseases. Here, we use the tetravalent antibody modality F4L5.13 to identify agonist activities in Tspan12-/- mice, which display a complex retinal pathology due to impaired NDP-signaling. F4L5.13 administration during development alleviates BRB defects, retinal hypovascularization, and restores neural function. In mature Tspan12-/- mice F4L5.13 partially induces a BRB de novo without inducing angiogenesis. In a genetic model of impaired BRB maintenance, administration of F4L5.13 rapidly and substantially restores the BRB. scRNA-seq reveals perturbations of key mediators of barrier functions in juvenile Tspan12-/- mice, which are in large parts restored after F4L5.13 administration. This study identifies transcriptional and functional activities of FZD4-LRP5 agonists.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Md. Abedin
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Ha-Neul Jo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Jacklyn Levey
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Quynh Chau Dinh
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Zhe Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Stephane Angers
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Harald J. Junge
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
16
|
Zeitz C, Roger JE, Audo I, Michiels C, Sánchez-Farías N, Varin J, Frederiksen H, Wilmet B, Callebert J, Gimenez ML, Bouzidi N, Blond F, Guilllonneau X, Fouquet S, Léveillard T, Smirnov V, Vincent A, Héon E, Sahel JA, Kloeckener-Gruissem B, Sennlaub F, Morgans CW, Duvoisin RM, Tkatchenko AV, Picaud S. Shedding light on myopia by studying complete congenital stationary night blindness. Prog Retin Eye Res 2023; 93:101155. [PMID: 36669906 DOI: 10.1016/j.preteyeres.2022.101155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling. Differentially expressed genes (DEGs) identified in animal models mimicking myopia are helpful in suggesting candidate genes implicated in human myopia. Complete congenital stationary night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal transmission defect and is also associated with high myopia. Thus, it represents also an interesting model to identify myopia-related genes, as well as disease mechanisms. While the origin of night blindness is molecularly well established, further research is needed to elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole transcriptome analysis on three different mouse models of cCSNB (in Gpr179-/-, Lrit3-/- and Grm6-/-), we identified novel actors of the retinal signaling cascade, which are also novel candidate genes for myopia. Meta-analysis of our transcriptomic data with published transcriptomic databases and genome-wide association studies from myopia cases led us to propose new biological/cellular processes/mechanisms potentially at the origin of myopia in cCSNB subjects. The results provide a foundation to guide the development of pharmacological myopia therapies.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| | - Jérome E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Saclay, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | | | | | - Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, APHP, Paris, France
| | | | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Frederic Blond
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Stéphane Fouquet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vasily Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Robert M Duvoisin
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Andrei V Tkatchenko
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, China; Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
17
|
Smirnov VM, Robert MP, Condroyer C, Navarro J, Antonio A, Rozet JM, Sahel JA, Perrault I, Audo I, Zeitz C. Association of Missense Variants in VSX2 With a Peculiar Form of Congenital Stationary Night Blindness Affecting All Bipolar Cells. JAMA Ophthalmol 2022; 140:1163-1173. [PMID: 36264558 PMCID: PMC9585472 DOI: 10.1001/jamaophthalmol.2022.4146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/23/2022] [Indexed: 01/12/2023]
Abstract
Importance Congenital stationary night blindness (CSNB) is an inherited stationary retinal disorder that is clinically and genetically heterogeneous. To date, the genetic association between some cases with CSNB and an unusual complex clinical picture is unclear. Objective To describe an unreported CSNB phenotype and the associated gene defect in 3 patients from 2 unrelated families. Design, Setting, and Participants This retrospective case series was conducted in 2021 and 2022 at a national referral center for rare ocular diseases. Data for 3 patients from a cohort of 140 genetically unsolved CSNB cases were analyzed clinically and genetically. Exposures Complete ocular examination including full-field electroretinography and multimodal fundus imaging (spectral-domain optical coherence tomography, color, infrared reflectance, and short-wavelength autofluorescence photographs) were performed. The gene defect was identified by exome sequencing and confirmed by Sanger sequencing and co-segregation analysis in 1 family. Screening was performed for genetically unsolved CSNB cases for VSX2 variants by direct Sanger sequencing. Main Outcomes and Measures Ocular and molecular biology findings. Results The series included 3 patients whose clinical investigations occurred at ages in the early 30s, younger than 12 years, and in the mid 40s. They had nystagmus, low stable visual acuity, and myopia from birth and experienced night blindness. Two older patients had bilateral lens luxation and underwent lens extraction. Full-field electroretinography revealed an electronegative Schubert-Bornschein appearance, combining characteristics of incomplete and complete CSNB, affecting the function of rod and cone ON- and OFF-bipolar cells. Exome sequencing and co-segregation analysis in a consanguineous family with 2 affected members identified a homozygous variant in VSX2. Subsequently, screening of the CSNB cohort identified another unrelated patient harboring a distinct VSX2 variant. Conclusions and Relevance This case series revealed a peculiar pan-bipolar cell retinopathy with lens luxation associated with variants in VSX2. Clinicians should be aware of this association and VSX2 added to CSNB diagnostic gene panels.
Collapse
Affiliation(s)
- Vasily M. Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Université de Lille, Faculté de Médecine, Lille, France
- Exploration de la Vision et Neuro-Ophtalmologie, CHU de Lille, Lille, France
| | - Matthieu P. Robert
- Ophthalmology Department, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris University, Gif-sur-Yvette, France
| | | | - Julien Navarro
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR 1163, Institute of Genetic Diseases, Imagine Institute, and Paris University, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Isabelle Perrault
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR 1163, Institute of Genetic Diseases, Imagine Institute, and Paris University, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
18
|
Subramanian R, Sahoo D. Boolean implication analysis of single-cell data predicts retinal cell type markers. BMC Bioinformatics 2022; 23:378. [PMID: 36114457 PMCID: PMC9482279 DOI: 10.1186/s12859-022-04915-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background The retina is a complex tissue containing multiple cell types that are essential for vision. Understanding the gene expression patterns of various retinal cell types has potential applications in regenerative medicine. Retinal organoids (optic vesicles) derived from pluripotent stem cells have begun to yield insights into the transcriptomics of developing retinal cell types in humans through single cell RNA-sequencing studies. Previous methods of gene reporting have relied upon techniques in vivo using microarray data, or correlational and dimension reduction methods for analyzing single cell RNA-sequencing data computationally. We aimed to develop a state-of-the-art Boolean method that filtered out noise, could be applied to a wide variety of datasets and lent insight into gene expression over differentiation. Results Here, we present a bioinformatic approach using Boolean implication to discover genes which are retinal cell type-specific or involved in retinal cell fate. We apply this approach to previously published retina and retinal organoid datasets and improve upon previously published correlational methods. Our method improves the prediction accuracy of marker genes of retinal cell types and discovers several new high confidence cone and rod-specific genes. Conclusions The results of this study demonstrate the benefits of a Boolean approach that considers asymmetric relationships. We have shown a statistically significant improvement from correlational, symmetric methods in the prediction accuracy of retinal cell-type specific genes. Furthermore, our method contains no cell or tissue-specific tuning and hence could impact other areas of gene expression analyses in cancer and other human diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04915-4.
Collapse
|
19
|
Chimeric GPCRs mimic distinct signaling pathways and modulate microglia responses. Nat Commun 2022; 13:4728. [PMID: 35970889 PMCID: PMC9378622 DOI: 10.1038/s41467-022-32390-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate processes ranging from immune responses to neuronal signaling. However, ligands for many GPCRs remain unknown, suffer from off-target effects or have poor bioavailability. Additionally, dissecting cell type-specific responses is challenging when the same GPCR is expressed on different cells within a tissue. Here, we overcome these limitations by engineering DREADD-based GPCR chimeras that bind clozapine-N-oxide and mimic a GPCR-of-interest. We show that chimeric DREADD-β2AR triggers responses comparable to β2AR on second messenger and kinase activity, post-translational modifications, and protein-protein interactions. Moreover, we successfully recapitulate β2AR-mediated filopodia formation in microglia, an immune cell capable of driving central nervous system inflammation. When dissecting microglial inflammation, we included two additional DREADD-based chimeras mimicking microglia-enriched GPR65 and GPR109A. DREADD-β2AR and DREADD-GPR65 modulate the inflammatory response with high similarity to endogenous β2AR, while DREADD-GPR109A shows no impact. Our DREADD-based approach allows investigation of cell type-dependent pathways without known endogenous ligands. Understanding the function of GPCRs requires stimulation with their specific ligands. Here, the authors design chemogenetic G-protein coupled receptors that allows for the study of receptors without knowing the immediate ligand, and demonstrate its use for the β2-adrenergic receptor in microglia.
Collapse
|
20
|
Tapia ML, Nascimento-Dos-Santos G, Park KK. Subtype-specific survival and regeneration of retinal ganglion cells in response to injury. Front Cell Dev Biol 2022; 10:956279. [PMID: 36035999 PMCID: PMC9411869 DOI: 10.3389/fcell.2022.956279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Retinal ganglion cells (RGCs) are a heterogeneous population of neurons that function synchronously to convey visual information through the optic nerve to retinorecipient target areas in the brain. Injury or disease to the optic nerve results in RGC degeneration and loss of visual function, as few RGCs survive, and even fewer can be provoked to regenerate their axons. Despite causative insults being broadly shared, regeneration studies demonstrate that RGC types exhibit differential resilience to injury and undergo selective survival and regeneration of their axons. While most early studies have identified these RGC types based their morphological and physiological characteristics, recent advances in transgenic and gene sequencing technologies have further enabled type identification based on unique molecular features. In this review, we provide an overview of the well characterized RGC types and identify those shown to preferentially survive and regenerate in various regeneration models. Furthermore, we discuss cellular characteristics of both the resilient and susceptible RGC types including the combinatorial expression of different molecular markers that identify these specific populations. Lastly, we discuss potential molecular mechanisms and genes found to be selectively expressed by specific types that may contribute to their reparative capacity. Together, we describe the studies that lay the important groundwork for identifying factors that promote neural regeneration and help advance the development of targeted therapy for the treatment of RGC degeneration as well as neurodegenerative diseases in general.
Collapse
Affiliation(s)
- Mary L Tapia
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gabriel Nascimento-Dos-Santos
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kevin K Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
21
|
Palfi A, Chadderton N, Millington-Ward S, Post I, Humphries P, Kenna PF, Farrar GJ. AAV-PHP.eB transduces both the inner and outer retina with high efficacy in mice. Mol Ther Methods Clin Dev 2022; 25:236-249. [PMID: 35474956 PMCID: PMC9018541 DOI: 10.1016/j.omtm.2022.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/27/2022] [Indexed: 12/18/2022]
Abstract
Recombinant adeno-associated virus (AAV) vectors are one of the main gene delivery vehicles used in retinal gene therapy approaches; however, there is a need to further improve the efficacy, tropism, and safety of these vectors. In this study, using a CMV-EGFP expression cassette, we characterize the retinal utility of AAV-PHP.eB, a serotype recently developed by in vivo directed evolution, which can cross the blood-brain barrier and target neurons with high efficacy in mice. Systemic and intravitreal delivery of AAV-PHP.eB resulted in the high transduction efficacy of retinal ganglion and horizontal cells, with systemic delivery providing pan-retinal coverage of the mouse retina. Subretinal delivery transduced photoreceptors and retinal pigment epithelium cells robustly. EGFP expression (number of transduced cells and mRNA levels) were similar when the retinas were transduced systemically or intravitreally with AAV-PHP.eB or intravitreally with AAV2/2. Notably, in photoreceptors, EGFP fluorescence intensities and mRNA levels were 50–70 times higher, when subretinal injections with AAV-PHP.eB were compared to AAV2/8. Our results demonstrate the pan-retinal transduction of ganglion cells and extremely efficient transduction of photoreceptor and retinal pigment epithelium cells as the most valuable features of AAV-PHP.eB in the mouse retina.
Collapse
Affiliation(s)
- Arpad Palfi
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Naomi Chadderton
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Sophia Millington-Ward
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Iris Post
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Pete Humphries
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Paul F Kenna
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland.,The Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51, Dublin, Ireland
| | - G Jane Farrar
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| |
Collapse
|
22
|
Dou J, Liang S, Mohanty V, Miao Q, Huang Y, Liang Q, Cheng X, Kim S, Choi J, Li Y, Li L, Daher M, Basar R, Rezvani K, Chen R, Chen K. Bi-order multimodal integration of single-cell data. Genome Biol 2022; 23:112. [PMID: 35534898 PMCID: PMC9082907 DOI: 10.1186/s13059-022-02679-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
Integration of single-cell multiomics profiles generated by different single-cell technologies from the same biological sample is still challenging. Previous approaches based on shared features have only provided approximate solutions. Here, we present a novel mathematical solution named bi-order canonical correlation analysis (bi-CCA), which extends the widely used CCA approach to iteratively align the rows and the columns between data matrices. Bi-CCA is generally applicable to combinations of any two single-cell modalities. Validations using co-assayed ground truth data and application to a CAR-NK study and a fetal muscle atlas demonstrate its capability in generating accurate multimodal co-embeddings and discovering cellular identity.
Collapse
Affiliation(s)
- Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Shaoheng Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Qi Miao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Yuefan Huang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Qingnan Liang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Xuesen Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Sangbae Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Jongsu Choi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Li Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
23
|
Bertrand RE, Wang J, Li Y, Cheng X, Wang K, Stoilov P, Chen R. Cwc27, associated with retinal degeneration, functions as a splicing factor in vivo. Hum Mol Genet 2022; 31:1278-1292. [PMID: 34726245 PMCID: PMC9029344 DOI: 10.1093/hmg/ddab319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
Previous in vitro studies indicate that CWC27 functions as a splicing factor in the Bact spliceosome complex, interacting with CWC22 to form a landing platform for eIF4A3, a core component of the exon junction complex. However, the function of CWC27 as a splicing factor has not been validated in any in vivo systems. CWC27 variants have been shown to cause autosomal recessive retinal degeneration, in both syndromic and non-syndromic forms. The Cwc27K338fs/K338fs mouse model was shown to have significant retinal dysfunction and degeneration by 6 months of age. In this report, we have taken advantage of the Cwc27K338fs/K338fs mouse model to show that Cwc27 is involved in splicing in vivo in the context of the retina. Bulk RNA and single cell RNA-sequencing of the mouse retina showed that there were gene expression and splicing pattern changes, including alternative splice site usage and intron retention. Positive staining for CHOP suggests that ER stress may be activated in response to the splicing pattern changes and is a likely contributor to the disease mechanism. Our results provide the first evidence that CWC27 functions as a splicing factor in an in vivo context. The splicing defects and gene expression changes observed in the Cwc27K338fs/K338fs mouse retina provide insight to the potential disease mechanisms, paving the way for targeted therapeutic development.
Collapse
Affiliation(s)
- Renae Elaine Bertrand
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuesen Cheng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Stoilov
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
24
|
Li Q, Zhu H, Fan M, Sun J, Reinach PS, Wang Y, Qu J, Zhou X, Zhao F. Form-deprivation myopia downregulates calcium levels in retinal horizontal cells in mice. Exp Eye Res 2022; 218:109018. [PMID: 35240197 DOI: 10.1016/j.exer.2022.109018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/25/2022]
Abstract
The process of eye axis lengthening in myopic eyes is regulated by multiple mechanisms in the retina, and horizontal cells (HCs) are an essential interneuron in the visual regulatory system. Wherein intracellular Ca2+ plays an important role in the events involved in the regulatory role of HCs in the retinal neural network. It is unknown if intracellular Ca2+ regulation in HCs mediates changes in the retinal neural network during myopia progression. We describe here a novel calcium fluorescence indicator system that monitors HCs' intracellular Ca2+ levels during form-deprivation myopia (FDM) in mice. AAV injection of GCaMP6s, as a protein calcium sensor, into a Gja10-Cre mouse monitored the changes in Ca2+signaling in HC that accompany FDM progression in mice. An alternative Gja10-Cre/Ai96-GCaMP6s mouse model was created by cross mating Gja10-Cre with Ai96 mice. Immunofluorescence imaging and live imaging of the retinal cells verified the identity of these animal models. Changes in retinal horizontal cellular Ca2+ levels were resolved during FDM development. The numbers of GCaMP6s and the proportion of HCs were tracked based on profiling changes in GCaMP6s+calbindin+/calbindin+ coimmunostaining patterns. They significantly decreased more after either two days (P < 0.01) or two weeks (P < 0.001) in form deprived eyes than in the untreated fellow eyes. These decreases in their proportion reached significance only in the retinal central region rather than also in the retinal periphery. A novel approach employing a GCaMP6s mouse model was developed that may ultimately clarify if HCs mediate Ca2+ signals that contribute to controlling FDM progression in mice. The results indicate so far that FDM progression is associated with declines in HC Ca2+ signaling activity.
Collapse
Affiliation(s)
- Qihang Li
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - He Zhu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Miaomiao Fan
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jing Sun
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Peter S Reinach
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Yuhan Wang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China; Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China; Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China.
| | - Fuxin Zhao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China.
| |
Collapse
|
25
|
Collin GB, Shi L, Yu M, Akturk N, Charette JR, Hyde LF, Weatherly SM, Pera MF, Naggert JK, Peachey NS, Nishina PM, Krebs MP. A Splicing Mutation in Slc4a5 Results in Retinal Detachment and Retinal Pigment Epithelium Dysfunction. Int J Mol Sci 2022; 23:2220. [PMID: 35216333 PMCID: PMC8875008 DOI: 10.3390/ijms23042220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/29/2022] Open
Abstract
Fluid and solute transporters of the retinal pigment epithelium (RPE) are core components of the outer blood-retinal barrier. Characterizing these transporters and their role in retinal homeostasis may provide insights into ocular function and disease. Here, we describe RPE defects in tvrm77 mice, which exhibit hypopigmented patches in the central retina. Mapping and nucleotide sequencing of tvrm77 mice revealed a disrupted 5' splice donor sequence in Slc4a5, a sodium bicarbonate cotransporter gene. Slc4a5 expression was reduced 19.7-fold in tvrm77 RPE relative to controls, and alternative splice variants were detected. SLC4A5 was localized to the Golgi apparatus of cultured human RPE cells and in apical and basal membranes. Fundus imaging, optical coherence tomography, microscopy, and electroretinography (ERG) of tvrm77 mice revealed retinal detachment, hypopigmented patches corresponding to neovascular lesions, and retinal folds. Detachment worsened and outer nuclear layer thickness decreased with age. ERG a- and b-wave response amplitudes were initially normal but declined in older mice. The direct current ERG fast oscillation and light peak were reduced in amplitude at all ages, whereas other RPE-associated responses were unaffected. These results link a new Slc4a5 mutation to subretinal fluid accumulation and altered light-evoked RPE electrophysiological responses, suggesting that SLC4A5 functions at the outer blood-retinal barrier.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Lanying Shi
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; (M.Y.); (N.S.P.)
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Nurten Akturk
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Jeremy R. Charette
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Sonia M. Weatherly
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Martin F. Pera
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; (M.Y.); (N.S.P.)
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Research Service, Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Patsy M. Nishina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Mark P. Krebs
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| |
Collapse
|
26
|
Maes ME, Wögenstein GM, Colombo G, Casado-Polanco R, Siegert S. Optimizing AAV2/6 microglial targeting identified enhanced efficiency in the photoreceptor degenerative environment. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:210-224. [PMID: 34703843 PMCID: PMC8516996 DOI: 10.1016/j.omtm.2021.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
Adeno-associated viruses (AAVs) are widely used to deliver genetic material in vivo to distinct cell types such as neurons or glial cells, allowing for targeted manipulation. Transduction of microglia is mostly excluded from this strategy, likely due to the cells’ heterogeneous state upon environmental changes, which makes AAV design challenging. Here, we established the retina as a model system for microglial AAV validation and optimization. First, we show that AAV2/6 transduced microglia in both synaptic layers, where layer preference corresponds to the intravitreal or subretinal delivery method. Surprisingly, we observed significantly enhanced microglial transduction during photoreceptor degeneration. Thus, we modified the AAV6 capsid to reduce heparin binding by introducing four point mutations (K531E, R576Q, K493S, and K459S), resulting in increased microglial transduction in the outer plexiform layer. Finally, to improve microglial-specific transduction, we validated a Cre-dependent transgene delivery cassette for use in combination with the Cx3cr1CreERT2 mouse line. Together, our results provide a foundation for future studies optimizing AAV-mediated microglia transduction and highlight that environmental conditions influence microglial transduction efficiency.
Collapse
Affiliation(s)
- Margaret E Maes
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | | | - Gloria Colombo
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | | | - Sandra Siegert
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
27
|
Gal E, Amsalem O, Schindel A, London M, Schürmann F, Markram H, Segev I. The Role of Hub Neurons in Modulating Cortical Dynamics. Front Neural Circuits 2021; 15:718270. [PMID: 34630046 PMCID: PMC8500625 DOI: 10.3389/fncir.2021.718270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
Many neurodegenerative diseases are associated with the death of specific neuron types in particular brain regions. What makes the death of specific neuron types particularly harmful for the integrity and dynamics of the respective network is not well understood. To start addressing this question we used the most up-to-date biologically realistic dense neocortical microcircuit (NMC) of the rodent, which has reconstructed a volume of 0.3 mm3 and containing 31,000 neurons, ∼37 million synapses, and 55 morphological cell types arranged in six cortical layers. Using modern network science tools, we identified hub neurons in the NMC, that are connected synaptically to a large number of their neighbors and systematically examined the impact of abolishing these cells. In general, the structural integrity of the network is robust to cells’ attack; yet, attacking hub neurons strongly impacted the small-world topology of the network, whereas similar attacks on random neurons have a negligible effect. Such hub-specific attacks are also impactful on the network dynamics, both when the network is at its spontaneous synchronous state and when it was presented with synchronized thalamo-cortical visual-like input. We found that attacking layer 5 hub neurons is most harmful to the structural and functional integrity of the NMC. The significance of our results for understanding the role of specific neuron types and cortical layers for disease manifestation is discussed.
Collapse
Affiliation(s)
- Eyal Gal
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oren Amsalem
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alon Schindel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael London
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Felix Schürmann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Idan Segev
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
28
|
cGMP-PKG dependent transcriptome in normal and degenerating retinas: Novel insights into the retinitis pigmentosa pathology. Exp Eye Res 2021; 212:108752. [PMID: 34478738 DOI: 10.1016/j.exer.2021.108752] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022]
Abstract
Retinitis Pigmentosa represents a group of genetic disorders that cause progressive vision loss via degeneration of photoreceptors, but there is in principle no treatment available. For any therapy development, a deeper comprehension of the disease-leading mechanism(s) at the molecular level is needed. Here we focused on the cGMP-PKG system, which has been suggested to be a driver in several models of the disease. To gain insights in its downstream signaling we manipulated the cGMP-PKG system with the aid of organotypic retinal explant cultures from either a mouse-based disease model, i.e. the rd1 mouse, or its healthy wild-type counterpart (wt), by adding different types of cGMP analogues to either inhibit or activate PKG in retinal explants from rd1 and wt, respectively. An RNA sequencing was then performed to study the cGMP-PKG dependent transcriptome. Expression changes of gene sets related to specific pathways or functions, that fulfilled criteria involving that the changes should match PKG activation and inhibition, were determined via bioinformatics. The analyses highlighted that several gene sets linked to oxidative phosphorylation and mitochondrial pathways were regulated by this enzyme system. Specifically, the expression of such pathway components was upregulated in the rd1 treated with PKG inhibitor and downregulated in the wt with PKG activator treatment, suggesting that cGMP-PKG act as a negative regulator in this context. Downregulation of energy production pathways may thus play an integral part in the mechanism behind the degeneration for at least several RP mutations.
Collapse
|
29
|
Transcriptomic analysis of the mouse retina after acute and chronic normobaric and hypobaric hypoxia. Sci Rep 2021; 11:16666. [PMID: 34404875 PMCID: PMC8371159 DOI: 10.1038/s41598-021-96150-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Oxygen delivery to the retinal pigment epithelium and the outer retina is essential for metabolism, function, and survival of photoreceptors. Chronically reduced oxygen supply leads to retinal pathologies in patients and causes age-dependent retinal degeneration in mice. Hypoxia can result from decreased levels of inspired oxygen (normobaric hypoxia) or reduced barometric pressure (hypobaric hypoxia). Since the response of retinal cells to chronic normobaric or hypobaric hypoxia is mostly unknown, we examined the effect of six hypoxic conditions on the retinal transcriptome and photoreceptor morphology. Mice were exposed to short- and long-term normobaric hypoxia at 400 m or hypobaric hypoxia at 3450 m above sea level. Longitudinal studies over 11 weeks in normobaric hypoxia revealed four classes of genes that adapted differentially to the hypoxic condition. Seventeen genes were specifically regulated in hypobaric hypoxia and may affect the structural integrity of the retina, resulting in the shortening of photoreceptor segment length detected in various hypoxic groups. This study shows that retinal cells have the capacity to adapt to long-term hypoxia and that consequences of hypobaric hypoxia differ from those of normobaric hypoxia. Our datasets can be used as references to validate and compare retinal disease models associated with hypoxia.
Collapse
|
30
|
Mutated CCDC51 Coding for a Mitochondrial Protein, MITOK Is a Candidate Gene Defect for Autosomal Recessive Rod-Cone Dystrophy. Int J Mol Sci 2021; 22:ijms22157875. [PMID: 34360642 PMCID: PMC8346125 DOI: 10.3390/ijms22157875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated.
Collapse
|
31
|
Ganzen L, Ko MJ, Zhang M, Xie R, Chen Y, Zhang L, James R, Mumm J, van Rijn RM, Zhong W, Pang CP, Zhang M, Tsujikawa M, Leung YF. Drug screening with zebrafish visual behavior identifies carvedilol as a potential treatment for an autosomal dominant form of retinitis pigmentosa. Sci Rep 2021; 11:11432. [PMID: 34075074 PMCID: PMC8169685 DOI: 10.1038/s41598-021-89482-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/23/2021] [Indexed: 02/04/2023] Open
Abstract
Retinitis Pigmentosa (RP) is a mostly incurable inherited retinal degeneration affecting approximately 1 in 4000 individuals globally. The goal of this work was to identify drugs that can help patients suffering from the disease. To accomplish this, we screened drugs on a zebrafish autosomal dominant RP model. This model expresses a truncated human rhodopsin transgene (Q344X) causing significant rod degeneration by 7 days post-fertilization (dpf). Consequently, the larvae displayed a deficit in visual motor response (VMR) under scotopic condition. The diminished VMR was leveraged to screen an ENZO SCREEN-WELL REDOX library since oxidative stress is postulated to play a role in RP progression. Our screening identified a beta-blocker, carvedilol, that ameliorated the deficient VMR of the RP larvae and increased their rod number. Carvedilol may directly on rods as it affected the adrenergic pathway in the photoreceptor-like human Y79 cell line. Since carvedilol is an FDA-approved drug, our findings suggest that carvedilol can potentially be repurposed to treat autosomal dominant RP patients.
Collapse
Affiliation(s)
- Logan Ganzen
- grid.169077.e0000 0004 1937 2197Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Purdue University Life Sciences Program, Purdue University, West Lafayette, IN 47907 USA
| | - Mee Jung Ko
- grid.169077.e0000 0004 1937 2197Purdue University Life Sciences Program, Purdue University, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907 USA
| | - Mengrui Zhang
- grid.213876.90000 0004 1936 738XDepartment of Statistics, University of Georgia, Athens, GA 30602 USA
| | - Rui Xie
- grid.170430.10000 0001 2159 2859Department of Statistics and Data Science, University of Central Florida, Orlando, FL 32816 USA
| | - Yongkai Chen
- grid.213876.90000 0004 1936 738XDepartment of Statistics, University of Georgia, Athens, GA 30602 USA
| | - Liyun Zhang
- grid.21107.350000 0001 2171 9311Wilmer Eye Institute, John Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Rebecca James
- grid.169077.e0000 0004 1937 2197Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
| | - Jeff Mumm
- grid.21107.350000 0001 2171 9311Wilmer Eye Institute, John Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Richard M. van Rijn
- grid.169077.e0000 0004 1937 2197Purdue University Life Sciences Program, Purdue University, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Purdue Institute for Integrative Neuroscience, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Purdue Institute for Drug Discovery, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907 USA
| | - Wenxuan Zhong
- grid.213876.90000 0004 1936 738XDepartment of Statistics, University of Georgia, Athens, GA 30602 USA
| | - Chi Pui Pang
- grid.10784.3a0000 0004 1937 0482Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong, China ,grid.263451.70000 0000 9927 110XJoint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Mingzhi Zhang
- grid.263451.70000 0000 9927 110XJoint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Motokazu Tsujikawa
- grid.136593.b0000 0004 0373 3971Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuk Fai Leung
- grid.169077.e0000 0004 1937 2197Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA ,grid.257413.60000 0001 2287 3919Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Lafayette, 625 Harrison Street, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Purdue Institute for Integrative Neuroscience, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Purdue Institute for Drug Discovery, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907 USA
| |
Collapse
|
32
|
Wu M, Deng Q, Lei X, Du Y, Shen Y. Elavl2 Regulates Retinal Function Via Modulating the Differentiation of Amacrine Cells Subtype. Invest Ophthalmol Vis Sci 2021; 62:1. [PMID: 34061953 PMCID: PMC8185395 DOI: 10.1167/iovs.62.7.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose The neuronal ELAV-like proteins (nElavls; Elavl2, Elavl3, Elavl4) have been known to regulate neuronal differentiation, maintenance, and axonogenesis in the brain. However, the specific role of nElavls in retina remains unclear. Here, we attempted to identify the expression pattern of Elavl2 during retinogenesis and aimed to decipher the function of Elavl2 in the retina. Methods We have used the Cre-loxP system to conditionally inactivate Elavl2 in order to examine its role in developing retina. Eyes were collected for histology, immunohistochemistry, and TUNEL analysis to identify the structure of retina, and examined by RNA sequencing to analyze the function and pathway enrichment of differentially expressed genes in transgenic mice. Moreover, the mechanism by which Elavl2 regulates the differentiation of amacrine cells (ACs) was explored by RNA immunoprecipitation assays. Finally, eyes were functionally assessed by whole-cell patch-clamp, electroretinography (ERG) and optomotor response. Results Elavl2 was expressed in retinal progenitor cells and retinal ganglion cells (RGCs), ACs, and horizontal cells. Retina-specific ablation of Elavl2 led to the loss of ACs and the transcription factors involved in ACs differentiation were also downregulated. In addition, the spontaneous activities of RGCs were obviously increased in Elavl2-deficient mice. Meanwhile, the loss of ACs that induced by Elavl2 deficiency lead to a decrease in ERG responses and visual acuity. Conclusions Elavl2 is an intrinsic factor that involved in the differentiation of ACs subtype during retinogenesis, and essential for maintaining the normal retinal function.
Collapse
Affiliation(s)
- Mengjuan Wu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Qinqin Deng
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Xinlan Lei
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yuxin Du
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
33
|
Cowan CS, Renner M, De Gennaro M, Gross-Scherf B, Goldblum D, Hou Y, Munz M, Rodrigues TM, Krol J, Szikra T, Cuttat R, Waldt A, Papasaikas P, Diggelmann R, Patino-Alvarez CP, Galliker P, Spirig SE, Pavlinic D, Gerber-Hollbach N, Schuierer S, Srdanovic A, Balogh M, Panero R, Kusnyerik A, Szabo A, Stadler MB, Orgül S, Picelli S, Hasler PW, Hierlemann A, Scholl HPN, Roma G, Nigsch F, Roska B. Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution. Cell 2021; 182:1623-1640.e34. [PMID: 32946783 PMCID: PMC7505495 DOI: 10.1016/j.cell.2020.08.013] [Citation(s) in RCA: 355] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 06/14/2020] [Accepted: 08/06/2020] [Indexed: 01/05/2023]
Abstract
Human organoids recapitulating the cell-type diversity and function of their target organ are valuable for basic and translational research. We developed light-sensitive human retinal organoids with multiple nuclear and synaptic layers and functional synapses. We sequenced the RNA of 285,441 single cells from these organoids at seven developmental time points and from the periphery, fovea, pigment epithelium and choroid of light-responsive adult human retinas, and performed histochemistry. Cell types in organoids matured in vitro to a stable "developed" state at a rate similar to human retina development in vivo. Transcriptomes of organoid cell types converged toward the transcriptomes of adult peripheral retinal cell types. Expression of disease-associated genes was cell-type-specific in adult retina, and cell-type specificity was retained in organoids. We implicate unexpected cell types in diseases such as macular degeneration. This resource identifies cellular targets for studying disease mechanisms in organoids and for targeted repair in human retinas.
Collapse
Affiliation(s)
- Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Magdalena Renner
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Martina De Gennaro
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Brigitte Gross-Scherf
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - David Goldblum
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Yanyan Hou
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Martin Munz
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Tiago M Rodrigues
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Jacek Krol
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Tamas Szikra
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Rachel Cuttat
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Annick Waldt
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Roland Diggelmann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering of ETH Zurich, 4058 Basel, Switzerland
| | - Claudia P Patino-Alvarez
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Patricia Galliker
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Stefan E Spirig
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Dinko Pavlinic
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | | | - Sven Schuierer
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Aldin Srdanovic
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Marton Balogh
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Riccardo Panero
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Akos Kusnyerik
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Arnold Szabo
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1085 Budapest, Hungary
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Selim Orgül
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Simone Picelli
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Pascal W Hasler
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Andreas Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering of ETH Zurich, 4058 Basel, Switzerland
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland; Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Guglielmo Roma
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | - Florian Nigsch
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
34
|
Fina ME, Wang J, Nikonov SS, Sterling S, Vardi N, Kashina A, Dong DW. Arginyltransferase (Ate1) regulates the RGS7 protein level and the sensitivity of light-evoked ON-bipolar responses. Sci Rep 2021; 11:9376. [PMID: 33931669 PMCID: PMC8087773 DOI: 10.1038/s41598-021-88628-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Regulator of G-protein signaling 7 (RGS7) is predominately present in the nervous system and is essential for neuronal signaling involving G-proteins. Prior studies in cultured cells showed that RGS7 is regulated via proteasomal degradation, however no protein is known to facilitate proteasomal degradation of RGS7 and it has not been shown whether this regulation affects G-protein signaling in neurons. Here we used a knockout mouse model with conditional deletion of arginyltransferase (Ate1) in the nervous system and found that in retinal ON bipolar cells, where RGS7 modulates a G-protein to signal light increments, deletion of Ate1 raised the level of RGS7. Electroretinographs revealed that lack of Ate1 leads to increased light-evoked response sensitivities of ON-bipolar cells, as well as their downstream neurons. In cultured mouse embryonic fibroblasts (MEF), RGS7 was rapidly degraded via proteasome pathway and this degradation was abolished in Ate1 knockout MEF. Our results indicate that Ate1 regulates RGS7 protein level by facilitating proteasomal degradation of RGS7 and thus affects G-protein signaling in neurons.
Collapse
Affiliation(s)
- Marie E Fina
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Junling Wang
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sergei S Nikonov
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephanie Sterling
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Noga Vardi
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Dawei W Dong
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
35
|
Gilhooley MJ, Hickey DG, Lindner M, Palumaa T, Hughes S, Peirson SN, MacLaren RE, Hankins MW. ON-bipolar cell gene expression during retinal degeneration: Implications for optogenetic visual restoration. Exp Eye Res 2021; 207:108553. [PMID: 33811915 PMCID: PMC8214074 DOI: 10.1016/j.exer.2021.108553] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022]
Abstract
Purpose Retinal bipolar cells survive even in the later stages of inherited retinal degenerations (IRDs) and so are attractive targets for optogenetic approaches to vision restoration. However, it is not known to what extent the remodelling that these cells undergo during degeneration affects their function. Specifically, it is unclear if they are free from metabolic stress, receptive to adeno-associated viral vectors, suitable for opsin-based optogenetic tools and able to propagate signals by releasing neurotransmitter. Methods Fluorescence activated cell sorting (FACS) was performed to isolate labelled bipolar cells from dissociated retinae of litter-mates with or without the IRD mutation Pde6brd1/rd1 selectively expressing an enhanced yellow fluorescent protein (EYFP) as a marker in ON-bipolar cells. Subsequent mRNA extraction allowed Illumina® microarray comparison of gene expression in bipolar cells from degenerate to those of wild type retinae. Changes in four candidate genes were further investigated at the protein level using retinal immunohistochemistry over the course of degeneration. Results A total of sixty differentially expressed transcripts reached statistical significance: these did not include any genes directly associated with native primary bipolar cell signalling, nor changes consistent with metabolic stress. Four significantly altered genes (Srm2, Slf2, Anxa7 & Cntn1), implicated in synaptic remodelling, neurotransmitter release and viral vector entry had immunohistochemical staining colocalising with ON-bipolar cell markers and varying over the course of degeneration. Conclusion Our findings suggest relatively few gene expression changes in the context of degeneration: that despite remodelling, bipolar cells are likely to remain viable targets for optogenetic vision restoration. In addition, several genes where changes were seen could provide a basis for investigations to enhance the efficacy of optogenetic therapies. Bipolar cells are attractive targets for therapeutic optogenetics in IRDs. This is the first cell specific transcriptomic analysis of bipolar cells in an IRD model. Bipolar cells maintain expression of genes essential to act as targets for optogenetics. Protein staining relating to four candidate genes (Anxa7, Cntn1, Srm2, Sulf2) is confirmed using immunohistochemistry.
Collapse
Affiliation(s)
- Michael J Gilhooley
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; The Oxford Eye Hospital, Oxford, OX3 9DU, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Doron G Hickey
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; Royal Victorian Eye and Ear Hospital, Melbourne, 002, Australia
| | - Moritz Lindner
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; The Oxford Eye Hospital, Oxford, OX3 9DU, United Kingdom; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstrasse 1-2, Marburg, 35037, Germany
| | - Teele Palumaa
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; The Oxford Eye Hospital, Oxford, OX3 9DU, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom.
| |
Collapse
|
36
|
Fortenbach C, Peinado Allina G, Shores CM, Karlen SJ, Miller EB, Bishop H, Trimmer JS, Burns ME, Pugh EN. Loss of the K+ channel Kv2.1 greatly reduces outward dark current and causes ionic dysregulation and degeneration in rod photoreceptors. J Gen Physiol 2021; 153:e202012687. [PMID: 33502442 PMCID: PMC7845921 DOI: 10.1085/jgp.202012687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Vertebrate retinal photoreceptors signal light by suppressing a circulating "dark current" that maintains their relative depolarization in the dark. This dark current is composed of an inward current through CNG channels and NCKX transporters in the outer segment that is balanced by outward current exiting principally from the inner segment. It has been hypothesized that Kv2.1 channels carry a predominant fraction of the outward current in rods. We examined this hypothesis by comparing whole cell, suction electrode, and electroretinographic recordings from Kv2.1 knockout (Kv2.1-/-) and wild-type (WT) mouse rods. Single cell recordings revealed flash responses with unusual kinetics, and reduced dark currents that were quantitatively consistent with the measured depolarization of the membrane resting potential in the dark. A two-compartment (outer and inner segment) physiological model based on known ionic mechanisms revealed that the abnormal Kv2.1-/- rod photoresponses arise principally from the voltage dependencies of the known conductances and the NCKX exchanger, and a highly elevated fraction of inward current carried by Ca2+ through CNG channels due to the aberrant depolarization. Kv2.1-/- rods had shorter outer segments than WT and dysmorphic mitochondria in their inner segments. Optical coherence tomography of knockout animals demonstrated a slow photoreceptor degeneration over a period of 6 mo. Overall, these findings reveal that Kv2.1 channels carry 70-80% of the non-NKX outward dark current of the mouse rod, and that the depolarization caused by the loss of Kv2.1 results in elevated Ca2+ influx through CNG channels and elevated free intracellular Ca2+, leading to progressive degeneration.
Collapse
Affiliation(s)
| | | | | | - Sarah J. Karlen
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| | - Eric B. Miller
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Hannah Bishop
- Center for Neuroscience, University of California, Davis, Davis, CA
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA
| | - James S. Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Marie E. Burns
- Center for Neuroscience, University of California, Davis, Davis, CA
- Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| | - Edward N. Pugh
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
- Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| |
Collapse
|
37
|
Ngolab J, Canchi S, Rasool S, Elmaarouf A, Thomas K, Sarsoza F, Grundman J, Mante M, Florio J, Nandankar N, Korouri S, Zago W, Masliah E, Rissman RA. Mutant three-repeat tau expression initiates retinal ganglion cell death through Caspase-2. Neurobiol Dis 2021; 152:105277. [PMID: 33516874 PMCID: PMC8373010 DOI: 10.1016/j.nbd.2021.105277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
The microtubule-associated protein tau is implicated in multiple degenerative diseases including retinal diseases such as glaucoma; however, the way tau initiates retinopathy is unclear. Previous retinal assessments in mouse models of tauopathy suggest that mutations in four-repeat (4R) tau are associated with disease-induced retinal dysfunction, while shifting tau isoform ratio to favor three-repeat (3R) tau production enhanced photoreceptor function. To further understand how alterations in tau expression impact the retina, we analyzed the retinas of transgenic mice overexpressing mutant 3R tau (m3R tau-Tg), a model known to exhibit Pick's Disease pathology in the brain. Analysis of retinal cross-sections from young (3 month) and adult (9 month) mice detected asymmetric 3R tau immunoreactivity in m3R tau-Tg retina, concentrated in the retinal ganglion and amacrine cells of the dorsal retinal periphery. Accumulation of hyperphosphorylated tau was detected specifically in the detergent insoluble fraction of the adult m3R tau-Tg retina. RNA-seq analysis highlighted biological pathways associated with tauopathy that were uniquely altered in m3R tau-Tg retina. The upregulation of transcript encoding apoptotic protease caspase-2 coincided with increased immunostaining in predominantly 3R tau positive retinal regions. In adult m3R tau-Tg, the dorsal peripheral retina of the adult m3R tau-Tg exhibited decreased cell density in the ganglion cell layer (GCL) and reduced thickness of the inner plexiform layer (IPL) compared to the ventral peripheral retina. Together, these data indicate that mutant 3R tau may mediate toxicity in retinal ganglion cells (RGC) by promoting caspase-2 expression which results in RGC degeneration. The m3R tau-Tg line has the potential to be used to assess tau-mediated RGC degeneration and test novel therapeutics for degenerative diseases such as glaucoma.
Collapse
Affiliation(s)
- Jennifer Ngolab
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America
| | - Saranya Canchi
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America; Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, United States of America
| | - Suhail Rasool
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America; Amydis Inc, San Diego, CA 92121, United States of America
| | | | - Kimberly Thomas
- Prothena Biosciences, South San Francisco, CA 94080, United States of America
| | - Floyd Sarsoza
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America; Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, United States of America
| | - Jennifer Grundman
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America
| | - Michael Mante
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America
| | - Jazmin Florio
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America
| | - Nimisha Nandankar
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America
| | - Shaina Korouri
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America
| | - Wagner Zago
- Prothena Biosciences, South San Francisco, CA 94080, United States of America
| | - Eliezer Masliah
- Division of Neuroscience and Laboratory of Neurogenetics, National Institutes on Aging, NIH, Bethesda, MD 20892, United States of America
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America; Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, United States of America.
| |
Collapse
|
38
|
Korecki AJ, Cueva-Vargas JL, Fornes O, Agostinone J, Farkas RA, Hickmott JW, Lam SL, Mathelier A, Zhou M, Wasserman WW, Di Polo A, Simpson EM. Human MiniPromoters for ocular-rAAV expression in ON bipolar, cone, corneal, endothelial, Müller glial, and PAX6 cells. Gene Ther 2021; 28:351-372. [PMID: 33531684 PMCID: PMC8222000 DOI: 10.1038/s41434-021-00227-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Small and cell-type restricted promoters are important tools for basic and preclinical research, and clinical delivery of gene therapies. In clinical gene therapy, ophthalmic trials have been leading the field, with over 50% of ocular clinical trials using promoters that restrict expression based on cell type. Here, 19 human DNA MiniPromoters were bioinformatically designed for rAAV, tested by neonatal intravenous delivery in mouse, and successful MiniPromoters went on to be tested by intravitreal, subretinal, intrastromal, and/or intravenous delivery in adult mouse. We present promoter development as an overview for each cell type, but only show results in detail for the recommended MiniPromoters: Ple265 and Ple341 (PCP2) ON bipolar, Ple349 (PDE6H) cone, Ple253 (PITX3) corneal stroma, Ple32 (CLDN5) endothelial cells of the blood-retina barrier, Ple316 (NR2E1) Müller glia, and Ple331 (PAX6) PAX6 positive. Overall, we present a resource of new, redesigned, and improved MiniPromoters for ocular gene therapy that range in size from 784 to 2484 bp, and from weaker, equal, or stronger in strength relative to the ubiquitous control promoter smCBA. All MiniPromoters will be useful for therapies involving small regulatory RNA and DNA, and proteins ranging from 517 to 1084 amino acids, representing 62.9-90.2% of human proteins.
Collapse
Affiliation(s)
- Andrea J. Korecki
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Jorge L. Cueva-Vargas
- grid.14848.310000 0001 2292 3357Department of Neuroscience, University of Montreal Hospital Research Centre, University of Montreal, Montreal, QC Canada
| | - Oriol Fornes
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Jessica Agostinone
- grid.14848.310000 0001 2292 3357Department of Neuroscience, University of Montreal Hospital Research Centre, University of Montreal, Montreal, QC Canada
| | - Rachelle A. Farkas
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Jack W. Hickmott
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Siu Ling Lam
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Anthony Mathelier
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Michelle Zhou
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Wyeth W. Wasserman
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Adriana Di Polo
- grid.14848.310000 0001 2292 3357Department of Neuroscience, University of Montreal Hospital Research Centre, University of Montreal, Montreal, QC Canada
| | - Elizabeth M. Simpson
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
39
|
Solaguren-Beascoa M, Bujakowska KM, Méjécase C, Emmenegger L, Orhan E, Neuillé M, Mohand-Saïd S, Condroyer C, Lancelot ME, Michiels C, Demontant V, Antonio A, Letexier M, Saraiva JP, Lonjou C, Carpentier W, Léveillard T, Pierce EA, Dollfus H, Sahel JA, Bhattacharya SS, Audo I, Zeitz C. WDR34, a candidate gene for non-syndromic rod-cone dystrophy. Clin Genet 2020; 99:298-302. [PMID: 33124039 DOI: 10.1111/cge.13872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/01/2020] [Accepted: 10/26/2020] [Indexed: 01/30/2023]
Abstract
Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is characterized by rod followed by cone photoreceptor degeneration, leading to gradual visual loss. Mutations in over 65 genes have been associated with non-syndromic RCD explaining 60% to 70% of cases, with novel gene defects possibly accounting for the unsolved cases. Homozygosity mapping and whole-exome sequencing applied to a case of autosomal recessive non-syndromic RCD from a consanguineous union identified a homozygous variant in WDR34. Mutations in WDR34 have been previously associated with severe ciliopathy syndromes possibly associated with a retinal dystrophy. This is the first report of a homozygous mutation in WDR34 associated with non-syndromic RCD.
Collapse
Affiliation(s)
- Maria Solaguren-Beascoa
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Kinga M Bujakowska
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, USA
| | - Cécile Méjécase
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Lisa Emmenegger
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Elise Orhan
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marion Neuillé
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Saddek Mohand-Saïd
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS, CIC 1423, Paris, France
| | - Christel Condroyer
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marie-Elise Lancelot
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Christelle Michiels
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Vanessa Demontant
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Aline Antonio
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | | | - Christine Lonjou
- Plateforme Post-Génomique P3S, Hôpital Pitié Salpêtrière, Paris, France
| | - Wassila Carpentier
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Plateforme Post-Génomique P3S, Hôpital Pitié Salpêtrière, Paris, France
| | - Thierry Léveillard
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Eric A Pierce
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, USA
| | - Hélène Dollfus
- Centre de Référence Pour les Affections Rares en Génétique Ophtalmologique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Laboratoire UMRS_1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France
| | - José-Alain Sahel
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS, CIC 1423, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine University, Pittsburgh, USA.,Académie des Sciences-Institut de France, Paris, France
| | - Shomi S Bhattacharya
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,UCL-Institute of Ophthalmology, London, UK.,Department of Cellular Therapy and Regenerative Medicine, Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | - Isabelle Audo
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS, CIC 1423, Paris, France.,UCL-Institute of Ophthalmology, London, UK
| | - Christina Zeitz
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
40
|
Van Hove I, De Groef L, Boeckx B, Modave E, Hu TT, Beets K, Etienne I, Van Bergen T, Lambrechts D, Moons L, Feyen JHM, Porcu M. Single-cell transcriptome analysis of the Akimba mouse retina reveals cell-type-specific insights into the pathobiology of diabetic retinopathy. Diabetologia 2020; 63:2235-2248. [PMID: 32734440 DOI: 10.1007/s00125-020-05218-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy is a common complication of diabetes and a leading cause of visual impairment and blindness. Despite recent advances, our understanding of its pathophysiology remains incomplete. The aim of this study was to provide deeper insight into the complex network of molecular and cellular changes that underlie diabetic retinopathy by systematically mapping the transcriptional changes that occur in the different cellular compartments of the degenerating diabetic mouse retina. METHODS Single-cell RNA sequencing was performed on retinal tissue from 12-week-old wild-type and Akimba (Ins2Akita×Vegfa+/-) mice, which are known to replicate features of clinical diabetic retinopathy. This resulted in transcriptome data for 9474 retinal cells, which could be annotated to eight distinct retinal cell types. Using STRING analysis, we studied differentially expressed gene networks in neuronal, glial and immune cell compartments to create a comprehensive view on the pathological changes that occur in the Akimba retina. Using subclustering analysis, we further characterised macroglial and inflammatory cell subpopulations. Prominent findings were confirmed at the protein level using immunohistochemistry, western blotting and ELISA. RESULTS At 12 weeks, the Akimba retina was found to display degeneration of rod photoreceptors and presence of inflammatory cells, identified by subclustering analysis as monocyte, macrophage and microglial populations. Analysis of differentially expressed genes in the rod, cone, bipolar cell and macroglial compartments indicated changes in cell metabolism and ribosomal gene expression, gliosis, activation of immune system pathways and redox and metal ion dyshomeostasis. Experiments at the protein level supported a metabolic shift from glycolysis to oxidative phosphorylation (glyceraldehyde 3-phosphate dehydrogenase), activation of microglia/macrophages (isolectin-B4), metal ion and oxidative stress response (metallothionein and haem oxygenase-1) and reactive macroglia (glial fibrillary acidic protein and S100) in the Akimba retina, compared with wild-type mice. Our single-cell approach also indicates macroglial subpopulations with distinct fibrotic, inflammatory and gliotic profiles. CONCLUSIONS/INTERPRETATION Our study identifies molecular pathways underlying inflammatory, metabolic and oxidative stress-mediated changes in the Akimba mouse model of diabetic retinopathy and distinguishes distinct functional subtypes of inflammatory and macroglial cells. DATA AVAILABILITY RNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI ( www.ebi.ac.uk/arrayexpress ) under accession number E-MTAB-9061. Graphical abstract.
Collapse
Affiliation(s)
- Inge Van Hove
- Oxurion NV, Gaston Geenslaan 1, B-3001, Leuven, Belgium
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Naamsestraat 61, B-3000, Leuven, Belgium
| | - Bram Boeckx
- VIB Center for Cancer Biology, B-3000, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Elodie Modave
- VIB Center for Cancer Biology, B-3000, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Karen Beets
- Oxurion NV, Gaston Geenslaan 1, B-3001, Leuven, Belgium
| | | | | | - Diether Lambrechts
- VIB Center for Cancer Biology, B-3000, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Naamsestraat 61, B-3000, Leuven, Belgium
| | | | - Michaël Porcu
- Oxurion NV, Gaston Geenslaan 1, B-3001, Leuven, Belgium.
| |
Collapse
|
41
|
Marola OJ, Syc-Mazurek SB, Howell GR, Libby RT. Endothelin 1-induced retinal ganglion cell death is largely mediated by JUN activation. Cell Death Dis 2020; 11:811. [PMID: 32980857 PMCID: PMC7519907 DOI: 10.1038/s41419-020-02990-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/02/2023]
Abstract
Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells (RGCs), the output neurons of the retina. Multiple lines of evidence show the endothelin (EDN, also known as ET) system is important in glaucomatous neurodegeneration. To date, the molecular mechanisms within RGCs driving EDN-induced RGC death have not been clarified. The pro-apoptotic transcription factor JUN (the canonical target of JNK signaling) and the endoplasmic reticulum stress effector and transcription factor DNA damage inducible transcript 3 (DDIT3, also known as CHOP) have been shown to act downstream of EDN receptors. Previous studies demonstrated that JUN and DDIT3 were important regulators of RGC death after glaucoma-relevant injures. Here, we characterized EDN insult in vivo and investigated the role of JUN and DDIT3 in EDN-induced RGC death. To accomplish this, EDN1 ligand was intravitreally injected into the eyes of wildtype, Six3-cre+Junfl/fl (Jun-/-), Ddit3 null (Ddit3-/-), and Ddit3-/-Jun-/- mice. Intravitreal EDN1 was sufficient to drive RGC death in vivo. EDN1 insult caused JUN activation in RGCs, and deletion of Jun from the neural retina attenuated RGC death after EDN insult. However, deletion of Ddit3 did not confer significant protection to RGCs after EDN1 insult. These results indicate that EDN caused RGC death via a JUN-dependent mechanism. In addition, EDN signaling is known to elicit potent vasoconstriction. JUN signaling was shown to drive neuronal death after ischemic insult. Therefore, the effects of intravitreal EDN1 on retinal vessel diameter and hypoxia were explored. Intravitreal EDN1 caused transient retinal vasoconstriction and regions of RGC and Müller glia hypoxia. Thus, it remains a possibility that EDN elicits a hypoxic insult to RGCs, causing apoptosis via JNK-JUN signaling. The importance of EDN-induced vasoconstriction and hypoxia in causing RGC death after EDN insult and in models of glaucoma requires further investigation.
Collapse
Affiliation(s)
- Olivia J. Marola
- grid.412750.50000 0004 1936 9166Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY USA ,grid.16416.340000 0004 1936 9174The Center for Visual Sciences, University of Rochester, Rochester, NY USA
| | - Stephanie B. Syc-Mazurek
- grid.412750.50000 0004 1936 9166Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY USA
| | - Gareth R. Howell
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main Street, Bar Harbor, ME USA
| | - Richard T. Libby
- grid.412750.50000 0004 1936 9166Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY USA ,grid.16416.340000 0004 1936 9174The Center for Visual Sciences, University of Rochester, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
42
|
Deletion in the Bardet-Biedl Syndrome Gene TTC8 Results in a Syndromic Retinal Degeneration in Dogs. Genes (Basel) 2020; 11:genes11091090. [PMID: 32962042 PMCID: PMC7565673 DOI: 10.3390/genes11091090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
In golden retriever dogs, a 1 bp deletion in the canine TTC8 gene has been shown to cause progressive retinal atrophy (PRA), the canine equivalent of retinitis pigmentosa. In humans, TTC8 is also implicated in Bardet–Biedl syndrome (BBS). To investigate if the affected dogs only exhibit a non-syndromic PRA or develop a syndromic ciliopathy similar to human BBS, we recruited 10 affected dogs to the study. The progression of PRA for two of the dogs was followed for 2 years, and a rigorous clinical characterization allowed a careful comparison with primary and secondary characteristics of human BBS. In addition to PRA, the dogs showed a spectrum of clinical and morphological signs similar to primary and secondary characteristics of human BBS patients, such as obesity, renal anomalies, sperm defects, and anosmia. We used Oxford Nanopore long-read cDNA sequencing to characterize retinal full-length TTC8 transcripts in affected and non-affected dogs, the results of which suggest that three isoforms are transcribed in the retina, and the 1 bp deletion is a loss-of-function mutation, resulting in a canine form of Bardet–Biedl syndrome with heterogeneous clinical signs.
Collapse
|
43
|
Singh RK, Nasonkin IO. Limitations and Promise of Retinal Tissue From Human Pluripotent Stem Cells for Developing Therapies of Blindness. Front Cell Neurosci 2020; 14:179. [PMID: 33132839 PMCID: PMC7513806 DOI: 10.3389/fncel.2020.00179] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The self-formation of retinal tissue from pluripotent stem cells generated a tremendous promise for developing new therapies of retinal degenerative diseases, which previously seemed unattainable. Together with use of induced pluripotent stem cells or/and CRISPR-based recombineering the retinal organoid technology provided an avenue for developing models of human retinal degenerative diseases "in a dish" for studying the pathology, delineating the mechanisms and also establishing a platform for large-scale drug screening. At the same time, retinal organoids, highly resembling developing human fetal retinal tissue, are viewed as source of multipotential retinal progenitors, young photoreceptors and just the whole retinal tissue, which may be transplanted into the subretinal space with a goal of replacing patient's degenerated retina with a new retinal "patch." Both approaches (transplantation and modeling/drug screening) were projected when Yoshiki Sasai demonstrated the feasibility of deriving mammalian retinal tissue from pluripotent stem cells, and generated a lot of excitement. With further work and testing of both approaches in vitro and in vivo, a major implicit limitation has become apparent pretty quickly: the absence of the uniform layer of Retinal Pigment Epithelium (RPE) cells, which is normally present in mammalian retina, surrounds photoreceptor layer and develops and matures first. The RPE layer polarize into apical and basal sides during development and establish microvilli on the apical side, interacting with photoreceptors, nurturing photoreceptor outer segments and participating in the visual cycle by recycling 11-trans retinal (bleached pigment) back to 11-cis retinal. Retinal organoids, however, either do not have RPE layer or carry patches of RPE mostly on one side, thus directly exposing most photoreceptors in the developing organoids to neural medium. Recreation of the critical retinal niche between the apical RPE and photoreceptors, where many retinal disease mechanisms originate, is so far unattainable, imposes clear limitations on both modeling/drug screening and transplantation approaches and is a focus of investigation in many labs. Here we dissect different retinal degenerative diseases and analyze how and where retinal organoid technology can contribute the most to developing therapies even with a current limitation and absence of long and functional outer segments, supported by RPE.
Collapse
|
44
|
Brunet AA, Fuller-Carter PI, Miller AL, Voigt V, Vasiliou S, Rashwan R, Hunt DM, Carvalho LS. Validating Fluorescent Chrnb4.EGFP Mouse Models for the Study of Cone Photoreceptor Degeneration. Transl Vis Sci Technol 2020; 9:28. [PMID: 32879784 PMCID: PMC7442867 DOI: 10.1167/tvst.9.9.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To validate the application of a known transgenic mouse line with green fluorescent cones (Chrnb4.EGFP) to study cone photoreceptor biology and function in health and disease. Methods Chrnb4.EGFP retinas containing GFP+ cones were compared with retinas without the GFP transgene via immunohistochemistry, quantitative real-time polymerase chain reaction, electroretinograms, and flow cytometry. The Chrnb4.EGFP line was backcrossed to the mouse models of cone degeneration, Pde6ccpfl1 and Gnat2cpfl3 , generating the new lines Gnat2.GFP and Pde6c.GFP, which were also studied as described. Results GFP expression spanned the length of the cone cell in the Chrnb4.EGFP line, as well as in the novel Gnat2.GFP and Pde6c.GFP lines. The effect of GFP expression showed no significant changes to outer nuclear layer cell death, cone-specific gene expression, and immune response activation. A temporal decrease in GFP expression over time was observed, but GFP fluorescence was still detected through flow cytometry as late as 6 months. Furthermore, a functional analysis of photopic and scotopic electroretinogram responses of the Chrnb4 mouse showed no significant difference between GFP- and GFP+ mice, whereas electroretinogram recordings for the Pde6c.GFP and Gnat2.GFP lines matched previous reports from the original lines. Conclusions This study demonstrates that the Chrnb4.EGFP mouse can be a powerful tool to overcome the limitations of studying cone biology, including the use of this line to study different types of cone degeneration. Translational Relevance This work validates research tools that could potentially offer more reliable preclinical data in the development of treatments for cone-mediated vision loss conditions, shortening the gap to clinical translation.
Collapse
Affiliation(s)
- Alicia A. Brunet
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
| | | | - Annie L. Miller
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
| | | | | | - Rabab Rashwan
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, Egypt
| | - David M. Hunt
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Livia S. Carvalho
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
| |
Collapse
|
45
|
kleine Holthaus SM, Aristorena M, Maswood R, Semenyuk O, Hoke J, Hare A, Smith AJ, Mole SE, Ali RR. Gene Therapy Targeting the Inner Retina Rescues the Retinal Phenotype in a Mouse Model of CLN3 Batten Disease. Hum Gene Ther 2020; 31:709-718. [PMID: 32578444 PMCID: PMC7404834 DOI: 10.1089/hum.2020.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), often referred to as Batten disease, are inherited lysosomal storage disorders that represent the most common neurodegeneration during childhood. Symptoms include seizures, vision loss, motor and cognitive decline, and premature death. The development of brain-directed treatments for NCLs has made noteworthy progress in recent years. Clinical trials are currently ongoing or planned for different forms of the disease. Despite these promising advances, it is unlikely that therapeutic interventions targeting the brain will prevent loss of vision in patients as retinal cells remain untreated and will continue to degenerate. Here, we demonstrate that Cln3Δex7/8 mice, a mouse model of CLN3 Batten disease with juvenile onset, suffer from a decline in inner retinal function resulting from the death of rod bipolar cells, interneurons vital for signal transmission from photoreceptors to ganglion cells in the retina. We also show that this ocular phenotype can be treated by adeno-associated virus (AAV)-mediated expression of CLN3 in cells of the inner retina, leading to significant survival of bipolar cells and preserved retinal function. In contrast, the treatment of photoreceptors, which are lost in patients at late disease stages, was not therapeutic in Cln3Δex7/8 mice, underlining the notion that CLN3 disease is primarily a disease of the inner retina with secondary changes in the outer retina. These data indicate that bipolar cells play a central role in this disease and identify this cell type as an important target for ocular AAV-based gene therapies for CLN3 disease.
Collapse
Affiliation(s)
| | - Mikel Aristorena
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Ryea Maswood
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Olha Semenyuk
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Justin Hoke
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Aura Hare
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Alexander J. Smith
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Sara E. Mole
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- UCL Institute of Child Health, London, United Kingdom
- UCL Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Robin R. Ali
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Correspondence: Prof. Robin R. Ali, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom.
| |
Collapse
|
46
|
Palfi A, Yesmambetov A, Humphries P, Hokamp K, Farrar GJ. Non-photoreceptor Expression of Tulp1 May Contribute to Extensive Retinal Degeneration in Tulp1-/- Mice. Front Neurosci 2020; 14:656. [PMID: 32655363 PMCID: PMC7325604 DOI: 10.3389/fnins.2020.00656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Mutations in tubby like protein 1 gene (TULP1) are causative of early-onset recessive inherited retinal degenerations (IRDs); similarly, the Tulp1-/- mouse is also characterized by a rapid IRD. Tulp1 mRNA and protein expression was analyzed in wild type mouse retinas and expression data sets (NCBI) during early postnatal development. Comparative histology was undertaken in Tulp1-/-, rhodopsin-/- (Rho-/-) and retinal degeneration slow-/- (Rds-/-) mouse retinas. Bioinformatic analysis of predicted TULP1 interactors and IRD genes was performed. Peak expression of Tulp1 in healthy mouse retinas was detected at p8; of note, TULP1 was detected in both the outer and inner retina. Bioinformatic analysis indicated Tulp1 expression in retinal progenitor, photoreceptor and non-photoreceptor cells. While common features of photoreceptor degeneration were detected in Tulp1-/-, Rho-/-, and Rds-/- retinas, other alterations in bipolar, amacrine and ganglion cells were specific to Tulp1-/- mice. Additionally, predicted TULP1 interactors differed in various retinal cell types and new functions for TULP1 were suggested. A pilot bioinformatic analysis indicated that in a similar fashion to Tulp1, many other IRD genes were expressed in both inner and outer retinal cells at p4-p7. Our data indicate that expression of Tulp1 extends to multiple retinal cell types; lack of TULP1 may lead to primary degeneration not only of photoreceptor but also non-photoreceptor cells. Predicted interactors suggest widespread retinal functions for TULP1. Early and widespread expression of TULP1 and some other IRD genes in both the inner and outer retina highlights potential hurdles in the development of treatments for these IRDs.
Collapse
Affiliation(s)
- Arpad Palfi
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Pete Humphries
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Karsten Hokamp
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | - G Jane Farrar
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
47
|
Lu Y, Shiau F, Yi W, Lu S, Wu Q, Pearson JD, Kallman A, Zhong S, Hoang T, Zuo Z, Zhao F, Zhang M, Tsai N, Zhuo Y, He S, Zhang J, Stein-O'Brien GL, Sherman TD, Duan X, Fertig EJ, Goff LA, Zack DJ, Handa JT, Xue T, Bremner R, Blackshaw S, Wang X, Clark BS. Single-Cell Analysis of Human Retina Identifies Evolutionarily Conserved and Species-Specific Mechanisms Controlling Development. Dev Cell 2020; 53:473-491.e9. [PMID: 32386599 PMCID: PMC8015270 DOI: 10.1016/j.devcel.2020.04.009] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/05/2020] [Accepted: 04/10/2020] [Indexed: 01/08/2023]
Abstract
The development of single-cell RNA sequencing (scRNA-seq) has allowed high-resolution analysis of cell-type diversity and transcriptional networks controlling cell-fate specification. To identify the transcriptional networks governing human retinal development, we performed scRNA-seq analysis on 16 time points from developing retina as well as four early stages of retinal organoid differentiation. We identified evolutionarily conserved patterns of gene expression during retinal progenitor maturation and specification of all seven major retinal cell types. Furthermore, we identified gene-expression differences between developing macula and periphery and between distinct populations of horizontal cells. We also identified species-specific patterns of gene expression during human and mouse retinal development. Finally, we identified an unexpected role for ATOH7 expression in regulation of photoreceptor specification during late retinogenesis. These results provide a roadmap to future studies of human retinal development and may help guide the design of cell-based therapies for treating retinal dystrophies.
Collapse
Affiliation(s)
- Yufeng Lu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fion Shiau
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wenyang Yi
- Hefei National Laboratory for Physical Sciences, at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Suying Lu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health Systems, Department of Ophthalmology and Vision Science, and Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Qian Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Joel D Pearson
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health Systems, Department of Ophthalmology and Vision Science, and Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Alyssa Kallman
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Suijuan Zhong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangqi Zhao
- Obstetrics and Gynecology Medical Center of Severe Cardiovascular of Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Mei Zhang
- Hefei National Laboratory for Physical Sciences, at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nicole Tsai
- Departments of Ophthalmology and Physiology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Zhang
- Obstetrics and Gynecology Medical Center of Severe Cardiovascular of Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Genevieve L Stein-O'Brien
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas D Sherman
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xin Duan
- Departments of Ophthalmology and Physiology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elana J Fertig
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Data Intensive Engineering and Science, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Computational Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Mathematical Institute for Data Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Loyal A Goff
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James T Handa
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tian Xue
- Hefei National Laboratory for Physical Sciences, at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health Systems, Department of Ophthalmology and Vision Science, and Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X5, Canada.
| | - Seth Blackshaw
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Brain Disorders, Beijing 100069, China.
| | - Brian S Clark
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
48
|
Ran Y, Huang Z, Baden T, Schubert T, Baayen H, Berens P, Franke K, Euler T. Type-specific dendritic integration in mouse retinal ganglion cells. Nat Commun 2020; 11:2101. [PMID: 32355170 PMCID: PMC7193577 DOI: 10.1038/s41467-020-15867-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
Neural computation relies on the integration of synaptic inputs across a neuron’s dendritic arbour. However, it is far from understood how different cell types tune this process to establish cell-type specific computations. Here, using two-photon imaging of dendritic Ca2+ signals, electrical recordings of somatic voltage and biophysical modelling, we demonstrate that four morphologically distinct types of mouse retinal ganglion cells with overlapping excitatory synaptic input (transient Off alpha, transient Off mini, sustained Off, and F-mini Off) exhibit type-specific dendritic integration profiles: in contrast to the other types, dendrites of transient Off alpha cells were spatially independent, with little receptive field overlap. The temporal correlation of dendritic signals varied also extensively, with the highest and lowest correlation in transient Off mini and transient Off alpha cells, respectively. We show that differences between cell types can likely be explained by differences in backpropagation efficiency, arising from the specific combinations of dendritic morphology and ion channel densities. Neurons compute by integrating synaptic inputs across their dendritic arbor. Here, the authors show that distinct cell-types of mouse retinal ganglion cells that receive similar excitatory inputs have different biophysical mechanisms of input integration to generate their unique response tuning.
Collapse
Affiliation(s)
- Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Ziwei Huang
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Tom Baden
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Harald Baayen
- Department of Linguistics, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Institute of Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany. .,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany. .,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
49
|
Liu Y, Hegarty S, Winter C, Wang F, He Z. Viral vectors for neuronal cell type-specific visualization and manipulations. Curr Opin Neurobiol 2020; 63:67-76. [PMID: 32344323 DOI: 10.1016/j.conb.2020.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022]
Abstract
Characterizing neuronal cell types demands efficient strategies for specific labeling and manipulation of individual subtypes to dissect their connectivity and functions. Recombinant viral technology offers a powerful toolbox for targeted transgene expression in specific neuronal populations. In order to achieve cell type-specific targeting, exciting progress has been made to: alter viral tropisms, design rational delivery strategies, and drive selective expression patterns with engineered DNA sequences in viral genomes. For the latter case, emerging single-cell genomic analyses provide rich databases. In this review, we will summarize current status, and point out challenges, of using viral vectors for neuronal cell type-specific visualization and manipulations. With concerted efforts, progress will continue to be made toward developing viral vectors for the vast array of neuronal subtypes in the mammalian nervous system.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Somatosensation and Pain Unit, National Institute of Dental and Craniofacial Research (NIDCR), National Center for Complementary and Integrative Health (NCCIH), National Institutes of Health (NIH), MD, USA
| | - Shane Hegarty
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Carla Winter
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA; PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zhigang He
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Lipski DA, Foucart V, Dewispelaere R, Caspers LE, Defrance M, Bruyns C, Willermain F. Retinal endothelial cell phenotypic modifications during experimental autoimmune uveitis: a transcriptomic approach. BMC Ophthalmol 2020; 20:106. [PMID: 32183784 PMCID: PMC7076950 DOI: 10.1186/s12886-020-1333-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/03/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Blood-retinal barrier cells are known to exhibit a massive phenotypic change during experimental autoimmune uveitis (EAU) development. In an attempt to investigate the mechanisms of blood-retinal barrier (BRB) breakdown at a global level, we studied the gene regulation of total retinal cells and retinal endothelial cells during non-infectious uveitis. METHODS Retinal endothelial cells were isolated by flow cytometry either in Tie2-GFP mice (CD31+ CD45- GFP+ cells), or in wild type C57BL/6 mice (CD31+ CD45- endoglin+ cells). EAU was induced in C57BL/6 mice by adoptive transfer of IRBP1-20-specific T cells. Total retinal cells and retinal endothelial cells from naïve and EAU mice were sorted and their gene expression compared by RNA-Seq. Protein expression of selected genes was validated by immunofluorescence on retinal wholemounts and cryosections and by flow cytometry. RESULTS Retinal endothelial cell sorting in wild type C57BL/6 mice was validated by comparative transcriptome analysis with retinal endothelial cells sorted from Tie2-GFP mice, which express GFP under the control of the endothelial-specific receptor tyrosine kinase promoter Tie2. RNA-Seq analysis of total retinal cells mainly brought to light upregulation of genes involved in antigen presentation and T cell activation during EAU. Specific transcriptome analysis of retinal endothelial cells allowed us to identify 82 genes modulated in retinal endothelial cells during EAU development. Protein expression of 5 of those genes (serpina3n, lcn2, ackr1, lrg1 and lamc3) was validated at the level of inner BRB cells. CONCLUSION Those data not only confirm the involvement of known pathogenic molecules but further provide a list of new candidate genes and pathways possibly implicated in inner BRB breakdown during non-infectious posterior uveitis.
Collapse
Affiliation(s)
- Deborah A. Lipski
- Ophthalmology Group, IRIBHM (Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire), Université Libre de Bruxelles (ULB), Erasme Campus, Building C, Room C6.117, 808 Route de Lennik, 1070 Brussels, Belgium
- Ophthalmology Department of Erasme Hospital, Université Libre de Bruxelles (ULB), 808 Route de Lennik, 1070 Brussels, Belgium
| | - Vincent Foucart
- Ophthalmology Group, IRIBHM (Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire), Université Libre de Bruxelles (ULB), Erasme Campus, Building C, Room C6.117, 808 Route de Lennik, 1070 Brussels, Belgium
- Ophthalmology Department of CHU Saint-Pierre, 322 Rue Haute, 1000 Brussels, Belgium
- Ophthalmology Department of CHU Brugmann, 4 Place Van Gehuchten, 1020 Brussels, Belgium
| | - Rémi Dewispelaere
- Ophthalmology Group, IRIBHM (Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire), Université Libre de Bruxelles (ULB), Erasme Campus, Building C, Room C6.117, 808 Route de Lennik, 1070 Brussels, Belgium
- Ophthalmology Department of CHU Saint-Pierre, 322 Rue Haute, 1000 Brussels, Belgium
| | - Laure E. Caspers
- Ophthalmology Department of CHU Saint-Pierre, 322 Rue Haute, 1000 Brussels, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, La Plaine Campus, BC building, 6th floor, CP 263, Triomflaan, 1050 Brussels, Belgium
| | - Catherine Bruyns
- Ophthalmology Group, IRIBHM (Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire), Université Libre de Bruxelles (ULB), Erasme Campus, Building C, Room C6.117, 808 Route de Lennik, 1070 Brussels, Belgium
| | - François Willermain
- Ophthalmology Group, IRIBHM (Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire), Université Libre de Bruxelles (ULB), Erasme Campus, Building C, Room C6.117, 808 Route de Lennik, 1070 Brussels, Belgium
- Ophthalmology Department of CHU Saint-Pierre, 322 Rue Haute, 1000 Brussels, Belgium
- Ophthalmology Department of CHU Brugmann, 4 Place Van Gehuchten, 1020 Brussels, Belgium
| |
Collapse
|