1
|
Singh S, Kularia S, Shukla S, Singh M, Kumar M, Sharma AK. A current review on animal models of anti-asthmatic drugs screening. Front Pharmacol 2025; 16:1508460. [PMID: 39981184 PMCID: PMC11841448 DOI: 10.3389/fphar.2025.1508460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025] Open
Abstract
Asthma is a chronic inflammatory respiratory condition characterised by airway constriction, smooth muscle spasm, and severe morbidity. It affects around 300 million people globally, with children being especially vulnerable. Despite its worldwide effect, the invention of innovative asthma medicines has been slow over the last 5 decades, leaving significant unmet requirements in asthma care. Although intriguing medicines have demonstrated efficacy in animal models, many fail to fulfil safety and effectiveness requirements in human trials, highlighting the critical need for more predictive models that better transfer to human results. This comprehensive review investigates the mechanisms and efficacy of anti-asthmatic drugs using both genetic and conventional animal models. Both genetic and traditional models of anti-asthmatic agents, their characteristics, and their significance are summarized as: In-Vitro Animal Models: Histamine receptor assay, Cell Culture Method, WST Assay, Spasmolytic Activity of the Lungs of Guinea Pigs, Airway and Vascular Responses to an Isolated Lung, The Isolated Perfused Guinea Pig Trachea's Reactivity. In-Vivo Models: In vivo small animal models, Broncho Spasmolytic Activity in anaesthetized Guinea Pigs, Guinea Pigs Respiratory and Vascular Dysfunction Caused by Arachidonic Acid or platelet-activated factor (PAF), Guinea Pig Asphyxia Induced by Serotonin Aerosol and Anaphylactic Microshock, Guinea Pigs Under Anaesthesia: Histamine-Induced Bronchoconstriction, Microshock in Rabbits and Pneumotachography in Guinea Pigs, Guinea Pig Bronchial Hyperactivity, Guinea Pig Airway Microvascular Leakage, Mice With Inflammatory Airways. Conclusion: This review focusses on the benefits and limitations of current animal models in asthma research, emphasising the need for more sophisticated, predictive models to decrease translational failures. By critically evaluating these models, the review emphasises their importance in directing anti-asthmatic drug development and highlights the urgent need for innovation to bridge the gap between preclinical success and clinical efficacy.
Collapse
Affiliation(s)
- Shivam Singh
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan, India
| | - Sunita Kularia
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan, India
| | - Shivakshi Shukla
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan, India
| | - Mithilesh Singh
- Department of Pharmaceutical Chemistry, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, India
| | - Manish Kumar
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan, India
| | - Ashish Kumar Sharma
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
2
|
Panettieri RA, Chipps BE, Skolnik N, George M, Murphy K, Lugogo N. The Use of Albuterol/Budesonide as Reliever Therapy to Reduce Asthma Exacerbations. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:882-888. [PMID: 38316182 DOI: 10.1016/j.jaip.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Prevention of asthma exacerbations and reduction of systemic corticosteroid burden remain unmet needs in asthma. US asthma guidelines recommend concomitant short-acting β2-agonist (SABA) and inhaled corticosteroid (ICS) as an alternative reliever at step 2. The Food and Drug Administration approved a pressurized metered-dose inhaler containing albuterol and budesonide for as-needed treatment or prevention of bronchoconstriction and for reducing exacerbation risk in patients with asthma aged ≥18 years. This combination is approved for use as a reliever with or without maintenance therapy, but it is not indicated for maintenance therapy (or for single maintenance and reliever therapy). Intervening with as-needed SABA-ICS during the window of opportunity to reduce inflammation during loss of asthma control can reduce exacerbation risk, by exerting both genomic and nongenomic anti-inflammatory effects. We propose that the use of albuterol-budesonide rather than albuterol as a reliever to manage episodic symptoms driven by acute bronchoconstriction and airway inflammation can improve outcomes. This combination approach, shown to decrease asthma exacerbations and oral corticosteroid burden in patients with moderate-to-severe asthma, represents a paradigm shift for asthma treatment in the United States. Further safety and efficacy studies should provide evidence that this type of reliever should be standard of care.
Collapse
Affiliation(s)
- Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, the State University of New Jersey, New Brunswick, NJ; Child Health Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ
| | - Bradley E Chipps
- Capital Allergy & Respiratory Disease Center, Sacramento, Calif.
| | - Neil Skolnik
- Abington Family Medicine, Jenkintown, Pa; Department of Family and Community Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pa
| | - Maureen George
- Department of Nursing, Columbia University School of Nursing, New York, NY
| | - Kevin Murphy
- Boys Town National Research Hospital, Section of Adult and Pediatric Allergy and Pediatric Pulmonary, Boys Town, Neb
| | - Njira Lugogo
- Michigan Medicine, University of Michigan, Ann Arbor, Mich
| |
Collapse
|
3
|
Ahn S, Maarsingh H, Walker JK, Liu S, Hegde A, Sumajit HC, Kahsai AW, Lefkowitz RJ. Allosteric modulator potentiates β2AR agonist-promoted bronchoprotection in asthma models. J Clin Invest 2023; 133:e167337. [PMID: 37432742 PMCID: PMC10503797 DOI: 10.1172/jci167337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Asthma is a chronic inflammatory disease associated with episodic airway narrowing. Inhaled β2-adrenergic receptor (β2AR) agonists (β2-agonists) promote - with limited efficacy - bronchodilation in asthma. All β2-agonists are canonical orthosteric ligands that bind the same site as endogenous epinephrine. We recently isolated a β2AR-selective positive allosteric modulator (PAM), compound-6 (Cmpd-6), which binds outside of the orthosteric site and modulates orthosteric ligand functions. With the emerging therapeutic potential of G-protein coupled receptor allosteric ligands, we investigated the impact of Cmpd-6 on β2AR-mediated bronchoprotection. Consistent with our findings using human β2ARs, Cmpd-6 allosterically potentiated β2-agonist binding to guinea pig β2ARs and downstream signaling of β2ARs. In contrast, Cmpd-6 had no such effect on murine β2ARs, which lack a crucial amino acid in the Cmpd-6 allosteric binding site. Importantly, Cmpd-6 enhanced β2 agonist-mediated bronchoprotection against methacholine-induced bronchoconstriction in guinea pig lung slices, but - in line with the binding studies - not in mice. Moreover, Cmpd-6 robustly potentiated β2 agonist-mediated bronchoprotection against allergen-induced airway constriction in lung slices obtained from a guinea pig model of allergic asthma. Cmpd-6 similarly enhanced β2 agonist-mediated bronchoprotection against methacholine-induced bronchoconstriction in human lung slices. Our results highlight the potential of β2AR-selective PAMs in the treatment of airway narrowing in asthma and other obstructive respiratory diseases.
Collapse
Affiliation(s)
- Seungkirl Ahn
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Harm Maarsingh
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Julia K.L. Walker
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- School of Nursing, Duke University, Durham, North Carolina, USA
| | - Samuel Liu
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Akhil Hegde
- School of Nursing, Duke University, Durham, North Carolina, USA
| | - Hyeje C. Sumajit
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Alem W. Kahsai
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert J. Lefkowitz
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Biochemistry and
- Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
4
|
Woodrow JS, Sheats MK, Cooper B, Bayless R. Asthma: The Use of Animal Models and Their Translational Utility. Cells 2023; 12:cells12071091. [PMID: 37048164 PMCID: PMC10093022 DOI: 10.3390/cells12071091] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Asthma is characterized by chronic lower airway inflammation that results in airway remodeling, which can lead to a permanent decrease in lung function. The pathophysiology driving the development of asthma is complex and heterogenous. Animal models have been and continue to be essential for the discovery of molecular pathways driving the pathophysiology of asthma and novel therapeutic approaches. Animal models of asthma may be induced or naturally occurring. Species used to study asthma include mouse, rat, guinea pig, cat, dog, sheep, horse, and nonhuman primate. Some of the aspects to consider when evaluating any of these asthma models are cost, labor, reagent availability, regulatory burden, relevance to natural disease in humans, type of lower airway inflammation, biological samples available for testing, and ultimately whether the model can answer the research question(s). This review aims to discuss the animal models most available for asthma investigation, with an emphasis on describing the inciting antigen/allergen, inflammatory response induced, and its translation to human asthma.
Collapse
Affiliation(s)
- Jane Seymour Woodrow
- Department of Clinical Studies, New Bolton Center, College of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA
| | - M Katie Sheats
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Bethanie Cooper
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Rosemary Bayless
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
5
|
Pera T, Loblundo C, Penn RB. Pharmacological Management of Asthma and COPD. COMPREHENSIVE PHARMACOLOGY 2022:762-802. [DOI: 10.1016/b978-0-12-820472-6.00095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Clemente GS, Antunes IF, Kurhade S, van den Berg MPM, Sijbesma JWA, van Waarde A, Buijsman RC, Willemsen-Seegers N, Gosens R, Meurs H, Dömling A, Elsinga PH. Mapping Arginase Expression with 18F-Fluorinated Late-Generation Arginase Inhibitors Derived from Quaternary α-Amino Acids. J Nucl Med 2021; 62:1163-1170. [PMID: 33712529 DOI: 10.2967/jnumed.120.255968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Arginase hydrolyzes L-arginine and influences levels of polyamines and nitric oxide. Arginase overexpression is associated with inflammation and tumorigenesis. Thus, radiolabeled arginase inhibitors may be suitable PET tracers for staging arginase-related pathophysiologies. We report the synthesis and evaluation of 2 radiolabeled arginase inhibitors, 18F-FMARS and 18F-FBMARS, developed from α-substituted-2-amino-6-boronohexanoic acid derivatives. Methods: Arylboronic ester-derived precursors were radiolabeled via copper-mediated fluorodeboronation. Binding assays using arginase-expressing PC3 and LNCaP cells were performed. Autoradiography of lung sections from a guinea pig model of asthma overexpressing arginase and dynamic small-animal PET imaging with PC3-xenografted mice evaluated the radiotracers' specific binding and pharmacokinetics. Results:18F-fluorinated compounds were obtained with radiochemical yields of up to 5% (decay-corrected) and an average molar activity of 53 GBq⋅μmol-1 Cell and lung section experiments indicated specific binding that was blocked up to 75% after pretreatment with arginase inhibitors. Small-animal PET studies indicated fast clearance of the radiotracers (7.3 ± 0.6 min), arginase-mediated uptake, and a selective tumor accumulation (SUV, 3.0 ± 0.7). Conclusion: The new 18F-fluorinated arginase inhibitors have the potential to map increased arginase expression related to inflammatory and tumorigenic processes. 18F-FBMARS showed the highest arginase-mediated uptake in PET imaging and a significant difference between uptake in control and arginase-inhibited PC3 xenografted mice. These results encourage further research to examine the suitability of 18F-FBMARS for selecting patients for treatments with arginase inhibitors.
Collapse
Affiliation(s)
- Gonçalo S Clemente
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Inês F Antunes
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Santosh Kurhade
- Department of Drug Design, University of Groningen, Groningen, The Netherlands
| | | | - Jürgen W A Sijbesma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rogier C Buijsman
- Netherlands Translational Research Center B.V., Oss, The Netherlands
| | | | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; and
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; and
| | - Alexander Dömling
- Department of Drug Design, University of Groningen, Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
| |
Collapse
|
7
|
Sharma V, Hecker N, Walther F, Stuckas H, Hiller M. Convergent Losses of TLR5 Suggest Altered Extracellular Flagellin Detection in Four Mammalian Lineages. Mol Biol Evol 2021; 37:1847-1854. [PMID: 32145026 DOI: 10.1093/molbev/msaa058] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptors (TLRs) play an important role for the innate immune system by detecting pathogen-associated molecular patterns. TLR5 encodes the major extracellular receptor for bacterial flagellin and frequently evolves under positive selection, consistent with coevolutionary arms races between the host and pathogens. Furthermore, TLR5 is inactivated in several vertebrates and a TLR5 stop codon polymorphism is widespread in human populations. Here, we analyzed the genomes of 120 mammals and discovered that TLR5 is convergently lost in four independent lineages, comprising guinea pigs, Yangtze river dolphin, pinnipeds, and pangolins. Validated inactivating mutations, absence of protein-coding transcript expression, and relaxed selection on the TLR5 remnants confirm these losses. PCR analysis further confirmed the loss of TLR5 in the pinniped stem lineage. Finally, we show that TLR11, encoding a second extracellular flagellin receptor, is also absent in these four lineages. Independent losses of TLR5 and TLR11 suggest that a major pathway for detecting flagellated bacteria is not essential for different mammals and predicts an impaired capacity to sense extracellular flagellin.
Collapse
Affiliation(s)
- Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,CRTD-DFG Center for Regenerative Therapies Dresden, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden; German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| | - Felix Walther
- Senckenberg Natural History Collections Dresden, Senckenberg - Leibniz Institution for Biodiversity and Earth System Research, Dresden, Germany
| | - Heiko Stuckas
- Senckenberg Natural History Collections Dresden, Senckenberg - Leibniz Institution for Biodiversity and Earth System Research, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| |
Collapse
|
8
|
van den Berg MPM, Nijboer-Brinksma S, Bos IST, van den Berge M, Lamb D, van Faassen M, Kema IP, Gosens R, Kistemaker LEM. The novel TRPA1 antagonist BI01305834 inhibits ovalbumin-induced bronchoconstriction in guinea pigs. Respir Res 2021; 22:48. [PMID: 33557843 PMCID: PMC7871391 DOI: 10.1186/s12931-021-01638-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Background Asthma is a chronic respiratory disease in which the nervous system plays a central role. Sensory nerve activation, amongst others via Transient Receptor Potential Ankyrin 1 (TRPA1) channels, contributes to asthma characteristics including cough, bronchoconstriction, mucus secretion, airway hyperresponsiveness (AHR) and inflammation. In the current study, we evaluated the efficacy of the novel TRPA1 antagonist BI01305834 against AHR and inflammation in guinea-pig models of asthma. Methods First, a pilot study was performed in a guinea-pig model of allergic asthma to find the optimal dose of BI01305834. Next, the effect of BI01305834 on (1) AHR to inhaled histamine after the early and late asthmatic reaction (EAR and LAR), (2) magnitude of EAR and LAR and (3) airway inflammation was assessed. Precision-cut lung slices and trachea strips were used to investigate the bronchoprotective and bronchodilating-effect of BI01305834. Statistical evaluation of differences of in vivo data was performed using a Mann–Whitney U test or One-way nonparametric Kruskal–Wallis ANOVA, for ex vivo data One- or Two-way ANOVA was used, all with Dunnett’s post-hoc test where appropriate. Results A dose of 1 mg/kg BI01305834 was selected based on AHR and exposure data in blood samples from the pilot study. In the subsequent study, 1 mg/kg BI01305834 inhibited AHR after the EAR, and the development of EAR and LAR elicited by ovalbumin in ovalbumin-sensitized guinea pigs. BI01305834 did not inhibit allergen-induced total and differential cells in the lavage fluid and interleukin-13 gene expression in lung homogenates. Furthermore, BI01305834 was able to inhibit allergen and histamine-induced airway narrowing in guinea-pig lung slices, without affecting histamine release, and reverse allergen-induced bronchoconstriction in guinea-pig trachea strips. Conclusions TRPA1 inhibition protects against AHR and the EAR and LAR in vivo and allergen and histamine-induced airway narrowing ex vivo, and reverses allergen-induced bronchoconstriction independently of inflammation. This effect was partially dependent upon histamine, suggesting a neuronal and possible non-neuronal role for TRPA1 in allergen-induced bronchoconstriction.
Collapse
Affiliation(s)
- Mariska P M van den Berg
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Susan Nijboer-Brinksma
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - I Sophie T Bos
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - David Lamb
- Immunology + Respiratory, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands. .,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
Back to the future: re-establishing guinea pig in vivo asthma models. Clin Sci (Lond) 2020; 134:1219-1242. [PMID: 32501497 DOI: 10.1042/cs20200394] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022]
Abstract
Research using animal models of asthma is currently dominated by mouse models. This has been driven by the comprehensive knowledge on inflammatory and immune reactions in mice, as well as tools to produce genetically modified mice. Many of the identified therapeutic targets influencing airway hyper-responsiveness and inflammation in mouse models, have however been disappointing when tested clinically in asthma. It is therefore a great need for new animal models that more closely resemble human asthma. The guinea pig has for decades been used in asthma research and a comprehensive table of different protocols for asthma models is presented. The studies have primarily been focused on the pharmacological aspects of the disease, where the guinea pig undoubtedly is superior to mice. Further reasons are the anatomical and physiological similarities between human and guinea pig airways compared with that of the mouse, especially with respect to airway branching, neurophysiology, pulmonary circulation and smooth muscle distribution, as well as mast cell localization and mediator secretion. Lack of reagents and specific molecular tools to study inflammatory and immunological reactions in the guinea pig has however greatly diminished its use in asthma research. The aim in this position paper is to review and summarize what we know about different aspects of the use of guinea pig in vivo models for asthma research. The associated aim is to highlight the unmet needs that have to be addressed in the future.
Collapse
|
10
|
van den Berg MPM, Kurhade SH, Maarsingh H, Erceg S, Hulsbeek IR, Boekema PH, Kistemaker LEM, van Faassen M, Kema IP, Elsinga PH, Dömling A, Meurs H, Gosens R. Pharmacological Screening Identifies SHK242 and SHK277 as Novel Arginase Inhibitors with Efficacy against Allergen-Induced Airway Narrowing In Vitro and In Vivo. J Pharmacol Exp Ther 2020; 374:62-73. [PMID: 32269169 DOI: 10.1124/jpet.119.264341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/31/2020] [Indexed: 02/02/2023] Open
Abstract
Arginase is a potential target for asthma treatment. However, there are currently no arginase inhibitors available for clinical use. Here, a novel class of arginase inhibitors was synthesized, and their efficacy was pharmacologically evaluated. The reference compound 2(S)-amino-6-boronohexanoic acid (ABH) and >200 novel arginase inhibitors were tested for their ability to inhibit recombinant human arginase 1 and 2 in vitro. The most promising compounds were separated as enantiomers. Enantiomer pairs SHK242 and SHK243, and SHK277 and SHK278 were tested for functional efficacy by measuring their effect on allergen-induced airway narrowing in lung slices of ovalbumin-sensitized guinea pigs ex vivo. A guinea pig model of acute allergic asthma was used to examine the effect of the most efficacious enantiopure arginase inhibitors on allergen-induced airway hyper-responsiveness (AHR), early and late asthmatic reactions (EAR and LAR), and airway inflammation in vivo. The novel compounds were efficacious in inhibiting arginase 1 and 2 in vitro. The enantiopure SHK242 and SHK277 fully inhibited arginase activity, with IC50 values of 3.4 and 10.5 μM for arginase 1 and 2.9 and 4.0 µM for arginase 2, respectively. Treatment of slices with ABH or novel compounds resulted in decreased ovalbumin-induced airway narrowing compared with control, explained by increased local nitric oxide production in the airway. In vivo, ABH, SHK242, and SHK277 protected against allergen-induced EAR and LAR but not against AHR or lung inflammation. We have identified promising novel arginase inhibitors for the potential treatment of allergic asthma that were able to protect against allergen-induced early and late asthmatic reactions. SIGNIFICANCE STATEMENT: Arginase is a potential drug target for asthma treatment, but currently there are no arginase inhibitors available for clinical use. We have identified promising novel arginase inhibitors for the potential treatment of allergic asthma that were able to protect against allergen-induced early and late asthmatic reactions. Our new inhibitors show protective effects in reducing airway narrowing in response to allergens and reductions in the early and late asthmatic response.
Collapse
Affiliation(s)
- M P M van den Berg
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - S H Kurhade
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - H Maarsingh
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - S Erceg
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - I R Hulsbeek
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - P H Boekema
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - L E M Kistemaker
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - M van Faassen
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - I P Kema
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - P H Elsinga
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - A Dömling
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - H Meurs
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - R Gosens
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| |
Collapse
|
11
|
Liao X, Zhang WH, Ge Q. A cage-like supramolecular draw solute that promotes forward osmosis for wastewater remediation and source recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Koziol-White C, Johnstone TB, Corpuz ML, Cao G, Orfanos S, Parikh V, Deeney B, Tliba O, Ostrom RS, Dainty I, Panettieri RA. Budesonide enhances agonist-induced bronchodilation in human small airways by increasing cAMP production in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2019; 318:L345-L355. [PMID: 31747297 DOI: 10.1152/ajplung.00393.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The nongenomic mechanisms by which glucocorticoids modulate β2 agonist-induced-bronchodilation remain elusive. Our studies aimed to elucidate mechanisms mediating the beneficial effects of glucocorticoids on agonist-induced bronchodilation. Utilizing human precision-cut lung slices (hPCLS), we measured bronchodilation to formoterol, prostaglandin E2 (PGE2), cholera toxin (CTX), or forskolin in the presence and absence of budesonide. Using cultured human airway smooth muscle (HASM), intracellular cAMP was measured in live cells following exposure to formoterol, PGE2, or forskolin in the presence or absence of budesonide. We showed that simultaneous budesonide administration amplified formoterol-induced bronchodilation and attenuated agonist-induced phosphorylation of myosin light chain, a necessary signaling event mediating force generation. In parallel studies, cAMP levels were augmented by simultaneous exposure of HASM cells to formoterol and budesonide. Budesonide, fluticasone, and prednisone alone rapidly increased cAMP levels, but steroids alone had little effect on bronchodilation in hPCLS. Bronchodilation induced by PGE2, CTX, or forskolin was also augmented by simultaneous exposure to budesonide in hPCLS. Furthermore, HASM cells expressed membrane-bound glucocorticoid receptors that failed to translocate with glucocorticoid stimulation and that potentially mediated the rapid effects of steroids on β2 agonist-induced bronchodilation. Knockdown of glucocorticoid receptor-α had little effect on budesonide-induced and steroid-dependent augmentation of formoterol-induced cAMP generation in HASM. Collectively, these studies suggest that glucocorticoids amplify cAMP-dependent bronchodilation by directly increasing cAMP levels. These studies identify a molecular mechanism by which the combination of glucocorticoids and β2 agonists may augment bronchodilation in diseases such as asthma or chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Cynthia Koziol-White
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Timothy B Johnstone
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Maia L Corpuz
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Sarah Orfanos
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Vishal Parikh
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Brian Deeney
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Ian Dainty
- Bioscience, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
13
|
Kertys M, Grendar M, Kosutova P, Mokra D, Mokry J. Plasma based targeted metabolomic analysis reveals alterations of phosphatidylcholines and oxidative stress markers in guinea pig model of allergic asthma. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165572. [PMID: 31672552 DOI: 10.1016/j.bbadis.2019.165572] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 01/03/2023]
Abstract
Bronchial asthma is one of the most common, chronic respiratory diseases, characterized by reversible airway obstruction, eosinophil and Th2 infiltration, airway hyperresponsiveness and airway remodelling; with many cells and mediators involved. Metabolomics is a relatively new field in "omics" sciences enabling the identification of metabolome for better diagnostics and studying of diseases phenotype. The aim of this study was to investigate the role of targeted metabolomics study for better understanding of the bronchial asthma pathophysiology and finding potential biomarkers in experimental models of eosinophilic inflammation. Plasma level of 185 metabolites was measured with the AbsoluteIDQ™ p180 kit in guinea pigs with experimentally-induced allergic inflammation (n = 15) compared to naïve non-sensitised and non-challenged controls (n = 18). Of the 185 metabolites identified in plasma, 22 were significantly different and changed in ovalbumin sensitised animals. Plasma level of 13 phosphatidylcholines with saturated and unsaturated long-chain fatty acids, total phosphatidylcholines count, carnitine, symmetric dimethylarginine and its ratio to total unmodified arginine, and kynurenine to tryptophan ratio were found to be decreased, while phospholipase A2 activity indicator, tryptophan, taurine and ratio of methionine sulfoxide to unmodified methionine were found to be increased in sensitised guinea pigs compared to naïve controls. Targeted metabolomic analysis revealed significant differences in plasma metabolome of sensitised guinea pigs. Our observations point to the activation of inflammatory and immune pathways, as well as the involvement of oxidative stress.
Collapse
Affiliation(s)
- Martin Kertys
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Marian Grendar
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Petra Kosutova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
14
|
Lindsay CD, Timperley CM. TRPA1 and issues relating to animal model selection for extrapolating toxicity data to humans. Hum Exp Toxicol 2019; 39:14-36. [PMID: 31578097 DOI: 10.1177/0960327119877460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) ion channel is a sensor for irritant chemicals, has ancient lineage, and is distributed across animal species including humans, where it features in many organs. Its activation by a diverse panel of electrophilic molecules (TRPA1 agonists) through electrostatic binding and/or covalent attachment to the protein causes the sensation of pain. This article reviews the species differences between TRPA1 channels and their responses, to assess the suitability of different animals to model the effects of TRPA1-activating electrophiles in humans, referring to common TRPA1 activators (exogenous and endogenous) and possible mechanisms of action relating to their toxicology. It concludes that close matching of in vitro and in vivo models will help optimise the identification of relevant biochemical and physiological responses to benchmark the efficacy of potential therapeutic drugs, including TRPA1 antagonists, to counter the toxic effects of those electrophiles capable of harming humans. The analysis of the species issue provided should aid the development of medical treatments to counter poisoning by such chemicals.
Collapse
Affiliation(s)
- C D Lindsay
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory (Dstl), Salisbury, UK
| | - C M Timperley
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory (Dstl), Salisbury, UK
| |
Collapse
|
15
|
Ferko B, Romanova J, Rydlovskaya AV, Kromova TA, Proskurina OV, Amelina AN, Schmutz H, Renner A, Nebolsin VE. A Novel Oral Glutarimide Derivative XC8 Suppresses Sephadex-Induced Lung Inflammation in Rats and Ovalbumin-induced Acute and Chronic Asthma in Guinea Pigs. Curr Pharm Biotechnol 2019; 20:146-156. [PMID: 30767739 DOI: 10.2174/1389201020666190215103505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/11/2018] [Accepted: 02/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Corticosteroids are the preferred option to treat asthma, however, they possess serious side effects and are inefficient in 10% of patients. Thus, new therapeutic approaches for asthma treatment are required. OBJECTIVE To study the efficacy of a novel glutarimide derivative XC8 in a Sephadex-induced lung inflammation in rats as well as in acute and chronic ovalbumin-induced allergic asthma in guinea pigs. METHOD Rats were treated with 0.18-18 mg/kg of XC8 intragastrically 4 times (24 h and 1 h prior to and 24 h and 45 h after endotracheal administration of Sephadex). The number of inflammatory cells in bronchoalveaolar lavages (BAL) was determined. Guinea pigs were treated with 0.045 -1.4 mg/kg (acute asthma) or with 1.4 and 7.0 mg/kg of XC8 (chronic asthma) intragastrically following the sensitization with ovalbumin and during aerosol challenge. Lung inflammation, numbers of eosinophils (BAL and lung tissue), goblet cells, degranulating mast cells and specific airway resistance (sRAW) were determined. The comparator steroid drug budesonide (0.5 mg/kg for rats and 0.16 mg/kg for guinea pigs) was administered by inhalation. RESULTS XC8 reduced influx of eosinophils into BAL in Sephadex-induced lung inflammation model in rats (by 2.6-6.4 times). Treatment of acute asthma in guinea pigs significantly reduced eosinophils in guinea pigs in BAL (from 55% to 30%-39% of the total cell count) and goblet cells in lung tissue. In a model of acute and chronic asthma, XC8 reduced significantly the number of eosinophils and degranulating mast cells in the lung tissue. Treatment with XC8 but not with budesonide decreased the specific airway resistance in acute and chronic asthma model up to the level of naive animals. CONCLUSION XC8 induced a profound anti-inflammatory effect by reducing eosinophils in BAL and eosinophils and degranulating mast cell numbers in the airway tissue. The anti-asthmatic effect of XC8 is comparable to that of budesonide. Moreover, in contrast to budesonide, XC8 was capable to reduce goblet cells and airway resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andreas Renner
- Karl Landsteiner Institute for Clinical and Experimental Pneumology, Hietzing Hospital, Vienna, Austria
| | | |
Collapse
|
16
|
Panettieri RA, Schaafsma D, Amrani Y, Koziol-White C, Ostrom R, Tliba O. Non-genomic Effects of Glucocorticoids: An Updated View. Trends Pharmacol Sci 2018; 40:38-49. [PMID: 30497693 DOI: 10.1016/j.tips.2018.11.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/09/2018] [Accepted: 11/01/2018] [Indexed: 01/01/2023]
Abstract
Glucocorticoid (GC) anti-inflammatory effects generally require a prolonged onset of action and involve genomic processes. Because of the rapidity of some of the GC effects, however, the concept that non-genomic actions may contribute to GC mechanisms of action has arisen. While the mechanisms have not been completely elucidated, the non-genomic effects may play a role in the management of inflammatory diseases. For instance, we recently reported that GCs 'rapidly' enhanced the effects of bronchodilators, agents used in the treatment of allergic asthma. In this review article, we discuss (i) the non-genomic effects of GCs on pathways relevant to the pathogenesis of inflammatory diseases and (ii) the putative role of the membrane GC receptor. Since GC side effects are often considered to be generated through its genomic actions, understanding GC non-genomic effects will help design GCs with a better therapeutic index.
Collapse
Affiliation(s)
- Reynold A Panettieri
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA
| | | | - Yassine Amrani
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester Biomedical Research Center Respiratory, Leicester, UK
| | - Cynthia Koziol-White
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA
| | - Rennolds Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA.
| |
Collapse
|
17
|
Nally JE, Schuller S. Proteomic Analysis of Lung Tissue by DIGE. Methods Mol Biol 2018; 1664:167-183. [PMID: 29019133 DOI: 10.1007/978-1-4939-7268-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lungs perform an essential physiological function, mediated by a complex series of events that involve the coordination of multiple cell types to support not only gaseous exchange, but homeostasis and protection from infection. Guinea pigs are an important animal disease model for a number of infectious and noninfectious pulmonary conditions and the availability of a complete genome facilitates comprehensive analysis of tissues using the tools of proteomics. Here, we describe the application of 2-D Difference Gel Electrophoresis (DIGE) to compare, quantify, and identify differential protein expression of proteins in lung tissue from guinea pigs with leptospiral pulmonary hemorrhage syndrome (LPHS) compared to noninfected controls. 2-D DIGE is a powerful technique that provides novel insights into the dynamics of the complex lung proteome during health and disease.
Collapse
Affiliation(s)
- Jarlath E Nally
- Infectious Bacterial Diseases, National Animal Disease Center-USDA-ARS, 1920 Dayton Avenue, Ames, IA, 50010, USA.
| | - Simone Schuller
- Division of Small Animal Internal Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Länggassstr. 128, 3012, Bern, Switzerland
| |
Collapse
|
18
|
Prakash YS, Halayko AJ, Gosens R, Panettieri RA, Camoretti-Mercado B, Penn RB. An Official American Thoracic Society Research Statement: Current Challenges Facing Research and Therapeutic Advances in Airway Remodeling. Am J Respir Crit Care Med 2017; 195:e4-e19. [PMID: 28084822 DOI: 10.1164/rccm.201611-2248st] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Airway remodeling (AR) is a prominent feature of asthma and other obstructive lung diseases that is minimally affected by current treatments. The goals of this Official American Thoracic Society (ATS) Research Statement are to discuss the scientific, technological, economic, and regulatory issues that deter progress of AR research and development of therapeutics targeting AR and to propose approaches and solutions to these specific problems. This Statement is not intended to provide clinical practice recommendations on any disease in which AR is observed and/or plays a role. METHODS An international multidisciplinary group from within academia, industry, and the National Institutes of Health, with expertise in multimodal approaches to the study of airway structure and function, pulmonary research and clinical practice in obstructive lung disease, and drug discovery platforms was invited to participate in one internet-based and one face-to-face meeting to address the above-stated goals. Although the majority of the analysis related to AR was in asthma, AR in other diseases was also discussed and considered in the recommendations. A literature search of PubMed was performed to support conclusions. The search was not a systematic review of the evidence. RESULTS Multiple conceptual, logistical, economic, and regulatory deterrents were identified that limit the performance of AR research and impede accelerated, intensive development of AR-focused therapeutics. Complementary solutions that leverage expertise of academia and industry were proposed to address them. CONCLUSIONS To date, numerous factors related to the intrinsic difficulty in performing AR research, and economic forces that are disincentives for the pursuit of AR treatments, have thwarted the ability to understand AR pathology and mechanisms and to address it clinically. This ATS Research Statement identifies potential solutions for each of these factors and emphasizes the importance of educating the global research community as to the extent of the problem as a critical first step in developing effective strategies for: (1) increasing the extent and impact of AR research and (2) developing, testing, and ultimately improving drugs targeting AR.
Collapse
|
19
|
Han B, Poppinga WJ, Zuo H, Zuidhof AB, Bos IST, Smit M, Vogelaar P, Krenning G, Henning RH, Maarsingh H, Halayko AJ, van Vliet B, Stienstra S, Graaf ACVD, Meurs H, Schmidt M. The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease. Sci Rep 2016; 6:26928. [PMID: 27229886 PMCID: PMC4882609 DOI: 10.1038/srep26928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/11/2016] [Indexed: 12/15/2022] Open
Abstract
COPD is characterized by persistent airflow limitation, neutrophilia and oxidative stress from endogenous and exogenous insults. Current COPD therapy involving anticholinergics, β2-adrenoceptor agonists and/or corticosteroids, do not specifically target oxidative stress, nor do they reduce chronic pulmonary inflammation and disease progression in all patients. Here, we explore the effects of Sul-121, a novel compound with anti-oxidative capacity, on hyperresponsiveness (AHR) and inflammation in experimental models of COPD. Using a guinea pig model of lipopolysaccharide (LPS)-induced neutrophilia, we demonstrated that Sul-121 inhalation dose-dependently prevented LPS-induced airway neutrophilia (up to ~60%) and AHR (up to ~90%). Non-cartilaginous airways neutrophilia was inversely correlated with blood H2S, and LPS-induced attenuation of blood H2S (~60%) was prevented by Sul-121. Concomitantly, Sul-121 prevented LPS-induced production of the oxidative stress marker, malondialdehyde by ~80%. In immortalized human airway smooth muscle (ASM) cells, Sul-121 dose-dependently prevented cigarette smoke extract-induced IL-8 release parallel with inhibition of nuclear translocation of the NF-κB subunit, p65 (each ~90%). Sul-121 also diminished cellular reactive oxygen species production in ASM cells, and inhibited nuclear translocation of the anti-oxidative response regulator, Nrf2. Our data show that Sul-121 effectively inhibits airway inflammation and AHR in experimental COPD models, prospectively through inhibition of oxidative stress.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antioxidants/pharmacology
- Cell Line, Transformed
- Chromans/chemistry
- Chromans/pharmacology
- Complex Mixtures/antagonists & inhibitors
- Complex Mixtures/pharmacology
- Disease Models, Animal
- Gene Expression Regulation
- Guinea Pigs
- Humans
- Hydrogen Sulfide/agonists
- Hydrogen Sulfide/blood
- Hypersensitivity/etiology
- Hypersensitivity/immunology
- Hypersensitivity/metabolism
- Hypersensitivity/prevention & control
- Inflammation
- Interleukin-8/antagonists & inhibitors
- Interleukin-8/genetics
- Interleukin-8/immunology
- Lipopolysaccharides/administration & dosage
- Lung
- Male
- Malondialdehyde/antagonists & inhibitors
- Malondialdehyde/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/pathology
- NF-E2-Related Factor 2/antagonists & inhibitors
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/immunology
- Neutrophils/drug effects
- Neutrophils/immunology
- Neutrophils/pathology
- Oxidative Stress
- Piperazines/chemistry
- Piperazines/pharmacology
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/immunology
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Reactive Oxygen Species/antagonists & inhibitors
- Reactive Oxygen Species/metabolism
- Tars/chemistry
- Tars/toxicity
- Transcription Factor RelA/antagonists & inhibitors
- Transcription Factor RelA/genetics
- Transcription Factor RelA/immunology
Collapse
Affiliation(s)
- Bing Han
- University of Groningen, Department of Molecular Pharmacology, Groningen, the Netherlands
- GRIAC research institute, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Wilfred J. Poppinga
- University of Groningen, Department of Molecular Pharmacology, Groningen, the Netherlands
- GRIAC research institute, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Haoxiao Zuo
- University of Groningen, Department of Molecular Pharmacology, Groningen, the Netherlands
- GRIAC research institute, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Annet B. Zuidhof
- University of Groningen, Department of Molecular Pharmacology, Groningen, the Netherlands
| | - I. Sophie T. Bos
- University of Groningen, Department of Molecular Pharmacology, Groningen, the Netherlands
| | - Marieke Smit
- University of Groningen, Department of Molecular Pharmacology, Groningen, the Netherlands
| | | | - Guido Krenning
- University of Groningen, University Medical Center Groningen, Dept. Pathology and Medical Biology, Laboratory for Cardiovascular Regenerative Medicine, Groningen, the Netherlands
| | - Robert H. Henning
- University of Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - Harm Maarsingh
- Palm Beach Atlantic University, Lloyd L. Gregory School of Pharmacy, Department of Pharmaceutical Sciences, West Palm Beach, FL, USA
| | - Andrew J. Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | - Herman Meurs
- University of Groningen, Department of Molecular Pharmacology, Groningen, the Netherlands
- GRIAC research institute, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Martina Schmidt
- University of Groningen, Department of Molecular Pharmacology, Groningen, the Netherlands
- GRIAC research institute, University of Groningen, University Medical Center Groningen, the Netherlands
| |
Collapse
|
20
|
Parilova OO, Shandrenko SG. INTERCONNECTION BETWEEN NITRIC OXIDE FORMATION AND HYPERSENSITIVITY PARAMETERS UNDER GUINEA PIG MODEL OF ACUTE ASTHMA WITH MULTIPLE CHALLENGES. UKRAINIAN BIOCHEMICAL JOURNAL 2016; 87:113-23. [PMID: 26717602 DOI: 10.15407/ubj87.05.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An immunoregulatory role of nitric oxide (NO) in the development of adaptive immune responses associated with allergic diseases is very important. The present study extended these observations by the examination of the reciprocal changes in characteristic immunologic parameters of the disease and NO level of bronchoalveolar lavage (BAL) cells under guinea pig model of acute asthma with multiple challenges. Development of guinea pig Th2 mediated asthma was accompanied by increasing the level of allergic markers: ovalbumin (OVA) specific IgG and IL-4. We demonstrated that the infiltrate of airway cells contributes to NO synthesis in the respiratory tract during allergic inflammation. The level of intracellular NO formation significantly correlated with plasma allergen specific IgG value in OVA-induced asthma. The presented data evidence that the elevated intracellular NO level in BAL fluid may reflect a nitrosative stress in respiratory tract in general, when allergic asthma exacerbation is present.
Collapse
|
21
|
Kistemaker LEM, Bos IST, Menzen MH, Maarsingh H, Meurs H, Gosens R. Combination therapy of tiotropium and ciclesonide attenuates airway inflammation and remodeling in a guinea pig model of chronic asthma. Respir Res 2016; 17:13. [PMID: 26846267 PMCID: PMC4743207 DOI: 10.1186/s12931-016-0327-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/24/2016] [Indexed: 12/18/2022] Open
Abstract
Background The long-acting anticholinergic tiotropium has recently been registered for the treatment of asthma, and its use is associated with a reduction in exacerbation frequency. Anti-inflammatory and anti-remodeling effects of tiotropium have been demonstrated in in vitro and in vivo models. Because tiotropium treatment is used in combination with inhaled corticosteroids, potential additive effects between the two would be clinically relevant. Therefore, the aim of this study was to investigate additive effects between tiotropium and ciclesonide on airway inflammation and remodeling in guinea pig models of asthma. Methods Guinea pigs (n = 3–8/group) were sensitized and challenged with ovalbumin in an acute (single challenge) and a chronic model (12 weekly challenges) of allergic asthma. Animals were treated with vehicle, nebulized tiotropium (0.01–0.3 mM) and/or intranasally instilled ciclesonide (0.001–1 mg/kg) before each challenge. Bronchoalveolar lavage fluid and lungs were collected for analysis of airway inflammation and remodeling. Results Tiotropium and ciclesonide treatment, alone or in combination, did not inhibit airway inflammation in the acute asthma model. In a dose-finding study, low doses of tiotropium and ciclesonide inhibited airway eosinophilia and airway smooth muscle thickening in the chronic asthma model. Threshold doses of 0.01 mM tiotropium (nebulizer concentration) and 0.01 mg/kg ciclesonide were selected to investigate potential additive effects between both drugs. At these doses, tiotropium and ciclesonide did not inhibit airway eosinophilia or airway smooth muscle thickening when administered alone, but significantly inhibited these allergen-induced responses when administered in combination. Conclusions Combined treatment with low doses of tiotropium and ciclesonide inhibits airway inflammation and remodeling in a guinea pig model of chronic asthma, suggesting that combined treatment with anticholinergics and corticosteroids may have anti-inflammatory and anti-remodeling activity in allergic airway diseases. Since tiotropium is registered as a therapy for asthma added on to corticosteroid treatment, these beneficial effects of the combination therapy may be clinically relevant. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0327-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands. .,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - I Sophie T Bos
- Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mark H Menzen
- Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harm Maarsingh
- Department of Pharmaceutical Sciences, Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, USA
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Schuller S, Sergeant K, Renaut J, Callanan JJ, Scaife C, Nally JE. Comparative proteomic analysis of lung tissue from guinea pigs with leptospiral pulmonary haemorrhage syndrome (LPHS) reveals a decrease in abundance of host proteins involved in cytoskeletal and cellular organization. J Proteomics 2015; 122:55-72. [PMID: 25818725 DOI: 10.1016/j.jprot.2015.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/20/2015] [Accepted: 03/08/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED Leptospiral pulmonary haemorrhage syndrome (LPHS) is a particularly severe form of leptospirosis. LPHS is increasingly recognized in both humans and animals and is characterized by rapidly progressive intra-alveolar haemorrhage leading to high mortality. The pathogenic mechanisms of LPHS are poorly understood which hampers the application of effective treatment regimes. In this study a 2-D guinea pig proteome lung map was created and used to investigate the pathogenic mechanisms of LPHS. Comparison of lung proteomes from infected and non-infected guinea pigs via differential in-gel electrophoresis revealed highly significant differences in abundance of proteins contained in 130 spots. Acute phase proteins were the largest functional group amongst proteins with increased abundance in LPHS lung tissue, and likely reflect a local and/or systemic host response to infection. The observed decrease in abundance of proteins involved in cytoskeletal and cellular organization in LPHS lung tissue further suggests that infection with pathogenic Leptospira induces changes in the abundance of host proteins involved in cellular architecture and adhesion contributing to the dramatically increased alveolar septal wall permeability seen in LPHS. BIOLOGICAL SIGNIFICANCE The recent completion of the complete genome sequence of the guinea pig (Cavia porcellus) provides innovative opportunities to apply proteomic technologies to an important animal model of disease. In this study, the comparative proteomic analysis of lung tissue from experimentally infected guinea pigs with leptospiral pulmonary haemorrhage syndrome (LPHS) revealed a decrease in abundance of proteins involved in cellular architecture and adhesion, suggesting that loss or down-regulation of cytoskeletal and adhesion molecules plays an important role in the pathogenesis of LPHS. A publically available guinea pig lung proteome map was constructed to facilitate future pulmonary proteomics in this species.
Collapse
Affiliation(s)
- Simone Schuller
- University College Dublin, School of Veterinary Medicine, Belfield, Dublin 4, Ireland; Vetsuisse Faculty University of Bern, Länggassstrasse 128, 3012 Bern, Switzerland.
| | - Kjell Sergeant
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation" (ERIN) department, 41, rue du Brill, 4422 Belvaux, Luxembourg
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation" (ERIN) department, 41, rue du Brill, 4422 Belvaux, Luxembourg
| | - John J Callanan
- University College Dublin, School of Veterinary Medicine, Belfield, Dublin 4, Ireland; Conway Institute for Biomolecular & Biomedical Research, Belfield, Dublin 4, Ireland; Ross University School of Veterinary Medicine, St Kitts and Nevis, West Indies
| | - Caitriona Scaife
- Conway Institute for Biomolecular & Biomedical Research, Belfield, Dublin 4, Ireland
| | - Jarlath E Nally
- University College Dublin, School of Veterinary Medicine, Belfield, Dublin 4, Ireland; Conway Institute for Biomolecular & Biomedical Research, Belfield, Dublin 4, Ireland; Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, Department of Agriculture, Ames, IA 50010, USA
| |
Collapse
|
23
|
McGovern AE, Mazzone SB. Guinea pig models of asthma. CURRENT PROTOCOLS IN PHARMACOLOGY 2014; 67:5.26.1-5.26.38. [PMID: 25446291 DOI: 10.1002/0471141755.ph0526s67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Described in this unit are methods for establishing guinea pig models of asthma. Sufficient detail is provided to enable investigators to study bronchoconstriction, cough, airway hyperresponsiveness, inflammation, and remodeling.
Collapse
Affiliation(s)
- Alice E McGovern
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | - Stuart B Mazzone
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| |
Collapse
|
24
|
Pera T, Zuidhof AB, Smit M, Menzen MH, Klein T, Flik G, Zaagsma J, Meurs H, Maarsingh H. Arginase inhibition prevents inflammation and remodeling in a guinea pig model of chronic obstructive pulmonary disease. J Pharmacol Exp Ther 2014; 349:229-38. [PMID: 24563530 DOI: 10.1124/jpet.113.210138] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway inflammation and remodeling are major features of chronic obstructive pulmonary disease (COPD), whereas pulmonary hypertension is a common comorbidity associated with a poor disease prognosis. Recent studies in animal models have indicated that increased arginase activity contributes to features of asthma, including allergen-induced airway eosinophilia and mucus hypersecretion. Although cigarette smoke and lipopolysaccharide (LPS), major risk factors for COPD, may increase arginase expression, the role of arginase in COPD is unknown. This study aimed to investigate the role of arginase in pulmonary inflammation and remodeling using an animal model of COPD. Guinea pigs were instilled intranasally with LPS or saline twice weekly for 12 weeks and pretreated by inhalation of the arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) or vehicle. Repeated LPS exposure increased lung arginase activity, resulting in increased l-ornithine/l-arginine and l-ornithine/l-citrulline ratios. Both ratios were reversed by ABH. ABH inhibited the LPS-induced increases in pulmonary IL-8, neutrophils, and goblet cells as well as airway fibrosis. Remarkably, LPS-induced right ventricular hypertrophy, indicative of pulmonary hypertension, was prevented by ABH. Strong correlations were found between arginase activity and inflammation, airway remodeling, and right ventricular hypertrophy. Increased arginase activity contributes to pulmonary inflammation, airway remodeling, and right ventricular hypertrophy in a guinea pig model of COPD, indicating therapeutic potential for arginase inhibitors in this disease.
Collapse
Affiliation(s)
- T Pera
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands (T.P., A.B.Z., M.S., M.H.M., J.Z., H.Me., H.Ma.); and Brains On-Line BV, Groningen, The Netherlands (T.K., G.F.)
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Smit M, Zuidhof AB, Bos SIT, Maarsingh H, Gosens R, Zaagsma J, Meurs H. Bronchoprotection by olodaterol is synergistically enhanced by tiotropium in a guinea pig model of allergic asthma. J Pharmacol Exp Ther 2013; 348:303-10. [PMID: 24307202 DOI: 10.1124/jpet.113.208439] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The novel once-daily β₂-agonist bronchodilator drug olodaterol has recently been shown to be effective in patients with allergic asthma for >24 hours. An increased cholinergic tone common to these patients may decrease the effectiveness of β₂-agonists. This could provide a rationale for combination therapy with olodaterol and the long-acting anticholinergic tiotropium to aim for a once-daily treatment regimen. In guinea pigs, we evaluated the protective effects of olodaterol, alone and in combination with tiotropium, on airway responsiveness to histamine, which is partially mediated by a cholinergic reflex mechanism. In addition, using a guinea pig model of acute allergic asthma, we examined the cooperative effects of these bronchodilators on allergen-induced early (EAR) and late (LAR) asthmatic reactions, airway hyper-responsiveness (AHR) to histamine, and airway inflammation. It was demonstrated that the protective effect of olodaterol against histamine-induced bronchoconstriction was synergistically enhanced and prolonged in the presence of tiotropium. In addition, tiotropium synergistically augmented both the reversal of and the protection against the allergen-induced AHR after the EAR by olodaterol. Olodaterol and tiotropium were highly effective in inhibiting the magnitude of the allergen-induced EAR and LAR, and both reactions were fully inhibited by the combination of these drugs. It is remarkable that these effects were not associated with an effect on inflammatory cell infiltration in the airways. In conclusion, the results indicate that combination therapy with olodaterol and tiotropium may be highly effective in the treatment of allergen-induced asthmatic reactions and AHR.
Collapse
Affiliation(s)
- Marieke Smit
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, and Groningen Research for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
26
|
Wright D, Sharma P, Ryu MH, Rissé PA, Ngo M, Maarsingh H, Koziol-White C, Jha A, Halayko AJ, West AR. Models to study airway smooth muscle contraction in vivo, ex vivo and in vitro: implications in understanding asthma. Pulm Pharmacol Ther 2012; 26:24-36. [PMID: 22967819 DOI: 10.1016/j.pupt.2012.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/14/2012] [Accepted: 08/17/2012] [Indexed: 11/16/2022]
Abstract
Asthma is a chronic obstructive airway disease characterised by airway hyperresponsiveness (AHR) and airway wall remodelling. The effector of airway narrowing is the contraction of airway smooth muscle (ASM), yet the question of whether an inherent or acquired dysfunction in ASM contractile function plays a significant role in the disease pathophysiology remains contentious. The difficulty in determining the role of ASM lies in limitations with the models used to assess contraction. In vivo models provide a fully integrated physiological response but ASM contraction cannot be directly measured. Ex vivo and in vitro models can provide more direct assessment of ASM contraction but the loss of factors that may modulate ASM responsiveness and AHR, including interaction between multiple cell types and disruption of the mechanical environment, precludes a complete understanding of the disease process. In this review we detail key advantages of common in vivo, ex vivo and in vitro models of ASM contraction, as well as emerging tissue engineered models of ASM and whole airways. We also highlight important findings from each model with respect to the pathophysiology of asthma.
Collapse
Affiliation(s)
- David Wright
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gosens R, Stelmack GL, Bos ST, Dueck G, Mutawe MM, Schaafsma D, Unruh H, Gerthoffer WT, Zaagsma J, Meurs H, Halayko AJ. Caveolin-1 is required for contractile phenotype expression by airway smooth muscle cells. J Cell Mol Med 2011; 15:2430-42. [PMID: 21199324 PMCID: PMC3822954 DOI: 10.1111/j.1582-4934.2010.01246.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 12/14/2010] [Indexed: 12/18/2022] Open
Abstract
Airway smooth muscle cells exhibit phenotype plasticity that underpins their ability to contribute both to acute bronchospasm and to the features of airway remodelling in chronic asthma. A feature of mature, contractile smooth muscle cells is the presence of abundant caveolae, plasma membrane invaginations that develop from the association of lipid rafts with caveolin-1, but the functional role of caveolae and caveolin-1 in smooth muscle phenotype plasticity is unknown. Here, we report a key role for caveolin-1 in promoting phenotype maturation of differentiated airway smooth muscle induced by transforming growth factor (TGF)-β(1). As assessed by Western analysis and laser scanning cytometry, caveolin-1 protein expression was selectively enriched in contractile phenotype airway myocytes. Treatment with TGF-β(1) induced profound increases in the contractile phenotype markers sm-α-actin and calponin in cells that also accumulated abundant caveolin-1; however, siRNA or shRNAi inhibition of caveolin-1 expression largely prevented the induction of these contractile phenotype marker proteins by TGF-β(1). The failure by TGF-β(1) to adequately induce the expression of these smooth muscle specific proteins was accompanied by a strongly impaired induction of eukaryotic initiation factor-4E binding protein(4E-BP)1 phosphorylation with caveolin-1 knockdown, indicating that caveolin-1 expression promotes TGF-β(1) signalling associated with myocyte maturation and hypertrophy. Furthermore, we observed increased expression of caveolin-1 within the airway smooth muscle bundle of guinea pigs repeatedly challenged with allergen, which was associated with increased contractile protein expression, thus providing in vivo evidence linking caveolin-1 expression with accumulation of contractile phenotype myocytes. Collectively, we identify a new function for caveolin-1 in controlling smooth muscle phenotype; this mechanism could contribute to allergic asthma.
Collapse
Affiliation(s)
- Reinoud Gosens
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
| | - Gerald L Stelmack
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| | - Sophie T Bos
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
| | - Gordon Dueck
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| | - Mark M Mutawe
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| | - Dedmer Schaafsma
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| | - Helmut Unruh
- Section of Thoracic Surgery, University of ManitobaWinnipeg, Manitoba, Canada
| | - William T Gerthoffer
- Department of Pharmacology, University of Nevada School of MedicineReno, NV, USA
| | - Johan Zaagsma
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
| | - Andrew J Halayko
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| |
Collapse
|
28
|
Wisastra R, Poelstra K, Bischoff R, Maarsingh H, Haisma HJ, Dekker FJ. Antibody-free detection of protein tyrosine nitration in tissue sections. Chembiochem 2011; 12:2016-20. [PMID: 21748837 DOI: 10.1002/cbic.201100148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Rosalina Wisastra
- Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy, University of Groningen, P. O. Box 196, 9700 AD Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Dekkers BGJ, Bos IST, Halayko AJ, Zaagsma J, Meurs H. The laminin β1-competing peptide YIGSR induces a hypercontractile, hypoproliferative airway smooth muscle phenotype in an animal model of allergic asthma. Respir Res 2010; 11:170. [PMID: 21129174 PMCID: PMC3013082 DOI: 10.1186/1465-9921-11-170] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 12/03/2010] [Indexed: 01/21/2023] Open
Abstract
Background Fibroproliferative airway remodelling, including increased airway smooth muscle (ASM) mass and contractility, contributes to airway hyperresponsiveness in asthma. In vitro studies have shown that maturation of ASM cells to a (hyper)contractile phenotype is dependent on laminin, which can be inhibited by the laminin-competing peptide Tyr-Ile-Gly-Ser-Arg (YIGSR). The role of laminins in ASM remodelling in chronic asthma in vivo, however, has not yet been established. Methods Using an established guinea pig model of allergic asthma, we investigated the effects of topical treatment of the airways with YIGSR on features of airway remodelling induced by repeated allergen challenge, including ASM hyperplasia and hypercontractility, inflammation and fibrosis. Human ASM cells were used to investigate the direct effects of YIGSR on ASM proliferation in vitro. Results Topical administration of YIGSR attenuated allergen-induced ASM hyperplasia and pulmonary expression of the proliferative marker proliferating cell nuclear antigen (PCNA). Treatment with YIGSR also increased both the expression of sm-MHC and ASM contractility in saline- and allergen-challenged animals; this suggests that treatment with the laminin-competing peptide YIGSR mimics rather than inhibits laminin function in vivo. In addition, treatment with YIGSR increased allergen-induced fibrosis and submucosal eosinophilia. Immobilized YIGSR concentration-dependently reduced PDGF-induced proliferation of cultured ASM to a similar extent as laminin-coated culture plates. Notably, the effects of both immobilized YIGSR and laminin were antagonized by soluble YIGSR. Conclusion These results indicate that the laminin-competing peptide YIGSR promotes a contractile, hypoproliferative ASM phenotype in vivo, an effect that appears to be linked to the microenvironment in which the cells are exposed to the peptide.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.
| | | | | | | | | |
Collapse
|
30
|
Dekkers BGJ, Bos IST, Gosens R, Halayko AJ, Zaagsma J, Meurs H. The integrin-blocking peptide RGDS inhibits airway smooth muscle remodeling in a guinea pig model of allergic asthma. Am J Respir Crit Care Med 2009; 181:556-65. [PMID: 20019343 DOI: 10.1164/rccm.200907-1065oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Airway remodeling, including increased airway smooth muscle (ASM) mass and contractility, contributes to airway hyperresponsiveness in asthma. The mechanisms driving these changes are, however, incompletely understood. Recently, an important role for extracellular matrix proteins in regulating ASM proliferation and contractility has been found, suggesting that matrix proteins and their integrins actively modulate airway remodeling. OBJECTIVES To investigate the role of RGD (Arg-Gly-Asp)-binding integrins in airway remodeling in an animal model of allergic asthma. METHODS Using a guinea pig model of allergic asthma, the effects of topical application of the integrin-blocking peptide RGDS (Arg-Gly-Asp-Ser) and its negative control GRADSP (Gly-Arg-Ala-Asp-Ser-Pro) were assessed on markers of ASM remodeling, fibrosis, and inflammation induced by repeated allergen challenge. In addition, effects of these peptides on human ASM proliferation and maturation were investigated in vitro. MEASUREMENTS AND MAIN RESULTS RGDS attenuated allergen-induced ASM hyperplasia and hypercontractility as well as increased pulmonary expression of smooth muscle myosin heavy chain and the proliferative marker proliferating cell nuclear antigen (PCNA). No effects were observed for GRADSP. The RGDS effects were ASM selective, as allergen-induced eosinophil and neutrophil infiltration as well as fibrosis were unaffected. In cultured human ASM cells, we demonstrated that proliferation induced by collagen I, fibronectin, serum, and platelet-derived growth factor requires signaling via RGD-binding integrins, particularly of the alpha(5)beta(1) subtype. In addition, RGDS inhibited smooth muscle alpha-actin accumulation in serum-deprived ASM cells. CONCLUSIONS This is the first study indicating that integrins modulate ASM remodeling in an animal model of allergic asthma, which can be inhibited by a small peptide containing the RGD motif.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University of Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
31
|
Hirota JA, Nguyen TTB, Schaafsma D, Sharma P, Tran T. Airway smooth muscle in asthma: phenotype plasticity and function. Pulm Pharmacol Ther 2008; 22:370-8. [PMID: 19114115 DOI: 10.1016/j.pupt.2008.12.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 11/14/2008] [Accepted: 12/10/2008] [Indexed: 10/24/2022]
Abstract
Clinical asthma is characterized by reversible airway obstruction which is commonly due to an exaggerated airway narrowing referred to as airway hyperresponsiveness (AHR). Although debate exists on the complex etiology of AHR, it is clear that airway smooth muscle (ASM) mediated airway narrowing is a major contributor to airway dysfunction. More importantly, it is now appreciated that smooth muscle is far from being a simple cell with only contractile ability properties. Rather, it is more versatile with the capacity to exhibit numerous cellular functions as it adapts to the microenvironment to which it is exposed. The emerging ability of individual smooth muscle cells to undergo changes in their phenotype (phenotype plasticity) and function (functional plasticity) in response to physiological and pathological cues is an important and active area of research. This article provides a brief review of the current knowledge and emerging concepts in the field of ASM phenotype and function both under healthy and asthmatic conditions.
Collapse
Affiliation(s)
- Jeremy A Hirota
- Firestone Institute for Respiratory Health, McMaster University, Ontario, Canada
| | | | | | | | | |
Collapse
|
32
|
Maarsingh H, Zuidhof AB, Bos IST, van Duin M, Boucher JL, Zaagsma J, Meurs H. Arginase inhibition protects against allergen-induced airway obstruction, hyperresponsiveness, and inflammation. Am J Respir Crit Care Med 2008; 178:565-73. [PMID: 18583571 DOI: 10.1164/rccm.200710-1588oc] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE In a guinea pig model of allergic asthma, using perfused tracheal preparations ex vivo, we demonstrated that L-arginine limitation due to increased arginase activity underlies a deficiency of bronchodilating nitric oxide (NO) and airway hyperresponsiveness (AHR) after the allergen-induced early and late asthmatic reaction. OBJECTIVES Using the same animal model, we investigated the acute effects of the specific arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) and of L-arginine on AHR after the early and late reaction in vivo. In addition, we investigated the protection of allergen-induced asthmatic reactions, AHR, and airway inflammation by pretreatment with the drug. METHODS Airway responsiveness to inhaled histamine was measured in permanently instrumented, freely moving guinea pigs sensitized to ovalbumin at 24 hours before allergen challenge and after the allergen-induced early and late asthmatic reactions by assessing histamine PC(100) (provocative concentration causing a 100% increase of pleural pressure) values. MEASUREMENTS AND MAIN RESULTS Inhaled ABH acutely reversed AHR to histamine after the early reaction from 4.77 +/- 0.56-fold to 2.04 +/- 0.34-fold (P < 0.001), and a tendency to inhibition was observed after the late reaction (from 1.95 +/- 0.56-fold to 1.56 +/- 0.47-fold, P < 0.10). Quantitatively similar results were obtained with inhaled l-arginine. Remarkably, after pretreatment with ABH a 33-fold higher dose of allergen was needed to induce airway obstruction (P < 0.01). Consequently, ABH inhalation 0.5 hour before and 8 hours after allergen challenge protected against the allergen-induced early and late asthmatic reactions, AHR and inflammatory cell infiltration. CONCLUSIONS Inhalation of ABH or l-arginine acutely reverses allergen-induced AHR after the early and late asthmatic reaction, presumably by attenuating arginase-induced substrate deficiency to NO synthase in the airways. Moreover, ABH considerably reduces the airway sensitivity to inhaled allergen and protects against allergen-induced bronchial obstructive reactions, AHR, and airway inflammation. This is the first in vivo study indicating that arginase inhibitors may have therapeutic potential in allergic asthma.
Collapse
Affiliation(s)
- Harm Maarsingh
- Department of Molecular Pharmacology, University Center for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
33
|
Schaafsma D, Bos IST, Zuidhof AB, Zaagsma J, Meurs H. The inhaled Rho kinase inhibitor Y-27632 protects against allergen-induced acute bronchoconstriction, airway hyperresponsiveness, and inflammation. Am J Physiol Lung Cell Mol Physiol 2008; 295:L214-9. [PMID: 18487358 DOI: 10.1152/ajplung.00498.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, we have shown that allergen-induced airway hyperresponsiveness (AHR) after the early (EAR) and late (LAR) asthmatic reaction in guinea pigs could be reversed acutely by inhalation of the Rho kinase inhibitor Y-27632. The present study addresses the effects of pretreatment with inhaled Y-27632 on the severity of the allergen-induced EAR and LAR, the development of AHR after these reactions, and airway inflammation. Using permanently instrumented and unrestrained ovalbumin (OA)-sensitized guinea pigs, single OA challenge-induced EAR and LAR, expressed as area under the lung function (pleural pressure, P(pl)) time-response curve, were measured, and histamine PC(100) (provocation concentration causing a 100% increase of P(pl)) values were assessed 24 h before, and at 6 and 24 h after, the OA challenge (after the EAR and LAR, respectively). Thirty minutes before and 8 h after OA challenge, saline or Y-27632 (5 mM) was nebulized. After the last PC(100) value, bronchoalveolar lavage (BAL) was performed, and the inflammatory cell profile was determined. It was demonstrated that inhalation of Y-27632 before allergen challenge markedly reduced the immediate allergen-induced peak rise in P(pl), without significantly reducing the overall EAR and LAR. Also, pretreatment with Y-27632 considerably protected against the development of AHR after the EAR and fully prevented AHR after the LAR. These effects could not be explained by a direct effect of Y-27632 on the histamine responsiveness, because of the short duration of the acute bronchoprotection of Y-27632 (<90 min). In addition, Y-27632 reduced the number of total inflammatory cells, eosinophils, macrophages, and neutrophils recovered from the BAL. Altogether, inhaled Y-27632 protects against acute allergen-induced bronchoconstriction, development of AHR after the EAR and LAR, and airway inflammation in an established guinea pig model of allergic asthma.
Collapse
Affiliation(s)
- Dedmer Schaafsma
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
34
|
Ito Y, Hirano M, Umemoto N, Zang L, Wang Z, Oka T, Shimada Y, Nishimura Y, Kurokawa I, Mizutani H, Tanaka T. Guinea pig cysteinyl leukotriene receptor 2 (gpCysLT2) mediates cell proliferation and intracellular calcium mobilization by LTC4 and LTD4. BMB Rep 2008; 41:139-45. [DOI: 10.5483/bmbrep.2008.41.2.139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Abstract
The guinea pig has been the most commonly used small animal species in preclinical studies related to asthma and COPD. The primary advantages of the guinea pig are the similar potencies and efficacies of agonists and antagonists in human and guinea pig airways and the many similarities in physiological processes, especially airway autonomic control and the response to allergen. The primary disadvantages to using guinea pigs are the lack of transgenic methods, limited numbers of guinea pig strains for comparative studies and a prominent axon reflex that is unlikely to be present in human airways. These attributes and various models developed in guinea pigs are discussed.
Collapse
Affiliation(s)
- Brendan J Canning
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | |
Collapse
|