1
|
Kartouzian A, Cameron RP. Unlocking the hidden dimension: power of chirality in scientific exploration. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230321. [PMID: 39246075 DOI: 10.1098/rsta.2023.0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 09/10/2024]
Abstract
In the boundless landscape of scientific exploration, there exists a hidden, yet easily accessible, dimension that has often not only intrigued and puzzled researchers but also provided the key. This dimension is chirality, the property that describes the handedness of objects. The influence of chirality extends across diverse fields of study from the parity violation in electroweak interactions to the extremely large macroscopic systems such as galaxies. In this opinion piece, we will delve into the power of chirality in scientific exploration by examining some examples that, at different scales, demonstrate its role as a key to a better understanding of our world. Our goal is to incite researchers from all fields to seek, implement and utilize chirality in their research. Going this extra mile might be more rewarding than it seems at first glance, in particular with regard to the increasing demand for new functional materials in response to the contemporary scientific and technological challenges we are facing. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.
Collapse
Affiliation(s)
- Aras Kartouzian
- Department of Chemistry and Catalysis Research Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4 , Garching bei München 85748, Germany
| | - Robert P Cameron
- SUPA and Department of Physics, University of Strathclyde , Glasgow G4 0NG, UK
| |
Collapse
|
2
|
Yi W, Huang H, Lai C, He T, Wang Z, Dai X, Shi Y, Cheng X. Optical Forces on Chiral Particles: Science and Applications. MICROMACHINES 2024; 15:1267. [PMID: 39459141 PMCID: PMC11509618 DOI: 10.3390/mi15101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Chiral particles have attracted considerable attention due to their distinctive interactions with light, which enable a variety of cutting-edge applications. This review presents a comprehensive analysis of the optical forces acting on chiral particles, categorizing them into gradient force, radiation pressure, optical lateral force, pulling force, and optical force on coupled chiral particles. We thoroughly overview the fundamental physical mechanisms underlying these forces, supported by theoretical models and experimental evidence. Additionally, we discuss the practical implications of these optical forces, highlighting their potential applications in optical manipulation, particle sorting, chiral sensing, and detection. This review aims to offer a thorough understanding of the intricate interplay between chiral particles and optical forces, laying the groundwork for future advancements in nanotechnology and photonics.
Collapse
Affiliation(s)
- Weicheng Yi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Haiyang Huang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Chengxing Lai
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Tao He
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| |
Collapse
|
3
|
Chen TL, Salij A, Parrish KA, Rasch JK, Zinna F, Brown PJ, Pescitelli G, Urraci F, Aronica LA, Dhavamani A, Arnold MS, Wasielewski MR, di Bari L, Tempelaar R, Goldsmith RH. A 2D chiral microcavity based on apparent circular dichroism. Nat Commun 2024; 15:3072. [PMID: 38594293 PMCID: PMC11004002 DOI: 10.1038/s41467-024-47411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Engineering asymmetric transmission between left-handed and right-handed circularly polarized light in planar Fabry-Pérot (FP) microcavities would enable a variety of chiral light-matter phenomena, with applications in spintronics, polaritonics, and chiral lasing. Such symmetry breaking, however, generally requires Faraday rotators or nanofabricated polarization-preserving mirrors. We present a simple solution requiring no nanofabrication to induce asymmetric transmission in FP microcavities, preserving low mode volumes by embedding organic thin films exhibiting apparent circular dichroism (ACD); an optical phenomenon based on 2D chirality. Importantly, ACD interactions are opposite for counter-propagating light. Consequently, we demonstrated asymmetric transmission of cavity modes over an order of magnitude larger than that of the isolated thin film. Through circular dichroism spectroscopy, Mueller matrix ellipsometry, and simulation using theoretical scattering matrix methods, we characterize the spatial, spectral, and angular chiroptical responses of this 2D chiral microcavity.
Collapse
Affiliation(s)
- Tzu-Ling Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
- Department of Photonics, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan
| | - Andrew Salij
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Katherine A Parrish
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Julia K Rasch
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, Pisa, PI, 56124, Italy
| | - Paige J Brown
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, Pisa, PI, 56124, Italy
| | - Francesco Urraci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, Pisa, PI, 56124, Italy
| | - Laura A Aronica
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, Pisa, PI, 56124, Italy
| | - Abitha Dhavamani
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Michael S Arnold
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Lorenzo di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, Pisa, PI, 56124, Italy
| | - Roel Tempelaar
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA.
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA.
| |
Collapse
|
4
|
Song J, Ji CY, Ma X, Li J, Zhao W, Wang RY. Key Role of Asymmetric Photothermal Effect in Selectively Chiral Switching of Plasmonic Dimer Driven by Circularly Polarized Light. J Phys Chem Lett 2024; 15:975-982. [PMID: 38252465 DOI: 10.1021/acs.jpclett.3c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Strong interaction between circularly polarized light and chiral plasmonic nanostructures can enable controllable asymmetric photophysical processes, such as selective chiral switching of a plasmonic nanorod-dimer. Here, we uncover the underlying physics that governs this chiral switching by theoretically investigating the interplay between asymmetric photothermal and optomechanical effects. We find that the photothermally induced local temperature rises could play a key role in activating the dynamic chiral configurations of a plasmonic dimer due to the temperature-sensitive molecular linkages located at the gap region. Importantly, different temperature rises caused by the opposite handedness of light could facilitate selective chiral switching of the plasmonic dimer driven by asymmetric optical torques. Our analyses on the wavelength-dependent selectively chiral switching behaviors are in good agreement with the experimental observations. This work contributes to a comprehensive understanding of the physical mechanism involved in the experimentally designed photoresponsive plasmonic nanosystems for practical applications.
Collapse
Affiliation(s)
- Jian Song
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Chang-Yin Ji
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyun Ma
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jiafang Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Wenjing Zhao
- College of Math and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rong-Yao Wang
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Wang H, Meyer SM, Murphy CJ, Chen YS, Zhao Y. Visualizing ultrafast photothermal dynamics with decoupled optical force nanoscopy. Nat Commun 2023; 14:7267. [PMID: 37949867 PMCID: PMC10638245 DOI: 10.1038/s41467-023-42666-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
The photothermal effect in nanomaterials, resulting from resonant optical absorption, finds wide applications in biomedicine, cancer therapy, and microscopy. Despite its prevalence, the photothermal effect in light-absorbing nanoparticles has typically been assessed using bulk measurements, neglecting near-field effects. Beyond standard imaging and therapeutic uses, nanosecond-transient photothermal effects have been harnessed for bacterial inactivation, neural stimulation, drug delivery, and chemical synthesis. While scanning probe microscopy and electron microscopy offer single-particle imaging of photothermal fields, their slow speed limits observations to milliseconds or seconds, preventing nanoscale dynamic investigations. Here, we introduce decoupled optical force nanoscopy (Dofn), enabling nanometer-scale mapping of photothermal forces by exploiting unique phase responses to temporal modulation. We employ the photothermal effect's back-action to distinguish various time frames within a modulation period. This allows us to capture the dynamic photothermal process of a single gold nanorod in the nanosecond range, providing insights into non-stationary thermal diffusion at the nanoscale.
Collapse
Affiliation(s)
- Hanwei Wang
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sean M Meyer
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yun-Sheng Chen
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yang Zhao
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
6
|
Yamanishi J, Ahn HY, Okamoto H. Nanoscopic Observation of Chiro-Optical Force. NANO LETTERS 2023; 23:9347-9352. [PMID: 37792311 PMCID: PMC10607231 DOI: 10.1021/acs.nanolett.3c02534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Indexed: 10/05/2023]
Abstract
Nanoscopic observation of chiro-optical phenomena is essential in wide scientific areas but has measurement difficulties; hence, its physics is still unknown. To obtain a full understanding of the physics of chiro-optical systems and derive the full potentials, it is essential to perform an in situ observation of the chiro-optical effect from the individual parts because the macroscopic chiro-optical effect cannot be translated directly into microscopic effects. In the present study, we observed the chiro-optical responses at the nanoscale level by detecting the chiro-optical forces, which were generated by illumination of the material-probe system with circularly polarized light. The induced optical force was dependent on the handedness and wavelength of the incident circularly polarized light and was well correlated to the electromagnetically simulated differential intensity of the longitudinal electric field. Our results facilitate the clarification of chiro-optical phenomena at the nanoscale level and could innovate chiro-optical nanotechnologies.
Collapse
Affiliation(s)
- Junsuke Yamanishi
- Institute
for Molecular Science, National Institutes
of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Hyo-Yong Ahn
- Institute
for Molecular Science, National Institutes
of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Center
for Novel Science Initiatives, National
Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001, Japan
| | - Hiromi Okamoto
- Institute
for Molecular Science, National Institutes
of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The
Graduate University for Advanced Studies (Sokendai), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
7
|
Yamane H, Yokoshi N, Ishihara H, Oka H. Enantioselective optical trapping of single chiral molecules in the superchiral field vicinity of metal nanostructures. OPTICS EXPRESS 2023; 31:13708-13723. [PMID: 37157253 DOI: 10.1364/oe.482207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study, we theoretically analyzed the optical force acting on single chiral molecules in the plasmon field induced by metallic nanostructures. Using the extended discrete dipole approximation, we quantitatively examined the optical response of single chiral molecules in the localized plasmon by numerically analyzing the internal polarization structure of the molecules obtained from quantum chemical calculations, without phenomenological treatment. We evaluated the chiral gradient force due to the optical chirality gradient of the superchiral field near the metallic nanostructures for chiral molecules. Our calculation method can be used to evaluate the molecular-orientation dependence and rotational torque by considering the chiral spatial structure inside the molecules. We theoretically showed that the superchiral field induced by chiral plasmonic nanostructures can be used to selectively optically capture the enantiomers of a single chiral molecule.
Collapse
|
8
|
Babaei E, Wright D, Gordon R. Fringe Dielectrophoresis Nanoaperture Optical Trapping with Order of Magnitude Speed-Up for Unmodified Proteins. NANO LETTERS 2023; 23:2877-2882. [PMID: 36999922 DOI: 10.1021/acs.nanolett.3c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Single molecule analysis of proteins in an aqueous environment without modification (e.g., labels or tethers) elucidates their biophysics and interactions relevant to drug discovery. By combining fringe-field dielectrophoresis with nanoaperture optical tweezers we demonstrate an order of magnitude faster time-to-trap for proteins when the counter electrode is outside of the solution. When the counter electrode is inside the solution (the more common configuration found in the literature), electrophoresis speeds up the trapping of polystyrene nanospheres, but this was not effective for proteins in general. Since time-to-trap is critical for high-thoughput analysis, these findings are a major advancement to the nanoaperture optical trapping technique for protein analysis.
Collapse
Affiliation(s)
- Elham Babaei
- Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada V8P5C2
| | - Demelza Wright
- Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada V8P5C2
| | - Reuven Gordon
- Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada V8P5C2
| |
Collapse
|
9
|
Singh R, Yadav V, Siddhanta S. Probing plasmon-induced surface reactions using two-dimensional correlation vibrational spectroscopy. Phys Chem Chem Phys 2023; 25:6032-6043. [PMID: 36779479 DOI: 10.1039/d2cp05705k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Surface plasmon resonance (SPR) has the ability to drive catalytic conversion of the reactant molecules via the production of hot electrons, which in general requires high activation energy. The reactions driven by these hot electrons are critical and essential in various heterogeneous surface catalytic reactions. However, there is a need to understand the dynamics of surface reactions and the underlying mechanism, which are influenced by several factors such as the constitution of the nanoparticle, exposure time, and reaction conditions to name a few. However, the effect of solvent in stabilizing the electron-hole pair, the orientation, and the surface coverage of the analyte are poorly understood due to the limitations of current methods. To get deeper insights into the reaction dynamics, we have demonstrated the combined utility of plasmon-enhanced Raman spectroscopy and Two-dimensional correlation spectroscopy (2DCOS) to study the plasmon-driven conversion of 4-nitrothiophenol on the surface of plasmonic nanoparticles. Interestingly, this combined technique provided us with previously unobservable results regarding surface catalysis by conventional spectroscopic analysis alone. Specifically, for the first time, 2DCOS provided critical insights in bridging the gap in our understanding of the interplay of solvent effect, orientation, and surface packing of the analyte molecules. It was observed that certain species like 4,4-dimercaptoazobenzene (DMAB) or 4-aminothiophenol (4-ATP) can be selectively formed based on the ordered or disordered phases of the analytes on the surface, thus paving the way to precisely control light-driven reactions through operando spectroscopy.
Collapse
Affiliation(s)
- Ruchi Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Vikas Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Soumik Siddhanta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
10
|
Yang F, Yue B, Zhu L. Light-triggered Modulation of Supramolecular Chirality. Chemistry 2023; 29:e202203794. [PMID: 36653305 DOI: 10.1002/chem.202203794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Dynamically controlling the supramolecular chirality is of great significance in development of functional chiral materials, which is thus essential for the specific function implementation. As an external energy input, light is remote and accurate for modulating chiral assemblies. In non-polarized light control, some photochemically reactive units (e. g., azobenzene, ɑ-cyanostilbene, spiropyran, anthracene) or photo-induced directionally rotating molecular motors were designed to drive chiral transfer or amplification. Besides, photoexcitation induced assembly based physical approach was also explored recently to regulate supramolecular chirality beyond photochemical reactions. In addition, circularly polarized light was applied to induce asymmetric arrangement of organic molecules and asymmetric photochemical synthesis of inorganic metallic nanostructures, in which both wavelength and handedness of circularly polarized light have effects on the induced supramolecular chirality. Although light-triggered chiral assemblies have been widely applied in photoelectric materials, biomedical fields, soft actuator, chiral catalysis and chiral sensing, there is a lack of systematic review on this topic. In this review, we summarized the recent studies and perspectives in the constructions and applications of light-responsive chiral assembled systems, aiming to provide better knowledge for the development of multifunctional chiral nanomaterials.
Collapse
Affiliation(s)
- Fan Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Bingbing Yue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
11
|
Yamanishi J, Ahn HY, Yamane H, Hashiyada S, Ishihara H, Nam KT, Okamoto H. Optical gradient force on chiral particles. SCIENCE ADVANCES 2022; 8:eabq2604. [PMID: 36129977 PMCID: PMC9491721 DOI: 10.1126/sciadv.abq2604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
When a chiral nanoparticle is optically trapped using a circularly polarized laser beam, a circular polarization (CP)–dependent gradient force can be induced on the particle. We investigated the CP-dependent gradient force exerted on three-dimensional chiral nanoparticles. The experimental results showed that the gradient force depended on the handedness of the CP of the trapping light and the particle chirality. The analysis revealed that the spectral features of the CP handedness–dependent gradient force are influenced not only by the real part of the refractive index but also by the electromagnetic field perturbed by the chiral particle resonant with the incident light. This is in sharp contrast to the well-known behavior of the gradient force, which is governed by the real part of the refractive index. The extended aspect of the chiral optical force obtained here can provide novel methodologies on chirality sensing, manipulation, separation, enantioselective biological reactions, and other fields.
Collapse
Affiliation(s)
- Junsuke Yamanishi
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Hyo-Yong Ahn
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Center for Novel Science Initiatives, National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001, Japan
| | - Hidemasa Yamane
- Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department of Physics, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Shun Hashiyada
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hajime Ishihara
- Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department of Materials Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hiromi Okamoto
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
12
|
Wen X, Zhang L, Tian F, Xu Y, Hu H. Versatile Approach of Silicon Nanofabrication without Resists: Helium Ion-Bombardment Enhanced Etching. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3269. [PMID: 36234396 PMCID: PMC9565762 DOI: 10.3390/nano12193269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Herein, we report a helium ion-bombardment enhanced etching method for silicon nanofabrication without the use of resists; furthermore, we demonstrate its unique advantages for straightforward fabrication on irregular surfaces and prototyping nano-electro-mechanical system devices, such as self-enclosed Si nanofluidic channels and mechanical nano-resonators. This method employs focused helium ions to selectively irradiate single-crystal Si to disrupt the crystal lattice and transform it into an amorphous phase that can be etched at a rate 200 times higher than that of the non-irradiated Si. Due to the unique raindrop shape of the interaction volumes between helium ions and Si, buried Si nanofluidic channels can be constructed using only one dosing step, followed by one step of conventional chemical etching. Moreover, suspended Si nanobeams can be fabricated without an additional undercut step for release owing to the unique raindrop shape. In addition, we demonstrate nanofabrication directly on 3D micro/nano surfaces, such as an atomic force microscopic probe, which is challenging for conventional nanofabrication due to the requirement of photoresist spin coating. Finally, this approach can also be extended to assist in the etching of other materials that are difficult to etch, such as silicon carbide (SiC).
Collapse
Affiliation(s)
- Xiaolei Wen
- Center for Micro and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China
| | - Lansheng Zhang
- ZJUI Institute, Zhejiang University, Haining 314400, China
| | - Feng Tian
- ZJUI Institute, Zhejiang University, Haining 314400, China
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310027, China
| | - Yang Xu
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310027, China
| | - Huan Hu
- ZJUI Institute, Zhejiang University, Haining 314400, China
- State Key Laboratory of Fluidic Power & Mechanical Systems, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Abstract
Controlled assembly of inorganic nanoparticles with different compositions, sizes and shapes into higher-order structures of collective functionalities is a central pursued objective in chemistry, physics, materials science and nanotechnology. The emerging chiral superstructures, which break spatial symmetries at the nanoscale, have attracted particular attention, owing to their unique chiroptical properties and potential applications in optics, catalysis, biology and so on. Various bottom-up strategies have been developed to build inorganic chiral superstructures based on the intrinsic configurational preference of the building blocks, external fields or chiral templates. Self-assembled inorganic chiral superstructures have demonstrated significant superior optical activity from the strong electric/magnetic coupling between the building blocks, as compared with the organic counterparts. In this Review, we discuss recent progress in preparing self-assembled inorganic chiral superstructures, with an emphasis on the driving forces that enable symmetry breaking during the assembly process. The chiroptical properties and applications are highlighted and a forward-looking trajectory of where research efforts should be focused is discussed.
Collapse
|
14
|
Pan J, Kmieciak T, Liu YT, Wildenradt M, Chen YS, Zhao Y. Quantifying molecular- to cellular-level forces in living cells. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2021; 54:483001. [PMID: 34866655 PMCID: PMC8635116 DOI: 10.1088/1361-6463/ac2170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mechanical cues have been suggested to play an important role in cell functions and cell fate determination, however, such physical quantities are challenging to directly measure in living cells with single molecule sensitivity and resolution. In this review, we focus on two main technologies that are promising in probing forces at the single molecule level. We review their theoretical fundamentals, recent technical advancements, and future directions, tailored specifically for interrogating mechanosensitive molecules in live cells.
Collapse
Affiliation(s)
- Jason Pan
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Tommy Kmieciak
- Department of Engineering Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yen-Ting Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Matthew Wildenradt
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yun-Sheng Chen
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yang Zhao
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 208 N. Wright Street, Urbana, IL 61801, United States of America
| |
Collapse
|
15
|
Chen YY, Ye C, Li Y. Enantio-detection via cavity-assisted three-photon processes. OPTICS EXPRESS 2021; 29:36132-36144. [PMID: 34809032 DOI: 10.1364/oe.436211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
We propose a method for enantio-detection of chiral molecules based on a cavity-molecule system, where the left- and right-handed molecules are coupled with a cavity and two classical light fields to form cyclic three-level models. Via the cavity-assisted three-photon processes based on the cyclic three-level model, photons are generated continuously in the cavity even in the absence of external driving to the cavity. However, the photonic fields generated from the three-photon processes of left- and right-handed molecules differ with the phase difference π according to the inherent properties of electric-dipole transition moments of enantiomers. This provides a potential way to detect the enantiomeric excess of chiral mixture by monitoring the output field of the cavity.
Collapse
|
16
|
Farmakidis N, Swett JL, Youngblood N, Li X, Evangeli C, Aggarwal S, Mol JA, Bhaskaran H. Exploiting rotational asymmetry for sub-50 nm mechanical nanocalligraphy. MICROSYSTEMS & NANOENGINEERING 2021; 7:84. [PMID: 34691759 PMCID: PMC8528849 DOI: 10.1038/s41378-021-00300-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Nanofabrication has experienced extraordinary progress in the area of lithography-led processes over the last decades, although versatile and adaptable techniques addressing a wide spectrum of materials are still nascent. Scanning probe lithography (SPL) offers the capability to readily pattern sub-100 nm structures on many surfaces; however, the technique does not scale to dense and multi-lengthscale structures. Here, we demonstrate a technique, which we term nanocalligraphy scanning probe lithography (nc-SPL), that overcomes these limitations. Nc-SPL employs an asymmetric tip and exploits its rotational asymmetry to generate structures spanning the micron to nanometer lengthscales through real-time linewidth tuning. Using specialized tip geometries and by precisely controlling the patterning direction, we demonstrate sub-50 nm patterns while simultaneously improving on throughput, tip longevity, and reliability compared to conventional SPL. We further show that nc-SPL can be employed in both positive and negative tone patterning modes, in contrast to conventional SPL. This underlines the potential of this technique for processing sensitive surfaces such as 2D materials, which are prone to tip-induced shear or beam-induced damage.
Collapse
Affiliation(s)
- Nikolaos Farmakidis
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH UK
| | - Jacob L. Swett
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH UK
| | - Nathan Youngblood
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH UK
| | - Xuan Li
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH UK
| | | | - Samarth Aggarwal
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH UK
| | - Jan A. Mol
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH UK
- Department of Physics, Queen Mary University of London, London, E1 4NS UK
| | - Harish Bhaskaran
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH UK
| |
Collapse
|
17
|
Lin ZH, Zhang J, Huang JS. Plasmonic elliptical nanoholes for chiroptical analysis and enantioselective optical trapping. NANOSCALE 2021; 13:9185-9192. [PMID: 33960333 DOI: 10.1039/d0nr09080h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple yet effective achiral platform using elliptical nanoholes for chiroptical analysis is demonstrated. Under linearly polarized excitation, an elliptical nanohole in a thin gold film can generate a localized chiral optical field for chiroptical analysis and simultaneously serve as a near-field optical trap to capture dielectric and plasmonic nanospheres. In particular, the trapping potential is enantioselective for dielectric nanospheres, i.e., the hole traps or repels the dielectric nanoparticles depending on the sample chirality. For plasmonic nanospheres, the trapping potential well is much deeper than that for dielectric particles, rendering the enantioselectivity less pronounced. This platform is suitable for chiral analysis with nanoparticle-based solid-state extraction and pre-concentration. Compared to plasmonic chiroptical sensing using chiral structures or circularly polarized light, elliptical nanoholes are a simple and effective platform, which is expected to have a relatively low background because chiroptical noise from the structure or chiral species outside the nanohole is minimized. The use of linearly polarized excitation also makes the platform easily compatible with a commercial optical microscope.
Collapse
Affiliation(s)
- Zhan-Hong Lin
- Leibniz Institute of Photonic Technology, Albert-Einstein Straße 9, 07745 Jena, Germany.
| | - Jiwei Zhang
- Leibniz Institute of Photonic Technology, Albert-Einstein Straße 9, 07745 Jena, Germany. and MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Jer-Shing Huang
- Leibniz Institute of Photonic Technology, Albert-Einstein Straße 9, 07745 Jena, Germany. and Abbe Center of Photonics, Friedrich-Schiller University Jena, Jena, Germany and Research Center for Applied Sciences, Academia Sinica, 128 Sec. 2, Academia Road, 11529 Taipei, Nankang District, Taiwan and Department of Electrophysics, National Chiao Tung University, 1001 University Road, 30010 Hsinchu, Taiwan
| |
Collapse
|
18
|
Abujetas DR, Marqués MI, Sánchez-Gil JA. Modulated flipping torque, spin-induced radiation pressure, and chiral sorting exerted by guided light. OPTICS EXPRESS 2021; 29:16969-16979. [PMID: 34154248 DOI: 10.1364/oe.412638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/01/2021] [Indexed: 06/13/2023]
Abstract
In recent years, optical forces and torques have been investigated in sub-wavelength evanescent fields yielding a rich phenomenology of fundamental and applied interest. Here we demonstrate analytically that guided modes carrying transverse spin density induce optical torques depending on the character, either electric or magnetic, of the dipolar particles. The existence of a nonzero longitudinal extraordinary linear spin momentum suitable to manipulate optical forces and torques modifies optical forces either enhancing or inhibiting radiation pressure. Hybrid modes supported by cylindrical waveguides also exhibit intrinsic helicity that leads to a rich distribution of longitudinal optical torques. Finally, we show that chiral dipolar particles also undergo lateral forces induced by transverse spin density, amenable to chiral particle sorting. These properties are revealed in configurations on achiral and chiral dipolar particles within confined geometries throughout the electromagnetic spectra.
Collapse
|
19
|
Suchitta A, Suri P, Xie Z, Xu X, Ghosh A. Chiro-optical response of a wafer scale metamaterial with ellipsoidal metal nanoparticles. NANOTECHNOLOGY 2021; 32:315705. [PMID: 33857929 DOI: 10.1088/1361-6528/abf877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
We report a large chiro-optical response from a nanostructured film of aperiodic dielectric helices decorated with ellipsoidal metal nanoparticles. The influence of the inherent fabrication variation on the chiro-optical response of the wafer-scalable nanostructured film is investigated using a computational model which closely mimics the material system. From the computational approach, we found that the chiro-optical signal is strongly dependent on the ellipticities of the metal nanoparticles and the developed computational model can account for all the variations caused by the fabrication process. We report the experimentally realized dissymmetry factor ∼1.6, which is the largest reported for wafer scalable chiro-plasmonic samples till now. The calculations incorporate strong multipolar contributions of the plasmonic interactions to the chiro-optical response from the tightly confined ellipsoidal nanoparticles, improving upon the previous studies carried in the coupled dipole approximation regime. Our analyzes confirm the large chiro-optical response in these films developed by a scalable and simple fabrication technique, indicating their applicability pertaining to manipulation of optical polarization, enantiomer selective identification and enhanced sensing and detection of chiral molecules.
Collapse
Affiliation(s)
- Aakansha Suchitta
- Department of Electrical Engineering, Indian Institute Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Priyanka Suri
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Zhuolin Xie
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Xianfan Xu
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States of America
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
- Department of Physics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
20
|
Ren Y, Chen Q, He M, Zhang X, Qi H, Yan Y. Plasmonic Optical Tweezers for Particle Manipulation: Principles, Methods, and Applications. ACS NANO 2021; 15:6105-6128. [PMID: 33834771 DOI: 10.1021/acsnano.1c00466] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Inspired by the idea of combining conventional optical tweezers with plasmonic nanostructures, a technique named plasmonic optical tweezers (POT) has been widely explored from fundamental principles to applications. With the ability to break the diffraction barrier and enhance the localized electromagnetic field, POT techniques are especially effective for high spatial-resolution manipulation of nanoscale or even subnanoscale objects, from small bioparticles to atoms. In addition, POT can be easily integrated with other techniques such as lab-on-chip devices, which results in a very promising alternative technique for high-throughput single-bioparticle sensing or imaging. Despite its label-free, high-precision, and high-spatial-resolution nature, it also suffers from some limitations. One of the main obstacles is that the plasmonic nanostructures are located over the surfaces of a substrate, which makes the manipulation of bioparticles turn from a three-dimensional problem to a nearly two-dimensional problem. Meanwhile, the operation zone is limited to a predefined area. Therefore, the target objects must be delivered to the operation zone near the plasmonic structures. This review summarizes the state-of-the-art target delivery methods for the POT-based particle manipulating technique, along with its applications in single-bioparticle analysis/imaging, high-throughput bioparticle purifying, and single-atom manipulation. Future developmental perspectives of POT techniques are also discussed.
Collapse
Affiliation(s)
- Yatao Ren
- Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Qin Chen
- Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Mingjian He
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Xiangzhi Zhang
- Research Centre for Fluids and Thermal Engineering, University of Nottingham, Ningbo 315100, P.R. China
| | - Hong Qi
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Yuying Yan
- Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Research Centre for Fluids and Thermal Engineering, University of Nottingham, Ningbo 315100, P.R. China
| |
Collapse
|
21
|
Kakkanattu A, Eerqing N, Ghamari S, Vollmer F. Review of optical sensing and manipulation of chiral molecules and nanostructures with the focus on plasmonic enhancements [Invited]. OPTICS EXPRESS 2021; 29:12543-12579. [PMID: 33985011 DOI: 10.1364/oe.421839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Chiral molecules are ubiquitous in nature; many important synthetic chemicals and drugs are chiral. Detecting chiral molecules and separating the enantiomers is difficult because their physiochemical properties can be very similar. Here we review the optical approaches that are emerging for detecting and manipulating chiral molecules and chiral nanostructures. Our review focuses on the methods that have used plasmonics to enhance the chiroptical response. We also review the fabrication and assembly of (dynamic) chiral plasmonic nanosystems in this context.
Collapse
|
22
|
Li J, Wang M, Wu Z, Li H, Hu G, Jiang T, Guo J, Liu Y, Yao K, Chen Z, Fang J, Fan D, Korgel BA, Alù A, Zheng Y. Tunable Chiral Optics in All-Solid-Phase Reconfigurable Dielectric Nanostructures. NANO LETTERS 2021; 21:973-979. [PMID: 33372805 PMCID: PMC7855985 DOI: 10.1021/acs.nanolett.0c03957] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Subwavelength nanostructures with tunable compositions and geometries show favorable optical functionalities for the implementation of nanophotonic systems. Precise and versatile control of structural configurations on solid substrates is essential for their applications in on-chip devices. Here, we report all-solid-phase reconfigurable chiral nanostructures with silicon nanoparticles and nanowires as the building blocks in which the configuration and chiroptical response can be tailored on-demand by dynamic manipulation of the silicon nanoparticle. We reveal that the optical chirality originates from the handedness-dependent coupling between optical resonances of the silicon nanoparticle and the silicon nanowire via numerical simulations and coupled-mode theory analysis. Furthermore, the coexisting electric and magnetic resonances support strong enhancement of optical near-field chirality, which enables label-free enantiodiscrimination of biomolecules in single nanostructures. Our results not only provide insight into the design of functional high-index materials but also bring new strategies to develop adaptive devices for photonic and electronic applications.
Collapse
Affiliation(s)
- Jingang Li
- Materials Science and Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mingsong Wang
- Materials Science and Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Photonics Initiative, Advanced Science Research Center and Graduate Center, City University of New York, New York, New York 10075, United States
| | - Zilong Wu
- Materials Science and Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Huanan Li
- Photonics Initiative, Advanced Science Research Center and Graduate Center, City University of New York, New York, New York 10075, United States
| | - Guangwei Hu
- Photonics Initiative, Advanced Science Research Center and Graduate Center, City University of New York, New York, New York 10075, United States
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Taizhi Jiang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jianhe Guo
- Materials Science and Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yaoran Liu
- Materials Science and Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kan Yao
- Materials Science and Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhihan Chen
- Materials Science and Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jie Fang
- Materials Science and Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Donglei Fan
- Materials Science and Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian A Korgel
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center and Graduate Center, City University of New York, New York, New York 10075, United States
| | - Yuebing Zheng
- Materials Science and Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
23
|
Sun WX, Fu SF, Zhu R, Wang ZY, Zou H, Zheng Y. Improved anaerobic digestion efficiency of high-solid sewage sludge by enhanced direct interspecies electron transfer with activated carbon mediator. BIORESOURCE TECHNOLOGY 2020; 313:123648. [PMID: 32563791 DOI: 10.1016/j.biortech.2020.123648] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
High-solid anaerobic digestion (AD) faces the problems of easy acidification and low methane production efficiency. In this study, activated carbon (AC)-enhanced direct interspecies electron transfer (DIET) was investigated to overcome such problems. Results showed the conversion of volatile fatty acids (VFAs) into methane rate was increased with AC addition, which led improved methane production efficiency. The methane yields from the early AD stage improved by 124.0-146.3% with AC addition. The T80 shortened by 8-9 days with AC addition. The relative abundances of Geobacter, Syntrophomonas and Methanosaeta that associated with DIET improved for 63.65%, 256.3% and 4.35% by AC addition, which reflected the enhanced DIET with AC addition. The redox activity of AC might be responsible for the enhanced DIET. This study would advance the understanding of DIET and provide a potential solution to the problems existed in high-solid AD.
Collapse
Affiliation(s)
- Wen-Xin Sun
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Shan-Fei Fu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Rong Zhu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Zhen-Yu Wang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Hua Zou
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China.
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 101C BIVAP, 1980 Kimball Avenue, Manhattan, KS 66506, USA
| |
Collapse
|
24
|
Kong XT, Besteiro LV, Wang Z, Govorov AO. Plasmonic Chirality and Circular Dichroism in Bioassembled and Nonbiological Systems: Theoretical Background and Recent Progress. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1801790. [PMID: 30260543 DOI: 10.1002/adma.201801790] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/25/2018] [Indexed: 05/22/2023]
Abstract
Nature is chiral, thus chirality is a key concept required to understand a multitude of systems in physics, chemistry, and biology. The field of optics offers valuable tools to probe the chirality of nanosystems, including the measurement of circular dichroism, the differential interaction strength between matter and circularly polarized light with opposite helicity. Simultaneously, the use of plasmonic systems with giant light-interaction cross-sections opens new paths to investigate and manipulate systems on the nanoscale. Consequently, the interest in chiral plasmonic and hybrid systems has continually grown in recent years, due to their potential applications in biosensing, polarization-encoded optical communication, polarization-selective chemical reactions, and materials with polarization-dependent light-matter interaction. Experimentally, chiral properties of nanostructures can be either created artificially using modern fabrication techniques involving inorganic materials, or borrowed from nature using bioassembly or biomolecular templating. Herein, the recent progress in the field of plasmonic chirality is summarized, with a focus on both the theoretical background and the experimental advances in the study of chirality in various systems, including molecular-plasmonic assemblies, chiral plasmonic nanostructures, chiral assemblies of interacting plasmonic nanoparticles, and chiral metal metasurfaces and metamaterials. The growth prospects of this field are also discussed.
Collapse
Affiliation(s)
- Xiang-Tian Kong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA
| | - Lucas V Besteiro
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Varennes, QC J3X 1S2, Canada
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
25
|
Im SW, Ahn HY, Kim RM, Cho NH, Kim H, Lim YC, Lee HE, Nam KT. Chiral Surface and Geometry of Metal Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905758. [PMID: 31834668 DOI: 10.1002/adma.201905758] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/11/2019] [Indexed: 05/15/2023]
Abstract
Chirality is a basic property of nature and has great importance in photonics, biochemistry, medicine, and catalysis. This importance has led to the emergence of the chiral inorganic nanostructure field in the last two decades, providing opportunities to control the chirality of light and biochemical reactions. While the facile production of 3D nanostructures has remained a major challenge, recent advances in nanocrystal synthesis have provided a new pathway for efficient control of chirality at the nanoscale by transferring molecular chirality to the geometry of nanocrystals. Interestingly, this discovery stems from a purely crystallographic outcome: chirality can be generated on high-Miller-index surfaces, even for highly symmetric metal crystals. This is the starting point herein, with an overview of the scientific history and a summary of the crystallographic definition. With the advance of nanomaterial synthesis technology, high-Miller-index planes can be selectively exposed on metallic nanoparticles. The enantioselective interaction of chiral molecules and high-Miller-index facets can break the mirror symmetry of the metal nanocrystals. Herein, the fundamental principle of chirality evolution is emphasized and it is shown how chiral surfaces can be directly correlated with chiral morphologies, thus serving as a guide for researchers in chiral catalysts, chiral plasmonics, chiral metamaterials, and photonic devices.
Collapse
Affiliation(s)
- Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyo-Yong Ahn
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Nam Heon Cho
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Yae-Chan Lim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
26
|
Shi Y, Zhu T, Zhang T, Mazzulla A, Tsai DP, Ding W, Liu AQ, Cipparrone G, Sáenz JJ, Qiu CW. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation. LIGHT, SCIENCE & APPLICATIONS 2020; 9:62. [PMID: 32337026 PMCID: PMC7160209 DOI: 10.1038/s41377-020-0293-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 05/05/2023]
Abstract
Lateral optical forces induced by linearly polarized laser beams have been predicted to deflect dipolar particles with opposite chiralities toward opposite transversal directions. These "chirality-dependent" forces can offer new possibilities for passive all-optical enantioselective sorting of chiral particles, which is essential to the nanoscience and drug industries. However, previous chiral sorting experiments focused on large particles with diameters in the geometrical-optics regime. Here, we demonstrate, for the first time, the robust sorting of Mie (size ~ wavelength) chiral particles with different handedness at an air-water interface using optical lateral forces induced by a single linearly polarized laser beam. The nontrivial physical interactions underlying these chirality-dependent forces distinctly differ from those predicted for dipolar or geometrical-optics particles. The lateral forces emerge from a complex interplay between the light polarization, lateral momentum enhancement, and out-of-plane light refraction at the particle-water interface. The sign of the lateral force could be reversed by changing the particle size, incident angle, and polarization of the obliquely incident light.
Collapse
Affiliation(s)
- Yuzhi Shi
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Tongtong Zhu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583 Singapore
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024 China
- School of Physics, Harbin Institute of Technology, Harbin, 150001 China
| | - Tianhang Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583 Singapore
| | - Alfredo Mazzulla
- CNR-NANOTEC, LiCryL and Centre of Excellence CEMIF. CAL, Ponte P. Bucci, Cubo 33B, 87036 Rende (CS), Italy
| | - Din Ping Tsai
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong China
| | - Weiqiang Ding
- School of Physics, Harbin Institute of Technology, Harbin, 150001 China
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Gabriella Cipparrone
- CNR-NANOTEC, LiCryL and Centre of Excellence CEMIF. CAL, Ponte P. Bucci, Cubo 33B, 87036 Rende (CS), Italy
- Department of Physics, University of Calabria, Ponte P. Bucci, Cubo 33B, 87036 Rende (CS), Italy
| | - Juan José Sáenz
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583 Singapore
| |
Collapse
|
27
|
Solomon ML, Saleh AAE, Poulikakos LV, Abendroth JM, Tadesse LF, Dionne JA. Nanophotonic Platforms for Chiral Sensing and Separation. Acc Chem Res 2020; 53:588-598. [PMID: 31913015 DOI: 10.1021/acs.accounts.9b00460] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chirality in Nature can be found across all length scales, from the subatomic to the galactic. At the molecular scale, the spatial dissymmetry in the atomic arrangements of pairs of mirror-image molecules, known as enantiomers, gives rise to fascinating and often critical differences in chemical and physical properties. With increasing hierarchical complexity, protein function, cell communication, and organism health rely on enantioselective interactions between molecules with selective handedness. For example, neurodegenerative and neuropsychiatric disorders including Alzheimer's and Parkinson's diseases have been linked to distortion of chiral-molecular structure. Moreover, d-amino acids have become increasingly recognized as potential biomarkers, necessitating comprehensive analytical methods for diagnosis that are capable of distinguishing l- from d-forms and quantifying trace concentrations of d-amino acids. Correspondingly, many pharmaceuticals and agrochemicals consist of chiral molecules that target particular enantioselective pathways. Yet, despite the importance of molecular chirality, it remains challenging to sense and to separate chiral compounds. Chiral-optical spectroscopies are designed to analyze the purity of chiral samples, but they are often insensitive to the trace enantiomeric excess that might be present in a patient sample, such as blood, urine, or sputum, or pharmaceutical product. Similarly, existing separation schemes to enable enantiopure solutions of chiral products are inefficient or costly. Consequently, most pharmaceuticals or agrochemicals are sold as racemic mixtures, with reduced efficacy and potential deleterious impacts.Recent advances in nanophotonics lay the foundation toward highly sensitive and efficient chiral detection and separation methods. In this Account, we highlight our group's effort to leverage nanoscale chiral light-matter interactions to detect, characterize, and separate enantiomers, potentially down to the single molecule level. Notably, certain resonant nanostructures can significantly enhance circular dichroism for improved chiral sensing and spectroscopy as well as high-yield enantioselective photochemistry. We first describe how achiral metallic and dielectric nanostructures can be utilized to increase the local optical chirality density by engineering the coupling between electric and magnetic optical resonances. While plasmonic nanoparticles locally enhance the optical chirality density, high-index dielectric nanoparticles can enable large-volume and uniform-sign enhancements in the optical chirality density. By overlapping these electric and magnetic resonances, local chiral fields can be enhanced by several orders of magnitude. We show how these design rules can enable high-yield enantioselective photochemistry and project a 2000-fold improvement in the yield of a photoionization reaction. Next, we discuss how optical forces can enable selective manipulation and separation of enantiomers. We describe the design of low-power enantioselective optical tweezers with the ability to trap sub-10 nm dielectric particles. We also characterize their chiral-optical forces with high spatial and force resolution using combined optical and atomic force microscopy. These optical tweezers exhibit an enantioselective optical force contrast exceeding 10 pN, enabling selective attraction or repulsion of enantiomers based on the illumination polarization. Finally, we discuss future challenges and opportunities spanning fundamental research to technology translation. Disease detection in the clinic as well as pharmaceutical and agrochemical industrial applications requiring large-scale, high-throughput production will gain particular benefit from the simplicity and relative low cost that nanophotonic platforms promise.
Collapse
Affiliation(s)
- Michelle L. Solomon
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Amr A. E. Saleh
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University, Giza 12613, Egypt
| | - Lisa V. Poulikakos
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - John M. Abendroth
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Loza F. Tadesse
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Jennifer A. Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
28
|
He C, Feng Z, Shan S, Wang M, Chen X, Zou G. Highly enantioselective photo-polymerization enhanced by chiral nanoparticles and in situ photopatterning of chirality. Nat Commun 2020; 11:1188. [PMID: 32132544 PMCID: PMC7055214 DOI: 10.1038/s41467-020-15082-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/19/2020] [Indexed: 11/24/2022] Open
Abstract
Chiral noble metal nanoparticles has recently gained great interest due to their potential applications including ultrasensitive chiral recognition and asymmetric synthesis. We anticipate that they could be utilized to induce asymmetric photo-polymerization reactions with high enantioselectivity and reactivity. Here, we report such a system. By employing silver nanoparticles modified with cysteine as the chiral inducer, polydiacetylene (PDA) with high chiral asymmetry was obtained from achiral diacetylene monomers triggered with unpolarized UV light. Furthermore, the helical sense of chirality can be controlled by varying the wavelength of UV irradiation. This enables a feasible and economical method to fabricate programmable 2D patterns of chiral PDA with tailored chirality distributions, such as smooth gradients in chirality and micropatterns with tailorable circularly polarized luminescence. Our finding not only opens a pathway for producing programmable chiroptical micropatterns, but also is highly valuable for deeper understanding of symmetry breaking in enantioselective photochemical reactions. Chiral nanoparticles are capable of ultrasensitive detection, characterization, and asymmetric synthesis of chiral organic and biological molecules. Here, the authors use silver nanoparticles modified with cysteine, as the sole chiral source, and unpolarized UV light, to form polydiacetylene with high chiral asymmetry from achiral diacetylene monomers.
Collapse
Affiliation(s)
- Chenlu He
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Zeyu Feng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Sizhen Shan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Mengqiao Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Xin Chen
- Department of Chemistry, Boston University, Boston, MA, USA.
| | - Gang Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, China.
| |
Collapse
|
29
|
Chen C, Li H, Li H, Yang T. Linear scattering off a dynamically controlled nanosphere-mirror plasmonic antenna on a fiber taper. OPTICS EXPRESS 2020; 28:7051-7059. [PMID: 32225940 DOI: 10.1364/oe.381773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
A quartz-tuning-fork shear-force microscope was used to demonstrate the gap size dependency of the resonance frequency for a nanosphere-mirror plasmonic antenna. The nanosphere was mounted at the end of a fiber taper scanning probe. A semi-transparent silicon film mirror was used to couple evanescent fields from incident light with the plasmonic antenna using an inverted optical microscope. The plasmon resonance spectra were acquired with a 0.4 nm-step gap size tuning resolution, and were confirmed by finite-difference time-domain simulations. The proposed technique provides a dynamic approach to tuning and detecting distance-dependent localized surface plasmon resonance with a sub-nanometer step resolution.
Collapse
|
30
|
Ali R, Pinheiro FA, Dutra RS, Rosa FSS, Maia Neto PA. Enantioselective manipulation of single chiral nanoparticles using optical tweezers. NANOSCALE 2020; 12:5031-5037. [PMID: 32067004 DOI: 10.1039/c9nr09736h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We put forward an enantioselective method for chiral nanoparticles using optical tweezers. We demonstrate that the optical trapping force in a typical, realistic optical tweezing setup with circularly-polarized trapping beams is sensitive to the chirality of core-shell nanoparticles, allowing for efficient enantioselection. It turns out that the handedness of the trapped particles can be selected by choosing the appropriate circular polarization of the trapping beam. The chirality of each individual trapped nanoparticle can be characterized by measuring the rotation of the equilibrium position under the effect of a transverse Stokes drag force. We show that the chirality of the shell gives rise to an additional twist, leading to a strong enhancement of the optical torque driving the rotation. Both methods are shown to be robust against variations of size and material parameters, demonstrating that they are particularly useful in (but not restricted to) several situations of practical interest in chiral plasmonics, where enantioselection and characterization of single chiral nanoparticles, each and every one with its unique handedness and optical properties, are in order. In particular, our method could be employed to unveil the chiral response arising from disorder in individual plasmonic raspberries, synthesized by close-packing a large number of metallic nanospheres around a dielectric core.
Collapse
Affiliation(s)
- Rfaqat Ali
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil.
| | - Felipe A Pinheiro
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil.
| | - Rafael S Dutra
- LISComp-IFRJ, Instituto Federal de Educação, Ciência e Tecnologia, Rua Sebastião de Lacerda, Paracambi, RJ 26600-000, Brazil
| | - Felipe S S Rosa
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil.
| | - Paulo A Maia Neto
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil.
| |
Collapse
|
31
|
Tan H, Hu H, Huang L, Qian K. Plasmonic tweezers for optical manipulation and biomedical applications. Analyst 2020; 145:5699-5712. [DOI: 10.1039/d0an00577k] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This comprehensive minireview highlights the recent research on the subtypes, optical manipulation, and biomedical applications of plasmonic tweezers.
Collapse
Affiliation(s)
- Hongtao Tan
- Department of Pancreatobiliary Surgery
- The First Affiliated Hospital of Harbin Medical University
- Harbin
- P. R. China
| | - Huiqian Hu
- State Key Laboratory for Oncogenes and Related Genes
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Lin Huang
- Stem Cell Research Center
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| |
Collapse
|
32
|
Nanoscale spectroscopic origins of photoinduced tip-sample force in the midinfrared. Proc Natl Acad Sci U S A 2019; 116:26359-26366. [PMID: 31826953 PMCID: PMC6936718 DOI: 10.1073/pnas.1913729116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Photoinduced force at tip–sample junction provides nanoscale spectroscopic information with label-free and far-field background-free manner. This approach, spectronanoscopy through force detection, shows higher sensitivity and 1,000 times better spatial resolution than conventional ensemble averaged infrared microscopy, even under ambient and environmental conditions. Unfortunately, the origin of this promising photoinduced force effect is sometimes unclear because the force has 2 independent physical aspects: One is the electromagnetic effect related to induced dipoles in tip and sample, and the other one is the thermodynamic effect related to thermal heating of sample. Here, we reveal how the light illumination results in the 2 kinds of photoinduced forces at the tip–sample junction and provide quantitative interpretation of nanoscale spectroscopic measurements. When light illuminates the junction formed between a sharp metal tip and a sample, different mechanisms can contribute to the measured photoinduced force simultaneously. Of particular interest are the instantaneous force between the induced dipoles in the tip and in the sample, and the force related to thermal heating of the junction. A key difference between these 2 force mechanisms is their spectral behavior. The magnitude of the thermal response follows a dissipative (absorptive) Lorentzian line shape, which measures the heat exchange between light and matter, while the induced dipole response exhibits a dispersive spectrum and relates to the real part of the material polarizability. Because the 2 interactions are sometimes comparable in magnitude, the origin of the chemical selectivity in nanoscale spectroscopic imaging through force detection is often unclear. Here, we demonstrate theoretically and experimentally how the light illumination gives rise to the 2 kinds of photoinduced forces at the tip–sample junction in the midinfrared. We comprehensively address the origin of the spectroscopic forces by discussing cases where the 2 spectrally dependent forces are entwined. The analysis presented here provides a clear and quantitative interpretation of nanoscale chemical measurements of heterogeneous materials and sheds light on the nature of light–matter coupling in optomechanical force-based spectronanoscopy.
Collapse
|
33
|
Wang M, Salut R, Suarez MA, Martin N, Grosjean T. Chiroptical transmission through a plasmonic helical traveling-wave nanoantenna, towards on-tip chiroptical probes. OPTICS LETTERS 2019; 44:4861-4864. [PMID: 31568461 DOI: 10.1364/ol.44.004861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Resonant plasmonic helices have been widely utilized for locally enhancing and tailoring optical chirality. Here we investigate their nonresonant operation through the recently introduced concept of a plasmonic helical "traveling-wave" nanoantenna. Relying on the coupling of a nonresonant plasmonic helix and a nano-aperture, the helical traveling-wave nanoantenna transmits circularly polarized light with the same handedness as the helix and blocks the other, with a measured dissymmetry factor larger than 1.92 (maximum value of 2). This chiroptical transmission is spatially localized, spectrally broadband, and background-free. Finally, we demonstrate the possibility to engineer such a plasmonic helical nanoantenna at the apex of a sharp tip typically used in scanning near-field microscopies, thus opening the route for moveable, broadband, and background-free chiroptical probes.
Collapse
|
34
|
Ghosh S, Ghosh A. All optical dynamic nanomanipulation with active colloidal tweezers. Nat Commun 2019; 10:4191. [PMID: 31519902 PMCID: PMC6744401 DOI: 10.1038/s41467-019-12217-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 08/16/2019] [Indexed: 01/18/2023] Open
Abstract
Manipulation of colloidal objects with light is important in diverse fields. While performance of traditional optical tweezers is restricted by the diffraction-limit, recent approaches based on plasmonic tweezers allow higher trapping efficiency at lower optical powers but suffer from the disadvantage that plasmonic nanostructures are fixed in space, which limits the speed and versatility of the trapping process. As we show here, plasmonic nanodisks fabricated over dielectric microrods provide a promising approach toward optical nanomanipulation: these hybrid structures can be maneuvered by conventional optical tweezers and simultaneously generate strongly confined optical near-fields in their vicinity, functioning as near-field traps themselves for colloids as small as 40 nm. The colloidal tweezers can be used to transport nanoscale cargo even in ionic solutions at optical intensities lower than the damage threshold of living micro-organisms, and in addition, allow parallel and independently controlled manipulation of different types of colloids, including fluorescent nanodiamonds and magnetic nanoparticles.
Collapse
Affiliation(s)
- Souvik Ghosh
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
35
|
Optical Helicity and Optical Chirality in Free Space and in the Presence of Matter. Symmetry (Basel) 2019. [DOI: 10.3390/sym11091113] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The inherently weak nature of chiral light–matter interactions can be enhanced by orders of magnitude utilizing artificially-engineered nanophotonic structures. These structures enable high spatial concentration of electromagnetic fields with controlled helicity and chirality. However, the effective design and optimization of nanostructures requires defining physical observables which quantify the degree of electromagnetic helicity and chirality. In this perspective, we discuss optical helicity, optical chirality, and their related conservation laws, describing situations in which each provides the most meaningful physical information in free space and in the context of chiral light–matter interactions. First, an instructive comparison is drawn to the concepts of momentum, force, and energy in classical mechanics. In free space, optical helicity closely parallels momentum, whereas optical chirality parallels force. In the presence of macroscopic matter, the optical helicity finds its optimal physical application in the case of lossless, dual-symmetric media, while, in contrast, the optical chirality provides physically observable information in the presence of lossy, dispersive media. Finally, based on numerical simulations of a gold and silicon nanosphere, we discuss how metallic and dielectric nanostructures can generate chiral electromagnetic fields upon interaction with chiral light, offering guidelines for the rational design of nanostructure-enhanced electromagnetic chirality.
Collapse
|
36
|
|
37
|
Marichez V, Tassoni A, Cameron RP, Barnett SM, Eichhorn R, Genet C, Hermans TM. Mechanical chiral resolution. SOFT MATTER 2019; 15:4593-4608. [PMID: 31147662 DOI: 10.1039/c9sm00778d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mechanical interactions of chiral objects with their environment are well-established at the macroscale, like a propeller on a plane or a rudder on a boat. At the colloidal scale and smaller, however, such interactions are often not considered or deemed irrelevant due to Brownian motion. As we will show in this tutorial review, mechanical interactions do have significant effects on chiral objects at all scales, and can be induced using shearing surfaces, collisions with walls or repetitive microstructures, fluid flows, or by applying electrical or optical forces. Achieving chiral resolution by mechanical means is very promising in the field of soft matter and to industry, but has not received much attention so far.
Collapse
Affiliation(s)
- Vincent Marichez
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
38
|
Crozier KB. Quo vadis, plasmonic optical tweezers? LIGHT, SCIENCE & APPLICATIONS 2019; 8:35. [PMID: 30962921 PMCID: PMC6445829 DOI: 10.1038/s41377-019-0146-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/24/2019] [Accepted: 03/07/2019] [Indexed: 05/06/2023]
Abstract
Conventional optical tweezers based on traditional optical microscopes are subject to the diffraction limit, making the precise trapping and manipulation of very small particles challenging. Plasmonic optical tweezers can surpass this constraint, but many potential applications would benefit from further enhanced performance and/or expanded functionalities. In this Perspective, we discuss trends in plasmonic tweezers and describe important opportunities presented by its interdisciplinary combination with other techniques in nanoscience. We furthermore highlight several open questions concerning fundamentals that are likely to be important for many potential applications.
Collapse
Affiliation(s)
- Kenneth B. Crozier
- School of Physics, and Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Victoria 3010 Australia
| |
Collapse
|
39
|
Yao K, Unni R, Zheng Y. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. NANOPHOTONICS 2019; 8:339-366. [PMID: 34290952 PMCID: PMC8291385 DOI: 10.1515/nanoph-2018-0183] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nanophotonics has been an active research field over the past two decades, triggered by the rising interests in exploring new physics and technologies with light at the nanoscale. As the demands of performance and integration level keep increasing, the design and optimization of nanophotonic devices become computationally expensive and time-inefficient. Advanced computational methods and artificial intelligence, especially its subfield of machine learning, have led to revolutionary development in many applications, such as web searches, computer vision, and speech/image recognition. The complex models and algorithms help to exploit the enormous parameter space in a highly efficient way. In this review, we summarize the recent advances on the emerging field where nanophotonics and machine learning blend. We provide an overview of different computational methods, with the focus on deep learning, for the nanophotonic inverse design. The implementation of deep neural networks with photonic platforms is also discussed. This review aims at sketching an illustration of the nanophotonic design with machine learning and giving a perspective on the future tasks.
Collapse
Affiliation(s)
- Kan Yao
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rohit Unni
- Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
40
|
Visible-broadband Localized Vector Vortex Beam Generator with a Multi-structure-composited Meta-surface. NANOMATERIALS 2019; 9:nano9020166. [PMID: 30699984 PMCID: PMC6409948 DOI: 10.3390/nano9020166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 11/26/2022]
Abstract
We demonstrate a vortex beam generator meta-surface that consists of silver structures and graphene layers. The miniature material is just a few microns in size and the working part is only a few hundred nanometers thick. With the incidence of the linearly polarized beam, the meta-surface generates high-localized vector vortex beam with a high proportion of the longitudinal component. Being compared with the constituent part of the meta-surface, the multi-structure-combined meta-surface increases the localization by 250% and the longitudinal component proportion by 200%. Moreover, the above artificial material can generate vortex beams in broadband within the visible light range. These novel optical properties have the potential to improve the precision and sensitivity of nanoparticle manipulation. The study serves as a foundation in optical miniaturization and integration, nanoparticle manipulation, high-efficiency optical and quantum communication, and light-driven micro-tools.
Collapse
|
41
|
Jin RC, Li JQ, Li L, Dong ZG, Liu Y. Dual-mode subwavelength trapping by plasmonic tweezers based on V-type nanoantennas. OPTICS LETTERS 2019; 44:319-322. [PMID: 30644890 DOI: 10.1364/ol.44.000319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
We propose novel plasmonic tweezers based on silver V-type nanoantennas placed on a conducting ground layer, which can effectively mitigate the plasmonic heating effect and thus enable subwavelength plasmonic trapping in the near-infrared region. Using the centroid algorithm to analyze the motion of trapped spheres, we can experimentally extract the value of optical trapping potential. The result confirms that the plasmonic tweezers have a dual-mode subwavelength trapping capability when the incident laser beam is linearly polarized along two orthogonal directions. We have also performed full-wave simulations, which agree with the experimental data very well in terms of spectral response and trapping potential. It is expected that the dual-mode subwavelength trapping can be used in non-contact manipulations of a single nanoscale object, such as a biomolecule or quantum dot, and find important applications in biology, life science, and applied physics.
Collapse
|
42
|
Dissymmetry enhancement in enantioselective synthesis of helical polydiacetylene by application of superchiral light. Nat Commun 2018; 9:5117. [PMID: 30504770 PMCID: PMC6269450 DOI: 10.1038/s41467-018-07533-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/08/2018] [Indexed: 11/08/2022] Open
Abstract
Superchiral light, generated by the interference of two counter-propagating circularly polarized light (CPL) with same frequency, opposite handedness and different intensity, exhibits enhanced dissymmetry in its interaction with chiral molecules, and has the potential for ultrasensitive detection and characterization of chiral molecules. It is anticipated that the enhanced optical dissymmetry in superchiral light (SCL) field may be utilized to promote asymmetric photochemical reactions efficiency. Herein we reported SCL impart greater chiral bias to trigger asymmetric photo-polymerization reaction from initially achiral diacetylene (DA) monomer, and the enhanced optical dissymmetry for whole polydiacetylene (PDA) films could be achieved. An explanation based on the chiral transfer and amplification of chiral bias from SCL during the polymerization process has been proposed. Moreover, thus formed chiral PDA films polymerized by SCL exhibited enhanced enantioselective recognition ability, and can serve as a direct visual probe for the discrimination of some specific enantiomers. Superchiral light can be utilized to promote asymmetric photochemical reactions. Here the authors show that superchiral light imparts greater chiral bias to trigger asymmetric photo-polymerization reactions from initially achiral diacetylene monomers and enhanced optical dissymmetry in polydiacetylene films.
Collapse
|
43
|
Schnoering G, Poulikakos LV, Rosales-Cabara Y, Canaguier-Durand A, Norris DJ, Genet C. Three-Dimensional Enantiomeric Recognition of Optically Trapped Single Chiral Nanoparticles. PHYSICAL REVIEW LETTERS 2018; 121:023902. [PMID: 30085717 DOI: 10.1103/physrevlett.121.023902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Indexed: 05/10/2023]
Abstract
We optically trap freestanding single metallic chiral nanoparticles using a standing-wave optical tweezer. We also incorporate within the trap a polarimetric setup that allows us to perform in situ chiral recognition of single enantiomers. This is done by measuring the S_{3} component of the Stokes vector of a light beam scattered off the trapped nanoparticle in the forward direction. This unique combination of optical trapping and chiral recognition, all implemented within a single setup, opens new perspectives towards the control, recognition, and manipulation of chiral objects at nanometer scales.
Collapse
Affiliation(s)
- Gabriel Schnoering
- ISIS and icFRC, University of Strasbourg and CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Lisa V Poulikakos
- Optical Materials Engineering Laboratory, ETH Zürich, 8092 Zürich, Switzerland
| | - Yoseline Rosales-Cabara
- ISIS and icFRC, University of Strasbourg and CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Antoine Canaguier-Durand
- Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL University, Collège de France, 75005 Paris, France
| | - David J Norris
- Optical Materials Engineering Laboratory, ETH Zürich, 8092 Zürich, Switzerland
| | - Cyriaque Genet
- ISIS and icFRC, University of Strasbourg and CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
44
|
Ma W, Cheng F, Liu Y. Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials. ACS NANO 2018; 12:6326-6334. [PMID: 29856595 DOI: 10.1021/acsnano.8b03569] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Deep-learning framework has significantly impelled the development of modern machine learning technology by continuously pushing the limit of traditional recognition and processing of images, speech, and videos. In the meantime, it starts to penetrate other disciplines, such as biology, genetics, materials science, and physics. Here, we report a deep-learning-based model, comprising two bidirectional neural networks assembled by a partial stacking strategy, to automatically design and optimize three-dimensional chiral metamaterials with strong chiroptical responses at predesignated wavelengths. The model can help to discover the intricate, nonintuitive relationship between a metamaterial structure and its optical responses from a number of training examples, which circumvents the time-consuming, case-by-case numerical simulations in conventional metamaterial designs. This approach not only realizes the forward prediction of optical performance much more accurately and efficiently but also enables one to inversely retrieve designs from given requirements. Our results demonstrate that such a data-driven model can be applied as a very powerful tool in studying complicated light-matter interactions and accelerating the on-demand design of nanophotonic devices, systems, and architectures for real world applications.
Collapse
|
45
|
Yoo D, Gurunatha KL, Choi HK, Mohr DA, Ertsgaard CT, Gordon R, Oh SH. Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap. NANO LETTERS 2018; 18:3637-3642. [PMID: 29763566 DOI: 10.1021/acs.nanolett.8b00732] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present optical trapping with a 10 nm gap resonant coaxial nanoaperture in a gold film. Large arrays of 600 resonant plasmonic coaxial nanoaperture traps are produced on a single chip via atomic layer lithography with each aperture tuned to match a 785 nm laser source. We show that these single coaxial apertures can act as efficient nanotweezers with a sharp potential well, capable of trapping 30 nm polystyrene nanoparticles and streptavidin molecules with a laser power as low as 4.7 mW. Furthermore, the resonant coaxial nanoaperture enables real-time label-free detection of the trapping events via simple transmission measurements. Our fabrication technique is scalable and reproducible, since the critical nanogap dimension is defined by atomic layer deposition. Thus our platform shows significant potential to push the limit of optical trapping technologies.
Collapse
Affiliation(s)
- Daehan Yoo
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Kargal L Gurunatha
- Department of Electrical and Computer Engineering , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| | - Han-Kyu Choi
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Daniel A Mohr
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Christopher T Ertsgaard
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Reuven Gordon
- Department of Electrical and Computer Engineering , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
46
|
Kong XT, Khosravi Khorashad L, Wang Z, Govorov AO. Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers. NANO LETTERS 2018; 18:2001-2008. [PMID: 29420903 DOI: 10.1021/acs.nanolett.7b05446] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chiral photochemistry remains a challenge because of the very small asymmetry in the chiro-optical absorption of molecular species. However, we think that the rapidly developing fields of plasmonic chirality and plasmon-induced circular dichroism demonstrate very strong chiro-optical effects and have the potential to facilitate the development of chiral photochemistry and other related applications such as chiral separation and sensing. In this study, we propose a new type of chiral spectroscopy-photothermal circular dichroism. It is already known that the planar plasmonic superabsorbers can be designed to exhibit giant circular dichroism signals in the reflection. Therefore, upon illumination with chiral light, such planar metastructures should be able to generate a prominent asymmetry in their local temperatures. Indeed, we demonstrate this chiral photothermal effect using a chiral plasmonic absorber. Calculated temperature maps show very strong photothermal circular dichroism. One of the structures computed in this Letter could serve as a chiral bolometer sensitive to circularly polarized light. Overall, this chiro-optical effect in plasmonic metamaterials is much greater than the equivalent effect in any chiral molecular system or plasmonic bioassembly. Potential applications of this effect are in polarization-sensitive surface photochemistry and chiral bolometers.
Collapse
Affiliation(s)
- Xiang-Tian Kong
- Institute of Fundamental and Frontier Sciences , University of Electronic Science and Technology of China , Chengdu 610054 , China
- Department of Physics and Astronomy , Ohio University , Athens , Ohio 45701 , United States
| | | | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences , University of Electronic Science and Technology of China , Chengdu 610054 , China
| | - Alexander O Govorov
- Department of Physics and Astronomy , Ohio University , Athens , Ohio 45701 , United States
| |
Collapse
|