1
|
Wu L, Li Y, Liu GQ, Yu SH. Polytypic metal chalcogenide nanocrystals. Chem Soc Rev 2024; 53:9832-9873. [PMID: 39212091 DOI: 10.1039/d3cs01095c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
By engineering chemically identical but structurally distinct materials into intricate and sophisticated polytypic nanostructures, which often surpass their pure phase objects and even produce novel physical and chemical properties, exciting applications in the fields of photovoltaics, electronics and photocatalysis can be achieved. In recent decades, various methods have been developed for synthesizing a library of polytypic nanocrystals encompassing IV, III-V and II-VI polytypic semiconductors. The exceptional performances of polytypic metal chalcogenide nanocrystals have been observed, making them highly promising candidates for applications in photonics and electronics. However, achieving high-precision control over the morphology, composition, crystal structure, size, homojunctions, and periodicity of polytypic metal chalcogenide nanostructures remains a significant synthetic challenge. This review article offers a comprehensive overview of recent progress in the synthesis and control of polytypic metal chalcogenide nanocrystals using colloidal synthetic strategies. Starting from a concise introduction on the crystal structures of metal chalcogenides, the subsequent discussion delves into the colloidal synthesis of polytypic metal chalcogenide nanocrystals, followed by an in-depth exploration of the key factors governing polytypic structure construction. Subsequently, we provide comprehensive insights into the physical properties of polytypic metal chalcogenide nanocrystals, which exhibit strong correlations with their applications. Thereafter, we emphasize the significance of polytypic nanostructures in various applications, such as photovoltaics, photocatalysis, transistors, thermoelectrics, stress sensors, and the electrocatalytic hydrogen evolution. Finally, we present a summary of the recent advancements in this research field and provide insightful perspectives on the forthcoming challenges, opportunities, and future research directions.
Collapse
Affiliation(s)
- Liang Wu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Yi Li
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Guo-Qiang Liu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- Department of Chemistry, Institute of Innovative Materials, Department of Materials Science and Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China.
| |
Collapse
|
2
|
Lv Q, Shen X, Li X, Meng Y, Yu KM, Guo P, Xiao L, Ho JC, Duan X, Duan X. On-Wire Design of Axial Periodic Halide Perovskite Superlattices for High-Performance Photodetection. ACS NANO 2024; 18:18022-18035. [PMID: 38934514 DOI: 10.1021/acsnano.4c05205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Precise synthesis of all-inorganic lead halide perovskite nanowire heterostructures and superlattices with designable modulation of chemical compositions is essential for tailoring their optoelectronic properties. Nevertheless, controllable synthesis of perovskite nanostructure heterostructures remains challenging and underexplored to date. Here, we report a rational strategy for wafer-scale synthesis of one-dimensional periodic CsPbCl3/CsPbI3 superlattices. We show that the highly parallel array of halide perovskite nanowires can be prepared roughly as horizontally guided growth on an M-plane sapphire. A periodic patterning of the sapphire substrate enables position-selective ion exchange to obtain highly periodic CsPbCl3/CsPbI3 nanowire superlattices. This patterning is further confirmed by micro-photoluminescence investigations, which show that two separate band-edge emission peaks appear at the interface of a CsPbCl3/CsPbI3 heterojunction. Additionally, compared with the pure CsPbCl3 nanowires, photodetectors fabricated using these periodic heterostructure nanowires exhibit superior photoelectric performance, namely, high ION/IOFF ratio (104), higher responsivity (49 A/W), and higher detectivity (1.51 × 1013 Jones). Moreover, a spatially resolved visible image sensor based on periodic nanowire superlattices is demonstrated with good imaging capability, suggesting promising application prospects in future photoelectronic imaging systems. All these results based on the periodic CsPbCl3/CsPbI3 nanowire superlattices provides an attractive material platform for integrated perovskite devices and circuits.
Collapse
Affiliation(s)
- Qihang Lv
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xia Shen
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xuyang Li
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - You Meng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Kin Man Yu
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Pengfei Guo
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Liantuan Xiao
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Xidong Duan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Chen QX, Lu YY, Yang Y, Chang LG, Li Y, Yang Y, He Z, Liu JW, Ni Y, Yu SH. Stress-induced ordering evolution of 1D segmented heteronanostructures and their chemical post-transformations. Nat Commun 2024; 15:3208. [PMID: 38615045 PMCID: PMC11271508 DOI: 10.1038/s41467-024-47446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/29/2024] [Indexed: 04/15/2024] Open
Abstract
Investigations of one-dimensional segmented heteronanostructures (1D-SHs) have recently attracted much attention due to their potentials for applications resulting from their structure and synergistic effects between compositions and interfaces. Unfortunately, developing a simple, versatile and controlled synthetic method to fabricate 1D-SHs is still a challenge. Here we demonstrate a stress-induced axial ordering mechanism to describe the synthesis of 1D-SHs by a general under-stoichiometric reaction strategy. Using the continuum phase-field simulations, we elaborate a three-stage evolution process of the regular segment alternations. This strategy, accompanied by easy chemical post-transformations, enables to synthesize 25 1D-SHs, including 17 nanowire-nanowire and 8 nanowire-nanotube nanostructures with 13 elements (Ag, Te, Cu, Pt, Pb, Cd, Sb, Se, Bi, Rh, Ir, Ru, Zn) involved. This ordering evolution-driven synthesis will help to investigate the ordering reconstruction and potential applications of 1D-SHs.
Collapse
Affiliation(s)
- Qing-Xia Chen
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Yang Lu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
| | - Li-Ge Chang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
| | - Yi Li
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Yang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen He
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Jian-Wei Liu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| | - Yong Ni
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China.
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
4
|
Shen Y, Chen W, Sun B. Research progress of out-of-plane GeSn nanowires. NANOTECHNOLOGY 2024; 35:242002. [PMID: 38467062 DOI: 10.1088/1361-6528/ad3250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
With the increasing integration density of silicon-based circuits, traditional electrical interconnections have shown their technological limitations. In recent years, GeSn materials have attracted great interest due to their potential direct bandgap transition and compatibility with silicon-based technologies. GeSn materials, including GeSn films, GeSn alloys, and GeSn nanowires, are adjustable, scalable, and compatible with silicon. GeSn nanowires, as one-dimensional (1D) nanomaterials, including out-of-plane GeSn nanowires and in-plane GeSn nanowires, have different properties from those of bulk materials due to their distinctive structures. However, the synthesis and potential applications of out of plane GeSn nanowires are rarely compared to highlighting their current development status and research trends in relevant review papers. In this article, we present the preparation of out-of-plane GeSn nanowires using top-down (etching and lithography) and bottom-up (vapor-liquid-solid) growth mechanism in the vapor-phase method and supercritical fluid-liquid-solid, solution-liquid-solid, and solvent vapor growth mechanisms in the liquid-phase method) methods. Specifically, the research progress on typical out of plane GeSn nanowires are discussed, while some current development bottlenecks are also been identified. Finally, it is also provided a brief description of the applications of out-of-plane GeSn nanowires with various Sn contents and morphologies.
Collapse
Affiliation(s)
- Ya Shen
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Wanghua Chen
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Bai Sun
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| |
Collapse
|
5
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
6
|
Mujica M, Mohabir A, Shetty PP, Cline WR, Aziz D, McDowell MT, Breedveld V, Behrens SH, Filler MA. Programming Semiconductor Nanowire Composition with Sub-100 nm Resolution via the Geode Process. NANO LETTERS 2022; 22:554-560. [PMID: 34989235 DOI: 10.1021/acs.nanolett.1c02545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We demonstrate the vapor-liquid-solid growth of single-crystalline i-Si, i-Si/n-Si, and SixGe1-x/SiyGe1-y nanowires via the Geode process. By enabling nanowire growth on the large internal surface area of a microcapsule powder, the Geode process improves the scalability of semiconductor nanowire manufacturing while maintaining nanoscale programmability. Here, we show that heat and mass transport limitations introduced by the microcapsule wall are negligible, enabling the same degree of compositional control for nanowires grown inside microcapsules and on conventional flat substrates. Efficient heat and mass transport also minimize the structural variations of nanowires grown in microcapsules with different diameters and wall thicknesses. Nanowires containing at least 16 segments and segment lengths below 75 nm are demonstrated.
Collapse
Affiliation(s)
- Maritza Mujica
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Amar Mohabir
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pralav P Shetty
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Wesley R Cline
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Daniel Aziz
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew T McDowell
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Victor Breedveld
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sven Holger Behrens
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael A Filler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Li Y, Shao ZC, Zhang C, Yu SH. Catalyzed Growth for Atomic-Precision Colloidal Chalcogenide Nanowires and Heterostructures: Progress and Perspective. J Phys Chem Lett 2021; 12:10695-10705. [PMID: 34709833 DOI: 10.1021/acs.jpclett.1c02358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One-dimensional colloidal semiconductor nanowires are of wide interest in nanoscale electronics and photonics. As compared to the zero-dimensional counterparts, their geometrical anisotropy offers an additional degree of freedom to tailor the electronic and optical properties and enables customized heterostructures with increased complexity. The colloidal synthetic chemistry developed over past decades has fueled the emergence of diverse one-dimensional nanocrystals and heterostructures, whereas the synthetic pursuit for compositionally and structurally defining them at the atomic-level precision remains yet a giant challenge. Catalyzed growth, wherein nanowires grow at the catalyst-nanowire interfaces in a layer-by-layer manner, offers a promising path toward such an ultimate goal. In this Perspective, we will take a close look at how catalyzed growth would enable the on-demand, atomic-precision control of colloidal nanowires and their heterostructures. We then further highlight their potentials for constructing higher-order heteroarchitectures with new and/or enhanced performances. Finally, we conclude with a forward-looking perspective on future challenges.
Collapse
Affiliation(s)
- Yi Li
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhen-Chao Shao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chong Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Garcia-Gil A, Biswas S, Holmes JD. A Review of Self-Seeded Germanium Nanowires: Synthesis, Growth Mechanisms and Potential Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2002. [PMID: 34443831 PMCID: PMC8398625 DOI: 10.3390/nano11082002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
Ge nanowires are playing a big role in the development of new functional microelectronic modules, such as gate-all-around field-effect transistor devices, on-chip lasers and photodetectors. The widely used three-phase bottom-up growth method utilising a foreign catalyst metal or metalloid is by far the most popular for Ge nanowire growth. However, to fully utilise the potential of Ge nanowires, it is important to explore and understand alternative and functional growth paradigms such as self-seeded nanowire growth, where nanowire growth is usually directed by the in situ-formed catalysts of the growth material, i.e., Ge in this case. Additionally, it is important to understand how the self-seeded nanowires can benefit the device application of nanomaterials as the additional metal seeding can influence electron and phonon transport, and the electronic band structure in the nanomaterials. Here, we review recent advances in the growth and application of self-seeded Ge and Ge-based binary alloy (GeSn) nanowires. Different fabrication methods for growing self-seeded Ge nanowires are delineated and correlated with metal seeded growth. This review also highlights the requirement and advantage of self-seeded growth approach for Ge nanomaterials in the potential applications in energy storage and nanoelectronic devices.
Collapse
Affiliation(s)
- Adrià Garcia-Gil
- School of Chemistry, Tyndall National Institute, University College Cork, T12 YN60 Cork, Ireland; (A.G.-G.); (J.D.H.)
- AMBER Centre, Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| | - Subhajit Biswas
- School of Chemistry, Tyndall National Institute, University College Cork, T12 YN60 Cork, Ireland; (A.G.-G.); (J.D.H.)
- AMBER Centre, Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| | - Justin D. Holmes
- School of Chemistry, Tyndall National Institute, University College Cork, T12 YN60 Cork, Ireland; (A.G.-G.); (J.D.H.)
- AMBER Centre, Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| |
Collapse
|
9
|
Liu H, Yang G, Yin H, Wang Z, Chen C, Liu Z, Xie H. In vitro and in vivo osteogenesis up-regulated by two-dimensional nanosheets through a macrophage-mediated pathway. Biomater Sci 2021; 9:780-794. [PMID: 33206069 DOI: 10.1039/d0bm01596b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two-dimensional (2D) nanomaterials are attracting more and more interest in regenerative medicine due to their unique properties; however 2D biomimetic calcium mineral has not yet been developed and demonstrated application for bone tissue engineering. Here we described a novel calcium phosphate material with a 2D nanostructure that was synthesized using collagen and sodium alginate as the template. In vitro performance of the nanocrystalline material was evaluated, and we found that 2D CaP nanoparticles (NPs) enhanced the in vitro osteogenic differentiation of rat mesenchymal stem cells (rMSCs) through a macrophage-mediated signal pathway, when co-cultured with RAW 264.7 cells, rather than direct NP/stem cell interaction. A 2D topology structured surface was constructed by encapsulating the CaP nanomaterials in a gelatin hydrogel, which was demonstrated to be able to mediate in vivo ossification through a macrophage polarization related pathway in a femur defect rat model, and allowed the optimal therapeutic outcome compared to normal CaP counterparts. Our current work may have enlightened a new mechanism regarding NP-induced stem cell differentiation through immunoregulation, and the 2D CaP encapsulated hydrogel scaffold may serve as a potential alternative to autograft bone for orthopedic applications.
Collapse
Affiliation(s)
- Haoming Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gaojie Yang
- Department of Materials, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Yin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhenxing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunyuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhengzhao Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China and Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China and Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, China and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China and Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha 410008, China and Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha 410008, China
| |
Collapse
|
10
|
Li Y, Zhang C, Zhuang TT, Lin Y, Tian J, Qi XY, Li X, Wang R, Wu L, Liu GQ, Ma T, He Z, Sun HB, Fan F, Zhu H, Yu SH. One-Dimensional Superlattice Heterostructure Library. J Am Chem Soc 2021; 143:7013-7020. [PMID: 33929193 DOI: 10.1021/jacs.1c01514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Axially, epitaxially organizing nano-objects of distinct compositions and structures into superlattice nanowires enables full utilization of sunlight, readily engineered band structures, and tunable geometric parameters to fit carrier transport, thus holding great promise for optoelectronics and solar-to-fuel conversion. To maximize their efficiency, the general and high-precision synthesis of colloidal axial superlattice nanowires (ASLNWs) with programmable compositions and structures is the prerequisite; however, it remains challenging. Here, we report an axial encoding methodology toward the ASLNW library with precise control over their compositions, dimensions, crystal phases, interfaces, and periodicity. Using a predesigned, editable nanoparticle framework that offers the synthetic selectivity, we are able to chemically decouple adjacent sub-objects in ASLNWs and thus craft them in a controlled approach, yielding a library of distinct ASLNWs. We integrate therein plasmonic, metallic, or near-infrared-active chalcogenides, which hold great potential in solar energy conversion. Such synthetic capability enables a performance boost in target applications, as we report order-of-magnitude enhanced photocatalytic hydrogen production rates using optimized ASLNWs compared to corresponding solo objects. Furthermore, it is expected that such unique superlattice nanowires could bring out new phenomena.
Collapse
Affiliation(s)
- Yi Li
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chong Zhang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tao-Tao Zhuang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yue Lin
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Tian
- Engineering and Materials Science Experiment Center, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xing-Yu Qi
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xufeng Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Rui Wang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liang Wu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guo-Qiang Liu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tao Ma
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhen He
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hao-Bo Sun
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fengjia Fan
- CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
11
|
Sedki M, Shen Y, Mulchandani A. Nano-FET-enabled biosensors: Materials perspective and recent advances in North America. Biosens Bioelectron 2021; 176:112941. [DOI: 10.1016/j.bios.2020.112941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023]
|
12
|
Fang Y, Lv K, Li Z, Kong N, Wang S, Xu A, Wu Z, Jiang F, Li C, Ozin GA, He L. Solution-Liquid-Solid Growth and Catalytic Applications of Silica Nanorod Arrays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000310. [PMID: 32670762 PMCID: PMC7341079 DOI: 10.1002/advs.202000310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/04/2020] [Indexed: 05/16/2023]
Abstract
As an analogue to the vapor-liquid-solid process, the solution-liquid-solid (SLS) method offers a mild solution-phase route to colloidal 1D nanostructures with controlled sizes, compositions, and properties. However, direct growth of 1D nanostructure arrays through SLS processes remains in its infancy. Herein, this study shows that SLS processes are also suitable for the growth of nanorod arrays on the substrate. As a proof of concept, seedless growth of silica nanorod arrays on a variety of hydrophilic substrates such as pristine and oxide-modified glass, metal sheets, Si wafers, and biaxially oriented polypropylene film are demonstrated. Also, the silica nanorod arrays can be used as a new platform for the fabrication of catalysts for photothermal CO2 hydrogenation and the reduction of 4-nitrophenol reactions. This work offers some fundamental insight into the SLS growth process and opens a new avenue for the mild preparation of functional 1D nanostructure arrays for various applications.
Collapse
Affiliation(s)
- Yaosi Fang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Kangxiao Lv
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Zhao Li
- Solar Fuels GroupChemistry DepartmentUniversity of Toronto80 St. George StTorontoOntarioM5S 3H6Canada
| | - Ning Kong
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Shenghua Wang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Ao‐Bo Xu
- Department of ChemistryThe University of Western OntarioLondonOntarioN6A 3K7Canada
| | - Zhiyi Wu
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Fengluan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Geoffrey A. Ozin
- Solar Fuels GroupChemistry DepartmentUniversity of Toronto80 St. George StTorontoOntarioM5S 3H6Canada
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| |
Collapse
|
13
|
Jia G, Du J. Catalyst-Assisted Solution–Liquid–Solid Synthesis of CdS/CuInSe2 and CuInTe2/CuInSe2 Nanorod Heterostructures. Inorg Chem 2018; 58:695-702. [PMID: 30525546 DOI: 10.1021/acs.inorgchem.8b02870] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guanwei Jia
- Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
- School of Physics and Electronics, Henan University, Kaifeng 475004, People’s Republic of China
| | - Jiang Du
- Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
- Department of Chemical Engineering, Texas Materials Institute, Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Electrically nanowired-enzymes for probe modification and sensor fabrication. Biosens Bioelectron 2018; 121:223-235. [DOI: 10.1016/j.bios.2018.09.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 11/23/2022]
|
15
|
Li Y, Zhuang TT, Fan F, Voznyy O, Askerka M, Zhu H, Wu L, Liu GQ, Pan YX, Sargent EH, Yu SH. Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation. Nat Commun 2018; 9:4947. [PMID: 30470752 PMCID: PMC6251926 DOI: 10.1038/s41467-018-07422-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/25/2018] [Indexed: 11/08/2022] Open
Abstract
Epitaxially stacking colloidal quantum dots in nanowires offers a route to selective passivation of defective facets while simultaneously enabling charge transfer to molecular adsorbates - features that must be combined to achieve high-efficiency photocatalysts. This requires dynamical switching of precursors to grow, alternatingly, the quantum dots and nanowires - something not readily implemented in conventional flask-based solution chemistry. Here we report pulsed axial epitaxy, a growth mode that enables the stacking of multiple CdS quantum dots in ZnS nanowires. The approach relies on the energy difference of incorporating these semiconductor atoms into the host catalyst, which determines the nucleation sequence at the catalyst-nanowire interface. This flexible synthetic strategy allows precise modulation of quantum dot size, number, spacing, and crystal phase. The facet-selective passivation of quantum dots in nanowires opens a pathway to photocatalyst engineering: we report photocatalysts that exhibit an order-of-magnitude higher photocatalytic hydrogen evolution rates than do plain CdS quantum dots.
Collapse
Affiliation(s)
- Yi Li
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Tao-Tao Zhuang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Fengjia Fan
- CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Oleksandr Voznyy
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Mikhail Askerka
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Liang Wu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Guo-Qiang Liu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yun-Xiang Pan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
16
|
Liu L, Chen K, Xiang N, Ni Z. Dielectrophoretic manipulation of nanomaterials: A review. Electrophoresis 2018; 40:873-889. [DOI: 10.1002/elps.201800342] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/26/2018] [Accepted: 09/30/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Linbo Liu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; Nanjing P. R. China
| | - Ke Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; Nanjing P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; Nanjing P. R. China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; Nanjing P. R. China
| |
Collapse
|
17
|
Xing Y, Dittrich PS. One-Dimensional Nanostructures: Microfluidic-Based Synthesis, Alignment and Integration towards Functional Sensing Devices. SENSORS 2018; 18:s18010134. [PMID: 29303990 PMCID: PMC5795670 DOI: 10.3390/s18010134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022]
Abstract
Microfluidic-based synthesis of one-dimensional (1D) nanostructures offers tremendous advantages over bulk approaches e.g., the laminar flow, reduced sample consumption and control of self-assembly of nanostructures. In addition to the synthesis, the integration of 1D nanomaterials into microfluidic chips can enable the development of diverse functional microdevices. 1D nanomaterials have been used in applications such as catalysts, electronic instrumentation and sensors for physical parameters or chemical compounds and biomolecules and hence, can be considered as building blocks. Here, we outline and critically discuss promising strategies for microfluidic-assisted synthesis, alignment and various chemical and biochemical applications of 1D nanostructures. In particular, the use of 1D nanostructures for sensing chemical/biological compounds are reviewed.
Collapse
Affiliation(s)
- Yanlong Xing
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e. V, 12489 Berlin, Germany.
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland.
| |
Collapse
|
18
|
Wang F, Buhro WE. Role of Precursor-Conversion Chemistry in the Crystal-Phase Control of Catalytically Grown Colloidal Semiconductor Quantum Wires. ACS NANO 2017; 11:12526-12535. [PMID: 29182853 DOI: 10.1021/acsnano.7b06639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the BixCdyTez catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.
Collapse
Affiliation(s)
- Fudong Wang
- Department of Chemistry and Institute of Materials Science and Engineering, Washington University , St. Louis, Missouri 63130-4899, United States
| | - William E Buhro
- Department of Chemistry and Institute of Materials Science and Engineering, Washington University , St. Louis, Missouri 63130-4899, United States
| |
Collapse
|
19
|
Liu L, Chen K, Huang D, Wang X, Xiang N, Ni Z. A novel 'leadless' dielectrophoresis chip with dot matrix electrodes for patterning nanowires. NANOTECHNOLOGY 2017; 28:285302. [PMID: 28574852 DOI: 10.1088/1361-6528/aa76cb] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we present a novel 'leadless' dielectrophoresis chip with dot matrix electrodes (LDME-DEP chip) fabricated by stacking three different functional layers. Our LDME-DEP chip excels mainly in two aspects: we for the first time applied the technique of separating the lead and the electrode pattern into two different layers to patterning nanowires which achieves continuous-area manipulation of nanowires without interference from the lead; the use of dot matrix electrodes makes the manipulation more flexible. We firstly detail the fabrication and working principle of our LDME-DEP chip and propose the scheme for washing away the nanowires with unsatisfactorily positioned postures. Then, nanowire patterning applications (e.g., letter E, square and long chain) under the combination of dielectrophoretic force and hydrodynamic force are carried out and the effect of frequency of the electric signal on assembling accuracy of nanowires is discussed.
Collapse
Affiliation(s)
- Linbo Liu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Fabricate of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Yang G, Liu H, Hu X, Chen Z, Friis TE, Wang J, Xiao Y, Zhang S. Bio-inspired hybrid nanoparticles promote vascularized bone regeneration in a morphology-dependent manner. NANOSCALE 2017; 9:5794-5805. [PMID: 28304060 DOI: 10.1039/c7nr00347a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Current major obstacles for translating the nanoparticle (NP) morphology-related function into therapeutic purposes come from the challenges in understanding the mechanisms that determine cell lineage commitment and constructing a NP-based 3D functional structure, and few studies have successfully demonstrated clear evidence of regulating in vivo tissue regeneration by NP morphology so far. Here, we show that nanoparticle geometry can be harnessed to mediate bone regeneration in a rat cranial defect model. We successfully synthesized hydroxyapatite NPs with well-defined morphologies using a modified liquid-solution-solid (LSS) method. The NPs showed differential effects on stem cell behaviors such as particle uptake, autophagy activation and osteogenic differentiation. By integrating nanoparticles within gelatin, we achieved 3D scaffolds with uniformly-distributed nano-topologies which, can mediate in vivo osteogenesis through stimulation of autophagy, with spherical particles demonstrating the most robust bone formation capacity compared to other NPs. Our current work proposes a morphology-dependent effect of NPs on vascularization and bone formation and provides an innovative and feasible strategy for bone regenerative therapies.
Collapse
Affiliation(s)
- Gaojie Yang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Facile synthesis of silicon nitride nanowires with flexible mechanical properties and with diameters controlled by flow rate. Sci Rep 2017; 7:45538. [PMID: 28349956 PMCID: PMC5368666 DOI: 10.1038/srep45538] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/01/2017] [Indexed: 11/08/2022] Open
Abstract
Ultralong Si3N4 nanowires (NWs) were successfully synthesized with size controlled in N2 gas by using an efficient method. The diameters of the Si3N4 NWs increased when the flow rate of N2 gas increased, with average diameters of 290 nm from flow rates of 100 ml/min, 343 nm from flow rates of 200 ml/min and 425 nm from flow rates of 400 ml/min. Young's modulus was found to rely strongly on the diameters of the Si3N4 NWs, decreasing from approximately 526.0 GPa to 321.9 GPa; as the diameters increased from 360 nm to 960 nm. These findings provide a promising method for tailoring these mechanical properties of the NWs in a controlled manner over a wide range of Young's modulus values. Vapour-liquid-solid (VLS) mechanisms were used to model the growth of Si3N4 NWs on the inner wall of an alumina crucible and on the surface of the powder mixture. Alumina may be an effective mediator of NW growth that plays an important role in controlling the concentrations of Si-containing reactants to support the growth of NWs on the inner wall of the alumina crucible. This approach offers a valuable means for preparing ultralong Si3N4 NWs doped with Al with unique properties.
Collapse
|
22
|
Chen F, Li J, Yu F, Zhao D, Wang F, Chen Y, Peng RW, Wang M. Construction of 3D Metallic Nanostructures on an Arbitrarily Shaped Substrate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:7193-7199. [PMID: 27294561 DOI: 10.1002/adma.201602049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/20/2016] [Indexed: 06/06/2023]
Abstract
Constructing conductive/magnetic nanowire arrays with 3D features by electrodeposition remains challenging. An unprecedented fabrication approach that allows to construct metallic (cobalt) nanowires on an arbitrarily shaped surface is reported. The spatial separation of nanowires varies from 70 to 3000 nm and the line width changes from 50 to 250 nm depending on growth conditions.
Collapse
Affiliation(s)
- Fei Chen
- National Laboratory of Solid State Microstructures and School of Physics, and Collaborative InnovationCenter of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jingning Li
- National Laboratory of Solid State Microstructures and School of Physics, and Collaborative InnovationCenter of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Fangfang Yu
- National Laboratory of Solid State Microstructures and School of Physics, and Collaborative InnovationCenter of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Di Zhao
- National Laboratory of Solid State Microstructures and School of Physics, and Collaborative InnovationCenter of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Fan Wang
- National Laboratory of Solid State Microstructures and School of Physics, and Collaborative InnovationCenter of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yanbin Chen
- National Laboratory of Solid State Microstructures and School of Physics, and Collaborative InnovationCenter of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Ru-Wen Peng
- National Laboratory of Solid State Microstructures and School of Physics, and Collaborative InnovationCenter of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Mu Wang
- National Laboratory of Solid State Microstructures and School of Physics, and Collaborative InnovationCenter of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
23
|
Jin C, Hwang SJ, Cho MS, Choi SW, Na HG, Park S, Park S, Noh Y, Jeong H, Lee D. Growth Mechanism and Luminescent Properties of Amorphous SiOx Structures via Phase Equilibrium in Binary System. Sci Rep 2016; 6:30901. [PMID: 27477760 PMCID: PMC4967906 DOI: 10.1038/srep30901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/08/2016] [Indexed: 11/09/2022] Open
Abstract
Balloon whisk-like and flower-like SiOx tubes with well-dispersed Sn and joining countless SiOx loops together induce intense luminescence characteristics in substrate materials. Our synthetic technique called “direct substrate growth” is based on pre-contamination of the surroundings without the intended catalyst and source powders. The kind of supporting material and pressure of the inlet gases determine a series of differently functionalized tube loops, i.e., the number, length, thickness, and cylindrical profile. SiOx tube loops commonly twist and split to best suppress the total energy. Photoluminescence and confocal laser measurements based on quantum confinement effect of the embedded Sn nanoparticles in the SiOx tube found substantially intense emissions throughout the visible range. These new concepts related to the synthetic approach, pre-pollution, transitional morphology, and permeable nanoparticles should facilitate progress in nanoscience with regard to tuning the dimensions of micro-/nanostructure preparations and the functionalization of customized applications.
Collapse
Affiliation(s)
- Changhyun Jin
- School of Mechanical Engineering, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Seon Jae Hwang
- Inha Analytical Instrumentation Center, Inha University, Incheon, 402-751, Republic of Korea
| | - Myeong Soo Cho
- Inha Analytical Instrumentation Center, Inha University, Incheon, 402-751, Republic of Korea
| | - Sun-Woo Choi
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea
| | - Han Gil Na
- Department of Materials Science and Engineering, Inha University, Incheon 402-751, Republic of Korea.,Advanced Materials and Manufacturing Technology, Inha University Business Incubator, Incheon 402-751, Republic of Korea
| | - Suyoung Park
- Helmut-Fischer Korea, 462, Dogok-ro, Songpa-gu, Seoul, 05574, Republic of Korea
| | - Sungsik Park
- School of Mechanical Engineering, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Youngwook Noh
- School of Mechanical Engineering, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Hakyung Jeong
- School of Mechanical Engineering, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Dongjin Lee
- School of Mechanical Engineering, Konkuk University, Seoul, 143-701, Republic of Korea
| |
Collapse
|
24
|
Boken J, Soni SK, Kumar D. Microfluidic Synthesis of Nanoparticles and their Biosensing Applications. Crit Rev Anal Chem 2016; 46:538-61. [DOI: 10.1080/10408347.2016.1169912] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Rahong S, Yasui T, Kaji N, Baba Y. Recent developments in nanowires for bio-applications from molecular to cellular levels. LAB ON A CHIP 2016; 16:1126-38. [PMID: 26928289 DOI: 10.1039/c5lc01306b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This review highlights the most promising applications of nanowires for bioanalytical chemistry and medical diagnostics. The materials discussed here are metal oxide and Si semiconductors, which are integrated with various microfluidic systems. Nanowire structures offer desirable advantages such as a very small diameter size with a high aspect ratio and a high surface-to-volume ratio without grain boundaries; consequently, nanowires are promising tools to study biological systems. This review starts with the integration of nanowire structures into microfluidic systems, followed by the discussion of the advantages of nanowire structures in the separation, manipulation and purification of biomolecules (DNA, RNA and proteins). Next, some representative nanowire devices are introduced for biosensors from molecular to cellular levels based on electrical and optical approaches. Finally, we conclude the review by highlighting some bio-applications for nanowires and presenting the next challenges that must be overcome to improve the capabilities of nanowire structures for biological and medical systems.
Collapse
Affiliation(s)
- Sakon Rahong
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. and ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Japan
| | - Takao Yasui
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. and ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Japan and JST, PRESTO, Graduate School of Engineering, Nagoya University, Japan
| | - Noritada Kaji
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. and ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Japan and ERATO Higashiyama Live-Holonics Project, Graduate School of Science, Nagoya University, Japan
| | - Yoshinobu Baba
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. and ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Japan and Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu 761-0395, Japan
| |
Collapse
|
26
|
Wang F, Dong A, Buhro WE. Solution–Liquid–Solid Synthesis, Properties, and Applications of One-Dimensional Colloidal Semiconductor Nanorods and Nanowires. Chem Rev 2016; 116:10888-933. [DOI: 10.1021/acs.chemrev.5b00701] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fudong Wang
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130-4899, United States
| | - Angang Dong
- Collaborative
Innovation Center of Chemistry for Energy Materials, Shanghai Key
Laboratory of Molecular Catalysis and Innovative Materials, and Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - William E. Buhro
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130-4899, United States
| |
Collapse
|
27
|
Caicedo N, Thomann JS, Leturcq R, Lenoble D. Aspect ratio improvement of ZnO nanowires grown in liquid phase by using step-by-step sequential growth. CrystEngComm 2016. [DOI: 10.1039/c6ce00904b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Xu K, Ding H, Jia K, Lu X, Chen P, Zhou T, Cheng H, Liu S, Wu C, Xie Y. Solution-Liquid-Solid Synthesis of Hexagonal Nickel Selenide Nanowire Arrays with a Nonmetal Catalyst. Angew Chem Int Ed Engl 2015; 55:1710-3. [DOI: 10.1002/anie.201508704] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Kun Xu
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| | - Hui Ding
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| | - Kaicheng Jia
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| | - Xiuli Lu
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| | - Pengzuo Chen
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| | - Tianpei Zhou
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| | - Han Cheng
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| | - Si Liu
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| | - Changzheng Wu
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| |
Collapse
|
29
|
Xu K, Ding H, Jia K, Lu X, Chen P, Zhou T, Cheng H, Liu S, Wu C, Xie Y. Solution-Liquid-Solid Synthesis of Hexagonal Nickel Selenide Nanowire Arrays with a Nonmetal Catalyst. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508704] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kun Xu
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| | - Hui Ding
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| | - Kaicheng Jia
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| | - Xiuli Lu
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| | - Pengzuo Chen
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| | - Tianpei Zhou
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| | - Han Cheng
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| | - Si Liu
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| | - Changzheng Wu
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Science at the Microscale; iChEM(Collaborative Innovation Center of Chemistry for Energy Materials); Hefei Science Center (CAS); CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science & Technology of China; Hefei, Anhui 230026 P. R. China
| |
Collapse
|
30
|
Ultrathin inorganic molecular nanowire based on polyoxometalates. Nat Commun 2015; 6:7731. [PMID: 26139011 PMCID: PMC4506542 DOI: 10.1038/ncomms8731] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/04/2015] [Indexed: 01/30/2023] Open
Abstract
The development of metal oxide-based molecular wires is important for fundamental research and potential practical applications. However, examples of these materials are rare. Here we report an all-inorganic transition metal oxide molecular wire prepared by disassembly of larger crystals. The wires are comprised of molybdenum(VI) with either tellurium(IV) or selenium(IV): {(NH4)2[XMo6O21]}n (X=tellurium(IV) or selenium(IV)). The ultrathin molecular nanowires with widths of 1.2 nm grow to micrometre-scale crystals and are characterized by single-crystal X-ray analysis, Rietveld analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, thermal analysis and elemental analysis. The crystals can be disassembled into individual molecular wires through cation exchange and subsequent ultrasound treatment, as visualized by atomic force microscopy and transmission electron microscopy. The ultrathin molecular wire-based material exhibits high activity as an acid catalyst, and the band gap of the molecular wire-based crystal is tunable by heat treatment.
Collapse
|
31
|
Kornienko N, Whitmore DD, Yu Y, Leone SR, Yang P. Solution phase synthesis of indium gallium phosphide alloy nanowires. ACS NANO 2015; 9:3951-3960. [PMID: 25839336 DOI: 10.1021/nn507335j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The tunable physical and electronic structure of III-V semiconductor alloys renders them uniquely useful for a variety of applications, including biological imaging, transistors, and solar energy conversion. However, their fabrication typically requires complex gas phase instrumentation or growth from high-temperature melts, which consequently limits their prospects for widespread implementation. Furthermore, the need for lattice matched growth substrates in many cases confines the composition of the materials to a narrow range that can be epitaxially grown. In this work, we present a solution phase synthesis for indium gallium phosphide (In(x)Ga(1-x)P) alloy nanowires, whose indium/gallium ratio, and consequently, physical and electronic structure, can be tuned across the entire x = 0 to x = 1 composition range. We demonstrate the evolution of structural and optical properties of the nanowires, notably the direct to indirect band gap transition, as the composition is varied from InP to GaP. Our scalable, low-temperature synthesis affords compositional, structural, and electronic tunability and can provide a route for realization of broader In(x)Ga(1-x)P applications.
Collapse
Affiliation(s)
| | | | | | | | - Peidong Yang
- #Kavli Energy Nanosciences Institute, Berkeley, California 94720, United States
| |
Collapse
|
32
|
Fu Q, Sheng Y, Tang H, Zhu Z, Ruan M, Xu W, Zhu Y, Tang Z. Growth mechanism deconvolution of self-limiting supraparticles based on microfluidic system. ACS NANO 2015; 9:172-179. [PMID: 25518003 DOI: 10.1021/nn5027998] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The synthesis of colloidal supraparticles (SPs) based on self-assembly of nanoscopic objects has attracted much attention in recent years. Here, we demonstrate the formation of self-limiting monodisperse gold SPs with core-shell morphology based on the building blocks of flexible nanoarms in one step. A flow-based microfluidic chip is utilized to slow down the assembly process of the intermediates, which surprisingly allows for observation of ultrathin gold nanoplates as first intermediates. Notably, these intermediate cannot be observed in traditional synthesis due to their rapid rolling-up to form the second-order nanostructure of flexible hollow nanoarms. The growth mechanism of SPs can then be deconvoluted into two seed-mediated steps. Monte Carlo simulations confirm that the self-limiting growth of binary SPs is governed by a balance between electrostatic repulsion and van der Waals attraction.
Collapse
Affiliation(s)
- Qiang Fu
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science , 5625 Renmin Street, Changchun 130022, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Yu SH, Lee Y, Jang SK, Kang J, Jeon J, Lee C, Lee JY, Kim H, Hwang E, Lee S, Cho JH. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS NANO 2014; 8:8285-8291. [PMID: 25062121 DOI: 10.1021/nn502715h] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We fabricated dye-sensitized MoS2 photodetectors that utilized a single-layer MoS2 treated with rhodamine 6G (R6G) organic dye molecules (with an optical band gap of 2.38 eV or 521 nm). The proposed photodetector showed an enhanced performance with a broad spectral photoresponse and a high photoresponsivity compared with the properties of the pristine MoS2 photodetectors. The R6G dye molecules deposited onto the MoS2 layer increased the photocurrent by an order of magnitude due to charge transfer of the photoexcited electrons from the R6G molecules to the MoS2 layer. Importantly, the photodetection response extended to the infrared (λ < 980 nm, which corresponded to about half the energy band gap of MoS2), thereby distinguishing the device performance from that of a pristine MoS2 device, in which detection was only possible at wavelengths shorter than the band gap of MoS2, i.e., λ < 681 nm. The resulting device exhibited a maximum photoresponsivity of 1.17 AW(–1), a photodetectivity of 1.5 × 10(7) Jones, and a total effective quantum efficiency (EQE) of 280% at 520 nm. The device design described here presents a significant step toward high-performance 2D nanomaterial-based photodetector.
Collapse
|
34
|
Dasgupta NP, Sun J, Liu C, Brittman S, Andrews SC, Lim J, Gao H, Yan R, Yang P. 25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:2137-84. [PMID: 24604701 DOI: 10.1002/adma.201305929] [Citation(s) in RCA: 364] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/12/2014] [Indexed: 05/18/2023]
Abstract
Semiconductor nanowires (NWs) have been studied extensively for over two decades for their novel electronic, photonic, thermal, electrochemical and mechanical properties. This comprehensive review article summarizes major advances in the synthesis, characterization, and application of these materials in the past decade. Developments in the understanding of the fundamental principles of "bottom-up" growth mechanisms are presented, with an emphasis on rational control of the morphology, stoichiometry, and crystal structure of the materials. This is followed by a discussion of the application of nanowires in i) electronic, ii) sensor, iii) photonic, iv) thermoelectric, v) photovoltaic, vi) photoelectrochemical, vii) battery, viii) mechanical, and ix) biological applications. Throughout the discussion, a detailed explanation of the unique properties associated with the one-dimensional nanowire geometry will be presented, and the benefits of these properties for the various applications will be highlighted. The review concludes with a brief perspective on future research directions, and remaining barriers which must be overcome for the successful commercial application of these technologies.
Collapse
Affiliation(s)
- Neil P Dasgupta
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hollingsworth JA. Nanoscale engineering facilitated by controlled synthesis: From structure to function. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Shin JH, Park SH, Hyun SM, Kim JW, Park HM, Song JY. Electrochemical flow-based solution–solid growth of the Cu2O nanorod array: potential application to lithium ion batteries. Phys Chem Chem Phys 2014; 16:18226-32. [DOI: 10.1039/c4cp02049a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile and template-free synthesis of the Cu2O nanorod array is realized by an electrochemical flow-based solution–solid method based on electrical field-driven filamentary anisotropy.
Collapse
Affiliation(s)
- Jeong Ho Shin
- Center for Nanomaterials Characterization
- Korea Research Institute of Standards and Science
- Daejeon, Republic of Korea
| | - Sun Hwa Park
- Center for Nanomaterials Characterization
- Korea Research Institute of Standards and Science
- Daejeon, Republic of Korea
| | - Seung Min Hyun
- Division of Nano-mechanical Systems Research
- Korea Institute of Machinery and Materials
- Daejeon, Republic of Korea
| | - Jeong Won Kim
- Center for Nanomaterials Characterization
- Korea Research Institute of Standards and Science
- Daejeon, Republic of Korea
- Korea University of Science and Technology
- Daejeon, Republic of Korea
| | - Hyun Min Park
- Center for Nanomaterials Characterization
- Korea Research Institute of Standards and Science
- Daejeon, Republic of Korea
- Korea University of Science and Technology
- Daejeon, Republic of Korea
| | - Jae Yong Song
- Center for Nanomaterials Characterization
- Korea Research Institute of Standards and Science
- Daejeon, Republic of Korea
- Korea University of Science and Technology
- Daejeon, Republic of Korea
| |
Collapse
|
37
|
Reim N, Littig A, Behn D, Mews A. Controlled Electrodeposition of Bismuth Nanocatalysts for the Solution–Liquid–Solid Synthesis of CdSe Nanowires on Transparent Conductive Substrates. J Am Chem Soc 2013; 135:18520-7. [DOI: 10.1021/ja408265s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natalia Reim
- Institute of Physical
Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Alexander Littig
- Institute of Physical
Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Dino Behn
- Institute of Physical
Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Alf Mews
- Institute of Physical
Chemistry, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
38
|
Christesen JD, Pinion CW, Grumstrup EM, Papanikolas JM, Cahoon JF. Synthetically encoding 10 nm morphology in silicon nanowires. NANO LETTERS 2013; 13:6281-6. [PMID: 24274858 DOI: 10.1021/nl403909r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Si nanowires (NWs) have been widely explored as a platform for photonic and electronic technologies. Here, we report a bottom-up method to break the conventional "wire" symmetry and synthetically encode a high-resolution array of arbitrary shapes, including nanorods, sinusoids, bowties, tapers, nanogaps, and gratings, along the NW growth axis. Rapid modulation of phosphorus doping combined with selective wet-chemical etching enabled morphological features as small as 10 nm to be patterned over wires more than 50 μm in length. This capability fundamentally expands the set of technologies that can be realized with Si NWs, and as proof-of-concept, we demonstrate two distinct applications. First, nanogap-encoded NWs were used as templates for Noble metals, yielding plasmonic structures with tunable resonances for surface-enhanced Raman imaging. Second, core/shell Si/SiO2 nanorods were integrated into electronic devices that exhibit resistive switching, enabling nonvolatile memory storage. Moving beyond these initial examples, we envision this method will become a generic route to encode new functionality in semiconductor NWs.
Collapse
Affiliation(s)
- Joseph D Christesen
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | | | | | | | | |
Collapse
|