1
|
Ganguly R, Lee CS. A Poisson-Independent Approach to Precision Nucleic Acid Quantification in Microdroplets. ACS APPLIED BIO MATERIALS 2024; 7:3441-3451. [PMID: 38658190 DOI: 10.1021/acsabm.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Digital PCR (dPCR) has become indispensable in nucleic acid (NA) detection across various fields, including viral diagnostics and mutant detection. However, misclassification of partitions in dPCR can significantly impact accuracy. Despite existing methods to minimize misclassification bias, accurate classification remains elusive, especially for nonamplified target partitions. To address these challenges, this study introduces an innovative microdroplet-based competitive PCR platform for nucleic acid quantification in microfluidic devices independent of Poisson statistics. In this approach, the target concentration (T) is determined from the concentration of competitor DNA (C) at the equivalence point (E.P.), where C/T is 1. Competitive PCR ensures that the ratio of target to competitor DNA remains constant during amplification, reflected in the resultant fluorescence intensity, allowing the quantification of target DNA concentration at the equivalence point. The unique amplification technique eliminates Poisson distribution, addressing misclassification challenges. Additionally, our approach reduces the need for post-PCR procedures and shortens analytical time. We envision this platform as versatile, reproducible, and easily adaptable for driving significant progress in molecular biology and diagnostics.
Collapse
Affiliation(s)
- Reya Ganguly
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Cepeda J, Racca ME, Rossetti MF, Cardozo MA, Gaydou L, Luque EH, Muñoz-de-Toro M, Milesi MM, Varayoud J, Ramos JG. A Reliable Method for Quantifying Plasma Cell-Free DNA Using an Internal Standard Strategy: Evaluation in a Cohort of Non-Pregnant and Pregnant Women. Reprod Sci 2024; 31:987-996. [PMID: 38030813 DOI: 10.1007/s43032-023-01403-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023]
Abstract
The use of plasma cell-free DNA (cfDNA) as a useful biomarker in obstetric clinical practice has been delayed due to the lack of reliable quantification protocols. We developed a protocol to quantify plasma cfDNA using an internal standard strategy to overcome difficulties posed by low levels and high fragmentation of cfDNA. cfDNA was isolated from plasma samples of non-pregnant (NP, n = 26) and pregnant (P, n = 26) women using a commercial kit and several elution volumes were evaluated. qPCR parameters were optimized for cfDNA quantification, and several quantities of a recombinant standard were evaluated as internal standard. Absolute quantification was performed using a standard curve and the quality of the complete method was evaluated. cfDNA was eluted in a 50-μl volume, actin-β (ACTB) was selected as the target gene, and qPCR parameters were optimized. The ACTB standard was constructed and 1000 copies were selected as internal standard. The standard curve showed R2 = 0.993 and E = 109.7%, and the linear dynamic range was defined between 102 and 106 ACTB copies/tube. Repeatability and reproducibility in terms of CV were 19% and up to 49.5% for ACTB copies per milliliter of plasma, respectively. The range of cfDNA levels was 428-18,851 copies/mL in NP women and 4031-2,019,363 copies/mL in P women, showing significant differences between the groups. We recommend the application of internal standard strategy for a reliable plasma cfDNA quantification. This methodology holds great potential for a future application in the obstetric field.
Collapse
Affiliation(s)
- Julieta Cepeda
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - M Emilia Racca
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - M Florencia Rossetti
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - M Alejandra Cardozo
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Laboratorios BLUT, Santa Fe, Argentina
| | - Luisa Gaydou
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Enrique H Luque
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Fisiología Humana, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Patología Humana, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - M Mercedes Milesi
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Fisiología Humana, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Jorgelina Varayoud
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Fisiología Humana, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Jorge G Ramos
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.
| |
Collapse
|
3
|
Craig DJ, Crawford EL, Chen H, Grogan EL, Deppen SA, Morrison T, Antic SL, Massion PP, Willey JC. TP53 mutation prevalence in normal airway epithelium as a biomarker for lung cancer risk. BMC Cancer 2023; 23:783. [PMID: 37612638 PMCID: PMC10464352 DOI: 10.1186/s12885-023-11266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND There is a need for biomarkers that improve accuracy compared with current demographic risk indices to detect individuals at the highest lung cancer risk. Improved risk determination will enable more effective lung cancer screening and better stratification of lung nodules into high or low-risk category. We previously reported discovery of a biomarker for lung cancer risk characterized by increased prevalence of TP53 somatic mutations in airway epithelial cells (AEC). Here we present results from a validation study in an independent retrospective case-control cohort. METHODS Targeted next generation sequencing was used to identify mutations within three TP53 exons spanning 193 base pairs in AEC genomic DNA. RESULTS TP53 mutation prevalence was associated with cancer status (P < 0.001). The lung cancer detection receiver operator characteristic (ROC) area under the curve (AUC) for the TP53 biomarker was 0.845 (95% confidence limits 0.749-0.942). In contrast, TP53 mutation prevalence was not significantly associated with age or smoking pack-years. The combination of TP53 mutation prevalence with PLCOM2012 risk score had an ROC AUC of 0.916 (0.846-0.986) and this was significantly higher than that for either factor alone (P < 0.03). CONCLUSIONS These results support the validity of the TP53 mutation prevalence biomarker and justify taking additional steps to assess this biomarker in AEC specimens from a prospective cohort and in matched nasal brushing specimens as a potential non-invasive surrogate specimen.
Collapse
Affiliation(s)
- Daniel J Craig
- University of Toledo College of Medicine, 3000 Arlington Ave, OH, 43614, Toledo, USA
| | - Erin L Crawford
- University of Toledo College of Medicine, 3000 Arlington Ave, OH, 43614, Toledo, USA
| | - Heidi Chen
- Vanderbilt University Medical Center, 1301 Medical Center Dr., TN, 37232, Nashville, USA
| | - Eric L Grogan
- Vanderbilt University Medical Center, 1301 Medical Center Dr., TN, 37232, Nashville, USA
- Tennessee Valley VA Healthcare System, 1310 24Th Avenue South, Nashville, TN, 37212, USA
| | - Steven A Deppen
- Vanderbilt University Medical Center, 1301 Medical Center Dr., TN, 37232, Nashville, USA
| | - Thomas Morrison
- Accugenomics Inc, 1410 Commonwealth Dr #105, Wilmington, NC, 28403, USA
| | - Sanja L Antic
- Vanderbilt University Medical Center, 1301 Medical Center Dr., TN, 37232, Nashville, USA
| | - Pierre P Massion
- Vanderbilt University Medical Center, 1301 Medical Center Dr., TN, 37232, Nashville, USA
| | - James C Willey
- University of Toledo College of Medicine, 3000 Arlington Ave, OH, 43614, Toledo, USA.
| |
Collapse
|
4
|
Chen Y, Jiang Q, Liu Q, Gan M, Takiff HE, Gao Q. Whole-Genome Sequencing Exhibits Better Diagnostic Performance than Variable-Number Tandem Repeats for Identifying Mixed Infections of Mycobacterium tuberculosis. Microbiol Spectr 2023; 11:e0357022. [PMID: 37098911 PMCID: PMC10269500 DOI: 10.1128/spectrum.03570-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/10/2023] [Indexed: 04/27/2023] Open
Abstract
Mixed infections of Mycobacterium tuberculosis, defined as the coexistence of multiple genetically distinct strains within a single host, have been associated with unfavorable treatment outcomes. Different methods have been used to detect mixed infections, but their performances have not been carefully evaluated. To compare the sensitivity of whole-genome sequencing (WGS) and variable-number tandem repeats (VNTR) typing to detect mixed infections, we prepared 10 artificial samples composed of DNA mixtures from two strains in different proportions and retrospectively collected 1,084 clinical isolates. The limit of detection (LOD) for the presence of a minor strain was 5% for both WGS and VNTR typing. The overall clinical detection rate of mixed infections was 3.7% (40/1,084) for the two methods combined, WGS identified 37/1,084 (3.4%), and VNTR typing identified 14/1,084 (1.3%), including 11 also identified by WGS. Multivariate analysis demonstrated that retreatment patients had a 2.7 times (95% confidence interval [CI], 1.2 to 6.0) higher risk of mixed infections than new cases. Collectively, WGS is a more reliable tool to identify mixed infections than VNTR typing, and mixed infections are more common in retreated patients. IMPORTANCE Mixed infections of M. tuberculosis have the potential to render treatment regimens ineffective and affect the transmission dynamics of the disease. VNTR typing, currently the most widely used method for the detection of mixed infections, detects mixed infections only by interrogating a small fraction of the M. tuberculosis genome, which necessarily limits sensitivity. With the introduction of WGS, it became possible to study the entire genome, but no quantitative comparison has yet been undertaken. Our systematic comparison of the ability of WGS and VNTR typing to detect mixed infections, using both artificial samples and clinical isolates, revealed the superior performance of WGS at a high sequencing depth (~100×) and found that mixed infections are more common in patients being retreated for tuberculosis (TB) in the populations studied. This provides valuable information for the application of WGS in the detection of mixed infections and the implications of mixed infections for tuberculosis control.
Collapse
Affiliation(s)
- Yiwang Chen
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Jiang
- School of Public Health, Public Health Research Institute of Renmin Hospital, Wuhan University, Wuhan, China
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mingyu Gan
- Molecular Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Howard E. Takiff
- Instituto Venezolano de Investigaciones Cientificas (IVIC), Caracas, Venezuela
| | - Qian Gao
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Mukherjee S, Hanak P, Jilkova D, Musilova Z, Horka P, Lerch Z, Zdenkova K, Cermakova E. Simultaneous detection and quantification of two European anglerfishes by novel genomic primer. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
De Saeger J, Park J, Thoris K, De Bruyn C, Chung HS, Inzé D, Depuydt S. IMPLANT: a new technique for transgene copy number estimation in plants using a single end-point PCR reaction. PLANT METHODS 2022; 18:132. [PMID: 36494670 PMCID: PMC9732982 DOI: 10.1186/s13007-022-00965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Copy number determination is one of the first steps in the characterization of transgenic plant lines. The classical approach to this, Southern blotting, is time-consuming, expensive and requires massive amounts of high-quality genomic DNA. Other PCR-based techniques are either inaccurate, laborious, or expensive. RESULTS Here, we propose a new technique, IMPLANT (Insertion of competitive PCR calibrator for copy number estimation), a competitive PCR-based technique in which the competitor (based on an endogenous gene) is also incorporated in the T-DNA, which then gets integrated in the genome together with the gene of interest. As the number of integrated competitor molecules directly corresponds to the number of transgene copies, the transgene copy number can be determined by a single PCR reaction. We demonstrate that the results of this technique closely correspond with those obtained by segregation analysis in Arabidopsis and digital PCR In rice, indicating that it is a powerful alternative for other techniques for copy number determination. CONCLUSIONS We show that this technique is not only reliable, but is also faster, easier, and cheaper as compared with other techniques. Accurate results are obtained in both Arabidopsis and rice, but this technique can be easily extended to other organisms and as such can be widely adopted in the field of biotechnology.
Collapse
Affiliation(s)
- Jonas De Saeger
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 406-840, South Korea.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| | - Jihae Park
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 406-840, South Korea
- Department of Marine Sciences, Incheon National University, Incheon, 406-840, South Korea
| | - Kai Thoris
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 406-840, South Korea
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Charlotte De Bruyn
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 406-840, South Korea
| | - Hoo Sun Chung
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Stephen Depuydt
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 406-840, South Korea
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| |
Collapse
|
7
|
Andreani J, Lupo J, Nemoz B, Truffot A, Larrat S, Morand P, Germi R. Use of RT-PCR thermocycling program for the quantification of DNA viruses in a single run with RNA viruses: Example of Altona RealStar® HSV or VZV PCR kits. Infect Dis Now 2022; 52:453-455. [DOI: 10.1016/j.idnow.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/19/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022]
|
8
|
Yan X, Zhang J, Jiang Q, Jiao D, Cheng Y. Integration of the Ligase Chain Reaction with the CRISPR-Cas12a System for Homogeneous, Ultrasensitive, and Visual Detection of microRNA. Anal Chem 2022; 94:4119-4125. [PMID: 35195982 DOI: 10.1021/acs.analchem.2c00294] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ligase chain reaction (LCR), as a classic nucleic acid amplification technique, is popular in the detection of DNA and RNA due to its simplicity, powerfulness, and high specificity. However, homogeneous and ultrasensitive LCR detection is still quite challenging. Herein, we integrate the LCR with a CRISPR-Cas12a system to greatly promote the application of the LCR in a homogeneous fashion. By employing microRNA as the model target, we design LCR probes with specific protospacer adjacent motif sequences and the guide RNA. Then, the LCR is initiated by target microRNA, and the LCR products specifically bind to the guide RNA to activate the Cas12a system, triggering secondary signal amplification to achieve ultrasensitive detection of microRNA without separation steps. Moreover, by virtue of a cationic conjugated polymer, microRNA can not only be visually detected by naked eyes but also be accurately quantified based on RGB ratio analysis of images with no need of sophisticated instruments. The method can quantify microRNA up to 4 orders of magnitude, and the determination limit is 0.4 aM, which is better than those of other reported studies using CRISPR-Cas12a and can be compared with that of the reverse-transcription polymerase chain reaction. This study demonstrates that the CRISPR-Cas12a system can greatly expand the application of the LCR for the homogeneous, ultrasensitive, and visual detection of microRNA, showing great potential in efficient nucleic acid detection and in vitro diagnosis.
Collapse
Affiliation(s)
- Xinrong Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002 Hebei, P. R. China
| | - Jiangyan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002 Hebei, P. R. China
| | - Qi Jiang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002 Hebei, P. R. China
| | - Dan Jiao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002 Hebei, P. R. China
| | - Yongqiang Cheng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002 Hebei, P. R. China
| |
Collapse
|
9
|
Emerging methods for and novel insights gained by absolute quantification of mitochondrial DNA copy number and its clinical applications. Pharmacol Ther 2021; 232:107995. [PMID: 34592204 DOI: 10.1016/j.pharmthera.2021.107995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The past thirty years have seen a surge in interest in pathophysiological roles of mitochondria, and the accurate quantification of mitochondrial DNA copy number (mCN) in cells and tissue samples is a fundamental aspect of assessing changes in mitochondrial health and biogenesis. Quantification of mCN between studies is surprisingly variable due to a combination of physiological variability and diverse protocols being used to measure this endpoint. The advent of novel methods to quantify nucleic acids like digital polymerase chain reaction (dPCR) and high throughput sequencing offer the ability to measure absolute values of mCN. We conducted an in-depth survey of articles published between 1969 -- 2020 to create an overview of mCN values, to assess consensus values of tissue-specific mCN, and to evaluate consistency between methods of assessing mCN. We identify best practices for methods used to assess mCN, and we address the impact of using specific loci on the mitochondrial genome to determine mCN. Current data suggest that clinical measurement of mCN can provide diagnostic and prognostic value in a range of diseases and health conditions, with emphasis on cancer and cardiovascular disease, and the advent of means to measure absolute mCN should improve future clinical applications of mCN measurements.
Collapse
|
10
|
Rigotto G, Zentilin L, Pozzan T, Basso E. Effects of Mild Excitotoxic Stimulus on Mitochondria Ca 2+ Handling in Hippocampal Cultures of a Mouse Model of Alzheimer's Disease. Cells 2021; 10:cells10082046. [PMID: 34440815 PMCID: PMC8394681 DOI: 10.3390/cells10082046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/19/2023] Open
Abstract
In Alzheimer’s disease (AD), the molecular mechanisms involved in the neurodegeneration are still incompletely defined, though this aspect is crucial for a better understanding of the malady and for devising effective therapies. Mitochondrial dysfunctions and altered Ca2+ signaling have long been implicated in AD, though it is debated whether these events occur early in the course of the pathology, or whether they develop at late stages of the disease and represent consequences of different alterations. Mitochondria are central to many aspects of cellular metabolism providing energy, lipids, reactive oxygen species, signaling molecules for cellular quality control, and actively shaping intracellular Ca2+ signaling, modulating the intensity and duration of the signal itself. Abnormalities in the ability of mitochondria to take up and subsequently release Ca2+ could lead to changes in the metabolism of the organelle, and of the cell as a whole, that eventually result in cell death. We sought to investigate the role of mitochondria and Ca2+ signaling in a model of Familial Alzheimer’s disease and found early alterations in mitochondria physiology under stressful condition, namely, reduced maximal respiration, decreased ability to sustain membrane potential, and a slower return to basal matrix Ca2+ levels after a mild excitotoxic stimulus. Treatment with an inhibitor of the permeability transition pore attenuated some of these mitochondrial disfunctions and may represent a promising tool to ameliorate mitochondria and cellular functioning in AD and prevent or slow down cell loss in the disease.
Collapse
Affiliation(s)
- Giulia Rigotto
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (G.R.); (T.P.)
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy;
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (G.R.); (T.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), 35131 Padua, Italy
| | - Emy Basso
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (G.R.); (T.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
- Correspondence:
| |
Collapse
|
11
|
Xu J, Wang J, He S, Su X, Zhong Z, Zhong W, Yan L, Huang S, Yang J, Gao R, Zhang J, Zeng J, Zhang D, Li T, Zhang S, Ge S, Zhang J, Xia N. Accurate nucleic acid quantification in a single sample tube without the need for calibration. Anal Chim Acta 2021; 1167:338599. [PMID: 34049623 DOI: 10.1016/j.aca.2021.338599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
Convenient and accurate nucleic acid quantification (NAQ) is crucial to clinical diagnosis, forensic medicine, veterinary medicine and food analysis. However, traditional NAQ relies on the preparation of a laborious, time-consuming and expensive calibration curve, which would also propagate pipette errors through serially dilutions. Besides, traditional NAQ is run in different tubes, which introduces bias from random tube-to-tube variations and is unable to detect inhibitors from biological samples. To solve these problems, a single-tube quantitative PCR (stqPCR) technique is proposed which enables accurate quantification without the need for a calibration curve. In this method, an internal quantitative standard DNA (IQS-DNA) for quantification was screened out by co-amplification with the target DNA. Then the difference between the quantification cycle value (ΔCq) of the IQS-DNA and the target DNA was used for NAQ. The method permitted high accuracy quantification with reliable data for concentrations in plasmid, serum standard, and clinical samples being confirmed (R2 values of 0.9951, 0.9889, and 0.9727, slope values of 1.011, 1.028, and 0.9327, and intercept values of -0.06037, -0.1486, and 0.3325, respectively). Accurate NAQ could also be achieved by stqPCR even though inhibitors were present in a sample; however, in the case of using a commercial assay kit, satisfactory performance was only attained after the same sample was diluted some 32-fold. Moreover, integration of the present method into a microfluidic system could achieve super-fast NAQ in less than 30 min and achieve super-fast "sample in, quantitative answer out" testing in less than 40 min. Thus, the stqPCR method present here would promote the development of NAQ in the laboratory and on site.
Collapse
Affiliation(s)
- Jiasu Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China; School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Shuizhen He
- Haicang Hospital of Xiamen, Xiamen, 361026, China
| | - Xiaosong Su
- Xiang'an Hospital of Xiamen University, Xiamen, 361102, China
| | - Zecheng Zhong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Weibo Zhong
- Xiamen Innovax Biotech CO., LTD., Xiamen, 361022, China
| | - Lizhen Yan
- Haicang Hospital of Xiamen, Xiamen, 361026, China
| | - Shaolei Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jiayu Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Runxin Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jianbin Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Juntian Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dongxu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shiyin Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China; School of Life Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
12
|
Lee WB, Chien CC, You HL, Kuo FC, Lee MS, Lee GB. Rapid antimicrobial susceptibility tests on an integrated microfluidic device for precision medicine of antibiotics. Biosens Bioelectron 2020; 176:112890. [PMID: 33349537 DOI: 10.1016/j.bios.2020.112890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 01/07/2023]
Abstract
This study reports an integrated microfluidic device that was capable of executing rapid antimicrobial susceptibility tests with one, two, or even three antibiotics against two clinically isolated multi-drug-resistant bacteria strains (including carbapenem-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus). Bacteria were automatically mixed for 10 min with serially diluted antibiotics with a novel, membrane-type micromixer consisting of two circular micropumps, and the minimum inhibitory concentrations (MIC) were then determined via simple colorimetric reactions in only 4.5-6 h using only 3 μL of bacteria sample of each reaction (as opposed to 24 h and 50 μL, respectively, with the conventional broth micro-dilution method). In addition to determining MICs of antibiotics (ceftazidime, gentamicin, meropenem, vancomycin and linezolid), interaction effects across antibiotics combinations (gentamicin/meropenem or ceftazidime/gentamicin/meropenem) at different dosages were explored. The efficacy of polypharmacy showed additivity when gentamicin or ceftazidime/gentamicin were combined with meropenem to treat carbapenem-resistant Escherichia coli. This represents the first time that the perplexing clinical decision to choose multiple antibiotics for combination therapy against drug resistant bacteria can be realized on an integrated microfluidic device within 6 h.
Collapse
Affiliation(s)
- Wen-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chun-Chih Chien
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, 83301, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, 83301, Taiwan
| | - Feng-Chih Kuo
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, 83301, Taiwan
| | - Mel S Lee
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, 83301, Taiwan.
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
13
|
Nozawa A, Oshima H, Togawa N, Nozaki T, Murakami S. Development of Oral Care Chip, a novel device for quantitative detection of the oral microbiota associated with periodontal disease. PLoS One 2020; 15:e0229485. [PMID: 32109938 PMCID: PMC7048280 DOI: 10.1371/journal.pone.0229485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023] Open
Abstract
Periodontal disease, the most prevalent infectious disease in the world, is caused by biofilms formed in periodontal pockets. No specific bacterial species that can cause periodontitis alone has been found in any study to date. Several periodontopathic bacteria are associated with the progress of periodontal disease. Consequently, it is hypothesized that dysbiosis of subgingival microbiota may be a cause of periodontal disease. This study aimed to investigate the relationship between the subgingival microbiota and the clinical status of periodontal pockets in a quantitative and clinically applicable way with the newly developed Oral Care Chip. The Oral Care Chip is a DNA microarray tool with improved quantitative performance, that can be used in combination with competitive PCR to quantitatively detect 17 species of subgingival bacteria. Cluster analysis based on the similarity of each bacterial quantity was performed on 204 subgingival plaque samples collected from periodontitis patients and healthy volunteers. A significant difference in the number of total bacteria, Treponema denticola, Campylobacter rectus, Fusobacterium nucleatum, and Streptococcus intermedia bacteria in any combination of the three clusters indicated that these bacteria gradually increased in number from the stage before the pocket depth deepened. Conversely, Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, and Streptococcus constellatus, which had significant differences only in limited clusters, were thought to increase in number as the pocket depth deepened, after periodontal pocket formation. Furthermore, in clusters where healthy or mild periodontal disease sites were classified, there was no statistically significant difference in pocket depth, but the number of bacteria gradually increased from the stage before the pocket depth increased. This means that quantitative changes in these bacteria can be a predictor of the progress of periodontal tissue destruction, and this novel microbiological test using the Oral Care Chip could be effective at detecting dysbiosis.
Collapse
Affiliation(s)
- Ai Nozawa
- Tsurumi R&D center, Mitsubishi Chemical Corporation, Yokohama, Kanagawa, Japan
| | - Hiroyuki Oshima
- Tsurumi R&D center, Mitsubishi Chemical Corporation, Yokohama, Kanagawa, Japan
| | - Naoyuki Togawa
- Tsurumi R&D center, Mitsubishi Chemical Corporation, Yokohama, Kanagawa, Japan
| | - Takenori Nozaki
- Division of Interdisciplinary Dentistry, Osaka University Dental Hospital, Suita, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
14
|
Kalligosfyri PM, Sevastou A, Kyriakou IK, Tragoulias SS, Kalogianni DP, Christopoulos TK. Smartphone-based chemiluminometric hybridization assays and quantitative competitive polymerase chain reaction. Anal Chim Acta 2019; 1088:123-130. [DOI: 10.1016/j.aca.2019.08.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
|
15
|
Craig DJ, Morrison T, Khuder SA, Crawford EL, Wu L, Xu J, Blomquist TM, Willey JC. Technical advance in targeted NGS analysis enables identification of lung cancer risk-associated low frequency TP53, PIK3CA, and BRAF mutations in airway epithelial cells. BMC Cancer 2019; 19:1081. [PMID: 31711466 PMCID: PMC6844032 DOI: 10.1186/s12885-019-6313-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Standardized Nucleic Acid Quantification for SEQuencing (SNAQ-SEQ) is a novel method that utilizes synthetic DNA internal standards spiked into each sample prior to next generation sequencing (NGS) library preparation. This method was applied to analysis of normal appearing airway epithelial cells (AEC) obtained by bronchoscopy in an effort to define a somatic mutation field effect associated with lung cancer risk. There is a need for biomarkers that reliably detect those at highest lung cancer risk, thereby enabling more effective screening by annual low dose CT. The purpose of this study was to test the hypothesis that lung cancer risk is characterized by increased prevalence of low variant allele frequency (VAF) somatic mutations in lung cancer driver genes in AEC. METHODS Synthetic DNA internal standards (IS) were prepared for 11 lung cancer driver genes and mixed with each AEC genomic (g) DNA specimen prior to competitive multiplex PCR amplicon NGS library preparation. A custom Perl script was developed to separate IS reads and respective specimen gDNA reads from each target into separate files for parallel variant frequency analysis. This approach identified nucleotide-specific sequencing error and enabled reliable detection of specimen mutations with VAF as low as 5 × 10- 4 (0.05%). This method was applied in a retrospective case-control study of AEC specimens collected by bronchoscopic brush biopsy from the normal airways of 19 subjects, including eleven lung cancer cases and eight non-cancer controls, and the association of lung cancer risk with AEC driver gene mutations was tested. RESULTS TP53 mutations with 0.05-1.0% VAF were more prevalent (p < 0.05) and also enriched for tobacco smoke and age-associated mutation signatures in normal AEC from lung cancer cases compared to non-cancer controls matched for smoking and age. Further, PIK3CA and BRAF mutations in this VAF range were identified in AEC from cases but not controls. CONCLUSIONS Application of SNAQ-SEQ to measure mutations in the 0.05-1.0% VAF range enabled identification of an AEC somatic mutation field of injury associated with lung cancer risk. A biomarker comprising TP53, PIK3CA, and BRAF somatic mutations may better stratify individuals for optimal lung cancer screening and prevention outcomes.
Collapse
Affiliation(s)
- Daniel J. Craig
- Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614 USA
| | - Thomas Morrison
- Accugenomics, Inc, 1410 Commonwealth Dr #105, Wilmington, NC 28403 USA
| | - Sadik A. Khuder
- Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614 USA
| | - Erin L. Crawford
- Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614 USA
| | - Leihong Wu
- National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR USA
| | - Joshua Xu
- National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR USA
| | - Thomas M. Blomquist
- Department of Pathology, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614 USA
| | - James C. Willey
- Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614 USA
| |
Collapse
|
16
|
Yazawa A, Kamitani S, Togawa N. Method for absolute quantification of microbial communities by using both microarrays and competitive PCR. J Microbiol Methods 2019; 165:105718. [PMID: 31513858 DOI: 10.1016/j.mimet.2019.105718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/07/2019] [Accepted: 09/07/2019] [Indexed: 11/16/2022]
Abstract
Methods for the robust quantification of bacterial communities are still under development. In this context, the present study aimed to evaluate a method combining competitive PCR (cPCR) and microarray assays for the determination of absolute content of total bacteria and individual bacterial species in samples. For this, a competitor DNA for cPCR and microarrays containing three types of DNA probes was prepared. A calibration curve was generated with genomic DNA samples as standards, which was then utilized for cPCR-based determination of the total number (in moles) of 16S rRNA genes in other bacterial samples. Moreover, scatter plots of species-specific probes versus total bacteria probe for each genomic DNA of known concentration was fit to the regression model, and the obtained slope value was defined as the hybridization affinity ratio. The cPCR assay was performed for both a commercially available mixed genomic DNA sample and human oral bacterial DNA samples, and the total number of moles of 16S rRNA genes was determined. These values were distributed among each species on the basis of the signal intensities of species-specific probes and the hybridization affinity ratio. The total number of bacterial genomes and those of individual species were determined by dividing the copy number of 16S rRNA genes per genome. The obtained results were confirmed by quantitative real-time PCR (qPCR). For values of >1 × 102 copies determined by qPCR, the ratio of the values measured by DNA chips to by qPCR was 1.53-fold on average and <2.6-fold for all data. These results show that the combined method of cPCR and microarray is useful to quantify the absolute numbers of several types of bacteria in a sample at one time.
Collapse
Affiliation(s)
- Ayaka Yazawa
- College of Health and Human Sciences, Osaka Prefecture University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan
| | - Shigeki Kamitani
- College of Health and Human Sciences, Osaka Prefecture University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan
| | - Naoyuki Togawa
- Bio-Device Group, Tsurumi R&D Center, Mitsubishi Chemical Co., Ltd, Yokohama-City, Japan.
| |
Collapse
|
17
|
Chen K, Dong SS, Wu N, Wu ZH, Zhou YX, Li K, Zhang F, Xiao JH. A novel multiplex fluorescent competitive PCR for copy number variation detection. Genomics 2018; 111:1745-1751. [PMID: 30529537 DOI: 10.1016/j.ygeno.2018.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/09/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
The copy number variation (CNV) is an important genetic marker in cancer and other diseases. To detect CNVs of specific genetic loci, the multiplex ligation-dependent probe amplification (MLPA) is an appropriate approach, but the experimental optimization and probe synthesis are still great challenges. The multiplex competitive PCR is an alternative method for CNV detection. However, the construction of internal competitive template and establishment of a stable multiplex PCR system are the main limiting factors for this method. Here, we introduce a novel multiplex fluorescent competitive PCR (NMFC-PCR) for detecting CNVs. In this method, the blunt hairpin primers are used to rapidly establish a stable multiplex PCR system due to the reduction of non-specific amplification, and limited cycles' amplification is used to obtain the internal competitive template instead of artificial synthesis. With this method, we tested 21 clinical samples with potential LIM homeobox 1 (LHX1) or T-box 6 (TBX6) deletion. Every three segments located on the LHX1 and TBX6 were selected as the target regions, while two segments located on X-chromosome and five segments located on autosome were selected as the reference regions for detecting CNVs. The results showed that the gender information of 21 samples can be accurately inferred by the copy number ratio (CNR) of X-chromosomal reference region to autosomal reference region (X/A), and 2 samples had one copy of LHX1 and 9 samples had one copy of TBX6. To evaluate the accuracy of NMFC-PCR, 5 random samples with CNV were also detected by array-based comparative genomic hybridization (aCGH), and the results of aCGH were consistent with the NMFC-PCR results. To further assess the performance of NMFC-PCR, 60 normal samples were simultaneously tested. The results showed that the gender results were exactly the same as known information, and CNVs of LHX1 or TBX6 were not found. In conclusion, the method is a cheap, efficient, accurate, and convenient competitive PCR method for CNV detection.
Collapse
Affiliation(s)
- Ke Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Shuang-Shuang Dong
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China; Key Laboratory of Reproduction Regulation of NHFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China; Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhi-Hong Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China; Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu-Xun Zhou
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, China
| | - Kai Li
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China; Key Laboratory of Reproduction Regulation of NHFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
| | - Jun-Hua Xiao
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, China.
| |
Collapse
|
18
|
Shakeri MS, Shahidi F, Mortazavi A, Bahrami AR, Nassiri MR. Combination of competitive PCR and cultivation methods for differential enumeration of viable Lactobacillus acidophilus
in bio-yoghurts. INT J DAIRY TECHNOL 2018. [DOI: 10.1111/1471-0307.12536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Monir-Sadat Shakeri
- Department of Food Biotechnology; Research Institute of Food Science and Technology; Mashhad Iran
| | - Fakhri Shahidi
- Department of Food Science and Technology; Faculty of Agriculture; Mashhad Iran
| | - Ali Mortazavi
- Department of Food Science and Technology; Faculty of Agriculture; Mashhad Iran
| | - Ahmad Reza Bahrami
- Cellular and Molecular Research Group; Institute of Biotechnology; Ferdowsi University of Mashhad; Mashhad Iran
| | - Mohammad Reza Nassiri
- Department of Animal Science; Faculty of Agriculture; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|
19
|
Growth Hormone Secretion Patterns in German Landrace (DL) Fetuses and Piglets Compared to DL Piglets with Inherited 1,25-Dihydroxyvitamin D3 Deficiency. Nutrients 2018; 10:nu10050617. [PMID: 29762475 PMCID: PMC5986497 DOI: 10.3390/nu10050617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 11/24/2022] Open
Abstract
The regulation of growth hormone (GH) release during prenatal development and during early postnatal life is not entirely clarified. In this study plasma GH concentrations in pigs with inherited pseudo vitamin D deficiency type I (PDDR-I), which regularly show growth retardation, were compared during ontogeny with unaffected pigs of the same breed (German Landrace, DL) as control. Plasma GH concentrations were measured in plasma of chronically catheterized fetuses (beginning on day 101 after mating or after artificial insemination) and in piglets (day 37 postpartum (p.p.)—day 42 p.p.) of both lines. A growth curve beginning at day 7 p.p. was recorded for both lines. The relative amount of GH receptor (GHR) mRNA in liver was quantified by competitive reverse transcription polymerase chain reaction in piglets at day 42 p.p. A trend for higher GH concentrations was observed in PDDR-I fetuses (p < 0.1). In PDDR-I piglets compared to DL piglets higher plasma GH values (p < 0.01), were observed despite lower body weight. The relative quantity of GHR mRNA in liver was not significantly different between the two lines. Piglets with an inherited defect of vitamin D synthesis showed higher GH concentrations. A hormonal imprinting by low 1,25(OH)2D3 could be one reason for our observations and should be analysed in detail in future.
Collapse
|
20
|
Yang Z, Zhao N, Chen D, Wei K, Su N, Huang JF, Xu HQ, Duan GJ, Fu WL, Huang Q. Improved detection of BRAF V600E using allele-specific PCR coupled with external and internal controllers. Sci Rep 2017; 7:13817. [PMID: 29061997 PMCID: PMC5653796 DOI: 10.1038/s41598-017-14140-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 10/06/2017] [Indexed: 01/29/2023] Open
Abstract
Although traditional allele-specific PCR (tAS-PCR) is a common screening method for BRAF V600E mutations, its lower amplification specificity and mutation selectivity have limited its clinical applications. We hypothesize that these limitations are associated with the weaker specificities of allele-specific primers and the thermodynamic driving forces of DNA polymerase. We used three strategies to circumvent these limitations, namely, modifying allele-specific primers, introducing a competitive external allele-specific controller (i.e., cAS-PCR), and introducing a referenced internal positive controller in the cAS-PCR (i.e., rcAS-PCR). The amplification sensitivities and specificities were influenced by the position of the artificially introduced mismatched nucleotide in the allele-specific primers. Moreover, both cAS-PCR and rcAS-PCR could detect single-copy BRAF V600E alleles with higher mutation selectivity (0.1%) than tAS-PCR. In addition, cAS-PCR eliminated false-negative results caused by various PCR inhibitors that might be present in the DNA solutions. The rcAS-PCR could also be employed to avoid the false-negative results caused by low-abundance input templates in cAS-PCR. In conclusion, rcAS-PCR provides a rapid, simple, and low-cost method for detecting low levels of the mutated BRAF V600E gene.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Na Zhao
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Dong Chen
- Department of Laboratory Medicine; 302 hospital of PLA, Chongqing, 100039, P. R. China
| | - Kun Wei
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Ning Su
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Jun-Fu Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Han-Qing Xu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Guang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Wei-Ling Fu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China.
| | - Qing Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China.
| |
Collapse
|
21
|
Single-Step qPCR and dPCR Detection of Diverse CRISPR-Cas9 Gene Editing Events In Vivo. G3-GENES GENOMES GENETICS 2017; 7:3533-3542. [PMID: 28860183 PMCID: PMC5633400 DOI: 10.1534/g3.117.300123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based technology is currently the most flexible means to create targeted mutations by recombination or indel mutations by nonhomologous end joining. During mouse transgenesis, recombinant and indel alleles are often pursued simultaneously. Multiple alleles can be formed in each animal to create significant genetic complexity that complicates the CRISPR-Cas9 approach and analysis. Currently, there are no rapid methods to measure the extent of on-site editing with broad mutation sensitivity. In this study, we demonstrate the allelic diversity arising from targeted CRISPR editing in founder mice. Using this DNA sample collection, we validated specific quantitative and digital PCR methods (qPCR and dPCR, respectively) for measuring the frequency of on-target editing in founder mice. We found that locked nucleic acid (LNA) probes combined with an internal reference probe (Drop-Off Assay) provide accurate measurements of editing rates. The Drop-Off LNA Assay also detected on-target CRISPR-Cas9 gene editing in blastocysts with a sensitivity comparable to PCR-clone sequencing. Lastly, we demonstrate that the allele-specific LNA probes used in qPCR competitor assays can accurately detect recombinant mutations in founder mice. In summary, we show that LNA-based qPCR and dPCR assays provide a rapid method for quantifying the extent of on-target genome editing in vivo, testing RNA guides, and detecting recombinant mutations.
Collapse
|
22
|
Multianalyte quantitative competitive PCR on optically encoded microspheres for an eight-gene panel related to prostate cancer. Anal Bioanal Chem 2017; 410:971-980. [PMID: 28861591 DOI: 10.1007/s00216-017-0595-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/09/2017] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
Abstract
Nucleic acid-based tests have a profound impact in every medical discipline. Because multigene tests offer higher diagnostic accuracy and lower overall cost than single assays, they are especially useful for diseases, like prostate cancer, that present variability at the molecular level and diversity of available therapeutic interventions. We have developed a quantitative competitive PCR for an eight-gene panel, related to prostate cancer, that includes five genes of the human tissue kallikrein family (KLKs), prostate-specific membrane antigen (PSMA), prostate cancer antigen 3 (PCA3), and HPRT1 as a reference gene. Using PCR as a synthetic tool, a competitor was prepared for each target sequence containing the same primer binding sites as the target but differing in a short segment to enable discrimination by hybridization. The assay involves multiplex amplification of targets and competitors followed by a multiplex hybridization assay for the 16 amplification products. The assay was performed on optically encoded microspheres with oligonucleotide probes attached to their surface. The microspheres were analyzed rapidly (1 min) by flow cytometry. The signal ratio of the target and cognate competitor is a function of the target copy number in the sample prior to amplification. The multiplexing potential of the proposed method is much higher than real-time PCR and other end-point methods since there are 100 sets of commercially available microspheres.
Collapse
|
23
|
Klymus KE, Marshall NT, Stepien CA. Environmental DNA (eDNA) metabarcoding assays to detect invasive invertebrate species in the Great Lakes. PLoS One 2017; 12:e0177643. [PMID: 28542313 PMCID: PMC5436814 DOI: 10.1371/journal.pone.0177643] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/01/2017] [Indexed: 12/26/2022] Open
Abstract
Describing and monitoring biodiversity comprise integral parts of ecosystem management. Recent research coupling metabarcoding and environmental DNA (eDNA) demonstrate that these methods can serve as important tools for surveying biodiversity, while significantly decreasing the time, expense and resources spent on traditional survey methods. The literature emphasizes the importance of genetic marker development, as the markers dictate the applicability, sensitivity and resolution ability of an eDNA assay. The present study developed two metabarcoding eDNA assays using the mtDNA 16S RNA gene with Illumina MiSeq platform to detect invertebrate fauna in the Laurentian Great Lakes and surrounding waterways, with a focus for use on invasive bivalve and gastropod species monitoring. We employed careful primer design and in vitro testing with mock communities to assess ability of the markers to amplify and sequence targeted species DNA, while retaining rank abundance information. In our mock communities, read abundances reflected the initial input abundance, with regressions having significant slopes (p<0.05) and high coefficients of determination (R2) for all comparisons. Tests on field environmental samples revealed similar ability of our markers to measure relative abundance. Due to the limited reference sequence data available for these invertebrate species, care must be taken when analyzing results and identifying sequence reads to species level. These markers extend eDNA metabarcoding research for molluscs and appear relevant to other invertebrate taxa, such as rotifers and bryozoans. Furthermore, the sphaeriid mussel assay is group-specific, exclusively amplifying bivalves in the Sphaeridae family and providing species-level identification. Our assays provide useful tools for managers and conservation scientists, facilitating early detection of invasive species as well as improving resolution of mollusc diversity.
Collapse
Affiliation(s)
- Katy E. Klymus
- Great Lakes Genetics/Genomics Laboratory, Department of Environmental Sciences, University of Toledo, Toledo, OH, United States of America
| | - Nathaniel T. Marshall
- Great Lakes Genetics/Genomics Laboratory, Department of Environmental Sciences, University of Toledo, Toledo, OH, United States of America
| | - Carol A. Stepien
- Great Lakes Genetics/Genomics Laboratory, Department of Environmental Sciences, University of Toledo, Toledo, OH, United States of America
| |
Collapse
|
24
|
|
25
|
VEGF121 and VEGF165 differentially promote vessel maturation and tumor growth in mice and humans. Cancer Gene Ther 2016; 23:125-32. [DOI: 10.1038/cgt.2016.12] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/31/2022]
|
26
|
Engstrom-Melnyk J, Rodriguez PL, Peraud O, Hein RC. Clinical Applications of Quantitative Real-Time PCR in Virology. METHODS IN MICROBIOLOGY 2015; 42:161-197. [PMID: 38620180 PMCID: PMC7148891 DOI: 10.1016/bs.mim.2015.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Since the invention of the polymerase chain reaction (PCR) and discovery of Taq polymerase, PCR has become a staple in both research and clinical molecular laboratories. As clinical and diagnostic needs have evolved over the last few decades, demanding greater levels of sensitivity and accuracy, so too has PCR performance. Through optimisation, the present-day uses of real-time PCR and quantitative real-time PCR are enumerable. The technique, combined with adoption of automated processes and reduced sample volume requirements, makes it an ideal method in a broad range of clinical applications, especially in virology. Complementing serologic testing by detecting infections within the pre-seroconversion window period and infections with immunovariant viruses, real-time PCR provides a highly valuable tool for screening, diagnosing, or monitoring diseases, as well as evaluating medical and therapeutic decision points that allows for more timely predictions of therapeutic failures than traditional methods and, lastly, assessing cure rates following targeted therapies. All of these serve vital roles in the continuum of care to enhance patient management. Beyond this, quantitative real-time PCR facilitates advancements in the quality of diagnostics by driving consensus management guidelines following standardisation to improve patient outcomes, pushing for disease eradication with assays offering progressively lower limits of detection, and rapidly meeting medical needs in cases of emerging epidemic crises involving new pathogens that may result in significant health threats.
Collapse
Affiliation(s)
- Julia Engstrom-Melnyk
- Medical and Scientific Affairs, Roche Diagnostic Corporation, Indianapolis, Indiana, USA
| | - Pedro L Rodriguez
- Medical and Scientific Affairs, Roche Diagnostic Corporation, Indianapolis, Indiana, USA
| | - Olivier Peraud
- Medical and Scientific Affairs, Roche Diagnostic Corporation, Indianapolis, Indiana, USA
| | - Raymond C Hein
- Medical and Scientific Affairs, Roche Diagnostic Corporation, Indianapolis, Indiana, USA
| |
Collapse
|
27
|
Wu Q, He Y, Tian J, Zhang J, Hu K, Zhao Y, Zhao S. Multiplexed DNA detection using a gold nanorod-based fluorescence resonance energy transfer technique. LUMINESCENCE 2015; 30:1226-32. [PMID: 25758985 DOI: 10.1002/bio.2885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/06/2022]
Abstract
A fluorescence resonance energy transfer method for multiplex detection DNA based on gold nanorods had been successfully constructed. This method is simple, easy to operate, good selectivity, no requirement to label the probe molecule and can analyze simultaneously multiple targets of DNA in one sample. The limit of detection for the 18-mer, 27-mer and 30-mer targets is 0.72, 1.0 and 0.43 nM at a signal-to-noise ratio of 3. The recoveries of three targets were 96.57-98.07%, 99.12-100.04% and 97.29-99.93%, respectively. The results show that the method can be used to analyze a clinical sample or a biological sample; it also can be used to develop new probes for rapid, sensitive and highly selective multiplex detection of analytes in real samples.
Collapse
Affiliation(s)
- Qiang Wu
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, China
| | - Yanlong He
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, China
| | - Jianniao Tian
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, China
| | - Juanni Zhang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, China
| | - Kun Hu
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, China
| | - Yanchun Zhao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, China
| | - Shulin Zhao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
28
|
Akıncılar SC, Low KC, Liu CY, Yan TD, Oji A, Ikawa M, Li S, Tergaonkar V. Quantitative assessment of telomerase components in cancer cell lines. FEBS Lett 2015; 589:974-84. [PMID: 25749370 DOI: 10.1016/j.febslet.2015.02.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/06/2015] [Accepted: 02/26/2015] [Indexed: 12/22/2022]
Abstract
Besides its canonical function of catalyzing the formation of telomeric repeats, many groups have recently reported non-canonical functions of hTERT in particular, and telomerase in general. Regulating transcription is the central basis of non-canonical functions of telomerase. However, unlike reverse transcriptase activity of telomerase that requires only a few molecules of enzymatically active hTERT, non-canonical functions of hTERT or other telomerase components theoretically require several hundred copies. Here, we provide the first direct quantification of all the telomerase components in human cancer cell lines. We demonstrate that telomerase components do not exist in a 1:1 stoichiometric ratio, and there are several hundred copies of hTERT in cells. This provides the molecular basis of hTERT to function in other signaling cascades, including transcription.
Collapse
Affiliation(s)
- Semih Can Akıncılar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Kee Chung Low
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Chia Yi Liu
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Ting Dong Yan
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Asami Oji
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shang Li
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore.
| |
Collapse
|
29
|
Govindaraju S, Lee BS. Krüppel -like factor 8 is a stress-responsive transcription factor that regulates expression of HuR. Cell Physiol Biochem 2014; 34:519-32. [PMID: 25116351 DOI: 10.1159/000363019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND/AIMS HuR is an RNA-binding protein that regulates the post-transcriptional life of thousands of cellular mRNAs and promotes cell survival. HuR is expressed as two mRNA transcripts that are differentially regulated by cell stress. The goal of this study is to define factors that promote transcription of the longer alternate form. METHODS Effects of transcription factors on HuR expression were determined by inhibition or overexpression of these factors followed by competitive RT-PCR, gel mobility shift, and chromatin immunoprecipitation. Transcription factor expression patterns were identified through competitive RT-PCR and Western analysis. Stress responses were assayed in thapsigargin-treated proximal tubule cells and in ischemic rat kidney. RESULTS A previously described NF-κB site and a newly identified Sp/KLF factor binding site were shown to be important for transcription of the long HuR mRNA. KLF8, but not Sp1, was shown to bind this site and increase HuR mRNA levels. Cellular stress in cultured or native proximal tubule cells resulted in a rapid decrease of KLF8 levels that paralleled those of the long HuR mRNA variant. CONCLUSIONS These results demonstrate that KLF8 can participate in regulating expression of alternate forms of HuR mRNA along with NF-κB and other factors, depending on cellular contexts.
Collapse
Affiliation(s)
- Suman Govindaraju
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Ohio State Biochemistry Program, Columbus, Ohio, USA
| | | |
Collapse
|
30
|
Axford MM, Wang YH, Nakamori M, Zannis-Hadjopoulos M, Thornton CA, Pearson CE. Detection of slipped-DNAs at the trinucleotide repeats of the myotonic dystrophy type I disease locus in patient tissues. PLoS Genet 2013; 9:e1003866. [PMID: 24367268 PMCID: PMC3868534 DOI: 10.1371/journal.pgen.1003866] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 08/25/2013] [Indexed: 12/16/2022] Open
Abstract
Slipped-strand DNAs, formed by out-of-register mispairing of repeat units on complementary strands, were proposed over 55 years ago as transient intermediates in repeat length mutations, hypothesized to cause at least 40 neurodegenerative diseases. While slipped-DNAs have been characterized in vitro, evidence of slipped-DNAs at an endogenous locus in biologically relevant tissues, where instability varies widely, is lacking. Here, using an anti-DNA junction antibody and immunoprecipitation, we identify slipped-DNAs at the unstable trinucleotide repeats (CTG)n•(CAG)n of the myotonic dystrophy disease locus in patient brain, heart, muscle and other tissues, where the largest expansions arise in non-mitotic tissues such as cortex and heart, and are smallest in the cerebellum. Slipped-DNAs are shown to be present on the expanded allele and in chromatinized DNA. Slipped-DNAs are present as clusters of slip-outs along a DNA, with each slip-out having 1–100 extrahelical repeats. The allelic levels of slipped-DNA containing molecules were significantly greater in the heart over the cerebellum (relative to genomic equivalents of pre-IP input DNA) of a DM1 individual; an enrichment consistent with increased allelic levels of slipped-DNA structures in tissues having greater levels of CTG instability. Surprisingly, this supports the formation of slipped-DNAs as persistent mutation products of repeat instability, and not merely as transient mutagenic intermediates. These findings further our understanding of the processes of mutation and genetic variation. Over 30 diseases are caused by the expansion of a trinucleotide repeat (TNR) in a specific gene, including the most common adult-onset form of muscular dystrophy, myotonic dystrophy (DM1). The mechanistic contributors to this unstable (TNR) expansion are not fully known, although since the discovery of these types of diseases over twenty years ago, the extrusion of the expanded repeats into mutagenic slipped-DNA conformations has been hypothesized. Here, we show the presence of slipped-DNA at the DM1 disease locus in various patient tissues. The allelic amounts of slipped-DNA in tissues correlate with overall levels of repeat instability. Slipped-DNA was also found to form in clusters along a tract of expanded repeats, which has been previously shown in vitro to impede DNA repair. This is the first evidence for slipped-DNA formation at an endogenous disease-causing gene in patient tissues.
Collapse
Affiliation(s)
- Michelle M. Axford
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yuh-Hwa Wang
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Masayuki Nakamori
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Maria Zannis-Hadjopoulos
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Charles A. Thornton
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Christopher E. Pearson
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
31
|
Besaury L, Bodilis J, Delgas F, Andrade S, De la Iglesia R, Ouddane B, Quillet L. Abundance and diversity of copper resistance genes cusA and copA in microbial communities in relation to the impact of copper on Chilean marine sediments. MARINE POLLUTION BULLETIN 2013; 67:16-25. [PMID: 23298430 DOI: 10.1016/j.marpolbul.2012.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/01/2012] [Accepted: 12/03/2012] [Indexed: 06/01/2023]
Abstract
Microorganisms have developed copper-resistance mechanisms in order to survive in contaminated environments. The abundance of the copper-resistance genes cusA and copA, encoding respectively for a Resistance Cell Nodulation protein and for a P-type ATP-ase pump, was assessed in copper and non-copper-impacted Chilean marine sediment cores by the use of molecular tools. We demonstrated that number of copA and cusA genes per bacterial cell was higher in the contaminated sediment, and that copA gene was more abundant than cusA gene in the impacted sediment. The molecular phylogeny of the two copper-resistance genes was studied and reveals an impact of copper on the genetic composition of copA and cusA genes.
Collapse
Affiliation(s)
- Ludovic Besaury
- Faculté des Sciences, Université de Rouen, CNRS UMR 6143-M2C, Groupe de Microbiologie, Place Emile Blondel, 76821 Mont Saint Aignan Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Han G, Zhang S, Xing Z, Zhang X. Absolute and Relative Quantification of Multiplex DNA Assays Based on an Elemental Labeling Strategy. ACTA ACUST UNITED AC 2012; 125:1506-1511. [PMID: 32313316 PMCID: PMC7159658 DOI: 10.1002/ange.201206903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Guojun Han
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry Tsinghua University, Beijing 100084 (China)
| | - Sichun Zhang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry Tsinghua University, Beijing 100084 (China)
| | - Zhi Xing
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry Tsinghua University, Beijing 100084 (China)
| | - Xinrong Zhang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry Tsinghua University, Beijing 100084 (China)
| |
Collapse
|
33
|
Han G, Zhang S, Xing Z, Zhang X. Absolute and relative quantification of multiplex DNA assays based on an elemental labeling strategy. Angew Chem Int Ed Engl 2012; 52:1466-71. [PMID: 23239546 PMCID: PMC7159584 DOI: 10.1002/anie.201206903] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Indexed: 11/16/2022]
Affiliation(s)
- Guojun Han
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
34
|
Li J, Lin LH, Wang J, Peng X, Liu YN, Xiao JH, Zhou YX, Li L. Quantitative analysis of multiple genes' expressions based on a novel competitive RT-PCR assay. Anal Bioanal Chem 2012. [PMID: 23208282 DOI: 10.1007/s00216-012-6518-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We established a novel gene expression analysis platform, Multiplex Competitive RT-PCR Using Fluorescent Universal Primers (MCF-PCR), to study multi-gene expression patterns simultaneously. This platform combines fluorescent universal primers, multiplex competitive RT-PCR, and capillary electrophoretic separation, which ensures MCF-PCR a reliable, medium-throughput, cost-effective technology for gene expression profiling. With cloned standard DNAs, the detection limits, precision, and sensitivity of MCF-PCR were evaluated and compared with that of the assay without adding competitive templates and real-time PCR, respectively. The results showed that detection limit was 3.125 × 10(3) to 3.2 × 10(6) copies, and 10 % copy differences between two samples can be detected by MCF-PCR. To validate MCF-PCR, we analyzed expression profile of five genes in interleukin (IL)-4/IL-13 pathway in peripheral blood of 20 healthy adults and 20 allergic dermatitis patients; three genes including IL-4, IL-13, and STAT6 were found differentially expressed in the two sample groups, which maybe key players in IL-4/IL-13 immunological signaling pathway and need further function analysis.
Collapse
Affiliation(s)
- Jia Li
- Department of Laboratory Medicine, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Exclusion of exon 2 is a common mRNA splice variant of primate telomerase reverse transcriptases. PLoS One 2012; 7:e48016. [PMID: 23110161 PMCID: PMC3480478 DOI: 10.1371/journal.pone.0048016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/25/2012] [Indexed: 11/19/2022] Open
Abstract
Telomeric sequences are added by an enzyme called telomerase that is made of two components: a catalytic protein called telomerase reverse transcriptase (TERT) and an integral RNA template (TR). Telomerase expression is tightly regulated at each step of gene expression, including alternative splicing of TERT mRNA. While over a dozen different alternative splicing events have been reported for human TERT mRNA, these were all in the 3' half of the coding region. We were interested in examining splicing of the 5' half of hTERT mRNA, especially since exon 2 is unusually large (1.3 kb). Internal mammalian exons are usually short, typically only 50 to 300 nucleotides, and most long internal exons are alternatively processed. We used quantitative RT-PCR and high-throughput sequencing data to examine the variety and quantity of mRNA species generated from the hTERT locus. We determined that there are approximately 20-40 molecules of hTERT mRNA per cell in the A431 human cell line. In addition, we describe an abundant, alternatively-spliced mRNA variant that excludes TERT exon 2 and was seen in other primates. This variant causes a frameshift and results in translation termination in exon 3, generating a 12 kDa polypeptide.
Collapse
|
36
|
Ni W, Le Guiner C, Moullier P, Snyder RO. Development and utility of an internal threshold control (ITC) real-time PCR assay for exogenous DNA detection. PLoS One 2012; 7:e36461. [PMID: 22570718 PMCID: PMC3343023 DOI: 10.1371/journal.pone.0036461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/06/2012] [Indexed: 12/28/2022] Open
Abstract
Sensitive and specific tests for detecting exogenous DNA molecules are useful for infectious disease diagnosis, gene therapy clinical trial safety, and gene doping surveillance. Taqman real-time PCR using specific sequence probes provides an effective approach to accurately and quantitatively detect exogenous DNA. However, one of the major challenges in these analyses is to eliminate false positive signals caused by either non-targeted exogenous or endogenous DNA sequences, or false negative signals caused by impurities that inhibit PCR. Although multiplex Taqman PCR assays have been applied to address these problems by adding extra primer-probe sets targeted to endogenous DNA sequences, the differences between targets can lead to different detection efficiencies. To avoid these complications, a Taqman PCR-based approach that incorporates an internal threshold control (ITC) has been developed. In this single reaction format, the target sequence and ITC template are co-amplified by the same primers, but are detected by different probes each with a unique fluorescent dye. Sample DNA, a prescribed number of ITC template molecules set near the limit of sensitivity, a single pair of primers, target probe and ITC probe are added to one reaction. Fluorescence emission signals are obtained simultaneously to determine the cycle thresholds (Ct) for amplification of the target and ITC sequences. The comparison of the target Ct with the ITC Ct indicates if a sample is a true positive for the target (i.e. Ct less than or equal to the ITC Ct) or negative (i.e. Ct greater than the ITC Ct). The utility of this approach was demonstrated in a nonhuman primate model of rAAV vector mediated gene doping in vivo and in human genomic DNA spiked with plasmid DNA.
Collapse
Affiliation(s)
- Weiyi Ni
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | | | - Philippe Moullier
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Laboratoire de Thérapie Génique, INSERM UMR1089, IRT UN, Nantes, France
| | - Richard O. Snyder
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Laboratoire de Thérapie Génique, INSERM UMR1089, IRT UN, Nantes, France
- Center of Excellence for Regenerative Health Biotechnology, University of Florida, Alachua, Florida, United States of America
| |
Collapse
|
37
|
Ding C, He J. Molecular techniques in the biotechnological fight against halogenated compounds in anoxic environments. Microb Biotechnol 2012; 5:347-67. [PMID: 22070763 PMCID: PMC3821678 DOI: 10.1111/j.1751-7915.2011.00313.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/24/2011] [Accepted: 09/28/2011] [Indexed: 11/28/2022] Open
Abstract
Microbial treatment of environmental contamination by anthropogenic halogenated organic compounds has become popular in recent decades, especially in the subsurface environments. Molecular techniques such as polymerase chain reaction-based fingerprinting methods have been extensively used to closely monitor the presence and activities of dehalogenating microbes, which also lead to the discovery of new dehalogenating bacteria and novel functional genes. Nowadays, traditional molecular techniques are being further developed and optimized for higher sensitivity, specificity, and accuracy to better fit the contexts of dehalogenation. On the other hand, newly developed high throughput techniques, such as microarray and next-generation sequencing, provide unsurpassed detection ability, which has enabled large-scale comparative genomic and whole-genome transcriptomic analysis. The aim of this review is to summarize applications of various molecular tools in the field of microbially mediated dehalogenation of various halogenated organic compounds. It is expected that traditional molecular techniques and nucleic-acid-based biomarkers will still be favoured in the foreseeable future because of relative low costs and high flexibility. Collective analyses of metagenomic sequencing data are still in need of information from individual dehalogenating strains and functional reductive dehalogenase genes in order to draw reliable conclusions.
Collapse
Affiliation(s)
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| |
Collapse
|
38
|
Dezen D, Rijsewijk FAM, Teixeira TF, Holz CL, Varela AP, Cibulski SP, Gregianini TS, Batista HBCR, Franco AC, Roehe PM. Comparative evaluation of a competitive polymerase chain reaction (PCR) and a SYBR Green-based real-time PCR to quantify Porcine circovirus-2 DNA in swine tissue samples. J Vet Diagn Invest 2012; 23:1160-7. [PMID: 22362797 DOI: 10.1177/1040638711425582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Porcine circovirus-2 (PCV-2) is considered the major etiological agent of post-weaning multisystemic wasting syndrome (PMWS) in pigs. The clinical manifestations of the disease are correlated with moderate to high amounts of PCV-2 DNA in biological samples of affected pigs. A threshold of 10(7) DNA copies/ml is suggested as the trigger factor for symptoms. A comparative study was conducted to determine which quantitative method would be more suitable to estimate the PCV-2 DNA load. Two polymerase chain reaction (PCR) assays were developed: a competitive PCR (cPCR) and a SYBR Green-based real-time PCR. The assays were compared for their capacity to detect PCV-2 in DNA samples extracted from liver, lung, spleen, mesenteric lymph nodes, and kidney of PMWS-affected (n = 23) or non-PMWS-affected pigs (n = 9). Both assays could successfully quantify PCV-2 DNA in all tissue samples and were able to detect significant differences between the numbers of PCV-2 DNA copies found in tissues of PMWS-affected and non-PMWS-affected pigs (≥ 10(2.5)). The highest mean viral loads were detected by the SYBR Green real-time PCR, up to 10(7.0 ± 1.5) copies/100 ng of total DNA sample, while the cPCR detected up to 10(4.8 ± 1.5). A mean difference of 10(1.8) was found between the amounts of PCV-2 DNA detected, using the SYBR Green real-time PCR and the cPCR, suggesting that the viral load threshold for PMWS should be determined for each particular assay.
Collapse
Affiliation(s)
- Diogenes Dezen
- Laboratório de Virologia, FEPAGRO Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Eldorado do Sul, Rio Grande do Sul, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jeong S, Yu H, Pfeifer K. Accurate measurement of the relative abundance of different DNA species in complex DNA mixtures. DNA Res 2012; 19:209-17. [PMID: 22334570 PMCID: PMC3372371 DOI: 10.1093/dnares/dss002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A molecular tool that can compare the abundances of different DNA sequences is necessary for comparing intergenic or interspecific gene expression. We devised and verified such a tool using a quantitative competitive polymerase chain reaction approach. For this approach, we adapted a competitor array, an artificially made plasmid DNA in which all the competitor templates for the target DNAs are arranged with a defined ratio, and melting analysis for allele quantitation for accurate quantitation of the fractional ratios of competitively amplified DNAs. Assays on two sets of DNA mixtures with explicitly known compositional structures of the test sequences were performed. The resultant average relative errors of 0.059 and 0.021 emphasize the highly accurate nature of this method. Furthermore, the method's capability of obtaining biological data is demonstrated by the fact that it can illustrate the tissue-specific quantitative expression signatures of the three housekeeping genes G6pdx, Ubc, and Rps27 by using the forms of the relative abundances of their transcripts, and the differential preferences of Igf2 enhancers for each of the multiple Igf2 promoters for the transcription.
Collapse
Affiliation(s)
- Sangkyun Jeong
- Medical Research Division, Korea Institute of Oriental Medicine, Yusong-gu, Daejon, Republic of Korea.
| | | | | |
Collapse
|
40
|
Huang J, Yao L, Xu R, Wu H, Wang M, White BS, Shalloway D, Zheng X. Activation of Src and transformation by an RPTPα splice mutant found in human tumours. EMBO J 2011; 30:3200-11. [PMID: 21725282 DOI: 10.1038/emboj.2011.212] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 06/07/2011] [Indexed: 11/09/2022] Open
Abstract
Receptor protein tyrosine phosphatase α (RPTPα)-mediated Src activation is required for survival of tested human colon and oestrogen receptor-negative breast cancer cell lines. To explore whether mutated RPTPα participates in human carcinogenesis, we sequenced RPTPα cDNAs from five types of human tumours and found splice mutants in ∼30% of colon, breast, and liver tumours. RPTPα245, a mutant expressed in all three tumour types, was studied further. Although it lacks any catalytic domain, RPTPα245 expression in the tumours correlated with Src tyrosine dephosphorylation, and its expression in rodent fibroblasts activated Src by a novel mechanism. This involved RPTPα245 binding to endogenous RPTPα (eRPTPα), which decreased eRPTPα-Grb2 binding and increased eRPTPα dephosphorylation of Src without increasing non-specific eRPTPα activity. RPTPα245-eRPTPα binding was blocked by Pro210 → Leu/Pro211 → Leu mutation, consistent with the involvement of the structural 'wedge' that contributes to eRPTPα homodimerization. RPTPα245-induced fibroblast transformation was blocked by either Src or eRPTPα RNAi, indicating that this required the dephosphorylation of Src by eRPTPα. The transformed cells were tumourigenic in nude mice, suggesting that RPTPα245-induced activation of Src in the human tumours may have contributed to carcinogenesis.
Collapse
Affiliation(s)
- Jian Huang
- Department of Biochemistry and Molecular Biology, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kumar P, Agarwal R, Siddiqui I, Vora H, Das G, Sharma P. ESAT6 differentially inhibits IFN‐γ‐inducible class II transactivator isoforms in both a TLR2‐dependent and ‐independent manner. Immunol Cell Biol 2011; 90:411-20. [DOI: 10.1038/icb.2011.54] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Pavanish Kumar
- Immunology Group, International Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Richa Agarwal
- Immunology Group, International Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Imran Siddiqui
- Immunology Group, International Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Hardeep Vora
- Immunology Group, International Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Gobardhan Das
- Immunology Group, International Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Pawan Sharma
- Immunology Group, International Centre for Genetic Engineering and Biotechnology New Delhi India
| |
Collapse
|
42
|
Jaagsiekte sheep retrovirus and enzootic nasal tumor virus promoters drive gene expression in all airway epithelial cells of mice but only induce tumors in the alveolar region of the lungs. J Virol 2011; 85:7535-45. [PMID: 21593165 DOI: 10.1128/jvi.00400-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) induces tumors in the distal airways of sheep and goats, while the closely related enzootic nasal tumor virus type 1 (ENTV-1) and ENTV-2 induce tumors in the nasal epithelium of sheep and goats, respectively. When expressed using a strong Rous sarcoma virus promoter, the envelope proteins of these viruses induce tumors in the respiratory tract of mice, but only in the distal airway. To examine the role of the retroviral long terminal repeat (LTR) promoters in determining tissue tropism, adeno-associated virus (AAV) vectors expressing alkaline phosphatase under the control of the JSRV, ENTV-1, or ENTV-2 LTRs were generated and administered to mice. The JSRV LTR was active in all airway epithelial cells, while the ENTV LTRs were active in the nasal epithelium and alveolar type II cells but poorly active in tracheal and bronchial epithelial cells. When vectors were administered systemically, the ENTV-1 and -2 LTRs were inactive in major organs examined, whereas the JSRV showed high-level activity in the liver. When a putative transcriptional enhancer from the 3' end of the env gene was inserted upstream of the JSRV and ENTV-1 LTRs in the AAV vectors, a dramatic increase in transgene expression was observed. However, intranasal administration of AAV vectors containing any combination of ENTV or JSRV LTRs and Env proteins induced tumors only in the lower airway. Our results indicate that mice do not provide an adequate model for nasal tumor induction by ENTV despite our ability to express genes in the nasal epithelium.
Collapse
|
43
|
Reininger V, Grünig CR, Sieber TN. Microsatellite-based quantification method to estimate biomass of endophytic Phialocephala species in strain mixtures. MICROBIAL ECOLOGY 2011; 61:676-683. [PMID: 21258787 DOI: 10.1007/s00248-010-9798-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 12/20/2010] [Indexed: 05/30/2023]
Abstract
Fungi of the Phialocephala fortinii sensu lato-Acephala applanata species complex (PAC) are ubiquitous endophytic colonizers of tree roots in which they form genotypically diverse communities. Measurement of the colonization density of each of the fungal colonizers is a prerequisite to study the ecology of these communities. Up to now, there is no method readily available for the quantification of PAC strains co-colonizing the same root. The new DNA quantification method presented here is based on the amplification of microsatellites by competitive polymerase chain reaction (PCR). The method proved to be suitable to detect and quantify at least two strains within one single sample by the addition of a known amount of mycelium of a reference strain before DNA extraction. The method exploits the correlation between the reference/target ratio of light emitted during microsatellite detection (peak ratio) and the reference/target ratio of mycelial weights to determine the biomass of the target strain. Hence, calibration curves were obtained by linear regression of the peak ratios on the weight ratios for different mixtures of reference and target strains. The slopes of the calibration curves and the coefficients of determination were close to 1, indicating that peak ratios are good predictors of weight ratios. Estimates of fungal biomass in mycelial test mixtures of known composition laid within the 95% prediction interval and deviated on average by 16% (maximally 50%) from the true biomass. On average, 3-6% of the root biomass of Norway spruce seedlings consisted of mycelial biomass of either one of two inoculated PAC strains. Biomass estimates obtained by real-time quantitative PCR were correlated with the estimates obtained by the microsatellite-based method, but variation between the two estimates from the same root was high in some samples. The microsatellite-based DNA quantification method described here is currently the best method for strainwise estimation of endophytic biomass of PAC fungi in small root samples.
Collapse
Affiliation(s)
- Vanessa Reininger
- Institute of Integrative Biology, Forest Pathology and Dendrology, ETH Zurich, Zürich, Switzerland.
| | | | | |
Collapse
|
44
|
Trinchera M, Malagolini N, Chiricolo M, Santini D, Minni F, Caretti A, Dall'olio F. The biosynthesis of the selectin-ligand sialyl Lewis x in colorectal cancer tissues is regulated by fucosyltransferase VI and can be inhibited by an RNA interference-based approach. Int J Biochem Cell Biol 2010; 43:130-9. [PMID: 20965272 DOI: 10.1016/j.biocel.2010.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 01/22/2023]
Abstract
Sialyl Lewis x (sLex) is a selectin ligand whose overexpression in epithelial cancers mediates metastasis formation. The molecular basis of sLex biosynthesis in colon cancer tissues is still unclear. The prerequisite for therapeutic approaches aimed at sLex down-regulation in cancer, is the identification of rate-limiting steps in its biosynthesis. We have studied the role of α1,3-fucosyltransferases (Fuc-Ts) potentially involved in sLex biosynthesis in specimens of normal and cancer colon as well as in experimental systems. We found that: (i) in colon cancer, but not in normal mucosa where the antigen was poorly expressed, sLex correlated with a Fuc-T which, like Fuc-TVI, was active on 3'sialyllactosamine at a low concentration (Fuc-T(SLN)); (ii) competitive RT-PCR analysis revealed that the level of Fuc-T mRNA expression in both normal and cancer colon was Fuc-TVI>Fuc-TIII>Fuc-TIV; Fuc-TV and Fuc-TVII expression was negligible; (iii) sLex was expressed only by the gastrointestinal cell lines displaying both Fuc-TVI mRNA and Fuc-T(SLN) activity, but not by those expressing only Fuc-TIII mRNA; (iv) transfection with Fuc-TVI cDNA, but not with Fuc-TIII cDNA, induced sLex expression in gastrointestinal cell lines; (v) Fuc-TVI knock-down with specific siRNA induced down-regulation of Fuc-TVI mRNA and Fuc-T(SLN) activity and a dramatic inhibition of sLex expression. These data indicate that in colon cancer tissues Fuc-TVI is a key regulator of sLex biosynthesis which can be the target of RNA-interference-based gene knock-down approaches.
Collapse
Affiliation(s)
- Marco Trinchera
- Department of Biomedical Sciences Experimental and Clinical (DSBSC), University of Insubria, Via JH Dunant 5, 21100 Varese, Italy.
| | | | | | | | | | | | | |
Collapse
|
45
|
Cleary JD, Tomé S, López Castel A, Panigrahi GB, Foiry L, Hagerman KA, Sroka H, Chitayat D, Gourdon G, Pearson CE. Tissue- and age-specific DNA replication patterns at the CTG/CAG-expanded human myotonic dystrophy type 1 locus. Nat Struct Mol Biol 2010; 17:1079-87. [DOI: 10.1038/nsmb.1876] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 06/24/2010] [Indexed: 01/30/2023]
|
46
|
Hall MD, Bussière LF, Demont M, Ward PI, Brooks RC. Competitive PCR reveals the complexity of postcopulatory sexual selection inTeleogryllus commodus. Mol Ecol 2010; 19:610-9. [PMID: 20355259 DOI: 10.1111/j.1365-294x.2009.04496.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Matthew D Hall
- Evolution & Ecology Research Centre and School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
47
|
Raga F, Casañ EM, Bonilla-Musoles F. Expression of vascular endothelial growth factor receptors in the endometrium of septate uterus. Fertil Steril 2009; 92:1085-1090. [PMID: 19200976 DOI: 10.1016/j.fertnstert.2008.07.1768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/10/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To compare the messenger RNA (mRNA) expression of vascular endothelial growth factor (VEGF) receptors (KDR, Flt-1, and sflt) in the different endometrial locations of septate uterus and normal uterus. DESIGN Prospective, observational study. SETTING University teaching hospital. PATIENT(S) Twelve women with complete septate uterus undergoing hysteroscopic metroplasty and 12 women with normal uterus. INTERVENTION(S) Endometrial tissue samples were obtained from the endometrium covering the septum and the endometrium lining the lateral wall of the uterus. Moreover, endometrial samples were obtained from patients with normal uterus. MAIN OUTCOME MEASURE(S) Differences in the mRNA expression of VEGF receptors between the endometrial samples of septate and normal uterus. RESULT(S) The mRNA expression of VEGF receptors, both KDR and Flt-1, was significantly lower in the endometrium lining the septum as compared with the endometrium covering the lateral wall of septate and normal uterus. Conversely, no differences were observed in mRNA expression in the soluble receptor sflt between the different endometrial samples studied. CONCLUSION(S) The results suggest that a local defect of both VEGF transmembranous receptors (KDR and Flt-1) in the endometrium covering the septal area may be responsible for the clinical comportment of this müllerian anomaly.
Collapse
Affiliation(s)
- Francisco Raga
- Departamento de Pediatria, Obstetricia y Ginecología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; Hospital Clínico Universitario, Valencia, Spain.
| | | | - Fernando Bonilla-Musoles
- Departamento de Pediatria, Obstetricia y Ginecología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; Hospital Clínico Universitario, Valencia, Spain
| |
Collapse
|
48
|
Hao C, Wang H, Liu Q, Li X. Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by quantitative competitive PCR. J Environ Sci (China) 2009; 21:1557-1561. [PMID: 20108690 DOI: 10.1016/s1001-0742(08)62455-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The anaerobic ammonium-oxidizing (ANAMMOX) bacteria were enriched from a sequencing batch biofilm reactor (SBBR). A quantitative competitive polymerase chain reaction (QC-PCR) system was successfully developed to detect and quantify ANAMMOX bacteria in environmental samples. For QC-PCR system, PCR primer sets targeting 16S ribosomal RNA genes of ANAMMOX bacteria were designed and used. The quantification range of this system was 4 orders of magnitude, from 10(3) to 10(6) copies per PCR, corresponding to the detection limit of 300 target copies per mL. A 312-bp internal standard was constructed, which showed very similar amplification efficiency with the target amxC fragment (349 bp) over 4 orders of magnitude (10(3)-10(6)). The linear regressions were obtained with R2 of 0.9824 for 10(3) copies, 0.9882 for 10(4) copies, 0.9857 for 10(5) copies and 0.9899 for 10(6) copies, respectively. Using this method, ANAMMOX bacteria were quantified in a shortcut nitrification/denitrification-anammox system which was set for piggery wastewater treatment.
Collapse
Affiliation(s)
- Chun Hao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | | | | | | |
Collapse
|
49
|
Miura F, Kawaguchi N, Yoshida M, Uematsu C, Kito K, Sakaki Y, Ito T. Absolute quantification of the budding yeast transcriptome by means of competitive PCR between genomic and complementary DNAs. BMC Genomics 2008; 9:574. [PMID: 19040753 PMCID: PMC2612024 DOI: 10.1186/1471-2164-9-574] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 11/29/2008] [Indexed: 11/10/2022] Open
Abstract
Background An ideal format to describe transcriptome would be its composition measured on the scale of absolute numbers of individual mRNAs per cell. It would help not only to precisely grasp the structure of the transcriptome but also to accelerate data exchange and integration. Results We conceived an idea of competitive PCR between genomic DNA and cDNA. Since the former contains every gene exactly at the same copy number, it can serve as an ideal normalization standard for the latter to obtain stoichiometric composition data of the transcriptome. This data can then be easily converted to absolute quantification data provided with an appropriate calibration. To implement this idea, we improved adaptor-tagged competitive PCR, originally developed for relative quantification of the 3'-end restriction fragment of each cDNA, such that it can be applied to any restriction fragment. We demonstrated that this "generalized" adaptor-tagged competitive PCR (GATC-PCR) can be performed between genomic DNA and cDNA to accurately measure absolute expression level of each mRNA in the budding yeast Saccharomyces cerevisiae. Furthermore, we constructed a large-scale GATC-PCR system to measure absolute expression levels of 5,038 genes to show that the yeast contains more than 30,000 copies of mRNA molecules per cell. Conclusion We developed a GATC-PCR method to accurately measure absolute expression levels of mRNAs by means of competitive amplification of genomic and cDNA copies of each gene. A large-scale application of GATC-PCR to the budding yeast transcriptome revealed that it is twice or more as large as previously estimated. This method is flexibly applicable to both targeted and genome-wide analyses of absolute expression levels of mRNAs.
Collapse
Affiliation(s)
- Fumihito Miura
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8561, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Rieger C, Poppino R, Sheridan R, Moley K, Mitra R, Gottlieb D. Polony analysis of gene expression in ES cells and blastocysts. Nucleic Acids Res 2007; 35:e151. [PMID: 18073198 PMCID: PMC2190707 DOI: 10.1093/nar/gkm1076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Expression profiling of stem cells is challenging due to their small numbers and heterogeneity. The PCR colony (polony) approach has theoretical advantages as an assay for stem cells but has not been applied to small numbers of cells. An assay has been developed that is sensitive enough to detect mRNAs from small numbers of ES cells and from fractions of a single mouse blastocyst. Genes assayed include Oct3, Rex1, Nanog, Cdx2 and GLUT-1. The assay is highly sensitive so that multiple mRNAs from a single blastocyst were easily detected in the same assay. In its present version, the assay is an attractive alternative to conventional RT–PCR for profiling small populations of stem cells. The assay is also amenable to improvements that will increase its sensitivity and ability to analyze many cDNAs simultaneously.
Collapse
Affiliation(s)
- C Rieger
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|