1
|
Otsuka K, Beaty LA, Sato M, Shitakura K, Kikuchi T, Okajima K, Terada S, Cornelissen G. Chronobioethics: Symphony of biological clocks observed by 7-day/24-hour ambulatory blood pressure monitoring and cardiovascular health. Biomed J 2024:100753. [PMID: 38906327 DOI: 10.1016/j.bj.2024.100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND The high prevalence of desynchronized biological rhythms is becoming a primary public health concern. We assess complex and diverse inter-modulations among multi-frequency rhythms present in blood pressure (BP) and heart rate (HR). SUBJECTS and Methods: We performed 7-day/24-hour Ambulatory BP Monitoring in 220 (133 women) residents (23 to 74 years) of a rural Japanese town in Kochi Prefecture under everyday life conditions. RESULTS A symphony of biological clocks contributes to the preservation of a synchronized circadian system. (1) Citizens with an average 12.02-h period had fewer vascular variability disorders than those with shorter (11.37-h) or longer (12.88-h) periods (P<0.05), suggesting that the circasemidian rhythm is potentially important for human health. (2) An appropriate BP-HR coupling promoted healthier circadian profiles than a phase-advanced BP: lower 7-day nighttime SBP (106.8 vs. 112.9 mmHg, P=0.0469), deeper nocturnal SBP dip (20.5% vs. 16.8%, P=0.0101), and less frequent incidence of masked non-dipping (0.53 vs. 0.86, P=0.0378), identifying the night as an important time window. CONCLUSION Adaptation to irregular schedules in everyday life occurs unconsciously at night, probably initiated from the brain default mode network, in coordination with the biological clock system, including a reinforced about 12-hour clock, as "a biological clock-guided core integration system".
Collapse
Affiliation(s)
- Kuniaki Otsuka
- Department of Chronomics and Gerontology, Tokyo Women's Medical University, Tokyo, Japan; Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN, USA.
| | - Larry A Beaty
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN, USA
| | - Madoka Sato
- Department of Medicine, Jyoban Hospital, Fukushima, Japan
| | - Kazunobu Shitakura
- Cardiovascular Internal Medicine, Higashi Omiya General Hospital, Saitama, Japan
| | - Tomoko Kikuchi
- Cardiovascular Internal Medicine, Higashi Omiya General Hospital, Saitama, Japan
| | - Kiyotaka Okajima
- Cardiovascular Internal Medicine, Higashi Omiya General Hospital, Saitama, Japan
| | - Shigehiko Terada
- Advanced Medical Center, Shonan Kamukura General Hospital, Kanagawa, Japan
| | | |
Collapse
|
2
|
Wang S, Wang T, Zeng X, Chu X, Zhuoma D, Zhao Y, Chen YZ. Exploring outer space biophysical phenomena via SpaceLID. Sci Rep 2023; 13:17400. [PMID: 37833498 PMCID: PMC10575925 DOI: 10.1038/s41598-023-44729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023] Open
Abstract
Extensive investigations in outer space have revealed not only how life adapts to the space environment, but also that interesting biophysical phenomena occur. These phenomena affect human health and other life forms (animals, plants, bacteria, and fungi), and to ensure the safety of future human space exploration need to be further investigated. This calls for joint research efforts between biologists and physicists, as these phenomena present cross-disciplinary barriers. Various national organizations provide useful forums for bridging this gap. Additional discussion avenues and database resources are helpful for facilitating the interdisciplinary investigations of these phenomena. In this paper, we present the newly established Space Life Investigation Database (SpaceLID, https://bidd.group/spacelid/ ) which provides information about biophysical phenomena occurring in space. Examples obtained using the database are given while discussing the underlying causes of these phenomena and their implications for the physiology and health of life in space.
Collapse
Affiliation(s)
- Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Tao Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Xian Zeng
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Xinyi Chu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | | | - Yufen Zhao
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, and The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, China.
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 102206, China.
| | - Yu Zong Chen
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Malhan D, Schoenrock B, Yalçin M, Blottner D, Relόgio A. Circadian regulation in aging: Implications for spaceflight and life on earth. Aging Cell 2023; 22:e13935. [PMID: 37493006 PMCID: PMC10497835 DOI: 10.1111/acel.13935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Alterations in the circadian system are characteristic of aging on Earth. With the decline in physiological processes due to aging, several health concerns including vision loss, cardiovascular disorders, cognitive impairments, and muscle mass loss arise in elderly populations. Similar health risks are reported as "red flag" risks among astronauts during and after a long-term Space exploration journey. However, little is known about the common molecular alterations underlying terrestrial aging and space-related aging in astronauts, and controversial conclusions have been recently reported. In light of the regulatory role of the circadian clock in the maintenance of human health, we review here the overlapping role of the circadian clock both on aging on Earth and spaceflight with a focus on the four most affected systems: visual, cardiovascular, central nervous, and musculoskeletal systems. In this review, we briefly introduce the regulatory role of the circadian clock in specific cellular processes followed by alterations in those processes due to aging. We next summarize the known molecular alterations associated with spaceflight, highlighting involved clock-regulated genes in space flown Drosophila, nematodes, small mammals, and astronauts. Finally, we discuss common genes that are altered in terms of their expression due to aging on Earth and spaceflight. Altogether, the data elaborated in this review strengthen our hypothesis regarding the timely need to include circadian dysregulation as an emerging hallmark of aging on Earth and beyond.
Collapse
Affiliation(s)
- Deeksha Malhan
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
| | - Britt Schoenrock
- Institute of Integrative NeuroanatomyCharité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Müge Yalçin
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
- Institute for Theoretical Biology (ITB)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Dieter Blottner
- Institute of Integrative NeuroanatomyCharité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Neuromuscular System and Neuromuscular SignalingBerlin Center of Space Medicine & Extreme EnvironmentsBerlinGermany
| | - Angela Relόgio
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
- Institute for Theoretical Biology (ITB)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
4
|
Unconscious mind activates central cardiovascular network and promotes adaptation to microgravity possibly anti-aging during 1-year-long spaceflight. Sci Rep 2022; 12:11862. [PMID: 35831420 PMCID: PMC9279338 DOI: 10.1038/s41598-022-14858-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
The intrinsic cardiovascular regulatory system (β, 0.00013–0.02 Hz) did not adapt to microgravity after a 6-month spaceflight. The infraslow oscillation (ISO, 0.01–0.10 Hz) coordinating brain dynamics via thalamic astrocytes plays a key role in the adaptation to novel environments. We investigate the adaptive process of a healthy astronaut during a 12-month-long spaceflight by analyzing heart rate variability (HRV) in the LF (0.01–0.05 Hz) and MF1 (0.05–0.10 Hz) bands for two consecutive days on four occasions: before launch, at 1-month (ISS01) and 11-month (ISS02) in space, and after return to Earth. Alteration of β during ISS01 improved during ISS02 (P = 0.0167). During ISS01, LF and MF1 bands, reflecting default mode network (DMN) activity, started to increase at night (by 43.1% and 32.0%, respectively), when suprachiasmatic astrocytes are most active, followed by a 25.9% increase in MF1-band throughout the entire day during ISS02, larger at night (47.4%) than during daytime. Magnetic declination correlated positively with β during ISS01 (r = 0.6706, P < 0.0001) and ISS02 (r = 0.3958, P = 0.0095). Magnetic fluctuations may affect suprachiasmatic astrocytes, and the DMN involving ISOs and thalamic astrocytes may then be activated, first at night, then during the entire day, a mechanism that could perhaps promote an anti-aging effect noted in other investigations.
Collapse
|
5
|
Astronauts well-being and possibly anti-aging improved during long-duration spaceflight. Sci Rep 2021; 11:14907. [PMID: 34290387 PMCID: PMC8295322 DOI: 10.1038/s41598-021-94478-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
This study assesses how circadian rhythms of heart rate (HR), HR variability (HRV) and activity change during long-term missions in space and how they relate to sleep quality. Ambulatory 48-h ECG and 96-h actigraphy were performed four times on ten healthy astronauts (44.7 ± 6.9 years; 9 men): 120.4 ± 43.7 days (Before) launch; 21.1 ± 2.5 days (ISS01) and 143.0 ± 27.1 days (ISS02) after launch; and 86.6 ± 40.6 days (After) return to Earth. Sleep quality was determined by sleep-related changes in activity, RR-intervals, HRV HF- and VLF-components and LF-band. The circadian amplitude of HR (HR-A) was larger in space (ISS01: 12.54, P = 0.0099; ISS02: 12.77, P = 0.0364) than on Earth (Before: 10.90; After: 10.55 bpm). Sleep duration in space (ISS01/ISS02) increased in 3 (Group A, from 370.7 to 388.0/413.0 min) and decreased in 7 (Group B, from 454.0 to 408.9/381.6 min) astronauts. Sleep quality improved in Group B from 7.07 to 8.36 (ISS01) and 9.36 (ISS02, P = 0.0001). Sleep-related parasympathetic activity increased from 55.2% to 74.8% (pNN50, P = 0.0010) (ISS02). HR-A correlated with the 24-h (r = 0.8110, P = 0.0044), 12-h (r = 0.6963, P = 0.0253), and 48-h (r = 0.6921, P = 0.0266) amplitudes of the magnetic declination index. These findings suggest associations of mission duration with increased well-being and anti-aging benefitting from magnetic fluctuations.
Collapse
|
6
|
Otsuka K, Cornelissen G, Kubo Y, Shibata K, Hayashi M, Mizuno K, Ohshima H, Furukawa S, Mukai C. Circadian challenge of astronauts' unconscious mind adapting to microgravity in space, estimated by heart rate variability. Sci Rep 2018; 8:10381. [PMID: 29991811 PMCID: PMC6039530 DOI: 10.1038/s41598-018-28740-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
It is critical that the regulatory system functions well in space's microgravity. However, the "intrinsic" cardiovascular regulatory system (β), estimated by the fractal scaling of heart rate variability (HRV) (0.0001-0.01 Hz), does not adapt to the space environment during long-duration (6-month) space flights. Neuroimaging studies suggest that the default mode network (DMN) serves a broad adaptive purpose, its topology changing over time in association with different brain states of adaptive behavior. Hypothesizing that HRV varies in concert with changes in brain's functional connectivity, we analyzed 24-hour HRV records from 8 healthy astronauts (51.8 ± 3.7 years; 6 men) on long (174.5 ± 13.8 days) space missions, obtained before launch, after about 21 (ISS01), 73 (ISS02), and 156 (ISS03) days in space, and after return to Earth. Spectral power in 8 frequency regions reflecting activity in different brain regions was computed by maximal entropy. Improved β (p < 0.05) found in 4 astronauts with a positive activation in the "HRV slow-frequency oscillation" (0.10-0.20 Hz) occurred even in the absence of consciousness. The adaptive response was stronger in the evening and early sleep compared to morning (p = 0.039). Brain functional networks, the DMN in particular, can help adapt to microgravity in space with help from the circadian clock.
Collapse
Affiliation(s)
- Kuniaki Otsuka
- Executive Medical Center, Totsuka Royal Clinic, Tokyo Women's Medical University, Tokyo, Japan.
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, Minnesota, USA.
| | - Germaine Cornelissen
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yutaka Kubo
- Department of Medicine, Tokyo Women's Medical University, Medical Center East, Tokyo, Japan
| | - Koichi Shibata
- Department of Medicine, Tokyo Women's Medical University, Medical Center East, Tokyo, Japan
| | - Mitsutoshi Hayashi
- Department of Medicine, Tokyo Women's Medical University, Medical Center East, Tokyo, Japan
| | - Koh Mizuno
- Faculty of Education, Tohoku Fukushi University, Miyagi, Japan
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan
| | - Hiroshi Ohshima
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan
| | - Satoshi Furukawa
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan
| | - Chiaki Mukai
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan
| |
Collapse
|
7
|
Verma AK, Xu D, Bruner M, Garg A, Goswami N, Blaber AP, Tavakolian K. Comparison of Autonomic Control of Blood Pressure During Standing and Artificial Gravity Induced via Short-Arm Human Centrifuge. Front Physiol 2018; 9:712. [PMID: 29988521 PMCID: PMC6026653 DOI: 10.3389/fphys.2018.00712] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Autonomic control of blood pressure is essential toward maintenance of cerebral perfusion during standing, failure of which could lead to fainting. Long-term exposure to microgravity deteriorates autonomic control of blood pressure. Consequently, astronauts experience orthostatic intolerance on their return to gravitational environment. Ground-based studies suggest sporadic training in artificial hypergravity can mitigate spaceflight deconditioning. In this regard, short-arm human centrifuge (SAHC), capable of creating artificial hypergravity of different g-loads, provides an auspicious training tool. Here, we compare autonomic control of blood pressure during centrifugation creating 1-g and 2-g at feet with standing in natural gravity. Continuous blood pressure was acquired simultaneously from 13 healthy participants during supine baseline, standing, supine recovery, centrifugation of 1-g, and 2-g, from which heart rate (RR) and systolic blood pressure (SBP) were derived. The autonomic blood pressure regulation was assessed via spectral analysis of RR and SBP, spontaneous baroreflex sensitivity, and non-linear heart rate and blood pressure causality (RR↔SBP). While majority of these blood pressure regulatory indices were significantly different (p < 0.05) during standing and 2-g centrifugation compared to baseline, no change (p > 0.05) was observed in the same indices during 2-g centrifugation compared to standing. The findings of the study highlight the capability of artificial gravity (2-g at feet) created via SAHC toward evoking blood pressure regulatory controls analogous to standing, therefore, a potential utility toward mitigating deleterious effects of microgravity on cardiovascular performance and minimizing post-flight orthostatic intolerance in astronauts.
Collapse
Affiliation(s)
- Ajay K. Verma
- Department of Electrical Engineering, University of North Dakota, Grand Forks, ND, United States
| | - Da Xu
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Michelle Bruner
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Amanmeet Garg
- Department of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Nandu Goswami
- Physiology Division, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Andrew P. Blaber
- Department of Electrical Engineering, University of North Dakota, Grand Forks, ND, United States
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Kouhyar Tavakolian
- Department of Electrical Engineering, University of North Dakota, Grand Forks, ND, United States
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
8
|
Hatzistergos KE, Jiang Z, Valasaki K, Takeuchi LM, Balkan W, Atluri P, Saur D, Seidler B, Tsinoremas N, DiFede DL, Hare JM. Simulated Microgravity Impairs Cardiac Autonomic Neurogenesis from Neural Crest Cells. Stem Cells Dev 2018; 27:819-830. [PMID: 29336212 DOI: 10.1089/scd.2017.0265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Microgravity-induced alterations in the autonomic nervous system (ANS) contribute to derangements in both the mechanical and electrophysiological function of the cardiovascular system, leading to severe symptoms in humans following space travel. Because the ANS forms embryonically from neural crest (NC) progenitors, we hypothesized that microgravity can impair NC-derived cardiac structures. Accordingly, we conducted in vitro simulated microgravity experiments employing NC genetic lineage tracing in mice with cKitCreERT2/+, Isl1nLacZ, and Wnt1-Cre reporter alleles. Inducible fate mapping in adult mouse hearts and pluripotent stem cells (iPSCs) demonstrated reduced cKitCreERT2/+-mediated labeling of both NC-derived cardiomyocytes and autonomic neurons (P < 0.0005 vs. controls). Whole transcriptome analysis, suggested that this effect was associated with repressed cardiac NC- and upregulated mesoderm-related gene expression profiles, coupled with abnormal bone morphogenetic protein (BMP)/transforming growth factor beta (TGF-β) and Wnt/β-catenin signaling. To separate the manifestations of simulated microgravity on NC versus mesodermal-cardiac derivatives, we conducted Isl1nLacZ lineage analyses, which indicated an approximately 3-fold expansion (P < 0.05) in mesoderm-derived Isl-1+ pacemaker sinoatrial nodal cells; and an approximately 3-fold reduction (P < 0.05) in cardiac NC-derived ANS cells, including sympathetic nerves and Isl-1+ cardiac ganglia. Finally, NC-specific fate mapping with a Wnt1-Cre reporter iPSC model of murine NC development confirmed that simulated microgravity directly impacted the in vitro development of cardiac NC progenitors and their contribution to the sympathetic and parasympathetic innervation of the iPSC-derived myocardium. Altogether, these findings reveal an important role for gravity in the development of NCs and their postnatal derivatives, and have important therapeutic implications for human space exploration, providing insights into cellular and molecular mechanisms of microgravity-induced cardiomyopathies/channelopathies.
Collapse
Affiliation(s)
| | - Zhijie Jiang
- 2 Center for Computational Sciences, University of Miami , Miller School of Medicine, Miami, Florida
| | | | - Lauro M Takeuchi
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Wayne Balkan
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Preethi Atluri
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Dieter Saur
- 3 Department of Medicine II, Klinikum rechts der Isar, Technische Universität München , München, Germany .,4 German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK) , Heidelberg, Germany
| | - Barbara Seidler
- 3 Department of Medicine II, Klinikum rechts der Isar, Technische Universität München , München, Germany .,4 German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK) , Heidelberg, Germany
| | - Nicholas Tsinoremas
- 2 Center for Computational Sciences, University of Miami , Miller School of Medicine, Miami, Florida
| | - Darcy L DiFede
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Joshua M Hare
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| |
Collapse
|
9
|
Nirmal Kumar V, Arivanandhan M, Rajesh G, Koyama T, Momose Y, Sakata K, Ozawa T, Okano Y, Inatomi Y, Hayakawa Y. Investigation of directionally solidified InGaSb ternary alloys from Ga and Sb faces of GaSb(111) under prolonged microgravity at the International Space Station. NPJ Microgravity 2017; 2:16026. [PMID: 28725736 PMCID: PMC5515529 DOI: 10.1038/npjmgrav.2016.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/05/2016] [Accepted: 06/15/2016] [Indexed: 12/02/2022] Open
Abstract
InGaSb ternary alloys were grown from GaSb (111)A and B faces (Ga and Sb faces) under microgravity conditions on board the International Space Station by a vertical gradient freezing method. The dissolution process of the Ga and Sb faces of GaSb and orientation-dependent growth properties of InGaSb were analysed. The dissolution of GaSb(111)B was greater than that of (111)A, which was found from the remaining undissolved seed and feed crystals. The higher dissolution of the Sb face was explained based on the number of atoms at that face, and its bonding with the next atomic layer. The growth interface shape was almost flat in both cases. The indium composition in both InGaSb samples was uniform in the radial direction and it gradually decreased along the growth direction because of segregation. The growth rate of InGaSb from GaSb (111)B was found to be higher than that of GaSb (111)A because of the higher dissolution of GaSb (111)B.
Collapse
Affiliation(s)
- Velu Nirmal Kumar
- Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan.,Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
| | | | - Govindasamy Rajesh
- Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan
| | - Tadanobu Koyama
- Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan
| | - Yoshimi Momose
- Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan
| | - Kaoruho Sakata
- Department of Chemical System Engineering, University of Tokyo, Chiba, Japan
| | - Tetsuo Ozawa
- Department of Electrical Engineering, Shizuoka Institute of Science and Technology, Shizuoka, Japan
| | - Yasunori Okano
- Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan.,Graduate School of Engineering Science, Osaka University, Osaka, Japan.,Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan
| | - Yuko Inatomi
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan.,School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa, Japan
| | - Yasuhiro Hayakawa
- Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan
| |
Collapse
|
10
|
Otsuka K, Cornelissen G, Furukawa S, Kubo Y, Hayashi M, Shibata K, Mizuno K, Aiba T, Ohshima H, Mukai C. Long-term exposure to space's microgravity alters the time structure of heart rate variability of astronauts. Heliyon 2016; 2:e00211. [PMID: 28050606 PMCID: PMC5192238 DOI: 10.1016/j.heliyon.2016.e00211] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 11/21/2016] [Accepted: 12/05/2016] [Indexed: 01/20/2023] Open
Abstract
Background Spaceflight alters human cardiovascular dynamics. The less negative slope of the fractal scaling of heart rate variability (HRV) of astronauts exposed long-term to microgravity reflects cardiovascular deconditioning. We here focus on specific frequency regions of HRV. Methods Ten healthy astronauts (8 men, 49.1 ± 4.2 years) provided five 24-hour electrocardiographic (ECG) records: before launch, 20.8 ± 2.9 (ISS01), 72.5 ± 3.9 (ISS02) and 152.8 ± 16.1 (ISS03) days after launch, and after return to Earth. HRV endpoints, determined from normal-to-normal (NN) intervals in 180-min intervals progressively displaced by 5 min, were compared in space versus Earth. They were fitted with a model including 4 major anticipated components with periods of 24 (circadian), 12 (circasemidian), 8 (circaoctohoran), and 1.5 (Basic Rest-Activity Cycle; BRAC) hours. Findings The 24-, 12-, and 8-hour components of HRV persisted during long-term spaceflight. The 90-min amplitude became about three times larger in space (ISS03) than on Earth, notably in a subgroup of 7 astronauts who presented with a different HRV profile before flight. The total spectral power (TF; p < 0.05) and that in the ultra-low frequency range (ULF, 0.0001–0.003 Hz; p < 0.01) increased from 154.9 ± 105.0 and 117.9 ± 57.5 msec2 (before flight) to 532.7 ± 301.3 and 442.4 ± 202.9 msec2 (ISS03), respectively. The power-law fractal scaling β was altered in space, changing from -1.087 ± 0.130 (before flight) to -0.977 ± 0.098 (ISS01), -0.910 ± 0.130 (ISS02), and -0.924 ± 0.095 (ISS03) (invariably p < 0.05). Interpretation Most HRV changes observed in space relate to a frequency window centered around one cycle in about 90 min. Since the BRAC component is amplified in space for only specific HRV endpoints, it is likely to represent a physiologic response rather than an artifact from the International Space Station (ISS) orbit. If so, it may offer a way to help adaptation to microgravity during long-duration spaceflight.
Collapse
Affiliation(s)
- Kuniaki Otsuka
- Executive Medical Center, Totsuka Royal Clinic, Tokyo Women's Medical University, Tokyo, Japan; Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Satoshi Furukawa
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan
| | - Yutaka Kubo
- Department of Medicine, Tokyo Women's Medical University, Medical Center East, Tokyo, Japan
| | - Mitsutoshi Hayashi
- Department of Medicine, Tokyo Women's Medical University, Medical Center East, Tokyo, Japan
| | - Koichi Shibata
- Department of Medicine, Tokyo Women's Medical University, Medical Center East, Tokyo, Japan
| | - Koh Mizuno
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan; Faculty of Child and Family Studies, Tohoku Fukushi University, Miyagi, Japan
| | - Tatsuya Aiba
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan; Ministry of Education, Culture, Sports, Science and Technology, Tokyo, Japan
| | - Hiroshi Ohshima
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan
| | - Chiaki Mukai
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan
| |
Collapse
|
11
|
Mukhopadhyay S, Saha R, Palanisamy A, Ghosh M, Biswas A, Roy S, Pal A, Sarkar K, Bagh S. A systems biology pipeline identifies new immune and disease related molecular signatures and networks in human cells during microgravity exposure. Sci Rep 2016; 6:25975. [PMID: 27185415 PMCID: PMC4868995 DOI: 10.1038/srep25975] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/26/2016] [Indexed: 12/29/2022] Open
Abstract
Microgravity is a prominent health hazard for astronauts, yet we understand little about its effect at the molecular systems level. In this study, we have integrated a set of systems-biology tools and databases and have analysed more than 8000 molecular pathways on published global gene expression datasets of human cells in microgravity. Hundreds of new pathways have been identified with statistical confidence for each dataset and despite the difference in cell types and experiments, around 100 of the new pathways are appeared common across the datasets. They are related to reduced inflammation, autoimmunity, diabetes and asthma. We have identified downregulation of NfκB pathway via Notch1 signalling as new pathway for reduced immunity in microgravity. Induction of few cancer types including liver cancer and leukaemia and increased drug response to cancer in microgravity are also found. Increase in olfactory signal transduction is also identified. Genes, based on their expression pattern, are clustered and mathematically stable clusters are identified. The network mapping of genes within a cluster indicates the plausible functional connections in microgravity. This pipeline gives a new systems level picture of human cells under microgravity, generates testable hypothesis and may help estimating risk and developing medicine for space missions.
Collapse
Affiliation(s)
- Sayak Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India
| | - Rohini Saha
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India
| | - Anbarasi Palanisamy
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India
| | - Madhurima Ghosh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India
| | - Anupriya Biswas
- Department of Biological Sciences, Presidency University, Kolkata, 700073, India
| | - Saheli Roy
- Department of Biological Sciences, Presidency University, Kolkata, 700073, India
| | - Arijit Pal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India
| | - Kathakali Sarkar
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India
| | - Sangram Bagh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India
| |
Collapse
|