1
|
Canonica T, Kidd EJ, Gibbins D, Lana-Elola E, Fisher EMC, Tybulewicz VLJ, Good M. Dissecting the contribution of human chromosome 21 syntenic regions to recognition memory processes in adult and aged mouse models of Down syndrome. Front Behav Neurosci 2024; 18:1428146. [PMID: 39050700 PMCID: PMC11266108 DOI: 10.3389/fnbeh.2024.1428146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Background Trisomy of human chromosome 21 (Hsa21) results in a constellation of features known as Down syndrome (DS), the most common genetic form of intellectual disability. Hsa21 is orthologous to three regions in the mouse genome on mouse chromosome 16 (Mmu16), Mmu17 and Mmu10. We investigated genotype-phenotype relationships by assessing the contribution of these three regions to memory function and age-dependent cognitive decline, using three mouse models of DS, Dp1Tyb, Dp(17)3Yey, Dp(10)2Yey, that carry an extra copy of the Hsa21-orthologues on Mmu16, Mmu17 and Mmu10, respectively. Hypothesis Prior research on cognitive function in DS mouse models has largely focused on models with an extra copy of the Mmu16 region and relatively little is known about the effects of increased copy number on Mmu17 and Mmu10 on cognition and how this interacts with the effects of aging. As aging is is a critical contributor to cognitive and psychiatric changes in DS, we hypothesised that ageing would differentially impact memory function in Dp1Tyb, Dp(17)3Yey, and Dp(10)2Yey, models of DS. Methods Young (12-13 months and old (18-20 months mice Dp1Tyb, Dp(17)3Yey and Dp(10)2Yey mice were tested on a battery of object recognition memory test that assessed object novelty detection, novel location detection and associative object-in place memory. Following behavioral testing, hippocampal and frontal cortical tissue was analysed for expression of glutamatergic receptor proteins using standard immunoblot techniques. Results Young (12-13 months and old (18-20 months mice Dp1Tyb, Dp(17)3Yey and Dp(10)2Yey mice were tested on a battery of object recognition memory test that assessed object novelty detection, novel location detection and associative object-in place memory. Following behavioral testing, hippocampal and frontal cortical tissue was analysed for expression of glutamatergic receptor proteins using standard immunoblot techniques. Conclusion Our results show that distinct Hsa21-orthologous regions contribute differentially to cognitive dysfunction in DS mouse models and that aging interacts with triplication of Hsa21-orthologous genes on Mmu10.
Collapse
Affiliation(s)
- Tara Canonica
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Emma J. Kidd
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | | | - Elizabeth M. C. Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | | | - Mark Good
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
2
|
Brunetti V, Soda T, Berra-Romani R, De Sarro G, Guerra G, Scarpellino G, Moccia F. Two Signaling Modes Are Better than One: Flux-Independent Signaling by Ionotropic Glutamate Receptors Is Coming of Age. Biomedicines 2024; 12:880. [PMID: 38672234 PMCID: PMC11048239 DOI: 10.3390/biomedicines12040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamatergic transmission can be mediated by ionotropic glutamate receptors (iGluRs), which mediate rapid synaptic depolarization that can be associated with Ca2+ entry and activity-dependent change in the strength of synaptic transmission, as well as by metabotropic glutamate receptors (mGluRs), which mediate slower postsynaptic responses through the recruitment of second messenger systems. A wealth of evidence reported over the last three decades has shown that this dogmatic subdivision between iGluRs and mGluRs may not reflect the actual physiological signaling mode of the iGluRs, i.e., α-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid (AMPA) receptors (AMPAR), kainate receptors (KARs), and N-methyl-D-aspartate (NMDA) receptors (NMDARs). Herein, we review the evidence available supporting the notion that the canonical iGluRs can recruit flux-independent signaling pathways not only in neurons, but also in brain astrocytes and cerebrovascular endothelial cells. Understanding the signaling versatility of iGluRs can exert a profound impact on our understanding of glutamatergic synapses. Furthermore, it may shed light on novel neuroprotective strategies against brain disorders.
Collapse
Affiliation(s)
- Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, 27110 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.S.); (G.D.S.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giovambattista De Sarro
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.S.); (G.D.S.)
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, 88110 Catanzaro, Italy
| | - Germano Guerra
- Department of Medicine and Health Science “Vincenzo Tiberio”, School of Medicine and Surgery, University of Molise, 86100 Campobasso, Italy;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, 27110 Pavia, Italy; (V.B.); (G.S.)
| | - Francesco Moccia
- Department of Medicine and Health Science “Vincenzo Tiberio”, School of Medicine and Surgery, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
3
|
Gupta S, Khan J, Ghosh S. Molecular mechanism of cognitive impairment associated with Parkinson's disease: A stroke perspective. Life Sci 2024; 337:122358. [PMID: 38128756 DOI: 10.1016/j.lfs.2023.122358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Parkinson's disease (PD) is a common neurological illness that causes several motor and non-motor symptoms, most characteristically limb tremors and bradykinesia. PD is a slowly worsening disease that arises due to progressive neurodegeneration of specific areas of the brain, especially the substantia nigra of the midbrain. Even though PD has continuously been linked to a higher mortality risk in numerous epidemiologic studies, there have been significant discoveries regarding the connection between PD and stroke. The incidence of strokes such as cerebral infarction and hemorrhage is substantially associated with the development of PD. Moreover, cognitive impairments, primarily dementia, have been associated with stroke and PD. However, the underlying molecular mechanism of this phenomenon is still obscure. This concise review focuses on the relationship between stroke and PD, emphasizing the molecular mechanism of cognition deficit and memory loss evident in PD and stroke. Furthermore, we are also highlighting some potential drug molecules that can target both PD and stroke.
Collapse
Affiliation(s)
- Sanju Gupta
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India
| | - Juhee Khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India.
| |
Collapse
|
4
|
Ryding M, Mikkelsen AW, Nissen MS, Nilsson AC, Blaabjerg M. Pathophysiological Effects of Autoantibodies in Autoimmune Encephalitides. Cells 2023; 13:15. [PMID: 38201219 PMCID: PMC10778077 DOI: 10.3390/cells13010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The heterogeneity of autoantibody targets in autoimmune encephalitides presents a challenge for understanding cellular and humoral pathophysiology, and the development of new treatment strategies. Thus, current treatment aims at autoantibody removal and immunosuppression, and is primarily based on data generated from other autoimmune neurological diseases and expert consensus. There are many subtypes of autoimmune encephalitides, which now entails both diseases with autoantibodies targeting extracellular antigens and classical paraneoplastic syndromes with autoantibodies targeting intracellular antigens. Here, we review the current knowledge of molecular and cellular effects of autoantibodies associated with autoimmune encephalitis, and evaluate the evidence behind the proposed pathophysiological mechanisms of autoantibodies in autoimmune encephalitis.
Collapse
Affiliation(s)
- Matias Ryding
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark;
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Anne With Mikkelsen
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark;
| | | | - Anna Christine Nilsson
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark;
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark;
| | - Morten Blaabjerg
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark;
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark;
- Brain Research—Inter Disciplinary Guided Excellence (BRIDGE), 5000 Odense, Denmark
| |
Collapse
|
5
|
Chen Y, Huang Y, Zeng J, Kang Y, Tan Y, Xie X, Wei B, Li C, Fang L, Jiang T. Energy-Efficient ReS 2-Based Optoelectronic Synapse for 3D Object Reconstruction and Recognition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58631-58642. [PMID: 38054897 DOI: 10.1021/acsami.3c14958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The neuromorphic vision system (NVS) equipped with optoelectronic synapses integrates perception, storage, and processing and is expected to address the issues of traditional machine vision. However, owing to their lack of stereo vision, existing NVSs focus on 2D image processing, which makes it difficult to solve problems such as spatial cognition errors and low-precision interpretation. Consequently, inspired by the human visual system, an NVS with stereo vision is developed to achieve 3D object recognition, depending on the prepared ReS2 optoelectronic synapse with 12.12 fJ ultralow power consumption. This device exhibits excellent optical synaptic plasticity derived from the persistent photoconductivity effect. As the cornerstone for 3D vision, color planar information is successfully discriminated and stored in situ at the sensor end, benefiting from its wavelength-dependent plasticity in the visible region. Importantly, the dependence of the channel conductance on the target distance is experimentally revealed, implying that the structure information on the object can be directly captured and stored by the synapse. The 3D image of the object is successfully reconstructed via fusion of its planar and depth images. Therefore, the proposed 3D-NVS based on ReS2 synapses for 3D objects achieves a recognition accuracy of 97.0%, which is much higher than that for 2D objects (32.6%), demonstrating its strong ability to prevent 2D-photo spoofing in applications such as face payment, entrance guard systems, and others.
Collapse
Affiliation(s)
- Yabo Chen
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, P. R. China
| | - Yujie Huang
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, P. R. China
| | - Junwei Zeng
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, P. R. China
| | - Yan Kang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, P. R. China
| | - Yinlong Tan
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, P. R. China
| | - Xiangnan Xie
- Institute of Quantum Information Science and Technology, College of Science, National University of Defense Technology, Changsha 410073, P. R. China
| | - Bo Wei
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, P. R. China
| | - Cheng Li
- Institute of Quantum Information Science and Technology, College of Science, National University of Defense Technology, Changsha 410073, P. R. China
| | - Liang Fang
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, P. R. China
| | - Tian Jiang
- Institute of Quantum Information Science and Technology, College of Science, National University of Defense Technology, Changsha 410073, P. R. China
| |
Collapse
|
6
|
Atanasova T, Savonlehto T, Kukko-Lukjanov TK, Kharybina Z, Chang WC, Lauri SE, Taira T. Progressive development of synchronous activity in the hippocampal neuronal network is modulated by GluK1 kainate receptors. Neuropharmacology 2023; 239:109671. [PMID: 37567438 DOI: 10.1016/j.neuropharm.2023.109671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Kainate receptors are potent modulators of circuit excitability and have been repeatedly implicated in pathophysiological synchronization of limbic networks. While the role of aberrant GluK2 subunit containing KARs in generation of epileptiform hypersynchronous activity is well described, the contribution of other KAR subtypes, including GluK1 subunit containing KARs remain less well understood. To investigate the contribution of GluK1 KARs in developmental and pathological synchronization of the hippocampal neural network, we used multielectrode array recordings on organotypic hippocampal slices that display first multi-unit activity and later spontaneous population discharges resembling ictal-like epileptiform activity (IEA). Chronic blockage of GluK1 activity using selective antagonist ACET or lentivirally delivered shRNA significantly delayed developmental synchronization of the hippocampal CA3 network and generation of IEA. GluK1 overexpression, on the other hand, had no significant effect on occurrence of IEA, but enhanced the size of the neuron population participating in the population discharges. Correlation analysis indicated that local knockdown of GluK1 locally in the CA3 neurons reduced their functional connectivity, while GluK1 overexpression increased the connectivity to both CA1 and DG. These data suggest that GluK1 KARs regulate functional connectivity between the excitatory neurons, possibly via morphological changes in glutamatergic circuit, affecting synchronization of neuronal populations. The significant effects of GluK1 manipulations on network activity call for further research on GluK1 KAR as potential targets for antiepileptic treatments, particularly during the early postnatal development when GluK1 KARs are strongly expressed in the limbic neural networks.
Collapse
Affiliation(s)
- Tsvetomira Atanasova
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Tiina Savonlehto
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | | | - Zoia Kharybina
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Wei-Chih Chang
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Sari E Lauri
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.
| | - Tomi Taira
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| |
Collapse
|
7
|
Nair JD, Wilkinson KA, Yucel BP, Mulle C, Vissel B, Mellor J, Henley JM. GluK2 Q/R editing regulates kainate receptor signaling and long-term potentiation of AMPA receptors. iScience 2023; 26:107708. [PMID: 37720087 PMCID: PMC10504484 DOI: 10.1016/j.isci.2023.107708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Q/R editing of the kainate receptor (KAR) subunit GluK2 radically alters recombinant KAR properties, but the effects on endogenous KARs in vivo remain largely unexplored. Here, we compared GluK2 editing-deficient mice that express ∼95% unedited GluK2(Q) to wild-type counterparts that express ∼85% edited GluK2(R). At mossy fiber-CA3 (MF-CA3) synapses GluK2(Q) mice displayed increased postsynaptic KAR function and KAR-mediated presynaptic facilitation, demonstrating enhanced ionotropic function. Conversely, GluK2(Q) mice exhibited reduced metabotropic KAR function, assessed by KAR-mediated inhibition of slow after-hyperpolarization currents (ISAHP). GluK2(Q) mice also had fewer GluA1-and GluA3-containing AMPA receptors (AMPARs) and reduced postsynaptic AMPAR currents at both MF-CA3 and CA1-Schaffer collateral synapses. Moreover, long-term potentiation of AMPAR-mediated transmission at CA1-Schaffer collateral synapses was reduced in GluK2(Q) mice. These findings suggest that GluK2 Q/R editing influences ionotropic/metabotropic balance of KAR signaling to regulate synaptic expression of AMPARs and plasticity.
Collapse
Affiliation(s)
- Jithin D. Nair
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kevin A. Wilkinson
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Busra P. Yucel
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christophe Mulle
- CNRS UMR 5297, Interdisciplinary Institute of Neuroscience, University of Bordeaux, France
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Jack Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jeremy M. Henley
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
8
|
RNAseq Analysis of FABP4 Knockout Mouse Hippocampal Transcriptome Suggests a Role for WNT/β-Catenin in Preventing Obesity-Induced Cognitive Impairment. Int J Mol Sci 2023; 24:ijms24043381. [PMID: 36834799 PMCID: PMC9961923 DOI: 10.3390/ijms24043381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Microglial fatty-acid binding protein 4 (FABP4) is a regulator of neuroinflammation. We hypothesized that the link between lipid metabolism and inflammation indicates a role for FABP4 in regulating high fat diet (HFD)-induced cognitive decline. We have previously shown that obese FABP4 knockout mice exhibit decreased neuroinflammation and cognitive decline. FABP4 knockout and wild type mice were fed 60% HFD for 12 weeks starting at 15 weeks old. Hippocampal tissue was dissected and RNA-seq was performed to measure differentially expressed transcripts. Reactome molecular pathway analysis was utilized to examine differentially expressed pathways. Results showed that HFD-fed FABP4 knockout mice have a hippocampal transcriptome consistent with neuroprotection, including associations with decreased proinflammatory signaling, ER stress, apoptosis, and cognitive decline. This is accompanied by an increase in transcripts upregulating neurogenesis, synaptic plasticity, long-term potentiation, and spatial working memory. Pathway analysis revealed that mice lacking FABP4 had changes in metabolic function that support reduction in oxidative stress and inflammation, and improved energy homeostasis and cognitive function. Analysis suggested a role for WNT/β-Catenin signaling in the protection against insulin resistance, alleviating neuroinflammation and cognitive decline. Collectively, our work shows that FABP4 represents a potential target in alleviating HFD-induced neuroinflammation and cognitive decline and suggests a role for WNT/β-Catenin in this protection.
Collapse
|
9
|
Chałupnik P, Szymańska E. Kainate Receptor Antagonists: Recent Advances and Therapeutic Perspective. Int J Mol Sci 2023; 24:1908. [PMID: 36768227 PMCID: PMC9916396 DOI: 10.3390/ijms24031908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Since the 1990s, ionotropic glutamate receptors have served as an outstanding target for drug discovery research aimed at the discovery of new neurotherapeutic agents. With the recent approval of perampanel, the first marketed non-competitive antagonist of AMPA receptors, particular interest has been directed toward 'non-NMDA' (AMPA and kainate) receptor inhibitors. Although the role of AMPA receptors in the development of neurological or psychiatric disorders has been well recognized and characterized, progress in understanding the function of kainate receptors (KARs) has been hampered, mainly due to the lack of specific and selective pharmacological tools. The latest findings in the biology of KA receptors indicate that they are involved in neurophysiological activity and play an important role in both health and disease, including conditions such as anxiety, schizophrenia, epilepsy, neuropathic pain, and migraine. Therefore, we reviewed recent advances in the field of competitive and non-competitive kainate receptor antagonists and their potential therapeutic applications. Due to the high level of structural divergence among the compounds described here, we decided to divide them into seven groups according to their overall structure, presenting a total of 72 active compounds.
Collapse
Affiliation(s)
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, PL 30-688 Kraków, Poland
| |
Collapse
|
10
|
Duan GF, Tang XH, Jia M, Wu D, Shi YS. Kainate receptors GluK1 and GluK2 differentially regulate synapse morphology. Synapse 2023; 77:e22255. [PMID: 36121930 DOI: 10.1002/syn.22255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/29/2023]
Abstract
The regulation of dendritic spine morphology is a critical aspect of neuronal network refinement during development and modulation of neurotransmission. Previous studies revealed that glutamatergic transmission plays a central role in synapse development. AMPA receptors and NMDA receptors regulate spine morphology in an activity dependent manner. However, whether and how Kainate receptors (KARs) regulate synapse development remains poorly understood. In this study, we found that GluK1 and GluK2 may play distinct roles in synapse development. In primary cultured hippocampal neurons, we found overexpression of the calcium-permeable GluK2(Q) receptor variant increased spine length and spine head area compared to overexpression of the calcium-impermeable GluK2(R) variant or EGFP transfected, control neurons, indicating that Q/R editing may play a role in GluK2 regulation of synapse development. Intriguingly, neurons transfected with GluK1(Q) showed decreased spine length and spine head area, while the density of dendritic spines was increased, suggesting that GluK1(Q) and GluK2(Q) have different effects on synaptic development. Swapping the critical domains between GluK2 and GluK1 demonstrated the N-terminal domain (NTD) is responsible for the different effects of GluK1 and GluK2. In conclusion, Kainate receptors GluK1 and GluK2 have distinct roles in regulating spine morphology and development, a process likely relying on the NTD.
Collapse
Affiliation(s)
- Gui-Fang Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xiao-Hui Tang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Min Jia
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Dan Wu
- Minister of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yun Stone Shi
- Minister of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Gaidin SG, Kosenkov AM. mRNA editing of kainate receptor subunits: what do we know so far? Rev Neurosci 2022; 33:641-655. [DOI: 10.1515/revneuro-2021-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/18/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Kainate receptors (KARs) are considered one of the key modulators of synaptic activity in the mammalian central nervous system. These receptors were discovered more than 30 years ago, but their role in brain functioning remains unclear due to some peculiarities. One such feature of these receptors is the editing of pre-mRNAs encoding GluK1 and GluK2 subunits. Despite the long history of studying this phenomenon, numerous questions remain unanswered. This review summarizes the current data about the mechanism and role of pre-mRNA editing of KAR subunits in the mammalian brain and proposes a perspective of future investigations.
Collapse
Affiliation(s)
- Sergei G. Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences , 142290 , Pushchino , Russia
| | - Artem M. Kosenkov
- Institute of Cell Biophysics of the Russian Academy of Sciences , 142290 , Pushchino , Russia
| |
Collapse
|
12
|
Nair JD, Henley JM, Wilkinson KA. Surface biotinylation of primary neurons to monitor changes in AMPA receptor surface expression in response to kainate receptor stimulation. STAR Protoc 2021; 2:100992. [PMID: 34934960 PMCID: PMC8661055 DOI: 10.1016/j.xpro.2021.100992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we detail a surface biotinylation technique used to label surface-expressed proteins in primary neuronal cultures. Surface proteins are labeled with membrane-impermeant Sulfo-NHS-SS-biotin, and isolated by pull-down with streptavidin beads followed by western blotting to measure levels of surface expression of the protein of interest under different conditions. We have used this approach extensively to monitor activity-dependent changes in α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and kainate receptor (KAR) subunits. However, this protocol can be used to investigate any surface-expressed protein. For complete details on the use and execution of this protocol, please refer to Nair et al. (2021).
Collapse
Affiliation(s)
- Jithin D. Nair
- Centre for Synaptic Plasticity, School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jeremy M. Henley
- Centre for Synaptic Plasticity, School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kevin A. Wilkinson
- Centre for Synaptic Plasticity, School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
13
|
Nair JD, Braksator E, Yucel BP, Fletcher-Jones A, Seager R, Mellor JR, Bashir ZI, Wilkinson KA, Henley JM. Sustained postsynaptic kainate receptor activation downregulates AMPA receptor surface expression and induces hippocampal LTD. iScience 2021; 24:103029. [PMID: 34553130 PMCID: PMC8441151 DOI: 10.1016/j.isci.2021.103029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 01/21/2023] Open
Abstract
It is well established that long-term depression (LTD) can be initiated by either NMDA or mGluR activation. Here we report that sustained activation of GluK2 subunit-containing kainate receptors (KARs) leads to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) endocytosis and induces LTD of AMPARs (KAR-LTDAMPAR) in hippocampal neurons. The KAR-evoked loss of surface AMPARs is blocked by the ionotropic KAR inhibitor UBP 310 indicating that KAR-LTDAMPAR requires KAR channel activity. Interestingly, however, blockade of PKC or PKA also reduces GluA2 surface expression and occludes the effect of KAR activation. In acute hippocampal slices, kainate application caused a significant loss of GluA2-containing AMPARs from synapses and long-lasting depression of AMPAR excitatory postsynaptic currents in CA1. These data, together with our previously reported KAR-LTPAMPAR, demonstrate that KARs can bidirectionally regulate synaptic AMPARs and synaptic plasticity via different signaling pathways.
Collapse
Affiliation(s)
- Jithin D Nair
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Ellen Braksator
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Busra P Yucel
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Alexandra Fletcher-Jones
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Richard Seager
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Zafar I Bashir
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kevin A Wilkinson
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jeremy M Henley
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK.,Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
14
|
Nair JD, Wilkinson KA, Henley JM, Mellor JR. Kainate receptors and synaptic plasticity. Neuropharmacology 2021; 196:108540. [PMID: 33794245 DOI: 10.1016/j.neuropharm.2021.108540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Synaptic plasticity has classically been characterized to involve the NMDA and AMPA subtypes of glutamate receptors, with NMDA receptors providing the key trigger for the induction of long-term plasticity leading to changes in AMPA receptor expression. Here we review the more subtle roles played by kainate receptors, which contribute critical postsynaptic signalling as well as playing major presynaptic auto-receptor roles. We focus on two research areas: plasticity of kainate receptors themselves and the contribution they make to the plasticity of synaptic transmission. This article is part of the special issue on Glutamate Receptors - Kainate receptors.
Collapse
Affiliation(s)
- Jithin D Nair
- Center for Synaptic Plasticity, School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- Center for Synaptic Plasticity, School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jeremy M Henley
- Center for Synaptic Plasticity, School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jack R Mellor
- Center for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
15
|
Henley JM, Nair JD, Seager R, Yucel BP, Woodhall G, Henley BS, Talandyte K, Needs HI, Wilkinson KA. Kainate and AMPA receptors in epilepsy: Cell biology, signalling pathways and possible crosstalk. Neuropharmacology 2021; 195:108569. [PMID: 33915142 DOI: 10.1016/j.neuropharm.2021.108569] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/13/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Epilepsy is caused when rhythmic neuronal network activity escapes normal control mechanisms, resulting in seizures. There is an extensive and growing body of evidence that the onset and maintenance of epilepsy involves alterations in the trafficking, synaptic surface expression and signalling of kainate and AMPA receptors (KARs and AMPARs). The KAR subunit GluK2 and AMPAR subunit GluA2 are key determinants of the properties of their respective assembled receptors. Both subunits are subject to extensive protein interactions, RNA editing and post-translational modifications. In this review we focus on the cell biology of GluK2-containing KARs and GluA2-containing AMPARs and outline how their regulation and dysregulation is implicated in, and affected by, seizure activity. Further, we discuss role of KARs in regulating AMPAR surface expression and plasticity, and the relevance of this to epilepsy. This article is part of the special issue on 'Glutamate Receptors - Kainate receptors'.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK; Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Jithin D Nair
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Richard Seager
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Busra P Yucel
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Gavin Woodhall
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Benjamin S Henley
- Faculty of Medical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Karolina Talandyte
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Hope I Needs
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
16
|
Metabotropic actions of kainate receptors modulating glutamate release. Neuropharmacology 2021; 197:108696. [PMID: 34274351 DOI: 10.1016/j.neuropharm.2021.108696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/06/2022]
Abstract
Presynaptic kainate (KA) receptors (KARs) modulate GABA and glutamate release in the central nervous system of mammals. While some of the actions of KARs are ionotropic, metabotropic actions for these receptors have also been seen to modulate both GABA and glutamate release. In general, presynaptic KARs modulate glutamate release through their metabotropic actions in a biphasic manner, with low KA concentrations producing an increase in glutamate release and higher concentrations of KA driving weaker release of this neurotransmitter. Different molecular mechanisms are involved in this modulation of glutamate release, with a G-protein independent, Ca2+-calmodulin adenylate cyclase (AC) and protein kinase A (PKA) dependent mechanism facilitating glutamate release, and a G-protein, AC and PKA dependent mechanism mediating the decrease in neurotransmitter release. Here, we describe the events underlying the KAR modulation of glutamatergic transmission in different brain regions, addressing the possible functions of this modulation and proposing future research lines in this field.
Collapse
|
17
|
Mulle C, Crépel V. Regulation and dysregulation of neuronal circuits by KARs. Neuropharmacology 2021; 197:108699. [PMID: 34246686 DOI: 10.1016/j.neuropharm.2021.108699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Kainate receptors (KARs) constitute a family of ionotropic glutamate receptors (iGluRs) with distinct physiological roles in synapses and neuronal circuits. Despite structural and biophysical commonalities with the other iGluRs, AMPA receptors and NMDA receptors, their role as post-synaptic receptors involved in shaping EPSCs to transmit signals across synapses is limited to a small number of synapses. On the other hand KARs regulate presynaptic release mechanisms and control ion channels and signaling pathways through non-canonical metabotropic actions. We review how these different KAR-dependent mechanisms concur to regulate the activity and plasticity of neuronal circuits in physiological conditions of activation of KARs by endogenous glutamate (as opposed to pharmacological activation by exogenous agonists). KARs have been implicated in neurological disorders, based on genetic association and on physiopathological studies. A well described example relates to temporal lobe epilepsy for which the aberrant recruitment of KARs at recurrent mossy fiber synapses takes part in epileptogenic neuronal activity. In conclusion, KARs certainly represent an underestimated actor in the regulation of neuronal circuits, and a potential therapeutic target awaiting more selective and efficient genetic tools and/or ligands.
Collapse
Affiliation(s)
- Christophe Mulle
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France.
| | - Valérie Crépel
- INMED, INSERM UMR1249, Aix-Marseille Université, Marseille, France
| |
Collapse
|
18
|
Kainate receptors in the developing neuronal networks. Neuropharmacology 2021; 195:108585. [PMID: 33910033 DOI: 10.1016/j.neuropharm.2021.108585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Kainate receptors (KARs) are highly expressed in the immature brain and have unique developmentally regulated functions that may be important in linking neuronal activity to morphogenesis during activity-dependent fine-tuning of the synaptic connectivity. Altered expression of KARs in the developing neural network leads to changes in glutamatergic connectivity and network excitability, which may lead to long-lasting changes in behaviorally relevant circuitries in the brain. Here, we summarize the current knowledge on physiological and morphogenic functions described for different types of KARs at immature neural circuitries, focusing on their roles in modulating synaptic transmission and plasticity as well as circuit maturation in the rodent hippocampus and amygdala. Finally, we discuss the emerging evidence suggesting that malfunction of KARs in the immature brain may contribute to the pathophysiology underlying developmentally originating neurological disorders.
Collapse
|
19
|
Alkadhi KA. NMDA receptor-independent LTP in mammalian nervous system. Prog Neurobiol 2021; 200:101986. [PMID: 33400965 DOI: 10.1016/j.pneurobio.2020.101986] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022]
Abstract
Long-term potentiation (LTP) of synaptic transmission is a form of activity-dependent synaptic plasticity that exists at most synapses in the nervous system. In the central nervous system (CNS), LTP has been recorded at numerous synapses and is a prime candidate mechanism associating activity-dependent plasticity with learning and memory. LTP involves long-lasting increase in synaptic strength with various underlying mechanisms. In the CNS, the predominant type of LTP is believed to be dependent on activation of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR), which is highly calcium-permeable. However, various forms of NMDAR-independent LTP have been identified in diverse areas of the nervous system. The NMDAR-independent LTP may require activation of glutamate metabotropic receptors (mGluR) or ionotropic receptors other than NMDAR such as nicotinic acetylcholine receptor (α7-nAChR), serotonin 5-HT3 receptor or calcium-permeable AMPA receptor (CP-AMPAR). In this review, NMDAR-independent LTP of various areas of the central and peripheral nervous systems are discussed.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
20
|
Khan R, Kulasiri D, Samarasinghe S. Functional repertoire of protein kinases and phosphatases in synaptic plasticity and associated neurological disorders. Neural Regen Res 2021; 16:1150-1157. [PMID: 33269764 PMCID: PMC8224123 DOI: 10.4103/1673-5374.300331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Protein phosphorylation and dephosphorylation are two essential and vital cellular mechanisms that regulate many receptors and enzymes through kinases and phosphatases. Ca2+- dependent kinases and phosphatases are responsible for controlling neuronal processing; balance is achieved through opposition. During molecular mechanisms of learning and memory, kinases generally modulate positively while phosphatases modulate negatively. This review outlines some of the critical physiological and structural aspects of kinases and phosphatases involved in maintaining postsynaptic structural plasticity. It also explores the link between neuronal disorders and the deregulation of phosphatases and kinases.
Collapse
Affiliation(s)
- Raheel Khan
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University; Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University; Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand
| |
Collapse
|
21
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Subunit-selective iGluR antagonists can potentiate heteromeric receptor responses by blocking desensitization. Proc Natl Acad Sci U S A 2020; 117:25851-25858. [PMID: 32999066 DOI: 10.1073/pnas.2007471117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ionotropic glutamate receptors (iGluRs) are key molecules for synaptic signaling in the central nervous system, which makes them promising drug targets. Intensive efforts are being devoted to the development of subunit-selective ligands, which should enable more precise pharmacologic interventions while limiting the effects on overall neuronal circuit function. However, many AMPA and kainate receptor complexes in vivo are heteromers composed of different subunits. Despite their importance, little is known about how subunit-selective ligands affect the gating of heteromeric iGluRs, namely their activation and desensitization properties. Using fast ligand application experiments, we studied the effects of competitive antagonists that block glutamate from binding at part of the four subunits. We found that UBP-310, a kainate receptor antagonist with high selectivity for GluK1 subunits, reduces the desensitization of GluK1/GluK2 heteromers and fully abolishes the desensitization of GluK1/GluK5 heteromers. This effect is mirrored by subunit-selective agonists and heteromeric receptors that contain binding-impaired subunits, as we show for both kainate and GluA2 AMPA receptors. These findings are consistent with a model in which incomplete agonist occupancy at the four receptor subunits can provide activation without inducing desensitization. However, we did not detect significant steady-state currents during UBP-310 dissociation from GluK1 homotetramers, indicating that antagonist dissociation proceeds in a nonuniform and cooperativity-driven manner, which disfavors nondesensitizing occupancy states. Besides providing mechanistic insights, these results have direct implications for the use of subunit-selective antagonists in neuroscience research and envisioned therapeutic interventions.
Collapse
|
23
|
Kesaf S, Khirug S, Dinh E, Saez Garcia M, Soni S, Orav E, Delpire E, Taira T, Lauri SE, Rivera C. The Kainate Receptor Subunit GluK2 Interacts With KCC2 to Promote Maturation of Dendritic Spines. Front Cell Neurosci 2020; 14:252. [PMID: 33005130 PMCID: PMC7479265 DOI: 10.3389/fncel.2020.00252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Kainate receptors (KAR) play a crucial role in the plasticity and functional maturation of glutamatergic synapses. However, how they regulate structural plasticity of dendritic spines is not known. The GluK2 subunit was recently shown to coexist in a functional complex with the neuronal K-Cl cotransporter KCC2. Apart from having a crucial role in the maturation of GABAergic transmission, KCC2 has a morphogenic role in the maturation of dendritic spines. Here, we show that in vivo local inactivation of GluK2 expression in CA3 hippocampal neurons induces altered morphology of dendritic spines and reduction in mEPSC frequency. GluK2 deficiency also resulted in a strong change in the subcellular distribution of KCC2 as well as a smaller somatodendritic gradient in the reversal potential of GABAA. Strikingly, the aberrant morphology of dendritic spines in GluK2-deficient CA3 pyramidal neurons was restored by overexpression of KCC2. GluK2 silencing in hippocampal neurons significantly reduced the expression of 4.1N and functional form of the actin filament severing protein cofilin. Consistently, assessment of actin dynamics using fluorescence recovery after photobleaching (FRAP) of β-actin showed a significant increase in the stability of F-actin filaments in dendritic spines. In conclusion, our results demonstrate that GluK2-KCC2 interaction plays an important role in the structural maturation of dendritic spines. This also provides novel insights into the connection between KAR dysfunction, structural plasticity, and developmental disorders.
Collapse
Affiliation(s)
- Sebnem Kesaf
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.,Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Stanislav Khirug
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Emilie Dinh
- Developmental Biology Institute of Marseille, Marseille, France
| | - Marta Saez Garcia
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Shetal Soni
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Ester Orav
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.,Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Tomi Taira
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.,Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Sari E Lauri
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.,Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Claudio Rivera
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.,Institut de Neurobiologie de la Méditerranée (INMED) UMR901, Marseille, France
| |
Collapse
|
24
|
Martínez-Moreno CG, Arámburo C. Growth hormone (GH) and synaptogenesis. VITAMINS AND HORMONES 2020; 114:91-123. [PMID: 32723552 DOI: 10.1016/bs.vh.2020.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growth hormone (GH) is known to exert several roles during development and function of the nervous system. Initially, GH was exclusively considered a pituitary hormone that regulates body growth and metabolism, but now its alternative extrapituitary production and pleiotropic functions are widely accepted. Through excess and deficit models, the critical role of GH in nervous system development and adult brain function has been extensively demonstrated. Moreover, neurotrophic actions of GH in neural tissues include pro-survival effects, neuroprotection, axonal growth, synaptogenesis, neurogenesis and neuroregeneration. The positive effects of GH upon memory, behavior, mood, sensorimotor function and quality of life, clearly implicate a beneficial action in synaptic physiology. Experimental and clinical evidence about GH actions in synaptic function modulation, protection and restoration are revised in this chapter.
Collapse
Affiliation(s)
- Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México.
| |
Collapse
|
25
|
Wang Z, Lin B, Liu W, Peng H, Song C, Huang J, Li Z, Chen L, Tao J. Electroacupuncture ameliorates learning and memory deficits via hippocampal 5-HT1A receptors and the PKA signaling pathway in rats with ischemic stroke. Metab Brain Dis 2020; 35:549-558. [PMID: 31515682 DOI: 10.1007/s11011-019-00489-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/28/2019] [Indexed: 12/22/2022]
Abstract
Hippocampal 5-HT1A receptors and the PKA signaling pathway have been implicated in learning and memory. This study aimed to investigate whether PKA signaling mediated by 5-HT1A receptors was involved in the electroacupuncture (EA)-mediated learning and memory in a rat model of middle cerebral artery occlusion-induced cognitive deficit (MICD). Compared to no treatment or non-acupoint EA treatment, EA at DU20 and DU24 acupoints improved the neurological deficit of scores, shortened escape latency and increased the frequency of crossing the platform in the Morris water maze test. T2-weighted imaging demonstrated that the MICD rat brain lesions were mainly located in the cortex and hippocampus, and injured volumes were reduced after EA. Furthermore, we found that these behavioral changes were concomitant with the deficit of the 5HT1A and PKA signaling pathways in the hippocampus, as the activation of the 5-HT1A receptor, the reduction of PKA kinase activity, and AMPA and NMDA receptor phosphorylation occurred in the injured hippocampus at Day 14 after MICD. Additionally, EA dramatically elevated the activation of PKA. Moreover, EA significantly increased intracellular calcium concentrations regulated by the activation of NMDA receptors. Therefore, PKA kinase and NMDA receptors mediated by 5-HT1A receptors in the hippocampus might contribute to improving learning and memory during the recovery process following ischemic stroke with an EA intervention.
Collapse
Affiliation(s)
- Zhifu Wang
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bingbing Lin
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weilin Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hongwei Peng
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Changming Song
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jia Huang
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zuanfang Li
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| |
Collapse
|
26
|
Locating the engram: Should we look for plastic synapses or information-storing molecules? Neurobiol Learn Mem 2020; 169:107164. [PMID: 31945459 DOI: 10.1016/j.nlm.2020.107164] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/18/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Karl Lashley began the search for the engram nearly seventy years ago. In the time since, much has been learned but divisions remain. In the contemporary neurobiology of learning and memory, two profoundly different conceptions contend: the associative/connectionist (A/C) conception and the computational/representational (C/R) conception. Both theories ground themselves in the belief that the mind is emergent from the properties and processes of a material brain. Where these theories differ is in their description of what the neurobiological substrate of memory is and where it resides in the brain. The A/C theory of memory emphasizes the need to distinguish memory cognition from the memory engram and postulates that memory cognition is an emergent property of patterned neural activity routed through engram circuits. In this model, learning re-organizes synapse association strengths to guide future neural activity. Importantly, the version of the A/C theory advocated for here contends that synaptic change is not symbolic and, despite normally being necessary, is not sufficient for memory cognition. Instead, synaptic change provides the capacity and a blueprint for reinstating symbolic patterns of neural activity. Unlike the A/C theory, which posits that memory emerges at the circuit level, the C/R conception suggests that memory manifests at the level of intracellular molecular structures. In C/R theory, these intracellular structures are information-conveying and have properties compatible with the view that brain computation utilizes a read/write memory, functionally similar to that in a computer. New research has energized both sides and highlighted the need for new discussion. Both theories, the key questions each theory has yet to resolve and several potential paths forward are presented here.
Collapse
|
27
|
Valbuena S, Lerma J. Kainate Receptors, Homeostatic Gatekeepers of Synaptic Plasticity. Neuroscience 2019; 456:17-26. [PMID: 31866560 DOI: 10.1016/j.neuroscience.2019.11.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 01/16/2023]
Abstract
Extensive research over the past decades has characterized multiple forms of synaptic plasticity, identifying them as key processes that allow the brain to operate in a dynamic manner. Within the wide variety of synaptic plasticity modulators, kainate receptors are receiving increasing attention, given their diversity of signaling mechanisms and cellular expression profile. Here, we summarize the experimental evidence about the involvement of kainate receptor signaling in the regulation of short- and long-term plasticity, from the perspective of the regulation of neurotransmitter release. In light of this evidence, we propose that kainate receptors may be considered homeostatic modulators of neurotransmitter release, able to bidirectionally regulate plasticity depending on the functional history of the synapse.
Collapse
Affiliation(s)
- Sergio Valbuena
- Instituto de Neurociencias UMH-CSIC, 03550 San Juan de Alicante, Spain.
| | - Juan Lerma
- Instituto de Neurociencias UMH-CSIC, 03550 San Juan de Alicante, Spain.
| |
Collapse
|
28
|
Damaging coding variants within kainate receptor channel genes are enriched in individuals with schizophrenia, autism and intellectual disabilities. Sci Rep 2019; 9:19215. [PMID: 31844109 PMCID: PMC6915710 DOI: 10.1038/s41598-019-55635-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/23/2019] [Indexed: 01/13/2023] Open
Abstract
Schizophrenia (Scz), autism spectrum disorder (ASD) and intellectual disability are common complex neurodevelopmental disorders. Kainate receptors (KARs) are ionotropic glutamate ion channels involved in synaptic plasticity which are modulated by auxiliary NETO proteins. Using UK10K exome sequencing data, we interrogated the coding regions of KAR and NETO genes in individuals with Scz, ASD or intellectual disability and population controls; performed follow-up genetic replication studies; and, conducted in silico and in vitro functional studies. We found an excess of Loss-of-Function and missense variants in individuals with Scz compared with control individuals (p = 1.8 × 10−10), and identified a significant burden of functional variants for Scz (p < 1.6 × 10−11) and ASD (p = 6.9 × 10−18). Single allele associations for 6 damaging missense variants were significantly replicated (p < 5.0 × 10−15) and confirmed GRIK3 S310A as a protective genetic factor. Functional studies demonstrated that three missense variants located within GluK2 and GluK4, GluK2 (K525E) and GluK4 (Y555N, L825W), affect agonist sensitivity and current decay rates. These findings establish that genetic variation in KAR receptor ion channels confers risk for schizophrenia, autism and intellectual disability and provide new genetic and pharmacogenetic biomarkers for neurodevelopmental disease.
Collapse
|
29
|
Jack A, Hamad MIK, Gonda S, Gralla S, Pahl S, Hollmann M, Wahle P. Development of Cortical Pyramidal Cell and Interneuronal Dendrites: a Role for Kainate Receptor Subunits and NETO1. Mol Neurobiol 2019; 56:4960-4979. [PMID: 30421168 DOI: 10.1007/s12035-018-1414-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022]
Abstract
During neuronal development, AMPA receptors (AMPARs) and NMDA receptors (NMDARs) are important for neuronal differentiation. Kainate receptors (KARs) are closely related to AMPARs and involved in the regulation of cortical network activity. However, their role for neurite growth and differentiation of cortical neurons is unclear. Here, we used KAR agonists and overexpression of selected KAR subunits and their auxiliary neuropilin and tolloid-like proteins, NETOs, to investigate their influence on dendritic growth and network activity in organotypic cultures of rat visual cortex. Kainate at 500 nM enhanced network activity and promoted development of dendrites in layer II/III pyramidal cells, but not interneurons. GluK2 overexpression promoted dendritic growth in pyramidal cells and interneurons. GluK2 transfectants were highly active and acted as drivers for network activity. GluK1 and NETO1 specifically promoted dendritic growth of interneurons. Our study provides new insights for the roles of KARs and NETOs in the morphological and physiological development of the visual cortex.
Collapse
Affiliation(s)
- Alexander Jack
- Faculty for Biology and Biotechnology ND 6/72, Developmental Neurobiology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Mohammad I K Hamad
- Faculty for Biology and Biotechnology ND 6/72, Developmental Neurobiology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
- Medical Faculty, Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Steffen Gonda
- Faculty for Biology and Biotechnology ND 6/72, Developmental Neurobiology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sebastian Gralla
- Faculty for Biology and Biotechnology ND 6/72, Developmental Neurobiology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Steffen Pahl
- Faculty of Chemistry and Biochemistry, Biochemistry I-Receptor Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Michael Hollmann
- Faculty of Chemistry and Biochemistry, Biochemistry I-Receptor Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Petra Wahle
- Faculty for Biology and Biotechnology ND 6/72, Developmental Neurobiology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| |
Collapse
|
30
|
Liao Y, Bae HJ, Zhang J, Kwon Y, Koo B, Jung IH, Kim HM, Park JH, Lew JH, Ryu JH. The Ameliorating Effects of Bee Pollen on Scopolamine-Induced Cognitive Impairment in Mice. Biol Pharm Bull 2019; 42:379-388. [DOI: 10.1248/bpb.b18-00552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yulan Liao
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Ho Jung Bae
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Jiabao Zhang
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Yubeen Kwon
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Bokyung Koo
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - In Ho Jung
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | | | - Jong Hun Park
- Graduate School of East-West Medical Science, Kyung Hee University
| | - Jae Hwan Lew
- Graduate School of East-West Medical Science, Kyung Hee University
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
- Department of Oriental Pharmaceutical Science, Kyung Hee University
| |
Collapse
|
31
|
Li Q, Wu X, Na X, Ge B, Wu Q, Guo X, Ntim M, Zhang Y, Sun Y, Yang J, Xiao Z, Zhao J, Li S. Impaired Cognitive Function and Altered Hippocampal Synaptic Plasticity in Mice Lacking Dermatan Sulfotransferase Chst14/D4st1. Front Mol Neurosci 2019; 12:26. [PMID: 30853887 PMCID: PMC6396735 DOI: 10.3389/fnmol.2019.00026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) proteoglycans (PGs) are major extracellular matrix (ECM) components of the central nervous system (CNS). A large body of evidence has shown that CSPGs/DSPGs play critical roles in neuronal growth, axon guidance, and plasticity in the developing and mature CNS. It has been proposed that these PGs exert their function through specific interaction of CS/DS chains with its binding partners in a manner that depends on the sulfation patterns of CS/DS. It has been reported that dermatan 4-O-sulfotransferase-1 (Chst14/D4st1) specific for DS, but not chondroitin 4-O-sulfotransferase-1 (Chst11/C4st1) specific for CS, regulates proliferation and neurogenesis of neural stem cells (NSCs), indicating that CS and DS play distinct roles in the self-renewal and differentiation of NSCs. However, it remains unknown whether specific sulfation profiles of DS has any effect on CNS plasticity. In the present study, Chst14/D4st1-deficient (Chst14−/−) mice was employed to investigate the involvement of DS in synaptic plasticity. First, behavior study using Morris Water Maze (MWM) showed that the spatial learning and memory of Chst14−/− mice was impaired when compared to their wild type (WT) littermates. Corroborating the behavior result, long-term potentiation (LTP) at the hippocampal CA3-CA1 connection was reduced in Chst14−/− mice compared to the WT mice. Finally, the protein levels of N-Methyl-D-aspartate (NMDA) receptor, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, postsynaptic density 95 (PSD95), growth associated protein 43 (GAP-43), synaptophysin (SYN) and N-ethylmaleimide sensitive factor (NSF) which are important in synaptic plasticity were examined and Chst14/D4st1 deficiency was shown to significantly reduce the expression of these proteins in the hippocampus. Further studies revealed that Akt/mammalian target rapamycin (mTOR) pathway proteins, including protein kinase B (p-Akt), p-mTOR and p-S6, were significantly lower in Chst14−/− mice, which might contribute to the decreased protein expression. Together, this study reveals that specific sulfation of DS is critical in synaptic plasticity of the hippocampus and learning and memory, which might be associated with the changes in the expression of glutamate receptors and other synaptic proteins though Akt/mTOR pathway.
Collapse
Affiliation(s)
- Qifa Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Xuefei Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Xueyan Na
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Biying Ge
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Qiong Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Xuewen Guo
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Michael Ntim
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Yue Zhang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Yiping Sun
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Jinyi Yang
- Department of Urology, Dalian Friendship Hospital, Dalian, China
| | - Zhicheng Xiao
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Chandra N, Awasthi R, Ozdogan T, Johenning FW, Imbrosci B, Morris G, Schmitz D, Barkai E. A Cellular Mechanism Underlying Enhanced Capability for Complex Olfactory Discrimination Learning. eNeuro 2019; 6:ENEURO.0198-18.2019. [PMID: 30783614 PMCID: PMC6378325 DOI: 10.1523/eneuro.0198-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/26/2018] [Accepted: 01/06/2019] [Indexed: 11/21/2022] Open
Abstract
The biological mechanisms underlying complex forms of learning requiring the understanding of rules based on previous experience are not yet known. Previous studies have raised the intriguing possibility that improvement in complex learning tasks requires the long-term modulation of intrinsic neuronal excitability, induced by reducing the conductance of the slow calcium-dependent potassium current (sIAHP) simultaneously in most neurons in the relevant neuronal networks in several key brain areas. Such sIAHP reduction is expressed in attenuation of the postburst afterhyperpolarization (AHP) potential, and thus in enhanced repetitive action potential firing. Using complex olfactory discrimination (OD) learning as a model for complex learning, we show that brief activation of the GluK2 subtype glutamate receptor results in long-lasting enhancement of neuronal excitability in neurons from controls, but not from trained rats. Such an effect can be obtained by a brief tetanic synaptic stimulation or by direct application of kainate, both of which reduce the postburst AHP in pyramidal neurons. Induction of long-lasting enhancement of neuronal excitability is mediated via a metabotropic process that requires PKC and ERK activation. Intrinsic neuronal excitability cannot be modulated by synaptic activation in neurons from GluK2 knock-out mice. Accordingly, these mice are incapable of learning the complex OD task. Moreover, viral-induced overexpression of Gluk2 in piriform cortex pyramidal neurons results in remarkable enhancement of complex OD learning. Thus, signaling via kainate receptors has a central functional role in higher cognitive abilities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edi Barkai
- University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
33
|
Gurung S, Evans AJ, Wilkinson KA, Henley JM. ADAR2-mediated Q/R editing of GluK2 regulates kainate receptor upscaling in response to suppression of synaptic activity. J Cell Sci 2018; 131:jcs222273. [PMID: 30559217 PMCID: PMC6307878 DOI: 10.1242/jcs.222273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022] Open
Abstract
Kainate receptors (KARs) regulate neuronal excitability and network function. Most KARs contain the subunit GluK2 (also known as GRIK2), and the properties of these receptors are determined in part by ADAR2 (also known as ADARB1)-mediated mRNA editing of GluK2, which changes a genomically encoded glutamine residue into an arginine residue (Q/R editing). Suppression of synaptic activity reduces ADAR2-dependent Q/R editing of GluK2 with a consequential increase in GluK2-containing KAR surface expression. However, the mechanism underlying this reduction in GluK2 editing has not been addressed. Here, we show that induction of KAR upscaling, a phenomenon in which surface expression of receptors is increased in response to a chronic decrease in synaptic activity, results in proteasomal degradation of ADAR2, which reduces GluK2 Q/R editing. Because KARs incorporating unedited GluK2(Q) assemble and exit the ER more efficiently, this leads to an upscaling of KAR surface expression. Consistent with this, we demonstrate that partial ADAR2 knockdown phenocopies and occludes KAR upscaling. Moreover, we show that although the AMPA receptor (AMPAR) subunit GluA2 (also known as GRIA2) also undergoes ADAR2-dependent Q/R editing, this process does not mediate AMPAR upscaling. These data demonstrate that activity-dependent regulation of ADAR2 proteostasis and GluK2 Q/R editing are key determinants of KAR, but not AMPAR, trafficking and upscaling.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sonam Gurung
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Ashley J Evans
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
34
|
Loweth JA, Reimers JM, Caccamise A, Stefanik MT, Woo KKY, Chauhan NM, Werner CT, Wolf ME. mGlu1 tonically regulates levels of calcium-permeable AMPA receptors in cultured nucleus accumbens neurons through retinoic acid signaling and protein translation. Eur J Neurosci 2018; 50:2590-2601. [PMID: 30222904 DOI: 10.1111/ejn.14151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022]
Abstract
In several brain regions, ongoing metabotropic glutamate receptor 1 (mGlu1) transmission has been shown to tonically suppress synaptic levels of Ca2+ -permeable AMPA receptors (CP-AMPARs) while pharmacological activation of mGlu1 removes CP-AMPARs from these synapses. Consistent with this, we previously showed in nucleus accumbens (NAc) medium spiny neurons (MSNs) that reduced mGlu1 tone enables and mGlu1 positive allosteric modulation reverses the elevation of CP-AMPAR levels in the NAc that underlies enhanced cocaine craving in the "incubation of craving" rat model of addiction. To better understand mGlu1/CP-AMPAR interactions, we used a NAc/prefrontal cortex co-culture system in which NAc MSNs express high CP-AMPAR levels, providing an in vitro model for NAc MSNs after the incubation of cocaine craving. The non-specific group I orthosteric agonist dihydroxyphenylglycine (10 min) decreased cell surface GluA1 but not GluA2, indicating CP-AMPAR internalization. This was prevented by mGlu1 (LY367385) or mGlu5 (MTEP) blockade. However, a selective role for mGlu1 emerged in studies of long-term antagonist treatment. Thus, LY367385 (24 hr) increased surface GluA1 without affecting GluA2, whereas MTEP (24 hr) had no effect. In hippocampal neurons, scaling up of CP-AMPARs can occur through a mechanism requiring retinoic acid (RA) signaling and new GluA1 synthesis. Consistent with this, the LY367385-induced increase in surface GluA1 was blocked by anisomycin (translation inhibitor) or 4-(diethylamino)-benzaldehyde (RA synthesis inhibitor). Thus, mGlu1 transmission tonically suppresses cell surface CP-AMPAR levels, and decreasing mGlu1 tone increases surface CP-AMPARs via RA signaling and protein translation. These results identify a novel mechanism for homeostatic plasticity in NAc MSNs.
Collapse
Affiliation(s)
- Jessica A Loweth
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Jeremy M Reimers
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Aaron Caccamise
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Michael T Stefanik
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Kenneth Kin Yan Woo
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Nirav M Chauhan
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Craig T Werner
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
35
|
Moretto E, Passafaro M. Recent Findings on AMPA Receptor Recycling. Front Cell Neurosci 2018; 12:286. [PMID: 30233324 PMCID: PMC6129582 DOI: 10.3389/fncel.2018.00286] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/10/2018] [Indexed: 02/04/2023] Open
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs) are tetrameric protein complexes that mediate most of the fast-excitatory transmission in response to the neurotransmitter glutamate in neurons. The abundance of AMPA-Rs at the surface of excitatory synapses establishes the strength of the response to glutamate. It is thus evident that neurons need to tightly regulate this feature, particularly in the context of all synaptic plasticity events, which are considered the biological correlates of higher cognitive functions such as learning and memory. AMPA-R levels at the synapse are regulated by insertion of newly synthesized receptors, lateral diffusion on the plasma membrane and endosomal cycling. The latter is likely the most important especially for synaptic plasticity. This process starts with the endocytosis of the receptor from the cell surface and is followed by either degradation, if the receptor is directed to the lysosomal compartment, or reinsertion at the cell surface through a specialized endosomal compartment called recycling endosomes. Although the basic steps of this process have been discovered, the details and participation of additional regulatory proteins are still being discovered. In this review article, we describe the most recent findings shedding light on this crucial mechanism of synaptic regulation.
Collapse
Affiliation(s)
- Edoardo Moretto
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Maria Passafaro
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| |
Collapse
|
36
|
Gschwind T, Lafourcade C, Gfeller T, Zaichuk M, Rambousek L, Knuesel I, Fritschy JM. Contribution of early Alzheimer's disease-related pathophysiology to the development of acquired epilepsy. Eur J Neurosci 2018; 47:1534-1562. [DOI: 10.1111/ejn.13983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/25/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Tilo Gschwind
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zurich Switzerland
| | - Carlos Lafourcade
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Laboratorio de Neurociencias; Universidad de los Andes; Santiago Chile
| | - Tim Gfeller
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
| | - Mariana Zaichuk
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zurich Switzerland
| | - Lukas Rambousek
- Institute of Experimental Immunology; University of Zurich; Zurich Switzerland
| | - Irene Knuesel
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Roche Pharmaceutical Research and Early Development; NORD Discovery & Translational Area; Roche Innovation Center Basel; Basel Switzerland
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zurich Switzerland
| |
Collapse
|
37
|
Kiragasi B, Wondolowski J, Li Y, Dickman DK. A Presynaptic Glutamate Receptor Subunit Confers Robustness to Neurotransmission and Homeostatic Potentiation. Cell Rep 2018; 19:2694-2706. [PMID: 28658618 DOI: 10.1016/j.celrep.2017.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 04/20/2017] [Accepted: 05/28/2017] [Indexed: 02/05/2023] Open
Abstract
Homeostatic signaling systems are thought to interface with other forms of plasticity to ensure flexible yet stable levels of neurotransmission. The role of neurotransmitter receptors in this process, beyond mediating neurotransmission itself, is not known. Through a forward genetic screen, we have identified the Drosophila kainate-type ionotropic glutamate receptor subunit DKaiR1D to be required for the retrograde, homeostatic potentiation of synaptic strength. DKaiR1D is necessary in presynaptic motor neurons, localized near active zones, and confers robustness to the calcium sensitivity of baseline synaptic transmission. Acute pharmacological blockade of DKaiR1D disrupts homeostatic plasticity, indicating that this receptor is required for the expression of this process, distinct from developmental roles. Finally, we demonstrate that calcium permeability through DKaiR1D is necessary for baseline synaptic transmission, but not for homeostatic signaling. We propose that DKaiR1D is a glutamate autoreceptor that promotes robustness to synaptic strength and plasticity with active zone specificity.
Collapse
Affiliation(s)
- Beril Kiragasi
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA; USC Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Joyce Wondolowski
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Yan Li
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Dion K Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
38
|
Hu X, Yang J, Sun Y, Gao X, Zhang L, Li Y, Yu M, Liu S, Lu X, Jin C, Wu S, Cai Y. Lanthanum chloride impairs memory in rats by disturbing the glutamate-glutamine cycle and over-activating NMDA receptors. Food Chem Toxicol 2018; 113:1-13. [DOI: 10.1016/j.fct.2018.01.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 02/06/2023]
|
39
|
Exciting Times: New Advances Towards Understanding the Regulation and Roles of Kainate Receptors. Neurochem Res 2017; 44:572-584. [PMID: 29270706 PMCID: PMC6420428 DOI: 10.1007/s11064-017-2450-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/27/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022]
Abstract
Kainate receptors (KARs) are glutamate-gated ion channels that play fundamental roles in regulating neuronal excitability and network function in the brain. After being cloned in the 1990s, important progress has been made in understanding the mechanisms controlling the molecular and cellular properties of KARs, and the nature and extent of their regulation of wider neuronal activity. However, there have been significant recent advances towards understanding KAR trafficking through the secretory pathway, their precise synaptic positioning, and their roles in synaptic plasticity and disease. Here we provide an overview highlighting these new findings about the mechanisms controlling KARs and how KARs, in turn, regulate other proteins and pathways to influence synaptic function.
Collapse
|
40
|
NETO1 Guides Development of Glutamatergic Connectivity in the Hippocampus by Regulating Axonal Kainate Receptors. eNeuro 2017; 4:eN-NWR-0048-17. [PMID: 28680963 PMCID: PMC5494894 DOI: 10.1523/eneuro.0048-17.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 11/21/2022] Open
Abstract
Kainate-type glutamate receptors (KARs) are highly expressed in the developing brain, where they are tonically activated to modulate synaptic transmission, network excitability and synaptogenesis. NETO proteins are auxiliary subunits that regulate biophysical properties of KARs; however, their functions in the immature brain are not known. Here, we show that NETO1 guides the development of the rodent hippocampal CA3-CA1 circuitry via regulating axonal KARs. NETO deficiency reduced axonal targeting of most KAR subunits in hippocampal neurons in a subtype independent manner. As an interesting exception, axonal delivery of GluK1c was strongly and selectively impaired in the Neto1−/−, but not Neto2−/−, neurons. Correspondingly, the presynaptic GluK1 KAR activity that tonically inhibits glutamate release at immature CA3-CA1 synapses was completely lost in the absence of NETO1 but not NETO2. The deficit in axonal KARs at Neto1−/− neurons resulted in impaired synaptogenesis and perturbed synchronization of CA3 and CA1 neuronal populations during development in vitro. Both these Neto1−/− phenotypes were fully rescued by overexpression of GluK1c, emphasizing the role of NETO1/KAR complex in development of efferent connectivity. Together, our data uncover a novel role for NETO1 in regulation of axonal KARs and identify its physiological significance in development of the CA3-CA1 circuit.
Collapse
|
41
|
Evans AJ, Gurung S, Wilkinson KA, Stephens DJ, Henley JM. Assembly, Secretory Pathway Trafficking, and Surface Delivery of Kainate Receptors Is Regulated by Neuronal Activity. Cell Rep 2017; 19:2613-2626. [PMID: 28636947 PMCID: PMC5489663 DOI: 10.1016/j.celrep.2017.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/17/2017] [Accepted: 05/25/2017] [Indexed: 01/03/2023] Open
Abstract
Ionotropic glutamate receptor (iGluR) trafficking and function underpin excitatory synaptic transmission and plasticity and shape neuronal networks. It is well established that the transcription, translation, and endocytosis/recycling of iGluRs are all regulated by neuronal activity, but much less is known about the activity dependence of iGluR transport through the secretory pathway. Here, we use the kainate receptor subunit GluK2 as a model iGluR cargo to show that the assembly, early secretory pathway trafficking, and surface delivery of iGluRs are all controlled by neuronal activity. We show that the delivery of de novo kainate receptors is differentially regulated by modulation of GluK2 Q/R editing, PKC phosphorylation, and PDZ ligand interactions. These findings reveal that, in addition to short-term regulation of iGluRs by recycling/endocytosis and long-term modulation by altered transcription/translation, the trafficking of iGluRs through the secretory pathway is under tight activity-dependent control to determine the numbers and properties of surface-expressed iGluRs.
Collapse
Affiliation(s)
- Ashley J Evans
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Sonam Gurung
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - David J Stephens
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
42
|
Lewis S. Kainate receptors can LTP. Nat Rev Neurosci 2017. [DOI: 10.1038/nrn.2017.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|