1
|
Pekmezovic M, Hovhannisyan H, Gresnigt MS, Iracane E, Oliveira-Pacheco J, Siscar-Lewin S, Seemann E, Qualmann B, Kalkreuter T, Müller S, Kamradt T, Mogavero S, Brunke S, Butler G, Gabaldón T, Hube B. Candida pathogens induce protective mitochondria-associated type I interferon signalling and a damage-driven response in vaginal epithelial cells. Nat Microbiol 2021; 6:643-657. [PMID: 33753919 DOI: 10.1038/s41564-021-00875-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Vaginal candidiasis is an extremely common disease predominantly caused by four phylogenetically diverse species: Candida albicans; Candida glabrata; Candida parapsilosis; and Candida tropicalis. Using a time course infection model of vaginal epithelial cells and dual RNA sequencing, we show that these species exhibit distinct pathogenicity patterns, which are defined by highly species-specific transcriptional profiles during infection of vaginal epithelial cells. In contrast, host cells exhibit a homogeneous response to all species at the early stages of infection, which is characterized by sublethal mitochondrial signalling inducing a protective type I interferon response. At the later stages, the transcriptional response of the host diverges in a species-dependent manner. This divergence is primarily driven by the extent of epithelial damage elicited by species-specific mechanisms, such as secretion of the toxin candidalysin by C. albicans. Our results uncover a dynamic, biphasic response of vaginal epithelial cells to Candida species, which is characterized by protective mitochondria-associated type I interferon signalling and a species-specific damage-driven response.
Collapse
Affiliation(s)
- Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Hrant Hovhannisyan
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain.,Mechanisms of Disease Department, Institute for Research in Biomedicine, Barcelona, Spain
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Elise Iracane
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - João Oliveira-Pacheco
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - Sofía Siscar-Lewin
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Eric Seemann
- Institute for Biochemistry I, Jena University Hospital-Friedrich Schiller University, Jena, Germany
| | - Britta Qualmann
- Institute for Biochemistry I, Jena University Hospital-Friedrich Schiller University, Jena, Germany
| | - Till Kalkreuter
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Sylvia Müller
- Institute of Immunology, Universitätsklinikum Jena, Jena, Germany
| | - Thomas Kamradt
- Institute of Immunology, Universitätsklinikum Jena, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Geraldine Butler
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain. .,Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain. .,Mechanisms of Disease Department, Institute for Research in Biomedicine, Barcelona, Spain.
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany. .,Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
2
|
Malik AN, Rosa HS, S. de Menezes E, Tamang P, Hamid Z, Naik A, Parsade CK, Sivaprasad S. The Detection and Partial Localisation of Heteroplasmic Mutations in the Mitochondrial Genome of Patients with Diabetic Retinopathy. Int J Mol Sci 2019; 20:ijms20246259. [PMID: 31835862 PMCID: PMC6940788 DOI: 10.3390/ijms20246259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and a major cause of acquired blindness in adults. Mitochondria are cellular organelles involved in energy production which contain mitochondrial DNA (mtDNA). We previously showed that levels of circulating mtDNA were dysregulated in DR patients, and there was some evidence of mtDNA damage. In the current project, our aim was to confirm the presence of, and determine the location and prevalence of, mtDNA mutation in DR. DNA isolated from peripheral blood from diabetes patients (n = 59) with and without DR was used to amplify specific mtDNA regions which were digested with surveyor nuclease S1 to determine the presence and location of heteroplasmic mtDNA mutations were present. An initial screen of the entire mtDNA genome of 6 DR patients detected a higher prevalence of mutations in amplicon P, covering nucleotides 14,443 to 1066 and spanning the control region. Further analysis of 42 subjects showed the presence of putative mutations in amplicon P in 36% (14/39) of DR subjects and in 10% (2/20) non-DR subjects. The prevalence of mutations in DR was not related to the severity of the disease. The detection of a high-prevalence of putative mtDNA mutations within a specific region of the mitochondrial genome supports the view that mtDNA damage contributes to DR. The exact location and functional impact of these mutations remains to be determined.
Collapse
Affiliation(s)
- Afshan N. Malik
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London SE1 1UL, UK
- Correspondence: ; Tel.: +44-207-848-6271
| | - Hannah S. Rosa
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London SE1 1UL, UK
| | - Eliane S. de Menezes
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London SE1 1UL, UK
| | - Priyanka Tamang
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London SE1 1UL, UK
| | - Zaidi Hamid
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London SE1 1UL, UK
| | - Anita Naik
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London SE1 1UL, UK
| | - Chandani Kiran Parsade
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London SE1 1UL, UK
| | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London EC1V 2PD, UK
| |
Collapse
|
3
|
Aggeli D, Karas VO, Sinnott-Armstrong NA, Varghese V, Shafer RW, Greenleaf WJ, Sherlock G. Diff-seq: A high throughput sequencing-based mismatch detection assay for DNA variant enrichment and discovery. Nucleic Acids Res 2018; 46:e42. [PMID: 29361139 PMCID: PMC5909455 DOI: 10.1093/nar/gky022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/15/2017] [Accepted: 01/16/2018] [Indexed: 01/15/2023] Open
Abstract
Much of the within species genetic variation is in the form of single nucleotide polymorphisms (SNPs), typically detected by whole genome sequencing (WGS) or microarray-based technologies. However, WGS produces mostly uninformative reads that perfectly match the reference, while microarrays require genome-specific reagents. We have developed Diff-seq, a sequencing-based mismatch detection assay for SNP discovery without the requirement for specialized nucleic-acid reagents. Diff-seq leverages the Surveyor endonuclease to cleave mismatched DNA molecules that are generated after cross-annealing of a complex pool of DNA fragments. Sequencing libraries enriched for Surveyor-cleaved molecules result in increased coverage at the variant sites. Diff-seq detected all mismatches present in an initial test substrate, with specific enrichment dependent on the identity and context of the variation. Application to viral sequences resulted in increased observation of variant alleles in a biologically relevant context. Diff-Seq has the potential to increase the sensitivity and efficiency of high-throughput sequencing in the detection of variation.
Collapse
Affiliation(s)
- Dimitra Aggeli
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vlad O Karas
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Vici Varghese
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert W Shafer
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Kerur N, Fukuda S, Banerjee D, Kim Y, Fu D, Apicella I, Varshney A, Yasuma R, Fowler BJ, Baghdasaryan E, Marion KM, Huang X, Yasuma T, Hirano Y, Serbulea V, Ambati M, Ambati VL, Kajiwara Y, Ambati K, Hirahara S, Bastos-Carvalho A, Ogura Y, Terasaki H, Oshika T, Kim KB, Hinton DR, Leitinger N, Cambier JC, Buxbaum JD, Kenney MC, Jazwinski SM, Nagai H, Hara I, West AP, Fitzgerald KA, Sadda SR, Gelfand BD, Ambati J. cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nat Med 2017; 24:50-61. [PMID: 29176737 PMCID: PMC5760363 DOI: 10.1038/nm.4450] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
Geographic atrophy is a blinding form of age-related macular degeneration characterized by death of the retinal pigmented epithelium (RPE). In this disease, the RPE displays evidence of DICER1 deficiency, resultant accumulation of endogenous Alu retroelement RNA, and NLRP3 inflammasome activation. How the inflammasome is activated in this untreatable disease is largely unknown. Here we demonstrate that RPE degeneration in human cell culture and in mouse models is driven by a non-canonical inflammasome pathway that results in activation of caspase-4 (caspase-11 in mice) and caspase-1, and requires cyclic GMP-AMP synthase (cGAS)-dependent interferon-β (IFN-β) production and gasdermin D-dependent interleukin-18 (IL-18) secretion. Reduction of DICER1 levelsor accumulation of Alu RNA triggers cytosolic escape of mitochondrial DNA, which engages cGAS. Moreover, caspase-4, gasdermin D, IFN-β, and cGAS levels are elevated in the RPE of human eyes with geographic atrophy. Collectively, these data highlight an unexpected role for cGAS in responding to mobile element transcripts, reveal cGAS-driven interferon signaling as a conduit for mitochondrial damage-induced inflammasome activation, expand the immune sensing repertoire of cGAS and caspase-4 to non-infectious human disease, and identify new potential targets for treatment of a major cause of blindness.
Collapse
Affiliation(s)
- Nagaraj Kerur
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Shinichi Fukuda
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Tsukuba, Ibaraki, Japan
| | - Daipayan Banerjee
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Younghee Kim
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Dongxu Fu
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ivana Apicella
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Akhil Varshney
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Reo Yasuma
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Benjamin J Fowler
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Elmira Baghdasaryan
- Doheny Eye Institute, Los Angeles, Los Angeles, California, USA.,Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | | | - Xiwen Huang
- Doheny Eye Institute, Los Angeles, Los Angeles, California, USA
| | - Tetsuhiro Yasuma
- Department of Ophthalmology, University of Tsukuba, Ibaraki, Japan.,Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshio Hirano
- Department of Ophthalmology, University of Tsukuba, Ibaraki, Japan.,Department of Ophthalmology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Meenakshi Ambati
- Center for Digital Image Evaluation, Charlottesville, Virginia, USA
| | - Vidya L Ambati
- Center for Digital Image Evaluation, Charlottesville, Virginia, USA
| | - Yuji Kajiwara
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kameshwari Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Shuichiro Hirahara
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ana Bastos-Carvalho
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Yuichiro Ogura
- Department of Ophthalmology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuro Oshika
- Department of Ophthalmology, University of Tsukuba, Ibaraki, Japan
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - David R Hinton
- Departments of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - M Cristina Kenney
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, USA
| | - S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Hiroshi Nagai
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Isao Hara
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, USA
| | - Katherine A Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - SriniVas R Sadda
- Doheny Eye Institute, Los Angeles, Los Angeles, California, USA.,Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Bradley D Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA.,Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA.,Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Zole E, Zadinane K, Pliss L, Ranka R. Linkage between mitochondrial genome alterations, telomere length and aging population. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:431-438. [PMID: 28340313 DOI: 10.1080/24701394.2017.1303490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We studied telomere length (TL) and mitochondrial DNA (mtDNA) copy number variations in individuals from Latvian Caucasian population in different age groups. We showed a positive correlation between TL and mtDNA copy number in individuals of up to 90 years of age; however, this correlation was not observed in the 90-100 years age group. While TL shortened with age and mtDNA content decreased with increasing age, in this study it was observed that mtDNA copy number in nonagenarians was slightly higher than in the 60-89 years age group. The presence of heteroplasmy in the mtDNA HVS-I control region did not correlate with TL and mtDNA copy number. TL and mtDNA values also did not differ between mitochondrial haplogroups. In conclusion, while both TL and mtDNA are involved in the aging process and link between these cell components exists, nonagenarians may have differences in senescence-related pathways and systems, which may function as a protective mechanism that allows them to live longer.
Collapse
Affiliation(s)
- Egija Zole
- a Latvian Biomedical Research and Study Centre , Riga , Latvia.,b Faculty of Biology , University of Latvia , Riga , Latvia
| | | | - Liana Pliss
- a Latvian Biomedical Research and Study Centre , Riga , Latvia
| | - Renate Ranka
- a Latvian Biomedical Research and Study Centre , Riga , Latvia.,c Riga Stradins University , Riga , Latvia
| |
Collapse
|
6
|
Malik AN, Parsade CK, Ajaz S, Crosby-Nwaobi R, Gnudi L, Czajka A, Sivaprasad S. Altered circulating mitochondrial DNA and increased inflammation in patients with diabetic retinopathy. Diabetes Res Clin Pract 2015; 110:257-65. [PMID: 26625720 DOI: 10.1016/j.diabres.2015.10.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/21/2015] [Accepted: 10/02/2015] [Indexed: 12/20/2022]
Abstract
AIMS We previously showed that circulating mitochondrial DNA (MtDNA) levels are altered in diabetic nephropathy. The aim of the current study was to determine if circulating MtDNA levels are altered in patients with diabetic retinopathy. METHODS Patients with diabetes (n=220) were studied in a clinical setting using a cross-sectional study design as the following groups: DR-0 (no retinopathy, n=53), DR-m (mild non-proliferative diabetic retinopathy NPDR, n=98) and DR-s (severe proliferative diabetic retinopathy, n=69). MtDNA content in peripheral blood DNA was measured as the mitochondrial to nuclear genome ratio using real time qPCR. Circulating cytokines were measured using the luminex assay and MtDNA damage was assessed using PCR. Differences were considered significant at P<0.05. RESULTS Circulating MtDNA values were higher in DR-m compared to DR-0 (P=0.02) and decreased in DR-s compared to DR-m (P=0.001). These changes remained significant after adjusting for associated parameters. In parallel there were increased levels of circulating cytokines IL-4 (P=0.005) and TNF-α (P=0.02) in the DR-s group and increased MtDNA damage in DR-m patients compared to DR-0 (P=0.03). CONCLUSIONS Our data show that circulating MtDNA levels are independently associated with diabetic retinopathy, showing an increase in DR-m and decrease in DR-s with a parallel increase in MtDNA damage and inflammation. Hyperglycemia-induced changes in MtDNA in early diabetes may contribute to inflammation and progression of diabetic retinopathy. Longitudinal studies should be carried out to determine a potential causality of MtDNA in diabetic retinopathy.
Collapse
Affiliation(s)
- Afshan N Malik
- King's College London, Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, UK.
| | - Chandani K Parsade
- King's College London, Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, UK
| | - Saima Ajaz
- King's College London, Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, UK
| | - Roxanne Crosby-Nwaobi
- King's College London, Laser and Retinal Research Unit, Department of Ophthalmology, UK; King's College London, NIHR Moorfields Biomedical Research Centre, UK
| | - Luigi Gnudi
- King's College London, Cardiovascular Division, Faculty of Life Science & Medicine, UK
| | - Anna Czajka
- King's College London, Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, UK
| | - Sobha Sivaprasad
- King's College London, Laser and Retinal Research Unit, Department of Ophthalmology, UK; King's College London, NIHR Moorfields Biomedical Research Centre, UK
| |
Collapse
|
7
|
Dib B, Lin H, Maidana DE, Tian B, Miller JB, Bouzika P, Miller JW, Vavvas DG. Mitochondrial DNA has a pro-inflammatory role in AMD. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:2897-906. [PMID: 26305120 PMCID: PMC5330253 DOI: 10.1016/j.bbamcr.2015.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/10/2015] [Accepted: 08/20/2015] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly of industrialized nations, and there is increasing evidence to support a role for chronic inflammation in its pathogenesis. Mitochondrial DNA (mtDNA) has been recently reported to be pro-inflammatory in various diseases such as Alzheimer's and heart failure. Here, we report that intracellular mtDNA induces ARPE-19 cells to secrete inflammatory cytokines IL-6 and IL-8, which have been consistently associated with AMD onset and progression. The induction was dependent on the size of mtDNA, but not on specific sequence. Oxidative stress plays a major role in the development of AMD, and our findings indicate that mtDNA induces IL-6 and IL-8 more potently when oxidized. Cytokine induction was mediated by STING (Stimulator of Interferon Genes) and NF-κB as evidenced by abrogation of the cytokine response with the use of specific inhibitors (siRNA and BAY 11-7082, respectively). Finally, mtDNA primed the NLRP3 inflammasome. This study contributes to our understanding of the potential pro-inflammatory role of mtDNA in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Bernard Dib
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Haijiang Lin
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Daniel E Maidana
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Bo Tian
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - John B Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Peggy Bouzika
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Joan W Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Demetrios G Vavvas
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
8
|
Abdullaev SA, Minkabirova GM, Bezlepkin VG, Gaziev AI. Cell-free DNA in the urine of rats exposed to ionizing radiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:297-304. [PMID: 25935210 DOI: 10.1007/s00411-015-0599-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Investigation of cell-free DNA (cf-DNA) in body fluids, as a potential biomarker for assessing the effect of ionizing radiation on the organism, is of considerable interest. We investigated changes in the contents of cell-free mitochondrial DNA (cf-mtDNA) and cell-free nuclear DNA (cf-nDNA) in the urine of X-ray-exposed rats. Assays of cf-mtDNA and cf-nDNA were performed by a real-time PCR in rat urine collected before and after irradiation of animals with doses of 3 and 5 Gy. We also determined the presence of mutations in urine cf-mtDNA, as recognized by Surveyor nuclease. A sharp increase in cf-mtDNA and cf-nDNA in the urine of irradiated rats was observed within 24 h after exposure, followed by a decrease to normal levels. In all cases, the contents of cf-mtDNA fragment copies (estimated by gene tRNA) were significantly higher than those of cf-nDNA estimated by gene GAPDH. A certain portion of mutant cf-mtDNA fragments was detected in the urine of exposed rats, whereas they were absent in the urine of the same animals before irradiation. These preliminary data also suggest that the increased levels of urine cf-mtDNA and cf-nDNA may be a potential biomarker for noninvasive assessment of how the organism responds to ionizing radiation influence.
Collapse
Affiliation(s)
- Serazhutdin A Abdullaev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science (RAS), Pushchino, Moscow Region, 142290, Russia,
| | | | | | | |
Collapse
|
9
|
Deng H, Shen W, Gao Z. Colorimetric detection of single nucleotide polymorphisms in the presence of 10 3 - fold excess of a wild-type gene. Biosens Bioelectron 2015; 68:310-315. [DOI: 10.1016/j.bios.2015.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 12/18/2022]
|
10
|
Czajka A, Ajaz S, Gnudi L, Parsade CK, Jones P, Reid F, Malik AN. Altered Mitochondrial Function, Mitochondrial DNA and Reduced Metabolic Flexibility in Patients With Diabetic Nephropathy. EBioMedicine 2015; 2:499-512. [PMID: 26288815 PMCID: PMC4534759 DOI: 10.1016/j.ebiom.2015.04.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/27/2015] [Accepted: 04/03/2015] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study was to determine if mitochondrial dysfunction plays a role in diabetic nephropathy (DN), a kidney disease which affects > 100 million people worldwide and is a leading cause of renal failure despite therapy. A cross-sectional study comparing DN with diabetes patients without kidney disease (DC) and healthy controls (HCs); and renal mesangial cells (HMCs) grown in normal and high glucose, was carried out. Patients with diabetes (DC) had increased circulating mitochondrial DNA (MtDNA), and HMCs increased their MtDNA within 24 h of hyperglycaemia. The increased MtDNA content in DCs and HMCs was not functional as transcription was unaltered/down-regulated, and MtDNA damage was present. MtDNA was increased in DC compared to HC, conversely, patients with DN had lower MtDNA than DC. Hyperglycaemic HMCs had fragmented mitochondria and TLR9 pathway activation, and in diabetic patients, mitophagy was reduced. Despite MtDNA content and integrity changing within 4 days, hyperglycaemic HMCs had a normal bio-energetic profile until 8 days, after which mitochondrial metabolism was progressively impaired. Peripheral blood mononuclear cells (PBMCs) from DN patients had reduced reserve capacity and maximal respiration, loss of metabolic flexibility and reduced Bioenergetic Health Index (BHI) compared to DC. Our data show that MtDNA changes precede bioenergetic dysfunction and that patients with DN have impaired mitochondrial metabolism compared to DC, leading us to propose that systemic mitochondrial dysfunction initiated by glucose induced MtDNA damage may be involved in the development of DN. Longitudinal studies are needed to define a potential cause–effect relationship between changes in MtDNA and bioenergetics in DN. Diabetic nephropathy may be a disease of acquired MtDNA damage and bioenergetic deficit. MtDNA content is increased in blood cells of diabetes patients and hyperglycaemic renal cells. Hyperglycaemia leads to renal cell MtDNA damage and subsequent bioenergetic dysfunction. Diabetic nephropathy patients have reduced circulating MtDNA , BHI and metabolic flexibility bioenergetic dysfunction and reduced metabolic flexibility and BHI.
Collapse
Affiliation(s)
- Anna Czajka
- Diabetes Research Group, Division of Diabetes and Nutritional Science, Faculty of Life Sciences and Medicine, King's College London, SE1 1UL, UK
| | - Saima Ajaz
- Diabetes Research Group, Division of Diabetes and Nutritional Science, Faculty of Life Sciences and Medicine, King's College London, SE1 1UL, UK
| | | | - Chandani Kiran Parsade
- Diabetes Research Group, Division of Diabetes and Nutritional Science, Faculty of Life Sciences and Medicine, King's College London, SE1 1UL, UK
| | - Peter Jones
- Diabetes Research Group, Division of Diabetes and Nutritional Science, Faculty of Life Sciences and Medicine, King's College London, SE1 1UL, UK
| | - Fiona Reid
- Department of Primary Care and Public Health Sciences
| | - Afshan N Malik
- Diabetes Research Group, Division of Diabetes and Nutritional Science, Faculty of Life Sciences and Medicine, King's College London, SE1 1UL, UK
| |
Collapse
|
11
|
Mishra M, Kowluru RA. Retinal mitochondrial DNA mismatch repair in the development of diabetic retinopathy, and its continued progression after termination of hyperglycemia. Invest Ophthalmol Vis Sci 2014; 55:6960-7. [PMID: 25249609 DOI: 10.1167/iovs.14-15020] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mitochondrial DNA (mtDNA) is damaged in the retina in diabetes, and mitochondria copy numbers are decreased. The displacement-loop (D-loop) of the mtDNA, the region with transcription/replication elements, experiences more damage than other regions of mtDNA. Our aim was to examine the role of DNA mismatch repair (MMR) in mitochondria homeostasis in diabetic retinopathy, and in its continued progression after cessation of hyperglycemia. METHODS Effect of hyperglycemia on sequence variants in the D-loop region was investigated in retinal endothelial cells and in the retina from streptozotocin-induced diabetic rats using mismatch-specific surveyor nuclease. The role of MMR machinery in mtDNA damage and mitochondrial respiration was investigated in retinal endothelial cells overexpressing Mlh1, an MMR enzyme mainly associated with mtDNA polymerase gamma, or Msh2 (associated with nuclear polymerase beta). RESULTS Hyperglycemia increased sequence variants in the D-loop region. While overexpression of Mlh1 in endothelial cells ameliorated glucose-induced increase in D-loop sequence variants, decrease in respiration rate and increase in apoptosis, overexpression of Msh2 did not protect the mitochondria damage. Termination of hyperglycemia failed to reverse decrease in MMR enzymes and increase in D-loop sequence variants. CONCLUSIONS Due to a compromised MMR system, the sequence variants in the D-loop region were not repaired, and that resulted in impaired mtDNA transcription. Mitochondria become dysfunctional, and they continued to be dysfunctional even after hyperglycemia was terminated, contributing to the development, and progression of diabetic retinopathy. Thus, strategies targeting mitochondrial MMR machinery could help maintain mitochondria homeostasis, and inhibit the development of diabetic retinopathy and its continued progression.
Collapse
Affiliation(s)
- Manish Mishra
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
12
|
Cano A, Chaussenot A, Rouzier C, Paquis V, Chabrol B. Diagnostic des maladies mitochondriales Place de l’investigation diagnostique classique en 2014. Arch Pediatr 2014. [DOI: 10.1016/s0929-693x(14)71455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Yen HC, Li SL, Hsu WC, Tang P. Interference of Co-amplified nuclear mitochondrial DNA sequences on the determination of human mtDNA heteroplasmy by Using the SURVEYOR nuclease and the WAVE HS system. PLoS One 2014; 9:e92817. [PMID: 24664244 PMCID: PMC3963942 DOI: 10.1371/journal.pone.0092817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/25/2014] [Indexed: 01/02/2023] Open
Abstract
High-sensitivity and high-throughput mutation detection techniques are useful for screening the homoplasmy or heteroplasmy status of mitochondrial DNA (mtDNA), but might be susceptible to interference from nuclear mitochondrial DNA sequences (NUMTs) co-amplified during polymerase chain reaction (PCR). In this study, we first evaluated the platform of SURVEYOR Nuclease digestion of heteroduplexed DNA followed by the detection of cleaved DNA by using the WAVE HS System (SN/WAVE-HS) for detecting human mtDNA variants and found that its performance was slightly better than that of denaturing high-performance liquid chromatography (DHPLC). The potential interference from co-amplified NUMTs on screening mtDNA heteroplasmy when using these 2 highly sensitive techniques was further examined by using 2 published primer sets containing a total of 65 primer pairs, which were originally designed to be used with one of the 2 techniques. We confirmed that 24 primer pairs could amplify NUMTs by conducting bioinformatic analysis and PCR with the DNA from 143B-ρ0 cells. Using mtDNA extracted from the mitochondria of human 143B cells and a cybrid line with the nuclear background of 143B-ρ0 cells, we demonstrated that NUMTs could affect the patterns of chromatograms for cell DNA during SN-WAVE/HS analysis of mtDNA, leading to incorrect judgment of mtDNA homoplasmy or heteroplasmy status. However, we observed such interference only in 2 of 24 primer pairs selected, and did not observe such effects during DHPLC analysis. These results indicate that NUMTs can affect the screening of low-level mtDNA variants, but it might not be predicted by bioinformatic analysis or the amplification of DNA from 143B-ρ0 cells. Therefore, using purified mtDNA from cultured cells with proven purity to evaluate the effects of NUMTs from a primer pair on mtDNA detection by using PCR-based high-sensitivity methods prior to the use of a primer pair in real studies would be a more practical strategy.
Collapse
Affiliation(s)
- Hsiu-Chuan Yen
- Department and Graduate Institute of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- * E-mail:
| | - Shiue-Li Li
- Department and Graduate Institute of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Wei-Chien Hsu
- Department and Graduate Institute of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Petrus Tang
- Department of Public Health and Parasitology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
14
|
Bannwarth S, Procaccio V, Lebre AS, Jardel C, Chaussenot A, Hoarau C, Maoulida H, Charrier N, Gai X, Xie HM, Ferre M, Fragaki K, Hardy G, Mousson de Camaret B, Marlin S, Dhaenens CM, Slama A, Rocher C, Paul Bonnefont J, Rötig A, Aoutil N, Gilleron M, Desquiret-Dumas V, Reynier P, Ceresuela J, Jonard L, Devos A, Espil-Taris C, Martinez D, Gaignard P, Le Quan Sang KH, Amati-Bonneau P, Falk MJ, Florentz C, Chabrol B, Durand-Zaleski I, Paquis-Flucklinger V. Prevalence of rare mitochondrial DNA mutations in mitochondrial disorders. J Med Genet 2013; 50:704-14. [PMID: 23847141 PMCID: PMC3786640 DOI: 10.1136/jmedgenet-2013-101604] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Mitochondrial DNA (mtDNA) diseases are rare disorders whose prevalence is estimated around 1 in 5000. Patients are usually tested only for deletions and for common mutations of mtDNA which account for 5–40% of cases, depending on the study. However, the prevalence of rare mtDNA mutations is not known. Methods We analysed the whole mtDNA in a cohort of 743 patients suspected of manifesting a mitochondrial disease, after excluding deletions and common mutations. Both heteroplasmic and homoplasmic variants were identified using two complementary strategies (Surveyor and MitoChip). Multiple correspondence analyses followed by hierarchical ascendant cluster process were used to explore relationships between clinical spectrum, age at onset and localisation of mutations. Results 7.4% of deleterious mutations and 22.4% of novel putative mutations were identified. Pathogenic heteroplasmic mutations were more frequent than homoplasmic mutations (4.6% vs 2.8%). Patients carrying deleterious mutations showed symptoms before 16 years of age in 67% of cases. Early onset disease (<1 year) was significantly associated with mutations in protein coding genes (mainly in complex I) while late onset disorders (>16 years) were associated with mutations in tRNA genes. MTND5 and MTND6 genes were identified as ‘hotspots’ of mutations, with Leigh syndrome accounting for the large majority of associated phenotypes. Conclusions Rare mitochondrial DNA mutations probably account for more than 7.4% of patients with respiratory chain deficiency. This study shows that a comprehensive analysis of mtDNA is essential, and should include young children, for an accurate diagnosis that is now accessible with the development of next generation sequencing technology.
Collapse
Affiliation(s)
- Sylvie Bannwarth
- IRCAN, CNRS UMR 7284/Inserm U1081/UNS, Faculté de Médecine, Nice, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ma S, Saaem I, Tian J. Error correction in gene synthesis technology. Trends Biotechnol 2011; 30:147-54. [PMID: 22209624 DOI: 10.1016/j.tibtech.2011.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 11/15/2022]
Abstract
Accurate, economical and high-throughput gene and genome synthesis is essential to the development of synthetic biology and biotechnology. New large-scale gene synthesis methods harnessing the power of DNA microchips have recently been demonstrated. Yet, the technology is still compromised by a high occurrence of errors in the synthesized products. These errors still require substantial effort to correct. To solve this bottleneck, novel approaches based on new chemistry, enzymology or next generation sequencing have emerged. This review discusses these new trends and promising strategies of error filtration, correction and prevention in de novo gene and genome synthesis. Continued innovation in error correction technologies will enable affordable and large-scale gene and genome synthesis in the near future.
Collapse
Affiliation(s)
- Siying Ma
- Department of Biomedical Engineering and the Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
16
|
DHPLC/SURVEYOR Nuclease: A Sensitive, Rapid and Affordable Method to Analyze BRCA1 and BRCA2 Mutations in Breast Cancer Families. Mol Biotechnol 2011; 52:8-15. [DOI: 10.1007/s12033-011-9468-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
17
|
Lin H, Xu H, Liang FQ, Liang H, Gupta P, Havey AN, Boulton ME, Godley BF. Mitochondrial DNA damage and repair in RPE associated with aging and age-related macular degeneration. Invest Ophthalmol Vis Sci 2011; 52:3521-9. [PMID: 21273542 DOI: 10.1167/iovs.10-6163] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mitochondrial DNA (mtDNA) damage may be associated with age-related diseases, such as age-related macular degeneration (AMD). The present study was designed to test whether the frequency of mtDNA damage, heteroplasmic mtDNA mutations, and repair capacity correlate with progression of AMD. METHODS Macular and peripheral RPE cells were isolated and cultured from human donor eyes with and without AMD. The stages of AMD were graded according to the Minnesota Grading System. Confluent primary RPE cells were used to test the frequency of endogenous mtDNA damage by quantitative PCR. Mutation detection kits were used to detect heteroplasmic mtDNA mutation. To test the mtDNA repair capacity, cultured RPE cells were allowed to recover for 3 and 6 hours after exposure to H(2)O(2), and repair was assessed by quantitative PCR. The levels of human OGG1 protein, which is associated with mtDNA repair, were analyzed by Western blot. RESULTS This study showed that mtDNA damage increased with aging and that more lesions occurred in RPE cells from the macular region than the periphery. Furthermore, mtDNA repair capacity decreased with aging, with less mtDNA repair capacity in the macular region compared with the periphery in samples from aged subjects. Most interestingly, the mtDNA damage was positively correlated with the grading level of AMD, whereas repair capacity was negatively correlated. In addition, more mitochondrial heteroplasmic mutations were detected in eyes with AMD. CONCLUSIONS These data show macula-specific increases in mtDNA damage, heteroplasmic mutations, and diminished repair that are associated with aging and AMD severity.
Collapse
Affiliation(s)
- Haijiang Lin
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas 77555-1106, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pliss L, Brakmanis A, Ranka R, Elferts D, Krumina A, Baumanis V. The link between mitochondrial DNA hypervariable segment I heteroplasmy and ageing among genetically unrelated Latvians. Exp Gerontol 2011; 46:560-8. [PMID: 21377516 DOI: 10.1016/j.exger.2011.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 12/23/2010] [Accepted: 02/16/2011] [Indexed: 11/17/2022]
Abstract
Various studies have demonstrated that mitochondrial DNA (mtDNA) heteroplasmy tends to increase with age and that the observed frequency of heteroplasmy among populations mostly depends on the way it is measured. Therefore, we investigated age-related association on the presence of mtDNA heteroplasmy within the hypervariable segment 1 (HVS-I) in a selected study group. The study group consisted of 300 maternally unrelated Latvians ranging in age from 18 to over 90 years. To determine the optimal method for mtDNA heteroplasmy detection, three approaches were used: (i) SURVEYOR Mutation Detection Kit, (ii) sequencing and (iii) denaturing gradient-gel electrophoresis (DGGE). Among the studied individuals, 30.3% were found to be heteroplasmic. The distribution of heteroplasmy statistically significantly increased with individuals' age (17%; 95% confidence interval [CI] 0.095-0.244 in the 18-40 year age group vs. 39%; [CI] 0.294-0.487 in the >90 year age group). Heteroplasmy occurred in a total of 21 different positions within HVS-I, and was the most frequent at fast-mutated positions 16189, 16304 and 16311. The results indicate that heteroplasmy in HVS-I is relatively common and occurs in a broad spectrum of sites. The above is supported by evidence to eventual increase of the probability of heteroplasmy with age due to specific mitochondrial haplogroup background.
Collapse
Affiliation(s)
- Liana Pliss
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga, LV-1067, Latvia.
| | | | | | | | | | | |
Collapse
|
19
|
Kloss-Brandstätter A, Schäfer G, Erhart G, Hüttenhofer A, Coassin S, Seifarth C, Summerer M, Bektic J, Klocker H, Kronenberg F. Somatic mutations throughout the entire mitochondrial genome are associated with elevated PSA levels in prostate cancer patients. Am J Hum Genet 2010; 87:802-12. [PMID: 21129724 DOI: 10.1016/j.ajhg.2010.11.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/15/2010] [Accepted: 11/02/2010] [Indexed: 12/16/2022] Open
Abstract
The genetic etiology of prostate cancer, the most common form of male cancer in western countries, is complex and the interplay of disease genes with environmental factors is far from being understood. Studies on somatic mitochondrial DNA (mtDNA) mutations have become an important aspect of cancer research because these mutations might have functional consequences and/or might serve as biosensors for tumor detection and progression. We sequenced the entire mitochondrial genome (16,569 bp) from 30 prospectively collected pairs of macrodissected cancerous and benign cells from prostate cancer patients and compared their genetic variability. Given recent concerns regarding the authenticity of newly discovered mtDNA mutations, we implemented a high-quality procedure for mtDNA whole-genome sequencing. In addition, the mitochondrial genes MT-CO2, MT-CO3, MT-ATP6, and MT-ND6 were sequenced in further 35 paired samples from prostate cancer patients. We identified a total of 41 somatic mutations in 22 out of 30 patients: the majority of these mutations have not previously been observed in the human phylogeny. The presence of somatic mutations in transfer RNAs (tRNAs) was found to be associated with elevated PSA levels (14.25 ± 5.44 versus 7.15 ± 4.32 ng/ml; p = 0.004). The level and degree of heteroplasmy increased with increasing tumor activity. In summary, somatic mutations in the mitochondrial genome are frequent events in prostate cancer. Mutations mapping to mitochondrial tRNAs, ribosomal RNAs, and protein coding genes might impair processes that occur within the mitochondrial compartment (e.g., transcription, RNA processing, and translation) and might finally affect oxidative phosphorylation.
Collapse
Affiliation(s)
- Anita Kloss-Brandstätter
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pilch J, Asman M, Jamroz E, Kajor M, Kotrys-Puchalska E, Goss M, Krzak M, Witecka J, Gmiński J, Sieroń AL. Surveyor nuclease detection of mutations and polymorphisms of mtDNA in children. Pediatr Neurol 2010; 43:325-30. [PMID: 20933175 DOI: 10.1016/j.pediatrneurol.2010.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 01/27/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
Abstract
Mitochondrial encephalomyopathies are complex disorders with wide range of clinical manifestations. Particularly time-consuming is the identification of mutations in mitochondrial DNA. A group of 20 children with clinical manifestations of mitochondrial encephalomyopathies was selected for molecular studies. The aims were (a) to identify mutations in mtDNA isolated from muscle and (b) to verify detected mutations in DNA isolated from blood, in order to assess the utility of a Surveyor nuclease assay kit for patient screening. The most common changes found were polymorphisms, including a few missense mutations altering the amino acid sequence of mitochondrial proteins. In two boys with MELAS (i.e., mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes), a mutation A→G3243 was detected in the tRNALeu gene of mtDNA isolated from muscle and blood. In one boy, the carrier status of his mother was confirmed, based on molecular analysis of DNA isolated from blood. A method using Surveyor nuclease allows systematic screening for small mutations in mtDNA, using as its source blood of the patients and asymptomatic carriers. The method still requires confirmation studying a larger group. In some patients, the use of this method should precede and might limit indications for traumatic muscle and skin biopsy.
Collapse
Affiliation(s)
- Jacek Pilch
- Department of Child Neurology, Medical University of Silesia, ul. Medyków 16, Katowice, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tillement L, Lecanu L, Papadopoulos V. Alzheimer's disease: effects of β-amyloid on mitochondria. Mitochondrion 2010; 11:13-21. [PMID: 20817045 DOI: 10.1016/j.mito.2010.08.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 08/09/2010] [Accepted: 08/25/2010] [Indexed: 11/15/2022]
Abstract
The impairment of the respiratory chain or defects in the detoxification system can decrease electron transfer efficiency, reduce ATP production, and increase reactive oxygen species (ROS) production by mitochondria. Accumulation of ROS results in oxidative stress, a hallmark of neurodegenerative diseases such as Alzheimer's disease (AD). β-amyloid has been implicated in the pathogenesis of AD, and its accumulation may lead to degeneration of neuronal or non-neuronal cells. There is evidence that β-amyloid interacts with mitochondria but little is known concerning the significance of this interaction in the physiopathology of AD. This review explores possible mechanisms of β-amyloid-induced mitochondrial toxicity.
Collapse
Affiliation(s)
- Laurent Tillement
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | |
Collapse
|
22
|
Vivekanandan P, Daniel H, Yeh MM, Torbenson M. Mitochondrial mutations in hepatocellular carcinomas and fibrolamellar carcinomas. Mod Pathol 2010; 23:790-8. [PMID: 20228784 PMCID: PMC2879444 DOI: 10.1038/modpathol.2010.51] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mitochondrial mutations are well documented in hepatocellular carcinoma, but their role in carcinogenesis remains unclear. To clarify their significance, a comprehensive analysis was performed of hepatocellular carcinomas (N=24), including quantifying the total mitochondrial DNA levels, quantifying the levels of mitochondrial DNA with the common deletion, and complete sequencing of the mitochondrial control region. In addition, these studies were expanded and reinforced by analysis of fibrolamellar carcinomas (N=15), a unique type of liver carcinoma that has increased numbers of mitochondria on electron microscopy. Overall, approximately 50% of hepatocellular carcinomas had lower levels of total mitochondrial DNA than paired non-neoplastic tissues. Interestingly, despite their increased numbers of mitochondria, primary fibrolamellar carcinomas had lower levels of total mitochondrial DNA. In contrast, metastatic fibrolamellar carcinomas had greatly increased mitochondrial DNA levels. Overall, deletions in the control region were associated with lower total DNA levels in typical hepatocellular carcinoma, but somatic single base pair mutations were not. In fact, almost all single base pair mutations were either reversions to the wild-type sequence or known population polymorphisms, strongly suggesting they are not directly oncogenic. Complete sequencing of the entire mitochondrial genome in fibrolamellar carcinomas identified several somatic mutations, but no consistent pattern of mutations was found. Overall, the levels of the common deletion were highest in tissues with lower total mitochondrial DNA. In conclusion, control region deletions, but not somatic mutations, may influence total DNA copy numbers. Somatic control region mutations in hepatocellular carcinoma are not directly oncogenic but instead may be adaptive.
Collapse
Affiliation(s)
| | - Hubert Daniel
- Department of Pathology, Johns Hopkins University School of Medicine
| | - Matthew M. Yeh
- Department of Pathology, University of Washington Medical Center, Seattle, WA
| | - Michael Torbenson
- Department of Pathology, Johns Hopkins University School of Medicine
| |
Collapse
|
23
|
Krishnan KJ, Blackwood JK, Reeve AK, Turnbull DM, Taylor RW. Detection of mitochondrial DNA variation in human cells. Methods Mol Biol 2010; 628:227-257. [PMID: 20238085 DOI: 10.1007/978-1-60327-367-1_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The ability to detect mitochondrial DNA (mtDNA) variation within human cells is important not only to identify mutations causing mtDNA disease, but also as mtDNA mutations are being increasingly described in many ageing tissues and in complex diseases such as diabetes, neurodegeneration and cancer. In this review, we discuss the main molecular genetic techniques that can be applied to study the two main types of mtDNA mutation: point mutations and large-scale mtDNA rearrangements. We then describe in detail protocols routinely used within our laboratory to analyse mtDNA mutations in individual human cells such as single muscle fibres and individual neurons to study the relationship between mtDNA mutation load and respiratory chain dysfunction.
Collapse
Affiliation(s)
- Kim J Krishnan
- Mitochondrial Research Group, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | | | | | | | | |
Collapse
|
24
|
Keeney PM, Quigley CK, Dunham LD, Papageorge CM, Iyer S, Thomas RR, Schwarz KM, Trimmer PA, Khan SM, Portell FR, Bergquist KE, Bennett JP. Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson's disease cell model. Hum Gene Ther 2009; 20:897-907. [PMID: 19374590 DOI: 10.1089/hum.2009.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neurodegeneration in Parkinson's disease (PD) affects mainly dopaminergic neurons in the substantia nigra, where age-related, increasing percentages of cells lose detectable respiratory activity associated with depletion of intact mitochondrial DNA (mtDNA). Replenishment of mtDNA might improve neuronal bioenergetic function and prevent further cell death. We developed a technology ("ProtoFection") that uses recombinant human mitochondrial transcription factor A (TFAM) engineered with an N-terminal protein transduction domain (PTD) followed by the SOD2 mitochondrial localization signal (MLS) to deliver mtDNA cargo to the mitochondria of living cells. MTD-TFAM (MTD = PTD + MLS = "mitochondrial transduction domain") binds mtDNA and rapidly transports it across plasma membranes to mitochondria. For therapeutic proof-of-principle we tested ProtoFection technology in Parkinson's disease cybrid cells, using mtDNA generated from commercially available human genomic DNA (gDNA; Roche). Nine to 11 weeks after single exposures to MTD-TFAM + mtDNA complex, PD cybrid cells with impaired respiration and reduced mtDNA genes increased their mtDNA gene copy numbers up to 24-fold, mtDNA-derived RNAs up to 35-fold, TFAM and ETC proteins, cell respiration, and mitochondrial movement velocities. Cybrid cells with no or minimal basal mitochondrial impairments showed reduced or no responses to treatment, suggesting the possibility of therapeutic selectivity. Exposure of PD but not control cybrid cells to MTD-TFAM protein alone or MTD-TFAM + mtDNA complex increased expression of PGC-1alpha, suggesting activation of mitochondrial biogenesis. ProtoFection technology for mitochondrial gene therapy holds promise for improving bioenergetic function in impaired PD neurons and needs additional development to define its pharmacodynamics and delineate its molecular mechanisms. It also is unclear whether single-donor gDNA for generating mtDNA would be a preferred therapeutic compared with the pooled gDNA used in this study.
Collapse
Affiliation(s)
- Paula M Keeney
- Morris K. Udall Parkinson's Disease Research Center of Excellence, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Keeney PM, Dunham LD, Quigley CK, Morton SL, Bergquist KE, Bennett JP. Cybrid models of Parkinson's disease show variable mitochondrial biogenesis and genotype-respiration relationships. Exp Neurol 2009; 220:374-82. [PMID: 19815014 DOI: 10.1016/j.expneurol.2009.09.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/23/2009] [Accepted: 09/28/2009] [Indexed: 01/01/2023]
Abstract
Sporadic Parkinson's disease (sPD) is a nervous system-wide disease that presents with a bradykinetic movement disorder and frequently progresses to include depression and cognitive impairment. Cybrid models of sPD are based on expression of sPD platelet mitochondrial DNA (mtDNA) in neural cells and demonstrate some similarities to sPD brains. In sPD and CTL cybrids we characterized aspects of mitochondrial biogenesis, mtDNA genomics, composition of the respirasome and the relationships among isolated mitochondrial and intact cell respiration. Cybrid mtDNA levels varied and correlated with expression of PGC-1 alpha, a transcriptional co-activator regulator of mitochondrial biogenesis. Levels of mtDNA heteroplasmic mutations were asymmetrically distributed across the mitochondrial genome; numbers of heteroplasmies were more evenly distributed. Neither levels nor numbers of heteroplasmies distinguished sPD from CTL. sPD cybrid mitochondrial ETC subunit protein levels were not altered. Isolated mitochondrial complex I respiration rates showed limited correlation with whole cell complex I respiration rates in both sPD and CTL cybrids. Intact cell respiration during the normoxic-anoxic transition yielded K(m) values for oxygen that directly related to respiration rates in CTL but not in sPD cell lines. Both sPD and CTL cybrid cells are substantially heterogeneous in mitochondrial genomic and physiologic properties. Our results suggest that mtDNA depletion may occur in sPD neurons and could reflect impairment of mitochondrial biogenesis. Cybrids remain a valuable model for some aspects of sPD but their heterogeneity mitigates against a simple designation of sPD phenotype in this cell model.
Collapse
Affiliation(s)
- Paula M Keeney
- Morris K. Udall Parkinson's Research Center of Excellence, University of Virginia, PO Box 800394, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
26
|
Arthur CR, Morton SL, Dunham LD, Keeney PM, Bennett JP. Parkinson's disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance. Mol Neurodegener 2009; 4:37. [PMID: 19775436 PMCID: PMC2761382 DOI: 10.1186/1750-1326-4-37] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 09/23/2009] [Indexed: 12/21/2022] Open
Abstract
Background Sporadic Parkinson's disease (sPD) is a nervous system-wide disease that presents with a bradykinetic movement disorder and is frequently complicated by depression and cognitive impairment. sPD likely has multiple interacting causes that include increased oxidative stress damage to mitochondrial components and reduced mitochondrial bioenergetic capacity. We analyzed mitochondria from postmortem sPD and CTL brains for evidence of oxidative damage to mitochondrial DNA (mtDNA), heteroplasmic mtDNA point mutations and levels of electron transport chain proteins. We sought to determine if sPD brains possess any mtDNA genotype-respiratory phenotype relationships. Results Treatment of sPD brain mtDNA with the mitochondrial base-excision repair enzyme 8-oxyguanosine glycosylase-1 (hOGG1) inhibited, in an age-dependent manner, qPCR amplification of overlapping ~2 kbase products; amplification of CTL brain mtDNA showed moderate sensitivity to hOGG1 not dependent on donor age. hOGG1 mRNA expression was not different between sPD and CTL brains. Heteroplasmy analysis of brain mtDNA using Surveyor nuclease® showed asymmetric distributions and levels of heteroplasmic mutations across mtDNA but no patterns that statistically distinguished sPD from CTL. sPD brain mitochondria displayed reductions of nine respirasome proteins (respiratory complexes I-V). Reduced levels of sPD brain mitochondrial complex II, III and V, but not complex I or IV proteins, correlated closely with rates of NADH-driven electron flow. mtDNA levels and PGC-1α expression did not differ between sPD and CTL brains. Conclusion PD brain mitochondria have reduced mitochondrial respiratory protein levels in complexes I-V, implying a generalized defect in respirasome assembly. These deficiencies do not appear to arise from altered point mutational burden in mtDNA or reduction of nuclear signaling for mitochondrial biogenesis, implying downstream etiologies. The origin of age-related increases in distribution of oxidative mtDNA damage in sPD but not CTL brains is not clear, tracks with but does not determine the sPD phenotype, and may indicate a unique consequence of aging present in sPD that could contribute to mtDNA deletion generation in addition to mtDNA replication, transcription and sequencing errors. sPD frontal cortex experiences a generalized bioenergetic deficiency above and beyond aging that could contribute to mood disorders and cognitive impairments.
Collapse
Affiliation(s)
- Charles R Arthur
- Morris K Udall Parkinson's Disease Research Center of Excellence, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
27
|
Mancuso M, Orsucci D, Ali G, Lo Gerfo A, Fontanini G, Siciliano G. Advances in molecular diagnostics for mitochondrial diseases. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2009; 3:557-569. [PMID: 23495985 DOI: 10.1517/17530050902967610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND Mitochondrial disorders (MD) are diseases caused by impairment of the mitochondrial respiratory chain. Phenotypes are polymorphous and may range from pure myopathy to multisystemic disorders. The genetic defect can be located on mitochondrial or nuclear DNA. At present, diagnosis of MD requires a complex approach: measurement of serum lactate, electromyography, muscle histology and enzymology, and genetic analysis. Magnetic resonance spectroscopy allows the assessment of tissue metabolic alterations, thus providing useful information for the diagnosis and monitoring of MD. Molecular soluble markers of mitochondrial dysfunction, at rest and during exercise, can identify the impairment of the aerobic system in MD, but a reliable biomarker for the screening or diagnosis of MD is still needed. OBJECTIVE Molecular and genetic characterization of MD, together with other experimental approaches, contribute to add new insights to these diseases. Here, the role and advances of diagnostic techniques for MD are reviewed. CONCLUSION Possible applications of the results obtained by new molecular investigative approaches could in future guide therapeutic strategies.
Collapse
Affiliation(s)
- Michelangelo Mancuso
- University of Pisa, Neurological Clinic, Department of Neuroscience, Via Roma 67, 56126 Pisa, Italy +0039 050 992440 ; +0039 050 554808 ;
| | | | | | | | | | | |
Collapse
|
28
|
Trimmer PA, Bennett JP. The cybrid model of sporadic Parkinson's disease. Exp Neurol 2009; 218:320-5. [PMID: 19328199 PMCID: PMC2735256 DOI: 10.1016/j.expneurol.2009.03.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 03/13/2009] [Accepted: 03/17/2009] [Indexed: 11/19/2022]
Abstract
Parkinson's disease (PD) is the eponym attached to the most prevalent neurodegenerative movement disorder of adults, derived from observations of an early nineteenth century physician and paleontologist, James Parkinson, and is now recognized to encompass much more than a movement disorder clinically or dopamine neuron death pathologically. Most PD ( approximately 90%) is sporadic (sPD), is associated with mitochondrial deficiencies and has been studied in cell and animal models arising from the use of mitochondrial toxins that unfortunately have not predicted clinical efficacy to slow disease progression in humans. We have extensively studied the cytoplasmic hybrid ("cybrid") model of sPD in which donor mtDNAs are introduced into and expressed in neural tumor cells with identical nuclear genetic and environmental backgrounds. sPD cybrids demonstrate many abnormalities in which increased oxidative stress drives downstream antioxidant response and cell death activating signaling pathways. sPD cybrids regulate mitochondrial ETC genes and gene ontology families like sPD brain. sPD cybrids spontaneously form Lewy bodies and Lewy neurites, linking mtDNA expression to neuropathology, and demonstrate impaired organelle transport in processes and reduced mitochondrial respiration. Our recent studies show that near-infrared laser light therapy normalizes mitochondrial movement and can stimulate respiration in sPD cybrid neurons, and mitochondrial gene therapy can restore respiration and stimulate mitochondrial ETC gene and protein expression. sPD cybrids have provided multiple lines of circumstantial evidence linking mtDNA to sPD pathogenesis and can serve as platforms for therapy development. sPD cybrid models can be improved by the use of non-tumor human stem cell-derived neural precursor cells and by an introduction of postmortem brain mtDNA to test its causality directly.
Collapse
Affiliation(s)
- Patricia A Trimmer
- Morris K. Udall Parkinson's Disease Research Center of Excellence, Department of Neurology, University of Virginia, Charlottesville, 22908, USA.
| | | |
Collapse
|
29
|
Voskarides K, Deltas C. Screening for mutations in kidney-related genes using SURVEYOR nuclease for cleavage at heteroduplex mismatches. J Mol Diagn 2009; 11:311-8. [PMID: 19525337 PMCID: PMC2710707 DOI: 10.2353/jmoldx.2009.080144] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2009] [Indexed: 11/20/2022] Open
Abstract
SURVEYOR is a new mismatch-specific plant DNA endonuclease that is very efficient for mutation scanning in heteroduplex DNA. It is much faster, cheaper, more sensitive, and easier to perform than other "traditional" mutation detection methods such as single-strand conformation polymorphism analysis, denaturing high-performance liquid chromatography, heteroduplex analysis, and phage resolvases. This is the first comprehensive report on the use of SURVEYOR for screening genes implicated in a spectrum of inherited renal diseases. Of the 48.2 kb screened, 44 variations were identified, accounting for one variation per 1.1 kb. The re-sequencing of multiple samples did not reveal any variation that had not been identified by SURVEYOR, attesting to its high fidelity. Additionally, we tested this enzyme against 15 known variants, 14 of which it identified, thus showing a sensitivity of 93%. We showed that the genetic heterogeneity of renal diseases can be easily overcome using this enzyme with a high degree of confidence and no bias for any specific variations. We also showed for the first time that SURVEYOR does not demonstrate any preference regarding mismatch cleavage at specific positions. Disadvantages of using SURVEYOR include enhanced exonucleolytic activity for some polymerase chain reaction products and less than 100% sensitivity. We report that SURVEYOR can be used as a mutation detection method with a high degree of confidence, offering an excellent alternative for low-budget laboratories and for the rapid manipulation of multiple genes.
Collapse
Affiliation(s)
| | - Constantinos Deltas
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
30
|
Rollins B, Martin MV, Sequeira PA, Moon EA, Morgan LZ, Watson SJ, Schatzberg A, Akil H, Myers RM, Jones EG, Wallace DC, Bunney WE, Vawter MP. Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder. PLoS One 2009; 4:e4913. [PMID: 19290059 PMCID: PMC2654519 DOI: 10.1371/journal.pone.0004913] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 02/15/2009] [Indexed: 02/06/2023] Open
Abstract
Background Mitochondria provide most of the energy for brain cells by the process of oxidative phosphorylation. Mitochondrial abnormalities and deficiencies in oxidative phosphorylation have been reported in individuals with schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD) in transcriptomic, proteomic, and metabolomic studies. Several mutations in mitochondrial DNA (mtDNA) sequence have been reported in SZ and BD patients. Methodology/Principal Findings Dorsolateral prefrontal cortex (DLPFC) from a cohort of 77 SZ, BD, and MDD subjects and age-matched controls (C) was studied for mtDNA sequence variations and heteroplasmy levels using Affymetrix mtDNA resequencing arrays. Heteroplasmy levels by microarray were compared to levels obtained with SNaPshot and allele specific real-time PCR. This study examined the association between brain pH and mtDNA alleles. The microarray resequencing of mtDNA was 100% concordant with conventional sequencing results for 103 mtDNA variants. The rate of synonymous base pair substitutions in the coding regions of the mtDNA genome was 22% higher (p = 0.0017) in DLPFC of individuals with SZ compared to controls. The association of brain pH and super haplogroup (U, K, UK) was significant (p = 0.004) and independent of postmortem interval time. Conclusions Focusing on haplogroup and individual susceptibility factors in psychiatric disorders by considering mtDNA variants may lead to innovative treatments to improve mitochondrial health and brain function.
Collapse
Affiliation(s)
- Brandi Rollins
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Maureen V. Martin
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - P. Adolfo Sequeira
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Emily A. Moon
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Ling Z. Morgan
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Stanley J. Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alan Schatzberg
- Department of Psychiatry, Stanford University, Palo Alto, California, United States of America
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Richard M. Myers
- Hudson Alpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Edward G. Jones
- Neuroscience Center, University of California Davis, Davis, California, United States of America
| | - Douglas C. Wallace
- Molecular and Mitochondrial Medicine and Genetics, University of California Irvine, Irvine, California, United States of America
| | - William E. Bunney
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Marquis P. Vawter
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Bannwarth S, Procaccio V, Paquis-Flucklinger V. Rapid identification of unknown heteroplasmic mitochondrial DNA mutations with mismatch-specific surveyor nuclease. Methods Mol Biol 2009; 554:301-313. [PMID: 19513682 DOI: 10.1007/978-1-59745-521-3_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Identification of mitochondrial DNA (mtDNA) mutations is essential for diagnosis and genetic counseling of mitochondrial diseases. In this chapter, we describe a strategy for the rapid identification of heteroplasmic mtDNA mutations that can be used routinely in molecular genetic laboratories. This protocol involves the following three steps: (i) PCR amplification of the entire human mitochondrial genome with 17 overlapping PCR products, (ii) localization of mtDNA mismatch(es) after digestion of the 17 amplicons by Surveyor Nuclease, a member of a family of plant DNA endonucleases that cleave double-strand DNA at any mismatch site, and (iii) identification of the mutation by sequencing the region containing the mismatch.
Collapse
Affiliation(s)
- Sylvie Bannwarth
- Department of Medical Genetics, Archet 2 Hospital, CHU Nice, France
| | | | | |
Collapse
|
32
|
Bannwarth S, Procaccio V, Rouzier C, Fragaki K, Poole J, Chabrol B, Desnuelle C, Pouget J, Azulay JP, Attarian S, Pellissier JF, Gargus JJ, Abdenur JE, Mozaffar T, Calvas P, Labauge P, Pages M, Wallace DC, Lambert JC, Paquis-Flucklinger V. Rapid identification of mitochondrial DNA (mtDNA) mutations in neuromuscular disorders by using surveyor strategy. Mitochondrion 2007; 8:136-45. [PMID: 18078792 DOI: 10.1016/j.mito.2007.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/22/2007] [Accepted: 10/26/2007] [Indexed: 11/18/2022]
Abstract
Mutations of mitochondrial genome are responsible for respiratory chain defects in numerous patients. We have used a strategy, based on the use of a mismatch-specific DNA endonuclease named " Surveyor Nuclease", for screening the entire mtDNA in a group of 50 patients with neuromuscular features, suggesting a respiratory chain dysfunction. We identified mtDNA mutations in 20% of patients (10/50). Among the identified mutations, four are not found in any mitochondrial database and have not been reported previously. We also confirm that mtDNA polymorphisms are frequently found in a heteroplasmic state (15 different polymorphisms were identified among which five were novel).
Collapse
Affiliation(s)
- S Bannwarth
- Department of Medical Genetics, Archet 2 Hospital, CHU Nice, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|