1
|
Grassi G, Scillitani E, Cecchelli C. New horizons for obsessive-compulsive disorder drug discovery: is targeting glutamate receptors the answer? Expert Opin Drug Discov 2024; 19:1235-1245. [PMID: 39105546 DOI: 10.1080/17460441.2024.2387127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Over the past decade, glutamate has emerged as a prominent focus in the field of obsessive-compulsive disorder (OCD) pathophysiology. A convergence of evidence from genetic, preclinical, and clinical studies points to glutamatergic dysfunction as a key feature of this condition. In light of these findings, there has been a growing interest in exploring the potential of glutamatergic agents in the treatment of OCD. AREAS COVERED This paper reviews the literature on glutamate transmission in OCD. In addition, the authors examine the results of clinical trials investigating the efficacy of glutamatergic agents in the treatment of OCD patients. EXPERT OPINION Along with the recognition of neuroinflammation in the brain in OCD, the evidence of glutamate dysfunction represents one of the most promising recent discoveries for understanding the mechanisms involved in OCD. The importance of this discovery lies primarily in its pharmacological implications and has led to intense research activity in the field of glutamatergic agents. While this research has not yet had a substantial clinical impact, targeting glutamate receptors remains a promising horizon for the successful treatment of OCD patients.
Collapse
Affiliation(s)
- Giacomo Grassi
- Department of Psychiatry, Brain Center Firenze, Florence, Italy
| | | | | |
Collapse
|
2
|
O'Loghlen J, McKenzie M, Lang C, Paynter J. Repetitive Behaviors in Autism and Obsessive-Compulsive Disorder: A Systematic Review. J Autism Dev Disord 2024:10.1007/s10803-024-06357-8. [PMID: 38652373 DOI: 10.1007/s10803-024-06357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE Obsessive-compulsive disorder (OCD) and autism are characterized by the presence of repetitive behaviors. Differentiating between repetitive behaviors attributable to a diagnosis of autism, and those attributable to OCD, poses challenges for differential and co-occurring diagnosis. Differentiation is important to inform appropriate supports and interventions for phenotypically similar but functionally distinct behaviors. In this systematic review, the quantitative literature was examined to explore the similarities and differences in repetitive behaviors (including restricted and repetitive behaviors and interests, and obsessive-compulsive behaviors) in autistic individuals and those with OCD, and those with co-occurring diagnoses, in terms of: (1) expression, (2) content, and (3) associated factors. METHODS Thirty-one studies were identified that compared repetitive behaviors in autistic individuals, individuals with OCD, or individuals with both diagnoses. RESULTS The results suggest considerable overlap in the intensity and content of repetitive behaviors between groups. The findings of this review highlight that research aimed specifically at understanding similarities and differences in repetitive behaviors between autistic individuals and individuals with OCD is limited and frequently only compare at total score or composite measure levels. CONCLUSION Further research into differences in the presentation of repetitive behaviors at a subscale and item level is required to inform clearer differentiation of specific behaviors in autism versus OCD. Understanding and more accurately differentiating is essential for efficient diagnosis, effective treatment, and better outcomes.
Collapse
Affiliation(s)
- Jessica O'Loghlen
- , Building N23, -1.03, 170 Kessels Road, Nathan, QLD, 4111, Australia.
| | - Matthew McKenzie
- School of Applied Psychology, Griffith University, 58 Parklands Drive, Southport, QLD, 4215, Australia
| | - Cathryne Lang
- School of Applied Psychology, Griffith University, 58 Parklands Drive, Southport, QLD, 4215, Australia
| | - Jessica Paynter
- School of Applied Psychology, Griffith University, 58 Parklands Drive, Southport, QLD, 4215, Australia
| |
Collapse
|
3
|
Remahi S, Mabika M, Côté S, Iorio-Morin C, Near J, Hui SCN, Edden RAE, Théoret H, Whittingstall K, Lepage JF. Neurotransmitter levels in the basal ganglia are associated with intracortical circuit activity of the primary motor cortex in healthy humans. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110892. [PMID: 37952692 DOI: 10.1016/j.pnpbp.2023.110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The basal ganglia are strongly connected to the primary motor cortex (M1) and play a crucial role in movement control. Interestingly, several disorders showing abnormal neurotransmitter levels in basal ganglia also present concomitant anomalies in intracortical function within M1. OBJECTIVE/HYPOTHESIS The main aim of this study was to clarify the relationship between neurotransmitter content in the basal ganglia and intracortical function at M1 in healthy individuals. We hypothesized that neurotransmitter content of the basal ganglia would be significant predictors of M1 intracortical function. METHODS We combined magnetic resonance spectroscopy (MRS) and transcranial magnetic stimulation (TMS) to test this hypothesis in 20 healthy adults. An extensive TMS battery probing common measures of intracortical, and corticospinal excitability was administered, and GABA and glutamate-glutamine levels were assessed from voxels placed over the basal ganglia and the occipital cortex (control region). RESULTS Regression models using metabolite concentration as predictor and TMS metrics as outcome measures showed that glutamate level in the basal ganglia significantly predicted short interval intracortical inhibition (SICI) and intracortical facilitation (ICF), while GABA content did not. No model using metabolite measures from the occipital control voxel was significant. CONCLUSIONS Taken together, these results converge with those obtained in clinical populations and suggest that intracortical circuits in human M1 are associated with the neurotransmitter content of connected but distal subcortical structures crucial for motor function.
Collapse
Affiliation(s)
- Sarah Remahi
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Pediatrics, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Madora Mabika
- University of Galway, School of Medicine, Galway, Ireland
| | - Samantha Côté
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Pediatrics, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada; Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Christian Iorio-Morin
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Surgery, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Jamie Near
- Physical Sciences Platform, SunnyBrook Health Sciences Center, Toronto, Canada
| | - Steve C N Hui
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Hugo Théoret
- Department of Psychology, Faculty of Arts and Sciences, Université de Montréal, Montréal, Canada
| | - Kevin Whittingstall
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Jean-François Lepage
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Pediatrics, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada.
| |
Collapse
|
4
|
Jiang Y, Li Y, Chen X, Zhai R, Peng Y, Tai R, Zhou C, Wang J. Biomarkers and Tourette syndrome: a systematic review and meta-analysis. Front Neurol 2024; 15:1262057. [PMID: 38385037 PMCID: PMC10879287 DOI: 10.3389/fneur.2024.1262057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Objective This research aims to investigate whether peripheral biomarkers might differentiate individuals with Tourette syndrome (TS) from those without the condition. Methods A broad range of databases was searched through November 2022. This study employed a systematic literature review and subsequent meta-analysis of case-control studies that assessed the aberration of biomarkers of patients with TS and controls. Results A total of 81 studies were identified, out of which 60 met the eligibility criteria for inclusion in the meta-analysis. Following a meticulous screening procedure to determine the feasibility of incorporating case-control studies into the meta-analysis, 13 comparisons were statistically significant [CD3+ T cell, CD4+ T cell, CD4+ T cell to CD8+ T cell ratio, NK-cell, anti-streptolysin O antibodies, anti-DNase antibodies, glutamic acid (Glu), aspartic acid (Asp), ferritin (Fe), zinc (Zn), lead (Pb), vitamin D, and brain-derived neurotrophic factor (BDNF)]. Publication bias was found for anti-streptolysin O antibodies. Suggestive associations were evidenced for norsalsolinol (NSAL), neuron-specific enolase (NSE), and S100B. Conclusion In this study, we present empirical evidence substantiating the link between several peripheral biomarkers and the early diagnosis of TS. Larger and more standardized studies are necessary to replicate the observed results, elucidate the specificity of the biomarkers for TS, and evaluate their precision for use in clinical settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Junhong Wang
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Aspragkathou DD, Spilioti MG, Gkampeta A, Dalpa E, Holeva V, Papadopoulou MT, Serdari A, Dafoulis V, Zafeiriou DI, Evangeliou AE. Branched-chain amino acids as adjunctive-alternative treatment in patients with autism: a pilot study. Br J Nutr 2024; 131:73-81. [PMID: 37424284 DOI: 10.1017/s0007114523001496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The branched-chain amino acid (BCAA) is a group of essential amino acids that are involved in maintaining the energy balance of a human being as well as the homoeostasis of GABAergic, glutamatergic, serotonergic and dopaminergic systems. Disruption of these systems has been associated with the pathophysiology of autism while low levels of these amino acids have been discovered in patients with autism. A pilot open-label, prospective, follow-up study of the use of BCAA in children with autistic behaviour was carried out. Fifty-five children between the ages of 6 and 18 participated in the study from May 2015 to May 2018. We used a carbohydrate-free BCAA-powdered mixture containing 45·5 g of leucine, 30 g of isoleucine and 24·5 g of valine in a daily dose of 0·4 g/kg of body weight which was administered every morning. Following the initiation of BCAA administration, children were submitted to a monthly psychological examination. Beyond the 4-week mark, BCAA were given to thirty-two people (58·18 %). Six of them (10·9 %) discontinued after 4-10 weeks owing to lack of improvement. The remaining twenty-six children (47·27 %) who took BCAA for longer than 10 weeks displayed improved social behaviour and interactions, as well as improvements in their speech, cooperation, stereotypy and, principally, their hyperactivity. There were no adverse reactions reported during the course of the treatment. Although these data are preliminary, there is some evidence that BCAA could be used as adjunctive treatment to conventional therapeutic methods for the management of autism.
Collapse
Affiliation(s)
- Despoina D Aspragkathou
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| | - Martha G Spilioti
- Department of Neurology, Aristotle University of Thessaloniki, Medical School, AHEPA Hospital, Thessaloniki, Greece
| | - Anastasia Gkampeta
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| | - Efterpi Dalpa
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| | - Vasiliki Holeva
- Psychiatric Clinic, Papageorgiou Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Maria T Papadopoulou
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| | - Aspasia Serdari
- Psychiatric Clinic, University Hospital of Alexandroupolis, Thrace University, Medical School, Alexandroupolis, Greece
| | - Vaios Dafoulis
- Psychiatric Clinic of the Hippokration Hospital, Thessaloniki, Greece
| | - Dimitrios I Zafeiriou
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Hippokration Hospital, Thessaloniki, Greece
| | - Athanasios E Evangeliou
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| |
Collapse
|
6
|
Biria M, Banca P, Keser E, Healy MP, Sawiak SJ, Frota Lisbôa Pereira de Souza AM, Marzuki AA, Sule A, Robbins TW. Excessive Checking in Obsessive-Compulsive Disorder: Neurochemical Correlates Revealed by 7T Magnetic Resonance Spectroscopy. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:363-373. [PMID: 38298778 PMCID: PMC10829650 DOI: 10.1016/j.bpsgos.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 02/02/2024] Open
Abstract
Background Compulsive checking, a common symptom of obsessive-compulsive disorder (OCD), has been difficult to capture experimentally. Therefore, determination of its neural basis remains challenging despite some evidence suggesting that it is linked to dysfunction of cingulostriatal systems. This study introduces a novel experimental paradigm to measure excessive checking and its neurochemical correlates. Methods Thirty-one patients with OCD and 29 healthy volunteers performed a decision-making task requiring them to decide whether 2 perceptually similar visual representations were the same or different under a high-uncertainty condition without feedback. Both groups underwent 7T magnetic resonance spectroscopy scans on the same day. Correlations between out-of-scanner experimental measures of checking and the glutamate/GABA (gamma-aminobutyric acid) ratio in the anterior cingulate cortex, supplementary motor area, and occipital cortex were assessed. Their relationship with subjective ratings of doubt, anxiety, and confidence was also investigated. Results Patients with OCD exhibited excessive and dysfunctional checking, which was significantly correlated with changes in the glutamate/GABA ratio within the anterior cingulate cortex. No behavioral/neurochemical relationships were evident for either the supplementary motor area or occipital cortex. The excessive checking observed in patients was negatively correlated with their confidence levels and positively related to doubt, anxiety, and compulsivity traits. Conclusions We conclude that experimental measures of excessive and dysfunctional checking in OCD, which have been linked to increased doubt, anxiety, and lack of confidence, are related to an imbalance between excitatory and inhibitory neural activity within the anterior cingulate cortex. This study adds to our understanding of the role of this region in OCD by providing a laboratory model of the possible development of compulsive checking.
Collapse
Affiliation(s)
- Marjan Biria
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Division of Psychiatry and Division of Psychology and Language Sciences, University College London, London, United Kingdom
| | - Paula Banca
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Engin Keser
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Máiréad P. Healy
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J. Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ana Maria Frota Lisbôa Pereira de Souza
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Aleya A. Marzuki
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | - Akeem Sule
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Gonçalves BP, Silva EDS, Luçardo JDC, Fernandes MP, Grokoski KC, Vaz JDS, Valle SC. Increased monocytes are associated with overweight in children and adolescents with autism spectrum disorder. NUTR HOSP 2023; 40:1136-1143. [PMID: 37154047 DOI: 10.20960/nh.04472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Introduction Objective: to investigate the monocyte count and its association with nutritional status in children and adolescents with autism spectrum disorder (ASD). Methods: a cross-sectional study carried out at a Neurodevelopmental Center in the south of Brazil, with 68 ASD patients aged 3 to 18 years. The number of monocytes (per mm3) was determined in blood samples. Nutritional status was defined as BMI-for-age according to WHO standards. The Children's Eating Behaviour Questionnaire and a standard questionnaire to collect sociodemographic and clinical characteristics were administered to caregivers. Comparisons between sociodemographic, clinical, and eating behavior variables were performed with parametric tests. Linear regression was used to test the association between nutritional status and monocyte count. Results: mean age was 8.6 ± 3.3 years, 79 % were males and 66 % were overweight. In the unadjusted regression overweight was associated with higher monocyte counts compared to those non-overweight (B: 64.0; 95 % CI, 13.9 to 114.1; β: 0.30, p = 0.01). This association remained significant after adjustment for the subscale of "emotional overeating" (B: 37.0; 95 % CI, 17.1 to 91.3; β: 0.29; p = 0.02). The variability in monocyte count attributed to overweight was 14 %. Conclusions: overweight is associated with a higher monocyte count in children and adolescents with ASD. Nutritional intervention to control overweight is essential to mitigate the negative impact on inflammatory activity and immune dysfunction in these patients.
Collapse
Affiliation(s)
| | - Eduarda de Souza Silva
- Programa de Pós-Graduação em Nutrição e Alimentos. Faculdade de Nutrição. Universidade Federal de Pelotas
| | - Josiane da Cunha Luçardo
- Programa de Pós-Graduação em Nutrição e Alimentos. Faculdade de Nutrição. Universidade Federal de Pelotas
| | - Mayra Pacheco Fernandes
- Programa de Pós-Graduação em Nutrição e Alimentos. Faculdade de Nutrição. Universidade Federal de Pelotas
| | | | - Juliana Dos Santos Vaz
- Programa de Pós-Graduação em Nutrição e Alimentos. Faculdade de Nutrição. Universidade Federal de Pelotas
| | - Sandra Costa Valle
- Programa de Pós-Graduação em Nutrição e Alimentos. Faculdade de Nutrição. Universidade Federal de Pelotas
| |
Collapse
|
8
|
Biria M, Banca P, Healy MP, Keser E, Sawiak SJ, Rodgers CT, Rua C, de Souza AMFLP, Marzuki AA, Sule A, Ersche KD, Robbins TW. Cortical glutamate and GABA are related to compulsive behaviour in individuals with obsessive compulsive disorder and healthy controls. Nat Commun 2023; 14:3324. [PMID: 37369695 DOI: 10.1038/s41467-023-38695-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
There has been little analysis of neurochemical correlates of compulsive behaviour to illuminate its underlying neural mechanisms. We use 7-Tesla proton magnetic resonance spectroscopy (1H-MRS) to assess the balance of excitatory and inhibitory neurotransmission by measuring glutamate and GABA levels in anterior cingulate cortex (ACC) and supplementary motor area (SMA) of healthy volunteers and participants with Obsessive-Compulsive Disorder (OCD). Within the SMA, trait and clinical measures of compulsive behaviour are related to glutamate levels, whereas a behavioural index of habitual control correlates with the glutamate:GABA ratio. Participants with OCD also show the latter relationship in the ACC while exhibiting elevated glutamate and lower GABA levels in that region. This study highlights SMA mechanisms of habitual control relevant to compulsive behaviour, common to the healthy sub-clinical and OCD populations. The results also demonstrate additional involvement of anterior cingulate in the balance between goal-directed and habitual responding in OCD.
Collapse
Affiliation(s)
- Marjan Biria
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| | - Paula Banca
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Máiréad P Healy
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Engin Keser
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Stephen J Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Christopher T Rodgers
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Catarina Rua
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Ana Maria Frota Lisbôa Pereira de Souza
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Aleya A Marzuki
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Akeem Sule
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Karen D Ersche
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| |
Collapse
|
9
|
Sullivan M, Fernandez-Aranda F, Camacho-Barcia L, Harkin A, Macrì S, Mora-Maltas B, Jiménez-Murcia S, O'Leary A, Ottomana AM, Presta M, Slattery D, Scholtz S, Glennon JC. Insulin and Disorders of Behavioural Flexibility. Neurosci Biobehav Rev 2023; 150:105169. [PMID: 37059405 DOI: 10.1016/j.neubiorev.2023.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Behavioural inflexibility is a symptom of neuropsychiatric and neurodegenerative disorders such as Obsessive-Compulsive Disorder, Autism Spectrum Disorder and Alzheimer's Disease, encompassing the maintenance of a behaviour even when no longer appropriate. Recent evidence suggests that insulin signalling has roles apart from its regulation of peripheral metabolism and mediates behaviourally-relevant central nervous system (CNS) functions including behavioural flexibility. Indeed, insulin resistance is reported to generate anxious, perseverative phenotypes in animal models, with the Type 2 diabetes medication metformin proving to be beneficial for disorders including Alzheimer's Disease. Structural and functional neuroimaging studies of Type 2 diabetes patients have highlighted aberrant connectivity in regions governing salience detection, attention, inhibition and memory. As currently available therapeutic strategies feature high rates of resistance, there is an urgent need to better understand the complex aetiology of behaviour and develop improved therapeutics. In this review, we explore the circuitry underlying behavioural flexibility, changes in Type 2 diabetes, the role of insulin in CNS outcomes and mechanisms of insulin involvement across disorders of behavioural inflexibility.
Collapse
Affiliation(s)
- Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Fernando Fernandez-Aranda
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Lucía Camacho-Barcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Bernat Mora-Maltas
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Aet O'Leary
- University Hospital Frankfurt, Frankfurt, Germany
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Jeffrey C Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Elwyn R, Mitchell J, Kohn MR, Driver C, Hay P, Lagopoulos J, Hermens DF. Novel ketamine and zinc treatment for anorexia nervosa and the potential beneficial interactions with the gut microbiome. Neurosci Biobehav Rev 2023; 148:105122. [PMID: 36907256 DOI: 10.1016/j.neubiorev.2023.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Anorexia nervosa (AN) is a severe illness with diverse aetiological and maintaining contributors including neurobiological, metabolic, psychological, and social determining factors. In addition to nutritional recovery, multiple psychological and pharmacological therapies and brain-based stimulations have been explored; however, existing treatments have limited efficacy. This paper outlines a neurobiological model of glutamatergic and γ-aminobutyric acid (GABA)-ergic dysfunction, exacerbated by chronic gut microbiome dysbiosis and zinc depletion at a brain and gut level. The gut microbiome is established early in development, and early exposure to stress and adversity contribute to gut microbial disturbance in AN, early dysregulation to glutamatergic and GABAergic networks, interoceptive impairment, and inhibited caloric harvest from food (e.g., zinc malabsorption, competition for zinc ions between gut bacteria and host). Zinc is a key part of glutamatergic and GABAergic networks, and also affects leptin and gut microbial function; systems dysregulated in AN. Low doses of ketamine in conjunction with zinc, could provide an efficacious combination to act on NMDA receptors and normalise glutamatergic, GABAergic and gut function in AN.
Collapse
Affiliation(s)
- Rosiel Elwyn
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia.
| | - Jules Mitchell
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Michael R Kohn
- AYA Medicine Westmead Hospital, CRASH (Centre for Research into Adolescent's Health) Western Sydney Local Health District, Sydney University, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Christina Driver
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Phillipa Hay
- Translational Health Research Institute (THRI) School of Medicine, Western Sydney University, Campbelltown, NSW, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
11
|
Poli A, Pozza A, Orrù G, Conversano C, Ciacchini R, Pugi D, Angelo NL, Angeletti LL, Miccoli M, Gemignani A. Neurobiological outcomes of cognitive behavioral therapy for obsessive-compulsive disorder: A systematic review. Front Psychiatry 2022; 13:1063116. [PMID: 36569616 PMCID: PMC9780289 DOI: 10.3389/fpsyt.2022.1063116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Obsessive-compulsive disorder (OCD) is characterized by recurrent distressing thoughts and repetitive behaviors, or mental rituals performed to reduce anxiety. Recent neurobiological techniques have been particularly convincing in suggesting that cortico-striatal-thalamic-cortico (CSTC) circuits, including orbitofrontal cortex (OFC) and striatum regions (caudate nucleus and putamen), are responsible for mediation of OCD symptoms. However, it is still unclear how these regions are affected by OCD treatments in adult patients. To address this yet open question, we conducted a systematic review of all studies examining neurobiological changes before and after first-line psychological OCD treatment, i.e., cognitive-behavioral therapy (CBT). Methods Studies were included if they were conducted in adults with OCD and they assessed the neurobiological effects of CBT before and after treatment. Two databases were searched: PsycINFO and PubMed for the time frame up to May 2022. Results We obtained 26 pre-post CBT treatment studies performed using different neurobiological techniques, namely functional magnetic resonance imaging (fMRI), Positron emission tomography (PET), regional cerebral blood flow (rCBF), 5-HT concentration, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), Electroencephalography (EEG). Neurobiological data show the following after CBT intervention: (i) reduced activations in OFC across fMRI, EEG, and rCBF; (ii) decreased activity in striatum regions across fMRI, rCBF, PET, and MRI; (iii) increased activations in cerebellum (CER) across fMRI and MRI; (iv) enhanced neurochemical concentrations in MRS studies in OFC, anterior cingulate cortex (ACC) and striatum regions. Most of these neurobiological changes are also accompanied by an improvement in symptom severity as assessed by a reduction in the Y-BOCS scores. Conclusion Cognitive-behavioral therapy seems to be able to restructure, modify, and transform the neurobiological component of OCD, in addition to the clinical symptoms. Nevertheless, further studies are necessary to frame the OCD spectrum in a dimensional way.
Collapse
Affiliation(s)
- Andrea Poli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Pozza
- Department of Medical Sciences, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Graziella Orrù
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ciro Conversano
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Rebecca Ciacchini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Daniele Pugi
- Department of Medical Sciences, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Nicole Loren Angelo
- Department of Medical Sciences, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | | | - Mario Miccoli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
12
|
Niemeyer L, Mechler K, Dittmann RW, Banaschewski T, Buitelaar J, Durston S, Häge A. Memantine as treatment for compulsivity in child and adolescent psychiatry: Descriptive findings from an incompleted randomized, double-blind, placebo-controlled trial. Contemp Clin Trials Commun 2022; 29:100982. [PMID: 36092975 PMCID: PMC9450066 DOI: 10.1016/j.conctc.2022.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
Background Autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD) are mental disorders with a considerable overlap in terms of their defining symptoms. The glutamatergic agent memantine appears to be a promising candidate for the treatment of ASD and OCD in children and adolescents. The aim of this study was to investigate the clinical efficacy and tolerability/safety of memantine in this population. Methods This randomized, double-blind, placebo-controlled multicenter add-on trial comprised patients aged 6 to 17; 9 years with a confirmed diagnosis of ASD and/or OCD. Participants were randomized to either memantine or placebo for 10 consecutive weeks, including an up-titration phase. Results A total of 7 patients were included in the study. N = 4 (57.1%) participants were treated with verum (memantine) and n = 3 (42.9%) received placebo. Patients receiving memantine showed a more pronounced reduction in their CY-BOCS score, as well as greater CGI-Improvement, compared to patients receiving placebo. No serious adverse events (SAEs) were reported. Conclusions Our findings, although based on a very small number of patients and therefore insufficient to draw clear conclusions, appear to be in line with the hypothesis that memantine is an effective, tolerable and safe agent for children and adolescents. Trial registration EudraCT Number: 2014-003080-38, Registered 14 July 2014, https://www.clinicaltrialsregister.eu/ctr-search/search?query=2014-003080-38.
Collapse
Affiliation(s)
- Larissa Niemeyer
- Pediatric Psychopharmacology, Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Konstantin Mechler
- Pediatric Psychopharmacology, Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ralf W. Dittmann
- Pediatric Psychopharmacology, Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tobias Banaschewski
- Pediatric Psychopharmacology, Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Sarah Durston
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
| | - Alexander Häge
- Pediatric Psychopharmacology, Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
13
|
Cortical inhibition in neurofibromatosis type 1 is modulated by lovastatin, as demonstrated by a randomized, triple-blind, placebo-controlled clinical trial. Sci Rep 2022; 12:13814. [PMID: 35970940 PMCID: PMC9378617 DOI: 10.1038/s41598-022-17873-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is associated with GABAergic dysfunction which has been suggested as the underlying cause of cognitive impairments. Previous intervention trials investigated the statins’ effects using cognitive outcome measures. However, available outcome measures have led to inconclusive results and there is a need to identify other options. Here, we aimed at investigating alternative outcome measures in a feasibility trial targeting cortical inhibition mechanisms known to be altered in NF1. We explored the neurochemical and physiological changes elicited by lovastatin, with magnetic resonance spectroscopy and transcranial magnetic stimulation (TMS). Fifteen NF1 adults participated in this randomized, triple-blind, placebo-controlled crossover trial (Clinicaltrials.gov NCT03826940) composed of one baseline and two reassessment visits after lovastatin/placebo intake (60 mg/day, 3-days). Motor cortex GABA+ and Glx concentrations were measured using HERMES and PRESS sequences, respectively. Cortical inhibition was investigated by paired-pulse, input–output curve, and cortical silent period (CSP) TMS protocols. CSP ratios were significantly increased by lovastatin (relative: p = 0.027; absolute: p = 0.034) but not by placebo. CSP durations showed a negative correlation with the LICI 50 ms amplitude ratio. Lovastatin was able to modulate cortical inhibition in NF1, as assessed by TMS CSP ratios. The link between this modulation of cortical inhibition and clinical improvements should be addressed by future large-scale studies.
Collapse
|
14
|
Maier S, Düppers AL, Runge K, Dacko M, Lange T, Fangmeier T, Riedel A, Ebert D, Endres D, Domschke K, Perlov E, Nickel K, Tebartz van Elst L. Increased prefrontal GABA concentrations in adults with autism spectrum disorders. Autism Res 2022; 15:1222-1236. [PMID: 35587691 DOI: 10.1002/aur.2740] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/28/2022] [Indexed: 11/10/2022]
Abstract
The excitatory-inhibitory imbalance hypothesis postulates dysregulation of the gamma-aminobutyric acid (GABA) and glutamate (Glu) neurotransmitter systems as a common underlying deficit in individuals with autism spectrum disorders (ASD). Previous studies suggest an important role of these systems in the pathophysiology of ASD, including a study of our group reporting decreased glutamate concentrations in the pregenual anterior cingulate cortex (ACC) of adults with ASD. The aim of this study was to replicate our previous findings of impaired glutamate metabolism in ASD in a new sample and to additionally quantify GABA in the ACC and dorsolateral prefrontal cortex (dlPFC). Concentrations of GABA and glutamate-glutamine (Glx; combined glutamate and glutamine signal) were quantified in the ACC and dlPFC of 43 adults with ASD and 43 neurotypical controls (NTC) by magnetic resonance spectroscopy (MRS). The ASD group showed increased absolute GABA concentrations and elevated GABA/creatine ratios in the left dlPFC compared to NTC, while no group differences were detected in the pregenual and dorsal ACC. Previous findings of altered Glx concentration in the pregenual ACC of the ASD group could not be replicated. Regarding Glx concentrations and Glx/creatine ratios, there were no significant differences in the dlPFC and ACC either. The study supports the hypothesis of an altered GABA and glutamate equilibrium, indicating an imbalance between excitatory and inhibitory metabolism in ASD patients. However, inconsistent results across studies and brain regions suggest a complex underlying phenomenon. LAY SUMMARY: Adults of the autism spectrum exhibit elevated levels of the inhibitory neurotransmitter GABA in the left dorsolateral prefrontal cortex. This finding supports the hypothesis of an imbalance between excitatory and inhibitory equilibrium in patients with autism spectrum disorders.
Collapse
Affiliation(s)
- Simon Maier
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Kimon Runge
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Dacko
- Department of Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Lange
- Department of Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Fangmeier
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Riedel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Luzerner Psychiatrie, Ambulante Dienste, Luzern, Switzerland
| | - Dieter Ebert
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Evgeniy Perlov
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Clinic for Psychiatry Luzern, Hospital St. Urban, St. Urban, Switzerland
| | - Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Luttenbacher I, Phillips A, Kazemi R, Hadipour AL, Sanghvi I, Martinez J, Adamson MM. Transdiagnostic role of glutamate and white matter damage in neuropsychiatric disorders: A Systematic Review. J Psychiatr Res 2022; 147:324-348. [PMID: 35151030 DOI: 10.1016/j.jpsychires.2021.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 12/09/2022]
Abstract
Neuropsychiatric disorders including generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ) have been considered distinct categories of diseases despite their overlapping characteristics and symptomatology. We aimed to provide an in-depth review elucidating the role of glutamate/Glx and white matter (WM) abnormalities in these disorders from a transdiagnostic perspective. The PubMed online database was searched for studies published between 2010 and 2021. After careful screening, 401 studies were included. The findings point to decreased levels of glutamate in the Anterior Cingulate Cortex in both SZ and BD, whereas Glx is elevated in the Hippocampus in SZ and MDD. With regard to WM abnormalities, the Corpus Callosum and superior Longitudinal Fascicle were the most consistently identified brain regions showing decreased fractional anisotropy (FA) across all the reviewed disorders, except GAD. Additionally, the Uncinate Fasciculus displayed decreased FA in all disorders, except OCD. Decreased FA was also found in the inferior Longitudinal Fasciculus, inferior Fronto-Occipital Fasciculus, Thalamic Radiation, and Corona Radiata in SZ, BD, and MDD. Decreased FA in the Fornix and Corticospinal Tract were found in BD and SZ patients. The Cingulum and Anterior Limb of Internal Capsule exhibited decreased FA in MDD and SZ patients. The results suggest a gradual increase in severity from GAD to SZ defined by the number of brain regions with WM abnormality which may be partially caused by abnormal glutamate levels. WM damage could thus be considered a potential marker of some of the main neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ines Luttenbacher
- Department of Social & Behavioral Sciences, University of Amsterdam, Amsterdam, Netherlands; Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Angela Phillips
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Reza Kazemi
- Department of Cognitive Psychology, Institute for Cognitive Science Studies, Tehran, Iran
| | - Abed L Hadipour
- Department of Cognitive Sciences, University of Messina, Messina, Italy
| | - Isha Sanghvi
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neuroscience, University of Southern California, Los Angeles, CA, USA
| | - Julian Martinez
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Palo Alto University, Palo Alto, CA, USA
| | - Maheen M Adamson
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
16
|
Longitudinal changes in neurometabolite concentrations in the dorsal anterior cingulate cortex after concentrated exposure therapy for obsessive-compulsive disorder. J Affect Disord 2022; 299:344-352. [PMID: 34920037 DOI: 10.1016/j.jad.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The dorsal anterior cingulate cortex (dACC) plays an important role in the pathophysiology of obsessive-compulsive disorder (OCD) due to its role in error processing, cognitive control and emotion regulation. OCD patients have shown altered concentrations in neurometabolites in the dACC, particularly Glx (glutamate+glutamine) and tNAA (N-acetylaspartate+N-acetyl-aspartyl-glutamate). We investigated the immediate and prolonged effects of exposure and response prevention (ERP) on these neurometabolites. METHODS Glx and tNAA concentrations were measured using magnetic resonance spectroscopy (1H-MRS) in 24 OCD patients and 23 healthy controls at baseline. Patients received concentrated ERP over four days. A subset was re-scanned after one week and three months. RESULTS No Glx and tNAA abnormalities were observed in OCD patients compared to healthy controls before treatment or over time. Patients with childhood or adult onset differed in the change over time in tNAA (F(2,40) = 7.24, ɳ2p= 0.27, p = 0.004): concentrations increased between one week after treatment and follow-up in the childhood onset group (t(39) = -2.43, d = -0.86, p = 0.020), whereas tNAA concentrations decreased between baseline and follow-up in patients with an adult onset (t(42) = 2.78, d = 1.07, p = 0.008). In OCD patients with versus without comorbid mood disorders, lower Glx concentrations were detected at baseline (t(38) = -2.28, d = -1.00, p = 0.028). Glx increased after one week of treatment within OCD patients with comorbid mood disorders (t(30) = -3.09, d = -1.21, p = 0.004). LIMITATIONS Our OCD sample size allowed the detection of moderate to large effect sizes only. CONCLUSION ERP induced changes in neurometabolites in OCD seem to be dependent on mood disorder comorbidity and disease stage rather than OCD itself.
Collapse
|
17
|
Bernardino I, Dionísio A, Violante IR, Monteiro R, Castelo-Branco M. Motor Cortex Excitation/Inhibition Imbalance in Young Adults With Autism Spectrum Disorder: A MRS-TMS Approach. Front Psychiatry 2022; 13:860448. [PMID: 35492696 PMCID: PMC9046777 DOI: 10.3389/fpsyt.2022.860448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Excitatory/inhibitory imbalance has been suggested as a neurobiological substrate of the cognitive symptomatology in Autism Spectrum Disorder (ASD). Studies using magnetic resonance spectroscopy (MRS) attempted to characterize GABA and Glutamate brain levels in ASD. However mixed findings have been reported. Here, we characterize both neurochemical and physiological aspects of GABA system in ASD by implementing a more comprehensive approach combining MRS and transcranial magnetic stimulation (TMS). A group of 16 young ASD adults and a group of 17 controls participated in this study. We employed one MRS session to assess motor cortex GABA+ and Glutamate+Glutamine (Glx) levels using MEGAPRESS and PRESS sequences, respectively. Additionally, a TMS experiment was implemented including paired-pulse (SICI, ICF and LICI), input-output curve and cortical silent period to probe cortical excitability. Our results showed a significantly increased Glx, with unchanged GABA+ levels in the ASD group compared with controls. Single TMS measures did not differ between groups, although exploratory within-group analysis showed impaired inhibition in SICI5ms, in ASD. Importantly, we observed a correlation between GABA levels and measures of the input-output TMS recruitment curve (slope and MEP amplitude) in the control group but not in ASD, as further demonstrated by direct between group comparisons. In this exploratory study, we found evidence of increased Glx levels which may contribute to ASD excitatory/inhibitory imbalance while highlighting the relevance of conducting further larger-scale studies to investigate the GABA system from complementary perspectives, using both MRS and TMS techniques.
Collapse
Affiliation(s)
- Inês Bernardino
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Ana Dionísio
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Inês R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Raquel Monteiro
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
18
|
Hadi F, Kashefinejad S, Kamalzadeh L, Hoobehfekr S, Shalbafan M. Glutamatergic medications as adjunctive therapy for moderate to severe obsessive-compulsive disorder in adults: a systematic review and meta-analysis. BMC Pharmacol Toxicol 2021; 22:69. [PMID: 34736541 PMCID: PMC8569963 DOI: 10.1186/s40360-021-00534-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/20/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is among the most disabling neuropsychiatric conditions characterized by the presence of repetitive intrusive thoughts, impulses, or images (obsessions) and/or ritualized mental or physical acts (compulsions). Serotonergic medications, particularly Selective Serotonin Reuptake Inhibitors (SSRIs), are the first-line treatments for patients with OCD. Recently, dysregulation of glutamatergic system has been proposed to be involved in the etiology of OCD. We designed this systematic review and meta-analysis to evaluate clinical efficacy of glutamatergic medications in patients with OCD, according to the guidelines of Cochrane collaboration. METHOD We searched Medline, Scopus, and Cochrane library without applying any language filter. Two of the authors independently reviewed search results for irrelevant and duplicate studies and extracted data and assessed methodological quality of the studies. We transformed data into a common rubric and calculated a weighted treatment effect across studies using Review Manager. RESULTS We found 476 references in 3 databases, and after exclusion of irrelevant and duplicate studies, 17 studies with total number of 759 patients with OCD were included. In the present review we found evidence for several drugs such as memantine, N-acetylcysteine (NAC), Minocycline, L-carnosine and riluzole. Glutamaterigic drug plus SSRIs were superior to SSRI+ Placebo with regard to Y-BOCS scale [standardized mean difference (SMD = - 3.81 95% CI = - 4.4, - 3.23). CONCLUSION Augmentation of glutamatergic medications with SSRIs are beneficial in obsessive-compulsive patients, no harmful significant differences in any safety outcome were found between the groups.
Collapse
Affiliation(s)
- Fatemeh Hadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shayan Kashefinejad
- Mental Health Research Center, Psychosocial Health Research Institute, Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Kamalzadeh
- Mental Health Research Center, Psychosocial Health Research Institute, Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Hoobehfekr
- Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shalbafan
- Mental Health Research Center, Psychosocial Health Research Institute, Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Brain and Cognition Clinic, Institute for Cognitive Sciences Studies, Tehran, Iran.
| |
Collapse
|
19
|
Anorexia Nervosa-What Has Changed in the State of Knowledge about Nutritional Rehabilitation for Patients over the Past 10 Years? A Review of Literature. Nutrients 2021; 13:nu13113819. [PMID: 34836075 PMCID: PMC8619053 DOI: 10.3390/nu13113819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
Anorexia nervosa (AN) is a psycho-metabolic disorder with a high risk of somatic complications such as refeeding syndrome (RFS) and carries the highest mortality rate of all psychiatric illnesses. To date, the consensus on the care for patients with AN has been based on recommendations for a combination of alimentation and psychotherapy. It is important to establish an initial caloric intake that will provide weight gain and minimize the risk of complications in the treatment of undernourished patients. Research over the past few years suggests that current treatment recommendations may be too stringent and should be updated. The aim of this paper is to systematize the current reports on nutritional rehabilitation in AN, to present the results of studies on the safe supplementation of patients and its potential impact on improving prognosis and the healing process. This review of literature, from 2011-2021, describes the changing trend in the nutritional protocols used and the research on their efficacy, safety, and long-term effects. In addition, it presents previous reports on the potential benefits of introducing vitamin, pro-and prebiotic and fatty acid supplementation.
Collapse
|
20
|
Poleg S, Kourieh E, Ruban A, Shapira G, Shomron N, Barak B, Offen D. Behavioral aspects and neurobiological properties underlying medical cannabis treatment in Shank3 mouse model of autism spectrum disorder. Transl Psychiatry 2021; 11:524. [PMID: 34645786 PMCID: PMC8514476 DOI: 10.1038/s41398-021-01612-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease with a wide spectrum of manifestation. The core symptoms of ASD are persistent deficits in social communication, and restricted and repetitive patterns of behavior, interests, or activities. These are often accompanied by intellectual disabilities. At present, there is no designated effective treatment for the core symptoms and co-morbidities of ASD. Recently, interest is rising in medical cannabis as a treatment for ASD, with promising clinical data. However, there is a notable absence of basic pre-clinical research in this field. In this study, we investigate the behavioral and biochemical effects of long-term oral treatment with CBD-enriched medical cannabis oil in a human mutation-based Shank3 mouse model of ASD. Our findings show that this treatment alleviates anxiety and decreases repetitive grooming behavior by over 70% in treated mutant mice compared to non-treated mutant mice. Furthermore, we were able to uncover the involvement of CB1 receptor (CB1R) signaling in the Avidekel oil mechanism, alongside a mitigation of cerebrospinal fluid (CSF) glutamate concentrations. Subsequently, RNA sequencing (RNA seq) of cerebellar brain samples revealed changes in mRNA expression of several neurotransmission-related genes post-treatment. Finally, our results question the relevancy of CBD enrichment of medical cannabis for treating the core symptoms of ASD, and emphasize the importance of the THC component for alleviating deficits in repetitive and social behaviors in ASD.
Collapse
Affiliation(s)
- Shani Poleg
- Sackler Faculty of Medicine, Human Molecular Genetics & Biochemistry, Felsenstein Medical Research Center, Tel-Aviv University, Tel Aviv, Israel
| | - Emad Kourieh
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Angela Ruban
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Guy Shapira
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Offen
- Sackler Faculty of Medicine, Human Molecular Genetics & Biochemistry, Felsenstein Medical Research Center, Tel-Aviv University, Tel Aviv, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
21
|
Rafiee F, Rezvani Habibabadi R, Motaghi M, Yousem DM, Yousem IJ. Brain MRI in Autism Spectrum Disorder: Narrative Review and Recent Advances. J Magn Reson Imaging 2021; 55:1613-1624. [PMID: 34626442 DOI: 10.1002/jmri.27949] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023] Open
Abstract
Autism spectrum disorder (ASD) is neuropsychiatric continuum of disorders characterized by persistent deficits in social communication and restricted repetitive patterns of behavior which impede optimal functioning. Early detection and intervention in ASD children can mitigate the deficits in social interaction and result in a better outcome. Various non-invasive imaging methods and molecular techniques have been developed for the early identification of ASD characteristics. There is no general consensus on specific neuroimaging features of autism; however, quantitative magnetic resonance techniques have provided valuable structural and functional information in understanding the neuropathophysiology of ASD and how the autistic brain changes during childhood, adolescence, and adulthood. In this review of decades of ASD neuroimaging research, we identify the structural, functional, and molecular imaging clues that most accurately point to the diagnosis of ASD vs. typically developing children. These studies highlight the 1) exaggerated synaptic pruning, 2) anomalous gyrification, 3) interhemispheric under- and overconnectivity, and 4) excitatory glutamate and inhibitory GABA imbalance theories of ASD. The application of these various theories to the analysis of a patient with ASD is mitigated often by superimposed comorbid neuropsychological disorders, evolving brain maturation processes, and pharmacologic and behavioral interventions that may affect the structure and function of the brain. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Faranak Rafiee
- Department of Radiology, Fara Parto Medical Imaging and Interventional Radiology Center, Shiraz, Iran
| | - Roya Rezvani Habibabadi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, Maryland, USA
| | - Mina Motaghi
- Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, Georgia, USA
| | - David M Yousem
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, Maryland, USA
| | | |
Collapse
|
22
|
Hollestein V, Buitelaar JK, Brandeis D, Banaschewski T, Kaiser A, Hohmann S, Oranje B, Gooskens B, Durston S, Williams SCR, Lythgoe DJ, Naaijen J. Developmental changes in fronto-striatal glutamate and their association with functioning during inhibitory control in autism spectrum disorder and obsessive compulsive disorder. NEUROIMAGE-CLINICAL 2021; 30:102622. [PMID: 33765540 PMCID: PMC8022251 DOI: 10.1016/j.nicl.2021.102622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022]
Abstract
Multi-center, longitudinal, transdiagnostic study of glutamate and neural activity. Differing roles of glutamate on activity in striatum during inhibitory control. Glutamate concentrations in ACC decrease over time in ASD adolescents. Differing neural mechanisms of compulsivity in OCD and repetitive behaviors in ASD.
Autism spectrum disorder (ASD) and obsessive compulsive disorder (OCD) show overlapping symptomatology and deficits in inhibitory control, which are associated with altered functioning and glutamatergic signaling in fronto-striatal circuitry. These parameters have never been examined together. The purpose of the current study was to investigate functioning during inhibitory control and its association with fronto-striatal glutamate concentrations across these disorders using a multi-center, longitudinal approach. Adolescents with ASD (n = 24), OCD (n = 15) and controls (n = 35) underwent two magnetic resonance imaging (MRI) sessions with a one-year interval. This included proton magnetic resonance spectroscopy (1H-MRS; n = 74) and functional MRI during an inhibitory control task (n = 53). We investigated 1H-MRS data and fMRI data separately as well as integrated in a multimodal analysis using linear models focusing on diagnosis and continuous measures of overlapping compulsivity symptoms. ACC glutamate was reduced over time in the ASD group compared with controls, while striatal glutamate decreased over time independent of diagnosis. Increased compulsive behavior seemed to be associated with increased striatal activity during failed inhibitory control. The integrated analyses showed differential involvement of increased striatal glutamate during failed but decreased striatal glutamate during successful inhibitory control in the OCD group compared to controls and ASD, suggesting different underlying mechanisms for OCD compared to ASD.
Collapse
Affiliation(s)
- Viola Hollestein
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, the Netherlands.
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, the Netherlands; Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands.
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; ETH Zurich, Zurich, Switzerland.
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany.
| | - Anna Kaiser
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany.
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany.
| | - Bob Oranje
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Bram Gooskens
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Sarah Durston
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Steven C R Williams
- Department of Neuroimaging, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom.
| | - David J Lythgoe
- Department of Neuroimaging, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom.
| | - Jilly Naaijen
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, the Netherlands; Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, the Netherlands.
| |
Collapse
|
23
|
Luçardo JDC, Monk GF, Dias MDS, Martins-Silva T, Fernandes MP, Maia JC, Valle SC, Vaz JDS. Interest in food and triglyceride concentrations in children and adolescents with autistic spectrum disorder. J Pediatr (Rio J) 2021; 97:103-108. [PMID: 32087108 PMCID: PMC9432298 DOI: 10.1016/j.jped.2020.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE To investigate eating behavior and serum concentration of triglycerides in children and adolescents with autistic spectrum disorder. METHODS Cross-sectional study conducted in the neurodevelopment nucleus, from October 2018 to April 2019 in a neurodevelopment center in the city of Pelotas/RS. Blood samples were collected, and serum was essayed for triglycerides by colorimetric enzymatic reaction. The Children's Eating Behavior Questionnaire was applied to the parents. The comparison between two or three categories of variables was performed with nonparametric tests. Linear regression was used to access the association between the log triglyceride serum concentration and the score above or below the median score of the food response and emotional overeating subscales. RESULTS Sixty patients were evaluated. The average age was 8.6±3.2 years and most were white (75 %), male (80 %), and overweight (66%). Half of the sample had elevated triglycerides. Triglyceride concentrations were higher among overweight children and adolescents with higher median scores on the "food response" and "emotional overeating" subscales. In the adjusted analysis, the association between triglycerides and higher scores on subscales reflecting interest in food remained significant. CONCLUSION Children and adolescents with autistic spectrum disorder present high triglyceride concentrations associated with a greater interest in food. Knowledge of this eating behavior may provide more effective nutritional intervention in this population.
Collapse
Affiliation(s)
- Josiane da Cunha Luçardo
- Universidade Federal de Pelotas, Programa de Pós-Graduação em Nutrição e Alimentação, Pelotas, RS, Brazil.
| | - Giliane Fraga Monk
- Universidade Federal de Pelotas, Programa de Pós-Graduação em Nutrição e Alimentação, Pelotas, RS, Brazil
| | - Mariane da Silva Dias
- Universidade Federal de Pelotas, Programa de Pós-Graduação em Epidemiologia, Pelotas, RS, Brazil
| | - Thais Martins-Silva
- Universidade Federal de Pelotas, Programa de Pós-Graduação em Epidemiologia, Pelotas, RS, Brazil
| | - Mayra Pacheco Fernandes
- Universidade Federal de Pelotas, Programa de Pós-Graduação em Epidemiologia, Pelotas, RS, Brazil
| | - Juliana Costa Maia
- Universidade Federal de Pelotas, Faculdade de Medicina, Neuropediatria, Pelotas, RS, Brazil
| | - Sandra Costa Valle
- Universidade Federal de Pelotas, Programa de Pós-Graduação em Nutrição e Alimentação, Pelotas, RS, Brazil; Universidade Federal de Pelotas, Faculdade de Nutrição, Pelotas, RS, Brazil
| | - Juliana Dos Santos Vaz
- Universidade Federal de Pelotas, Programa de Pós-Graduação em Nutrição e Alimentação, Pelotas, RS, Brazil; Universidade Federal de Pelotas, Programa de Pós-Graduação em Epidemiologia, Pelotas, RS, Brazil; Universidade Federal de Pelotas, Faculdade de Nutrição, Pelotas, RS, Brazil.
| |
Collapse
|
24
|
Biria M, Cantonas LM, Banca P. Magnetic Resonance Spectroscopy (MRS) and Positron Emission Tomography (PET) Imaging in Obsessive-Compulsive Disorder. Curr Top Behav Neurosci 2021; 49:231-268. [PMID: 33751502 DOI: 10.1007/7854_2020_201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Obsessive-compulsive disorder (OCD) is characterised by structural and functional deficits in the cortico-striato-thalamic-cortical (CSTC) circuitry and abnormal neurochemical changes are thought to modulate these deficits. The hypothesis that an imbalanced concentration of the brain neurotransmitters, in particular glutamate (Glu) and gamma-amino-butyric acid (GABA), could impair the normal functioning of the CSTC, thus leading to OCD symptoms, has been tested in humans using magnetic resonance spectroscopy (MRS) and positron emission tomography (PET). This chapter summarises these neurochemical findings and represents an attempt to condense such scattered literature. We also discuss potential challenges in the field that may explain the inconsistent findings and suggest ways to overcome them. There is some convergent research from MRS pointing towards abnormalities in the brain concentration of neurometabolite markers of neuronal integrity, such as N-acetylaspartate (NAA) and choline (Cho). Lower NAA levels have been found in dorsal and rostral ACC of OCD patients (as compared to healthy volunteers), which increase after CBT and SSRI treatment, and higher Cho concentration has been reported in the thalamus of the OCD brain. However, findings for other neurometabolites are very inconsistent. Studies have reported abnormalities in the concentrations of creatine (Cr), GABA, glutamate (Glu), glutamine (Gln), Ins (myo-inositol), and serotonin (5-HT), but most of the results were not replicated. The question remains whether the NAA and Cho findings are genuinely the only neurochemical abnormalities in OCD or whether the lack of consistent findings for the other neurometabolites is caused by the lower magnetic field (1-3 Tesla (T)) used by the studies conducted so far, their small sample sizes or a lack of proper control for medication effects. To answer these questions and to further inform the biological underpinning of the symptoms and the cognitive problems at the basis of OCD we need better controlled studies using clear medicated vs unmedicated groups, larger sample sizes, stronger magnetic fields (e.g. at 7 T), and more consistency in the definition of the regions of interest.
Collapse
Affiliation(s)
- Marjan Biria
- Department of Psychology, University of Cambridge, Cambridge, UK.
| | | | - Paula Banca
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Pazuniak M, Pekrul SR. Obsessive-Compulsive Disorder in Autism Spectrum Disorder Across the Lifespan. Psychiatr Clin North Am 2020; 43:745-758. [PMID: 33127006 DOI: 10.1016/j.psc.2020.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Obsessive-compulsive disorder is a relatively common disorder seen in autism spectrum disorder across the lifespan. Many obsessive-compulsive disorder symptoms can present similarly to the core features of autism spectrum disorder and it is often difficult to differentiate between obsessive-compulsive disorder and stereotypic behaviors or restricted interests in autism spectrum disorder. However, there are differences between the 2 disorders. This article is a review of the current literature with the goal of helping the clinician to diagnose and treat obsessive-compulsive disorder in a patient with autism spectrum disorder.
Collapse
Affiliation(s)
- Markian Pazuniak
- Department of Child and Adolescent Psychiatry, University of Maryland Medical Center, 701 West Pratt Street, 2nd Floor, Baltimore, MD 21201, USA
| | - Scott R Pekrul
- Sheppard Pratt Health System, 6501 North Charles Street, Baltimore, MD 21204, USA.
| |
Collapse
|
26
|
Anorexia nervosa, zinc deficiency and the glutamate system: The ketamine option. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109921. [PMID: 32169564 DOI: 10.1016/j.pnpbp.2020.109921] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022]
Abstract
Anorexia nervosa (AN) is a severe, biological brain disorder with significant medical risks and a tenacious development over time. Unfortunately, few treatments show efficacy in people with AN although numerous therapies including pharmacological have been explored. Zinc deficiency has been implicated in AN and zinc is important in a large range of processes in the brain. In particular, it is an allosteric modulator of NMDA receptors - the maintenance of zinc levels within a normal, narrow range is essential for glutamatergic functioning. Chronic zinc deficiency increases neuronal stores of calcium and reduces direct modulation of NMDA receptors which collectively lead to overactivation and upregulation of NMDA receptors. This may facilitate pathologically high levels of glutamate, calcium influx and subsequent excitotoxicity, which can disrupt synaptogenesis and synaptic plasticity. While studies of zinc supplementation in AN have shown some promise, the efficacy of this treatment is limited. This may be due to AN illness chronicity and the significant changes already made, as well as a reduced potency of zinc to inhibit NMDA receptors in a pathological state. Thus, we propose that the safe (at low doses) yet more potent NMDA receptor antagonist, ketamine, may act to normalise a perturbed glutamatergic system and increase synaptogenesis in the short term. This 'kickstart' via ketamine could then allow zinc supplementation and other forms of treatment to enhance recovery in AN.
Collapse
|
27
|
Abstract
Obsessive-compulsive disorder is a relatively common disorder seen in autism spectrum disorder across the lifespan. Many obsessive-compulsive disorder symptoms can present similarly to the core features of autism spectrum disorder and it is often difficult to differentiate between obsessive-compulsive disorder and stereotypic behaviors or restricted interests in autism spectrum disorder. However, there are differences between the 2 disorders. This article is a review of the current literature with the goal of helping the clinician to diagnose and treat obsessive-compulsive disorder in a patient with autism spectrum disorder.
Collapse
|
28
|
Escobar AP, Wendland JR, Chávez AE, Moya PR. The Neuronal Glutamate Transporter EAAT3 in Obsessive-Compulsive Disorder. Front Pharmacol 2019; 10:1362. [PMID: 31803055 PMCID: PMC6872633 DOI: 10.3389/fphar.2019.01362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/28/2019] [Indexed: 01/03/2023] Open
Abstract
Obsessive compulsive disorder (OCD) is a heterogeneous psychiatric disorder affecting 1%–3% of the population worldwide. About half of OCD afflicted individuals do not respond to currently available pharmacotherapy, which is mainly based on serotonin reuptake inhibition. Therefore, there is a critical need to search novel and improved therapeutic targets to treat this devastating disorder. In recent years, accumulating evidence has supported the glutamatergic hypothesis of OCD, and particularly pointing a potential role for the neuronal glutamate transporter EAAT3. This mini-review summarizes recent findings regarding the neurobiological basis of OCD, with an emphasis on the glutamatergic neurotransmission and EAAT3 as a key player in OCD etiology.
Collapse
Affiliation(s)
- Angélica P Escobar
- Centro Interdisciplinario de Neurociencia de Valparaíso CINV, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jens R Wendland
- Centro Interdisciplinario de Neurociencia de Valparaíso CINV, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Andrés E Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso CINV, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo R Moya
- Centro Interdisciplinario de Neurociencia de Valparaíso CINV, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|
29
|
Akkermans SEA, Rheinheimer N, Bruchhage MMK, Durston S, Brandeis D, Banaschewski T, Boecker-Schlier R, Wolf I, Williams SCR, Buitelaar JK, van Rooij D, Oldehinkel M. Frontostriatal functional connectivity correlates with repetitive behaviour across autism spectrum disorder and obsessive-compulsive disorder. Psychol Med 2019; 49:2247-2255. [PMID: 30362446 DOI: 10.1017/s0033291718003136] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD) are neurodevelopmental disorders with considerable overlap in terms of their defining symptoms of compulsivity/repetitive behaviour. Little is known about the extent to which ASD and OCD have common versus distinct neural correlates of compulsivity. Previous research points to potentially common dysfunction in frontostriatal connectivity, but direct comparisons in one study are lacking. Here, we assessed frontostriatal resting-state functional connectivity in youth with ASD or OCD, and healthy controls. In addition, we applied a cross-disorder approach to examine whether repetitive behaviour across ASD and OCD has common neural substrates. METHODS A sample of 78 children and adolescents aged 8-16 years was used (ASD n = 24; OCD n = 25; healthy controls n = 29), originating from the multicentre study COMPULS. We tested whether diagnostic group, repetitive behaviour (measured with the Repetitive Behavior Scale-Revised) or their interaction was associated with resting-state functional connectivity of striatal seed regions. RESULTS No diagnosis-specific differences were detected. The cross-disorder analysis, on the other hand, showed that increased functional connectivity between the left nucleus accumbens (NAcc) and a cluster in the right premotor cortex/middle frontal gyrus was related to more severe symptoms of repetitive behaviour. CONCLUSIONS We demonstrate the fruitfulness of applying a cross-disorder approach to investigate the neural underpinnings of compulsivity/repetitive behaviour, by revealing a shared alteration in functional connectivity in ASD and OCD. We argue that this alteration might reflect aberrant reward or motivational processing of the NAcc with excessive connectivity to the premotor cortex implementing learned action patterns.
Collapse
Affiliation(s)
- Sophie E A Akkermans
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Nicole Rheinheimer
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Muriel M K Bruchhage
- Department of Neuroimaging, King's College London, Institute of Psychiatry, Psychology, and Neuroscience, London, UK
| | - Sarah Durston
- NICHE Lab, Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Regina Boecker-Schlier
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Isabella Wolf
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Steven C R Williams
- Department of Neuroimaging, King's College London, Institute of Psychiatry, Psychology, and Neuroscience, London, UK
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Daan van Rooij
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Marianne Oldehinkel
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Functional EEG connectivity in infants associates with later restricted and repetitive behaviours in autism; a replication study. Transl Psychiatry 2019; 9:66. [PMID: 30718487 PMCID: PMC6361892 DOI: 10.1038/s41398-019-0380-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 08/09/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022] Open
Abstract
We conducted a replication study of our prior report that increased alpha EEG connectivity at 14-months associates with later autism spectrum disorder (ASD) diagnosis, and dimensional variation in restricted interests/repetitive behaviours. 143 infants at high and low familial risk for ASD watched dynamic videos of spinning toys and women singing nursery rhymes while high-density EEG was recorded. Alpha functional connectivity (7-8 Hz) was calculated using the debiased weighted phase lag index. The final sample with clean data included low-risk infants (N = 20), and high-risk infants who at 36 months showed either typical development (N = 47), atypical development (N = 21), or met criteria for ASD (N = 13). While we did not replicate the finding that global EEG connectivity associated with ASD diagnosis, we did replicate the association between higher functional connectivity at 14 months and greater severity of restricted and repetitive behaviours at 36 months in infants who met criteria for ASD. We further showed that this association is strongest for the circumscribed interests subdomain. We propose that structural and/or functional abnormalities in frontal-striatal circuits underlie the observed association. This is the first replicated infant neural predictor of dimensional variation in later ASD symptoms.
Collapse
|
31
|
Zhang H, Zou Y, Lei H. Regional metabolic differences in rat prefrontal cortex measured with in vivo 1 H-MRS correlate with regional histochemical differences. NMR IN BIOMEDICINE 2019; 32:e4024. [PMID: 30376204 DOI: 10.1002/nbm.4024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Many neurological/psychiatric disorders are associated with metabolic abnormalities in the brain observable with in vivo proton MRS (1 H-MRS). The underlying molecular/cellular mechanisms and functional correlations of such metabolic alterations, however, are yet to be understood fully. The rodent prefrontal cortex (PFC) is comprised of multiple sub-regions with distinctive cytoarchitecture and functions, providing a good model system to study the correlations among cerebral metabolism, regional cytoarchitecture and connectivity. In this study, the metabolic profiles in two voxels containing mainly the medial PFC (mPFC) and posterior part of the cingulate cortex (pCG), respectively, were measured with single-voxel in vivo 1 H-MRS in adult male rats. The levels of glutamine synthetase and glutamatergic synaptic proteins, including vesicular glutamate transporter 1, vesicular glutamate transporter 2 (VGLUT2) and post-synaptic density protein 95 (PSD95), as well as the density of astrocytes, in these two regions were also compared semi-quantitatively. It was shown that, relative to the pCG voxel, the mPFC voxel had significantly higher N-acetyl aspartate, glutamate (Glu), glutamine (Gln), Glx (Glu + Gln), myo-inositol and taurine levels. The VGLUT2/PSD95 levels and astrocyte density were also higher in the mPFC voxel than in the pCG voxel. Taken together, these results indicated that regional metabolic variations in the PFC of the adult male rat may reflect regional differences in the density of astrocytes and glutamatergic terminals associated with subcortical projections. The study provided a link between the Glu concentration measured with localized in vivo 1 H-MRS and regional glutamatergic activities/connections in the rat PFC.
Collapse
Affiliation(s)
- Hui Zhang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yijuan Zou
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Hao Lei
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
32
|
Messina A, Monda V, Sessa F, Valenzano A, Salerno M, Bitetti I, Precenzano F, Marotta R, Lavano F, Lavano SM, Salerno M, Maltese A, Roccella M, Parisi L, Ferrentino RI, Tripi G, Gallai B, Cibelli G, Monda M, Messina G, Carotenuto M. Sympathetic, Metabolic Adaptations, and Oxidative Stress in Autism Spectrum Disorders: How Far From Physiology? Front Physiol 2018; 9:261. [PMID: 29623047 PMCID: PMC5874307 DOI: 10.3389/fphys.2018.00261] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/07/2018] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorders (ASD) is a complex and multifaceted neurobehavioral syndrome with no specific cause still identified, despite the worldwide increasing (prevalence for 1,000 children from 6.7 to 14.6, between 2000 and 2012). Many biological and instrumental markers have been suggested as potential predictive factors for the precocious diagnosis during infancy and/or pediatric age. Many studies reported structural and functional abnormalities in the autonomic system in subjects with ASD. Sleep problems in ASD are a prominent feature, having an impact on the social interaction of the patient. Considering the role of orexins (A and B) in wake-sleep circadian rhythm, we could speculate that ASD subjects may present a dysregulation in orexinergic neurotransmission. Conversely, oxidative stress is implicated in the pathophysiology of many neurological disorders. Nonetheless, little is known about the linkage between oxidative stress and the occurrence or the progress of autism and autonomic functioning; some markers, such as heart rate (HR), heart rate variability (HRV), body temperature, and galvanic skin response (GSR), may be altered in the patient with this so complex disorder. In the present paper, we analyzed an autism case report, focusing on the rule of the sympathetic activity with the aim to suggest that it may be considered an important tool in ASD evaluation. The results of this case confirm our hypothesis even if further studies needed.
Collapse
Affiliation(s)
- Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Monica Salerno
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Ilaria Bitetti
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Precenzano
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa Marotta
- Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Francesco Lavano
- Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Serena M Lavano
- Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Margherita Salerno
- Child Neuropsychiatry, Department of Psychology and Pedagogical Sciences, University of Palermo, Palermo, Italy
| | - Agata Maltese
- Child Neuropsychiatry, Department of Psychology and Pedagogical Sciences, University of Palermo, Palermo, Italy
| | - Michele Roccella
- Child Neuropsychiatry, Department of Psychology and Pedagogical Sciences, University of Palermo, Palermo, Italy
| | - Lucia Parisi
- Child Neuropsychiatry, Department of Psychology and Pedagogical Sciences, University of Palermo, Palermo, Italy
| | - Roberta I Ferrentino
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Gabriele Tripi
- Childhood Psychiatric Service for Neurodevelopmentals Disorders, Chinon, France
| | - Beatrice Gallai
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
33
|
Márquez-Gómez R, Robins MT, Gutiérrez-Rodelo C, Arias JM, Olivares-Reyes JA, van Rijn RM, Arias-Montaño JA. Functional histamine H 3 and adenosine A 2A receptor heteromers in recombinant cells and rat striatum. Pharmacol Res 2018; 129:515-525. [PMID: 29217157 PMCID: PMC6429923 DOI: 10.1016/j.phrs.2017.11.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/23/2017] [Accepted: 11/30/2017] [Indexed: 01/02/2023]
Abstract
In the striatum, histamine H3 receptors (H3Rs) are co-expressed with adenosine A2A receptors (A2ARs) in the cortico-striatal glutamatergic afferents and the GABAergic medium-sized spiny neurons that originate the indirect pathway of the basal ganglia. This location allows H3Rs and A2ARs to regulate the striatal GABAergic and glutamatergic transmission. However, whether these receptors can physically interact has not yet been assessed. To test this hypothesis, a heteromer-selective in vitro assay was used to detect functional complementation between a chimeric A2AR302-Gαqi4 and wild-type H3Rs in transfected HEK-293T cells. H3R activation with the agonist RAMH resulted in Ca2+ mobilization (pEC50 7.31 ± 0.23; maximal stimulation, Emax 449 ± 25% of basal) indicative of receptor heterodimerization. Functional H3R-A2AR heteromers were confirmed by co-immunoprecipitation and observations of differential cAMP signaling when both receptors were co-expressed in the same cells. In membranes from rat striatal synaptosomes, H3R activation decreased A2AR affinity for the agonist CGS-21680 (pKi values 8.10 ± 0.04 and 7.70 ± 0.04). Moreover, H3Rs and A2ARs co-immunoprecipitated in protein extracts from striatal synaptosomes. These results support the existence of a H3R-A2AR heteromer with possible physiological implications for the modulation of the intra-striatal transmission.
Collapse
Affiliation(s)
- Ricardo Márquez-Gómez
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav-IPN, Av. IPN 2508, Zacatenco, 07360 Ciudad de México, Mexico.
| | - Meridith T Robins
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Citlaly Gutiérrez-Rodelo
- Departamento de Bioquímica, Cinvestav-IPN, Av. IPN 2508, Zacatenco, 07360 Ciudad de México, Mexico
| | - Juan-Manuel Arias
- Programa de Neurociencias-UIICSE, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, 54090 Estado de México, Mexico
| | | | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav-IPN, Av. IPN 2508, Zacatenco, 07360 Ciudad de México, Mexico
| |
Collapse
|
34
|
Abstract
Obsessive-compulsive disorder (OCD) and Autism spectrum disorder (ASD) are both highly heritable neurodevelopmental disorders that conceivably share genetic risk factors. However, the underlying genetic determinants remain largely unknown. In this work, the authors describe a combined genome-wide association study (GWAS) of ASD and OCD. The OCD dataset includes 2998 individuals in nuclear families. The ASD dataset includes 6898 individuals in case-parents trios. GWAS summary statistics were examined for potential enrichment of functional variants associated with gene expression levels in brain regions. The top ranked SNP is rs4785741 (chromosome 16) with P value=6.9×10-7 in our re-analysis. Polygenic risk score analyses were conducted to investigate the genetic relationship within and across the two disorders. These analyses identified a significant polygenic component of ASD, predicting 0.11% of the phenotypic variance in an independent OCD data set. In addition, we examined the genomic architecture of ASD and OCD by estimating heritability on different chromosomes and different allele frequencies, analyzing genome-wide common variant data by using the Genome-wide Complex Trait Analysis (GCTA) program. The estimated global heritability of OCD is 0.427 (se=0.093) and 0.174 (se=0.053) for ASD in these imputed data.
Collapse
|