1
|
Niblock MM, Perez A, Broitman S, Jacoby B, Aviv E, Gilkey S. In utero development of fetal breathing movements in C57BL6 mice. Respir Physiol Neurobiol 2019; 271:103288. [PMID: 31505274 DOI: 10.1016/j.resp.2019.103288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 11/18/2022]
Abstract
Fetuses of many species, including humans, breathe during development. This fetal breathing aids in lung development, strengthens respiratory muscles, and is posited to fine-tune the neural circuitry that drives breathing. Previous studies suggested that fetal breathing could begin as early as the fifteenth day of gestation in the mouse, but fetal breathing movements (FBMs) had not been observed in mice in utero. We aimed to determine if and when FBMs commence in mice and if they change over time. We examined unanesthetised pregnant C57BL6 mice with ultrasound beginning on the seventh day of gestation. We first reliably observed episodic FBMs in mice on embryonic day 16. FBMs were sporadic, clustered, or rhythmic, and their frequency increased with age. Ultrasound examination of FBMs in mice has great potential utility in the study of transgenic mouse models to help us understand the prenatal characteristics of breathing related human developmental disorders, including Congenital Central Hypoventilation Syndrome (CCHS) and apnea of prematurity.
Collapse
Affiliation(s)
- Mary M Niblock
- Department of Biology, Dickinson College, Carlisle, PA, United States; Neuroscience Program, Dickinson College, Carlisle, PA, United States.
| | - Alanis Perez
- Department of Biology, Dickinson College, Carlisle, PA, United States
| | - Shahar Broitman
- Neuroscience Program, Dickinson College, Carlisle, PA, United States
| | - Brigitte Jacoby
- Neuroscience Program, Dickinson College, Carlisle, PA, United States; Biochemistry and Molecular Biology Program, Dickinson College, Carlisle, PA, United States
| | - Elana Aviv
- Department of Biology, Dickinson College, Carlisle, PA, United States
| | - Sydney Gilkey
- Neuroscience Program, Dickinson College, Carlisle, PA, United States; Biochemistry and Molecular Biology Program, Dickinson College, Carlisle, PA, United States
| |
Collapse
|
2
|
Feldman JL, Kam K. Facing the challenge of mammalian neural microcircuits: taking a few breaths may help. J Physiol 2015; 593:3-23. [PMID: 25556783 DOI: 10.1113/jphysiol.2014.277632] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/01/2014] [Indexed: 12/27/2022] Open
Abstract
Breathing in mammals is a seemingly straightforward behaviour controlled by the brain. A brainstem nucleus called the preBötzinger Complex sits at the core of the neural circuit generating respiratory rhythm. Despite the discovery of this microcircuit almost 25 years ago, the mechanisms controlling breathing remain elusive. Given the apparent simplicity and well-defined nature of regulatory breathing behaviour, the identification of much of the circuitry, and the ability to study breathing in vitro as well as in vivo, many neuroscientists and physiologists are surprised that respiratory rhythm generation is still not well understood. Our view is that conventional rhythmogenic mechanisms involving pacemakers, inhibition or bursting are problematic and that simplifying assumptions commonly made for many vertebrate neural circuits ignore consequential detail. We propose that novel emergent mechanisms govern the generation of respiratory rhythm. That a mammalian function as basic as rhythm generation arises from complex and dynamic molecular, synaptic and neuronal interactions within a diverse neural microcircuit highlights the challenges in understanding neural control of mammalian behaviours, many (considerably) more elaborate than breathing. We suggest that the neural circuit controlling breathing is inimitably tractable and may inspire general strategies for elucidating other neural microcircuits.
Collapse
Affiliation(s)
- Jack L Feldman
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
3
|
Abstract
Contiguous brain regions associated with a given behavior are increasingly being divided into subregions associated with distinct aspects of that behavior. Using recently developed neuronal hyperpolarizing technologies, we functionally dissect the parafacial region in the medulla, which contains key elements of the central pattern generator for breathing that are important in central CO2-chemoreception and for gating active expiration. By transfecting different populations of neighboring neurons with allatostatin or HM4D Gi/o-coupled receptors, we analyzed the effect of their hyperpolarization on respiration in spontaneously breathing vagotomized urethane-anesthetized rats. We identify two functionally separate parafacial nuclei: ventral (pFV) and lateral (pFL). Disinhibition of the pFL with bicuculline and strychnine led to active expiration. Hyperpolarizing pFL neurons had no effect on breathing at rest, or changes in inspiratory activity induced by hypoxia and hypercapnia; however, hyperpolarizing pFL neurons attenuated active expiration when it was induced by hypercapnia, hypoxia, or disinhibition of the pFL. In contrast, hyperpolarizing pFV neurons affected breathing at rest by decreasing inspiratory-related activity, attenuating the hypoxia- and hypercapnia-induced increase in inspiratory activity, and when present, reducing expiratory-related abdominal activity. Together with previous observations, we conclude that the pFV provides a generic excitatory drive to breathe, even at rest, whereas the pFL is a conditional oscillator quiet at rest that, when activated, e.g., during exercise, drives active expiration.
Collapse
|
4
|
Stornetta RL, Macon CJ, Nguyen TM, Coates MB, Guyenet PG. Cholinergic neurons in the mouse rostral ventrolateral medulla target sensory afferent areas. Brain Struct Funct 2013; 218:455-75. [PMID: 22460939 PMCID: PMC3459297 DOI: 10.1007/s00429-012-0408-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/14/2012] [Indexed: 02/07/2023]
Abstract
The rostral ventrolateral medulla (RVLM) primarily regulates respiration and the autonomic nervous system. Its medial portion (mRVLM) contains many choline acetyltransferase (ChAT)-immunoreactive (ir) neurons of unknown function. We sought to clarify the role of these cholinergic cells by tracing their axonal projections. We first established that these neurons are neither parasympathetic preganglionic neurons nor motor neurons because they did not accumulate intraperitoneally administered Fluorogold. We traced their axonal projections by injecting a Cre-dependent vector (floxed-AAV2) expressing either GFP or mCherrry into the mRVLM of ChAT-Cre mice. Transduced neurons expressing GFP or mCherry were confined to the injection site and were exclusively ChAT-ir. Their axonal projections included the dorsal column nuclei, medullary trigeminal complex, cochlear nuclei, superior olivary complex and spinal cord lamina III. For control experiments, the floxed-AAV2 (mCherry) was injected into the RVLM of dopamine beta-hydroxylase-Cre mice. In these mice, mCherry was exclusively expressed by RVLM catecholaminergic neurons. Consistent with data from rats, these catecholaminergic neurons targeted brain regions involved in autonomic and endocrine regulation. These regions were almost totally different from those innervated by the intermingled mRVLM-ChAT neurons. This study emphasizes the advantages of using Cre-driver mouse strains in combination with floxed-AAV2 to trace the axonal projections of chemically defined neuronal groups. Using this technique, we revealed previously unknown projections of mRVLM-ChAT neurons and showed that despite their close proximity to the cardiorespiratory region of the RVLM, these cholinergic neurons regulate sensory afferent information selectively and presumably have little to do with respiration or circulatory control.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia Health System, P.O. Box 800735, 1300 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| | | | | | | | | |
Collapse
|
5
|
Voituron N, Frugière A, Mc Kay LC, Romero-Granados R, Domínguez-Del-Toro E, Saadani-Makki F, Champagnat J, Bodineau L. The kreisler mutation leads to the loss of intrinsically hypoxia-activated spots in the region of the retrotrapezoid nucleus/parafacial respiratory group. Neuroscience 2011; 194:95-111. [PMID: 21839147 DOI: 10.1016/j.neuroscience.2011.07.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/14/2011] [Accepted: 07/25/2011] [Indexed: 12/19/2022]
Abstract
Acute hypoxia elicits a biphasic respiratory response characterized in the newborn by a transient hyperventilation followed by a severe decrease in respiratory drive known as hypoxic respiratory depression. Medullary O(2) chemosensitivity is known to contribute to respiratory depression induced by hypoxia, although precise involvement of cell populations remains to be determined. Having a thorough knowledge of these populations is of relevance because perturbations in the respiratory response to hypoxia may participate in respiratory diseases in newborns. We aimed to analyze the hypoxic response of ponto-medullary cell populations of kreisler mutant mice. These mice have defects in a gene expressed in two rhombomeres encompassing a part of the medulla oblongata implicated in hypoxic respiratory depression. Central responses to hypoxia were analyzed in newborn mice by measuring respiratory rhythm in ex vivo caudal pons-medullary-spinal cord preparations and c-fos expression in wild-type and kreisler mutants. The homozygous kreisler mutation, which eliminates most of rhombomere 5 and mis-specifies rhombomere 6, abolished (1) an early decrease in respiratory frequency within 10 min of hypoxia and (2) an intrinsic hypoxic activation, which is characterized by an increase in c-fos expression in the region of the ventral medullary surface encompassing the retrotrapezoid nucleus/parafacial respiratory group expressing Phox2b. This increase in c-fos expression persisted in wild-type Phox2b-negative and Phox2b-positive cells after blockade of synaptic transmission and rhythmogenesis by a low [Ca(2+)](0). Another central response was retained in homozygous kreisler mutant mice; it was distinguished by (1) a delayed (10-30 min) depression of respiratory frequency and (2) a downregulation of c-fos expression in the ventrolateral reticular nucleus of the medulla, the nucleus of the solitary tract, and the area of the A5 region. Thus, two types of ponto-medullary cell groups, with distinct anatomical locations, participate in central hypoxic respiratory depression in newborns.
Collapse
Affiliation(s)
- N Voituron
- UPRES EA 3901, Faculté de Médecine, Université de Picardie Jules Verne, Amiens, F-80036, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Champagnat J, Morin-Surun MP, Bouvier J, Thoby-Brisson M, Fortin G. Prenatal development of central rhythm generation. Respir Physiol Neurobiol 2011; 178:146-55. [PMID: 21527363 DOI: 10.1016/j.resp.2011.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/08/2011] [Accepted: 04/12/2011] [Indexed: 12/01/2022]
Abstract
Foetal breathing in mice results from prenatal activity of the two coupled hindbrain oscillators considered to be responsible for respiratory rhythm generation after birth: the pre-Bötzinger complex (preBötC) is active shortly before the onset of foetal breathing; the parafacial respiratory group (e-pF in embryo) starts activity one day earlier. Transcription factors have been identified that are essential to specify neural progenitors and lineages forming each of these oscillators during early development of the neural tube: Hoxa1, Egr2 (Krox20), Phox2b, Lbx1 and Atoh1 for the e-pF; Dbx1 and Evx1 for the preBötC which eventually grow contralateral axons requiring expression of Robo3. Inactivation of the genes encoding these factors leads to mis-specification of these neurons and distinct breathing abnormalities: apneic patterns and loss of central chemosensitivity for the e-pF (central congenital hypoventilation syndrome, CCHS, in humans), complete loss of breathing for the preBötC, right-left desynchronized breathing in Robo3 mutants. Mutations affecting development in more rostral (pontine) respiratory territories change the shape of the inspiratory drive without affecting the rhythm. Other (primordial) embryonic oscillators start in the mouse three days before the e-pF, to generate low frequency (LF) rhythms that are probably required for activity-dependent development of neurones at embryonic stages; in the foetus, however, they are actively silenced to avoid detrimental interaction with the on-going respiratory rhythm. Altogether, these observations provide a strong support to the previously proposed hypothesis that the functional organization of the respiratory generator is specified at early stages of development and is dual in nature, comprising two serially non-homologous oscillators.
Collapse
Affiliation(s)
- Jean Champagnat
- Neurobiologie et Développement (UPR 3294, CNRS), Neuro-Sud Paris (IFR 144), Centre de Recherche de Gif-sur Yvette (CNRS, FRC 3115), Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
7
|
Genetic factors determining the functional organization of neural circuits controlling rhythmic movements the murine embryonic parafacial rhythm generator. PROGRESS IN BRAIN RESEARCH 2011. [PMID: 21111199 DOI: 10.1016/b978-0-444-53613-6.00003-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
In mammals, fetal movements governed by central pattern generators are essential for the development of adaptive behaviors such as breathing, walking, and chewing, which are vital after birth. Combining targeted mutations and genetic fate mapping can help to define the molecular determinants that control the development of these central pattern generators. In this chapter, recent results are presented on the embryonic parafacial (e-pF) rhythm generator, one of the two oscillators involved in controlling the breathing behavior and chemosensitive responsiveness.
Collapse
|
8
|
Pagliardini S, Janczewski WA, Tan W, Dickson CT, Deisseroth K, Feldman JL. Active expiration induced by excitation of ventral medulla in adult anesthetized rats. J Neurosci 2011; 31:2895-905. [PMID: 21414911 PMCID: PMC3142740 DOI: 10.1523/jneurosci.5338-10.2011] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/02/2010] [Accepted: 12/21/2010] [Indexed: 11/21/2022] Open
Abstract
Data from perinatal and juvenile rodents support our hypothesis that the preBötzinger complex generates inspiratory rhythm and the retrotrapezoid nucleus-parafacial respiratory group (RTN/pFRG) generates active expiration (AE). Although the role of the RTN/pFRG in adulthood is disputed, we hypothesized that its rhythmogenicity persists but is typically silenced by synaptic inhibition. We show in adult anesthetized rats that local pharmacological disinhibition or optogenetic excitation of the RTN/pFRG can generate AE and transforms previously silent RTN/pFRG neurons into rhythmically active cells whose firing is correlated with late-phase active expiration. Brief excitatory stimuli also reset the respiratory rhythm, indicating strong coupling of AE to inspiration. The AE network location in adult rats overlaps with the perinatal pFRG and appears lateral to the chemosensitive region of adult RTN. We suggest that (1) the RTN/pFRG contains a conditional oscillator that generates AE, and (2) at rest and in anesthesia, synaptic inhibition of RTN/pFRG suppresses AE.
Collapse
Affiliation(s)
- Silvia Pagliardini
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1763
| | - Wiktor A. Janczewski
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1763
| | - Wenbin Tan
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1763
| | - Clayton T. Dickson
- Departments of Psychology
- Physiology, and
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta T6G 2E9, Canada, and
| | - Karl Deisseroth
- Departments of Bioengineering and
- Psychiatry, Stanford University, Stanford, California 94305
| | - Jack L. Feldman
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1763
| |
Collapse
|
9
|
Abstract
I provide a personal view of the developments since ~1986 that underlie the contemporary view(s) about how the rhythm of breathing is generated and how the pattern of breathing is modulated. Two sites in the mammalian brainstem are likely to participate in respiratory rhythm generation: the preBötzinger Complex (preBötC), first described and intensely investigated since 1990, plays a well-documented essential role in normal breathing in mammals of all ages and may be principally involved in controlling inspiratory motor activity, and the retrotrapezoid/parafacial respiratory group (RTN/pFRG) that appears to play at least a modulatory role in neonatal and juvenile rodents and may be a conditional oscillator that controls active expiration.
Collapse
Affiliation(s)
- Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
10
|
Abstract
The apnea test is recommended for the diagnosis of brain death. There are several reasons this test should be reconsidered. Confounding factors for performing the test are vaguely and poorly specified. The following 2 confounders are usually present and not considered: potentially reversible high cervical spinal cord injury and central endocrine failure of adrenal and thyroid axes. There are case reports of breathing at a higher partial pressure of arterial carbon dioxide threshold and cases of recovery of breathing after brain death is diagnosed. The test is dangerous for an injured brain in the setting of high intracranial pressure. It can convert viable penumbral brain tissue to irreversibly nonfunctioning tissue via a transient increase in intracranial pressure and no-reflow phenomena. Hyperoxia during the apnea test can further suppress the function of medullary respiratory rhythm centers. Finally, the philosophical rationale for the need to show lack of spontaneous breathing in brain death is lacking.
Collapse
Affiliation(s)
- Ari R Joffe
- University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
11
|
Guyenet PG, Mulkey DK. Retrotrapezoid nucleus and parafacial respiratory group. Respir Physiol Neurobiol 2010; 173:244-55. [PMID: 20188865 PMCID: PMC2891992 DOI: 10.1016/j.resp.2010.02.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 11/26/2022]
Abstract
The rat retrotrapezoid nucleus (RTN) contains about 2000 Phox2b-expressing glutamatergic neurons (ccRTN neurons; 800 in mice) with a well-understood developmental lineage. ccRTN neuron development fails in mice carrying a Phox2b mutation commonly present in the congenital central hypoventilation syndrome. In adulthood, ccRTN neurons regulate the breathing rate and intensity, and may regulate active expiration along with other neighboring respiratory neurons. Prenatally, ccRTN neurons form an autonomous oscillator (embryonic parafacial group, e-pF) that activates and possibly paces inspiration. The pacemaker properties of the ccRTN neurons probably vanish after birth to be replaced by synaptic drives. The neonatal parafacial respiratory group (pfRG) may represent a transitional phase during which ccRTN neurons lose their group pacemaker properties. ccRTN neurons are activated by acidification via an intrinsic mechanism or via ATP released by glia. In summary, throughout life, ccRTN neurons seem to be a critical hub for the regulation of CO(2) via breathing.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908-0735, USA.
| | | |
Collapse
|
12
|
Molkov YI, Abdala APL, Bacak BJ, Smith JC, Paton JFR, Rybak IA. Late-expiratory activity: emergence and interactions with the respiratory CpG. J Neurophysiol 2010; 104:2713-29. [PMID: 20884764 DOI: 10.1152/jn.00334.2010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The respiratory rhythm and motor pattern are hypothesized to be generated by a brain stem respiratory network with a rhythmogenic core consisting of neural populations interacting within and between the pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes and controlled by drives from other brain stem compartments. Our previous large-scale computational model reproduced the behavior of this network under many different conditions but did not consider neural oscillations that were proposed to emerge within the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) and drive preinspiratory (or late-expiratory, late-E) discharges in the abdominal motor output. Here we extend the analysis of our previously published data and consider new data on the generation of abdominal late-E activity as the basis for extending our computational model. The extended model incorporates an additional late-E population in RTN/pFRG, representing a source of late-E oscillatory activity. In the proposed model, under normal metabolic conditions, this RTN/pFRG oscillator is inhibited by BötC/pre-BötC circuits, and the late-E oscillations can be released by either hypercapnia-evoked activation of RTN/pFRG or by hypoxia-dependent suppression of RTN/pFRG inhibition by BötC/pre-BötC. The proposed interactions between BötC/pre-BötC and RTN/pFRG allow the model to reproduce several experimentally observed behaviors, including quantal acceleration of abdominal late-E oscillations with progressive hypercapnia and quantal slowing of phrenic activity with progressive suppression of pre-BötC excitability, as well as to predict a release of late-E oscillations by disinhibition of RTN/pFRG under normal conditions. The extended model proposes mechanistic explanations for the emergence of RTN/pFRG oscillations and their interaction with the brain stem respiratory network.
Collapse
Affiliation(s)
- Yaroslav I Molkov
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | |
Collapse
|