1
|
Nuttle X, Burt ND, Currall B, Moysés-Oliveira M, Mohajeri K, Bhavsar R, Lucente D, Yadav R, Tai DJC, Gusella JF, Talkowski ME. Parallelized engineering of mutational models using piggyBac transposon delivery of CRISPR libraries. CELL REPORTS METHODS 2024; 4:100672. [PMID: 38091988 PMCID: PMC10831954 DOI: 10.1016/j.crmeth.2023.100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/14/2023] [Accepted: 11/21/2023] [Indexed: 01/25/2024]
Abstract
New technologies and large-cohort studies have enabled novel variant discovery and association at unprecedented scale, yet functional characterization of these variants remains paramount to deciphering disease mechanisms. Approaches that facilitate parallelized genome editing of cells of interest or induced pluripotent stem cells (iPSCs) have become critical tools toward this goal. Here, we developed an approach that incorporates libraries of CRISPR-Cas9 guide RNAs (gRNAs) together with inducible Cas9 into a piggyBac (PB) transposon system to engineer dozens to hundreds of genomic variants in parallel against isogenic cellular backgrounds. This method empowers loss-of-function (LoF) studies through the introduction of insertions or deletions (indels) and copy-number variants (CNVs), though generating specific nucleotide changes is possible with prime editing. The ability to rapidly establish high-quality mutational models at scale will facilitate the development of isogenic cellular collections and catalyze comparative functional genomic studies investigating the roles of hundreds of genes and mutations in development and disease.
Collapse
Affiliation(s)
- Xander Nuttle
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
| | - Nicholas D Burt
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin Currall
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Mariana Moysés-Oliveira
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Kiana Mohajeri
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; PhD program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Riya Bhavsar
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Diane Lucente
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Rachita Yadav
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Derek J C Tai
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - James F Gusella
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
2
|
Possible association of 16p11.2 copy number variation with altered lymphocyte and neutrophil counts. NPJ Genom Med 2022; 7:38. [PMID: 35715439 PMCID: PMC9205872 DOI: 10.1038/s41525-022-00308-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Recurrent copy-number variations (CNVs) at chromosome 16p11.2 are associated with neurodevelopmental diseases, skeletal system abnormalities, anemia, and genitourinary defects. Among the 40 protein-coding genes encompassed within the rearrangement, some have roles in leukocyte biology and immunodeficiency, like SPN and CORO1A. We therefore investigated leukocyte differential counts and disease in 16p11.2 CNV carriers. In our clinically-recruited cohort, we identified three deletion carriers from two families (out of 32 families assessed) with neutropenia and lymphopenia. They had no deleterious single-nucleotide or indel variant in known cytopenia genes, suggesting a possible causative role of the deletion. Noticeably, all three individuals had the lowest copy number of the human-specific BOLA2 duplicon (copy-number range: 3–8). Consistent with the lymphopenia and in contrast with the neutropenia associations, adult deletion carriers from UK biobank (n = 74) showed lower lymphocyte (Padj = 0.04) and increased neutrophil (Padj = 8.31e-05) counts. Mendelian randomization studies pinpointed to reduced CORO1A, KIF22, and BOLA2-SMG1P6 expressions being causative for the lower lymphocyte counts. In conclusion, our data suggest that 16p11.2 deletion, and possibly also the lowest dosage of the BOLA2 duplicon, are associated with low lymphocyte counts. There is a trend between 16p11.2 deletion with lower copy-number of the BOLA2 duplicon and higher susceptibility to moderate neutropenia. Higher numbers of cases are warranted to confirm the association with neutropenia and to resolve the involvement of the deletion coupled with deleterious variants in other genes and/or with the structure and copy number of segments in the CNV breakpoint regions.
Collapse
|
3
|
Nicolle R, Siquier-Pernet K, Rio M, Guimier A, Ollivier E, Nitschke P, Bole-Feysot C, Romana S, Hastie A, Cantagrel V, Malan V. 16p13.11p11.2 triplication syndrome: a new recognizable genomic disorder characterized by optical genome mapping and whole genome sequencing. Eur J Hum Genet 2022; 30:712-720. [PMID: 35388186 PMCID: PMC9177583 DOI: 10.1038/s41431-022-01094-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 03/06/2022] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
Highly identical segmental duplications (SDs) account for over 5% of the human genome and are enriched in the short arm of the chromosome 16. These SDs are susceptibility factors for recurrent chromosomal rearrangements mediated by non-allelic homologous recombination (NAHR). Chromosomal microarray analysis (CMA) has been widely used as the first-tier test for individuals with developmental disabilities and/or congenital anomalies and several genomic disorders involving the 16p-arm have been identified with this technique. However, the resolution of CMA and the limitations of short-reads whole genome sequencing (WGS) technology do not allow the full characterization of the most complex chromosomal rearrangements. Herein, we report on two unrelated patients with a de novo 16p13.11p11.2 triplication associated with a 16p11.2 duplication, detected by CMA. These patients share a similar phenotype including hypotonia, severe neurodevelopmental delay with profound speech impairment, hyperkinetic behavior, conductive hearing loss, and distinctive facial features. Short-reads WGS could not map precisely any of the rearrangement's breakpoints that lie within SDs. We used optical genome mapping (OGM) to determine the relative orientation of the triplicated and duplicated segments as well as the genomic positions of the breakpoints, allowing us to propose a mechanism involving recombination between allelic SDs and a NAHR event. In conclusion, we report a new clinically recognizable genomic disorder. In addition, the mechanism of these complex chromosomal rearrangements involving SDs could be unraveled by OGM.
Collapse
Affiliation(s)
- Romain Nicolle
- Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, Paris, France
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Karine Siquier-Pernet
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Marlène Rio
- Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, Paris, France
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Anne Guimier
- Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, Paris, France
| | - Emmanuelle Ollivier
- Université de Paris, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Patrick Nitschke
- Université de Paris, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Christine Bole-Feysot
- Université de Paris, Genomics Platform, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Serge Romana
- Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, Paris, France
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | | | - Vincent Cantagrel
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Valérie Malan
- Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, Paris, France.
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France.
| |
Collapse
|
4
|
Shen L, Zhang H, Lin J, Gao Y, Chen M, Khan NU, Tang X, Hong Q, Feng C, Zhao Y, Cao X. A Combined Proteomics and Metabolomics Profiling to Investigate the Genetic Heterogeneity of Autistic Children. Mol Neurobiol 2022; 59:3529-3545. [PMID: 35348996 DOI: 10.1007/s12035-022-02801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) has become one of the most common neurological developmental disorders in children. However, the study of ASD diagnostic markers faces significant challenges due to the existence of heterogeneity. In this study, genetic testing was performed on children who were clinically diagnosed with ASD. Children with ASD susceptibility genes and healthy controls were studied. The proteomics of plasma and peripheral blood mononuclear cells (PBMCs) as well as plasma metabolomics were carried out. The results showed that although there was genetic heterogeneity in children with ASD, the differentially expressed proteins (DEPs) in plasma, peripheral blood mononuclear cells, and differential metabolites in plasma could still effectively distinguish autistic children from controls. The mechanism associated with them focuses on several common and previously reported mechanisms of ASD. The biomarkers for ASD diagnosis could be found by taking differentially expressed proteins and differential metabolites into consideration. Integrating omics data, glycerophospholipid metabolism and N-glycan biosynthesis might play a critical role in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.,Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China
| | - Yan Gao
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Margy Chen
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Qi Hong
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
| |
Collapse
|
5
|
Genetic analysis of N6-methyladenosine modification genes in Parkinson's disease. Neurobiol Aging 2020; 93:143.e9-143.e13. [PMID: 32371107 DOI: 10.1016/j.neurobiolaging.2020.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease with a relatively unclear etiology. Previous studies have shown that N6-methyladenosine (m6A) is a vital RNA modification enriched in brain tissue, and that the genes involved in m6A modification are implicated in various neurologic diseases. Here, we conducted a comprehensive genetic analysis using targeted sequencing with molecular inversion probes (MIPs) to identify m6A-modification genes (including METTL3, METTL14, WTAP, FTO, ALKBH5, YTHDF1, YTHDF2, YTHDF3, HNRNPC, and ELAVL1) in a total of 1647 sporadic PD patients and 1372 controls of Han Chinese origin. PD patients were divided into early-onset PD (EOPD) and late-onset PD (LOPD) based on whether the onset of motor symptoms occurred before or after 50 years of age. Rare variants were subjected to gene-based burden tests and common variants were subjected to single-variant association analyses. As a result, we identified 214 rare variants in all 10 m6A-modification genes and 16 common variants in 7 genes. Gene-wise association analyses of rare variants in each m6A-modification gene did not achieved a p value of less than 0.05 in either total cohorts or 2 age groups. In fact, p values greater than 0.05 were found when conducting single-variant association analyses on common variants of these genes between PD and control patients. Our comprehensive analyses of m6A-modification genes suggest that there is no significant association between these 10 m6A-modification genes and the risk of sporadic PD.
Collapse
|
6
|
Xu Q, Li K, Sun Q, Ding D, Zhao Y, Yang N, Luo Y, Liu Z, Zhang Y, Wang C, Xia K, Yan X, Jiang H, Shen L, Tang B, Guo J. Rare GCH1 heterozygous variants contributing to Parkinson's disease. Brain 2019; 140:e41. [PMID: 28582483 DOI: 10.1093/brain/awx110] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, P.R. China
| | - Kai Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qiying Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, P.R. China
| | - Dongxue Ding
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Nannan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yang Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Chunrong Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Kun Xia
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, P.R. China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, P.R. China.,State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, P.R. China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, P.R. China.,State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, P.R. China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, P.R. China.,State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, P.R. China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, P.R. China.,Collaborative Innovation Center for Brain Science, Shanghai, P.R. China.,Collaborative Innovation Center for Genetics and Development, Shanghai, P.R. China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, P.R. China.,State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
7
|
Shu L, Qin L, Min S, Pan H, Zhong J, Guo J, Sun Q, Yan X, Chen C, Tang B, Xu Q. Genetic analysis of DNA methylation and hydroxymethylation genes in Parkinson's disease. Neurobiol Aging 2019; 84:242.e13-242.e16. [PMID: 30948140 DOI: 10.1016/j.neurobiolaging.2019.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/04/2019] [Accepted: 02/27/2019] [Indexed: 01/15/2023]
Abstract
DNA methylation is an important regulatory mechanism of Parkinson's disease (PD). To investigate the relationship between DNA methylation and hydroxymethylation genes and PD, we performed gene-targeted sequencing using molecular inversion probes in a Chinese PD population. We sequenced 12 genes related to DNA methylation and hydroxymethylation in 1657 patients and 1394 control subjects. We conducted genewise association analyses of rare variants detected in the present study and identified the TET1 gene as important in PD (p = 0.0037738, 0.013, 0.019521 (b.collapse test, variable threshold test, and skat-o test, respectively; sex + age as covariates). However, no positive results were observed when conducting association analyses on common variants in these genes. We performed a comprehensive analysis of associations between variants of DNA methylation and hydroxymethylation genes and PD, resulting in determination that TET1 might play a role in PD.
Collapse
Affiliation(s)
- Li Shu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lixia Qin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shishi Min
- Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junfei Zhong
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China; Collaborative Innovation Center for Brain Science, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Qiying Sun
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Chao Chen
- Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center for Medical Genetics, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China; Collaborative Innovation Center for Brain Science, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Shanghai, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Yang N, Zhao Y, Liu Z, Zhang R, He Y, Zhou Y, Xu Q, Sun Q, Yan X, Guo J, Tang B. Systematically analyzing rare variants of autosomal-dominant genes for sporadic Parkinson's disease in a Chinese cohort. Neurobiol Aging 2018; 76:215.e1-215.e7. [PMID: 30598256 DOI: 10.1016/j.neurobiolaging.2018.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/04/2018] [Accepted: 11/13/2018] [Indexed: 12/28/2022]
Abstract
Studies have shown that rare variants of Mendelian genes for Parkinson's disease (PD) contribute to sporadic PD in the Caucasian population, which lacked confirmation in the Chinese population. Because the autosomal-dominant PD (AD-PD) had a phenotype closely resembling sporadic PD, we performed a systematic analysis of 7 AD-PD genes (SNCA, LRRK2, GIGYF2, VPS35, EIF4G1, DNAJC13, and CHCHD2) in 1456 Chinese sporadic PD patients and 1568 controls. Overall, 72 rare variants were identified, 7 of which were classified as likely pathogenic, 63 of which were categorized as of uncertain significance, and 2 of them were predicted to be likely benign. These AD-PD genes represented a clear enrichment of rare variants in PD patients from a burden analysis (p = 0.003), and significant differences could still be observed when likely pathogenic variants were removed (p = 0.027). The gene-based association testing also reached significance for LRRK2 (p = 0.004) and remained statistically significant after the Bonferroni correction. This report suggested that rare variants of AD-PD genes had a role in the Chinese sporadic PD cohort, especially for those rare variants of LRRK2.
Collapse
Affiliation(s)
- Nannan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Rui Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yan He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yangjie Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China; National Clinical Research Center for Geriatric Medicine, Changsha, Hunan, P.R. China
| | - Qiying Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China; National Clinical Research Center for Geriatric Medicine, Changsha, Hunan, P.R. China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China; National Clinical Research Center for Geriatric Medicine, Changsha, Hunan, P.R. China; Key of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, P.R. China; Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, P.R. China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China; National Clinical Research Center for Geriatric Medicine, Changsha, Hunan, P.R. China; Key of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, P.R. China; Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, P.R. China; Collaborative Innovation Center for Brain Science, Shanghai, P.R. China; Collaborative Innovation Center for Genetics and Development, Shanghai, P.R. China.
| |
Collapse
|
9
|
An exploratory study of predisposing genetic factors for DiGeorge/velocardiofacial syndrome. Sci Rep 2017; 7:40031. [PMID: 28059126 PMCID: PMC5216377 DOI: 10.1038/srep40031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022] Open
Abstract
DiGeorge/velocardiofacial syndrome (DGS/VCFS) is a disorder caused by a 22q11.2 deletion mediated by non-allelic homologous recombination (NAHR) between low-copy repeats (LCRs). We have evaluated the role of LCR22 genomic architecture and PRDM9 variants as DGS/VCFS predisposing factors. We applied FISH using fosmid probes on chromatin fibers to analyze the number of tandem repeat blocks in LCR22 in two DGS/VCFS fathers-of-origin with proven 22q11.2 NAHR susceptibility. Results revealed copy number variations (CNVs) of L9 and K3 fosmids in these individuals compared to controls. The total number of L9 and K3 copies was also characterized using droplet digital PCR (ddPCR). Although we were unable to confirm variations, we detected an additional L9 amplicon corresponding to a pseudogene. Moreover, none of the eight DGS/VCFS parents-of-origin was heterozygote for the inv(22)(q11.2) haplotype. PRDM9 sequencing showed equivalent allelic distributions between DGS/VCFS parents-of-origin and controls, although a new PRDM9 allele (L50) was identified in one case. Our results support the hypothesis that LCR22s variations influences 22q11.2 NAHR events, however further studies are needed to confirm this association and clarify the contribution of pseudogenes and rare PDRM9 alleles to NAHR susceptibility.
Collapse
|
10
|
Nuttle X, Giannuzzi G, Duyzend MH, Schraiber JG, Narvaiza I, Sudmant PH, Penn O, Chiatante G, Malig M, Huddleston J, Benner C, Camponeschi F, Ciofi-Baffoni S, Stessman HA, Marchetto MCN, Denman L, Harshman L, Baker C, Raja A, Penewit K, Janke N, Tang WJ, Ventura M, Banci L, Antonacci F, Akey JM, Amemiya CT, Gage FH, Reymond A, Eichler EE. Emergence of a Homo sapiens-specific gene family and chromosome 16p11.2 CNV susceptibility. Nature 2016; 536:205-9. [PMID: 27487209 PMCID: PMC4988886 DOI: 10.1038/nature19075] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 07/02/2016] [Indexed: 12/31/2022]
Abstract
Genetic differences that specify unique aspects of human evolution have typically been identified by comparative analyses between the genomes of humans and closely related primates, including more recently the genomes of archaic hominins. Not all regions of the genome, however, are equally amenable to such study. Recurrent copy number variation (CNV) at chromosome 16p11.2 accounts for approximately 1% of cases of autism and is mediated by a complex set of segmental duplications, many of which arose recently during human evolution. Here we reconstruct the evolutionary history of the locus and identify bolA family member 2 (BOLA2) as a gene duplicated exclusively in Homo sapiens. We estimate that a 95-kilobase-pair segment containing BOLA2 duplicated across the critical region approximately 282 thousand years ago (ka), one of the latest among a series of genomic changes that dramatically restructured the locus during hominid evolution. All humans examined carried one or more copies of the duplication, which nearly fixed early in the human lineage--a pattern unlikely to have arisen so rapidly in the absence of selection (P < 0.0097). We show that the duplication of BOLA2 led to a novel, human-specific in-frame fusion transcript and that BOLA2 copy number correlates with both RNA expression (r = 0.36) and protein level (r = 0.65), with the greatest expression difference between human and chimpanzee in experimentally derived stem cells. Analyses of 152 patients carrying a chromosome 16p11. rearrangement show that more than 96% of breakpoints occur within the H. sapiens-specific duplication. In summary, the duplicative transposition of BOLA2 at the root of the H. sapiens lineage about 282 ka simultaneously increased copy number of a gene associated with iron homeostasis and predisposed our species to recurrent rearrangements associated with disease.
Collapse
Affiliation(s)
- Xander Nuttle
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Michael H. Duyzend
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Joshua G. Schraiber
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Iñigo Narvaiza
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter H. Sudmant
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Osnat Penn
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Maika Malig
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - John Huddleston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Chris Benner
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Francesca Camponeschi
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Simone Ciofi-Baffoni
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Holly A.F. Stessman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Maria C. N. Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Laura Denman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Lana Harshman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Carl Baker
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Archana Raja
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Kelsi Penewit
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Nicolette Janke
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - W. Joyce Tang
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Mario Ventura
- Department of Biology, University of Bari, Bari, Italy
| | - Lucia Banci
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | | | - Joshua M. Akey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Chris T. Amemiya
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
- Center for Academic Research and Training in Anthropogeny (CARTA), 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Barber JCK, Sharp AJ, Hollox EJ, Tyson C. Copy number variation of the REXO1L1 gene cluster; euchromatic deletion variant or susceptibility factor? Eur J Hum Genet 2016; 25:8-9. [PMID: 27485411 DOI: 10.1038/ejhg.2016.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- John C K Barber
- Department of Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK.
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York City, NY, USA
| | - Edward J Hollox
- Department of Genetics, University of Leicester, Leicester, UK
| | - Christine Tyson
- Department of Pathology, Cytogenetics Laboratory, Royal Columbian Hospital, New Westminster, British Columbia, Canada
| |
Collapse
|
12
|
Guo X, Delio M, Haque N, Castellanos R, Hestand MS, Vermeesch JR, Morrow BE, Zheng D. Variant discovery and breakpoint region prediction for studying the human 22q11.2 deletion using BAC clone and whole genome sequencing analysis. Hum Mol Genet 2016; 25:3754-3767. [PMID: 27436579 DOI: 10.1093/hmg/ddw221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 11/13/2022] Open
Abstract
Velo-cardio-facial syndrome/DiGeorge syndrome/22q11.2 deletion syndrome (22q11.2DS) is caused by meiotic non-allelic homologous recombination events between flanking low copy repeats termed LCR22A and LCR22D, resulting in a 3 million base pair (Mb) deletion. Due to their complex structure, large size and high sequence identity, genetic variation within LCR22s among different individuals has not been well characterized. In this study, we sequenced 13 BAC clones derived from LCR22A/D and aligned them with 15 previously available BAC sequences to create a new genetic variation map. The thousands of variants identified by this analysis were not uniformly distributed in the two LCR22s. Moreover, shared single nucleotide variants between LCR22A and LCR22D were enriched in the Breakpoint Cluster Region pseudogene (BCRP) block, suggesting the existence of a possible recombination hotspot there. Interestingly, breakpoints for atypical 22q11.2 rearrangements have previously been located to BCRPs To further explore this finding, we carried out in-depth analyses of whole genome sequence (WGS) data from two unrelated probands harbouring a de novo 3Mb 22q11.2 deletion and their normal parents. By focusing primarily on WGS reads uniquely mapped to LCR22A, using the variation map from our BAC analysis to help resolve allele ambiguity, and by performing PCR analysis, we infer that the deletion breakpoints were most likely located near or within the BCRP module. In summary, we found a high degree of sequence variation in LCR22A and LCR22D and a potential recombination breakpoint near or within the BCRP block, providing a starting point for future breakpoint mapping using additional trios.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Deyou Zheng
- Department of Neurology .,Department of Genetics.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
13
|
Iyer J, Girirajan S. Gene discovery and functional assessment of rare copy-number variants in neurodevelopmental disorders. Brief Funct Genomics 2015; 14:315-28. [DOI: 10.1093/bfgp/elv018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
14
|
Zarrei M, MacDonald JR, Merico D, Scherer SW. A copy number variation map of the human genome. Nat Rev Genet 2015; 16:172-83. [DOI: 10.1038/nrg3871] [Citation(s) in RCA: 565] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Rouge JL, Hao L, Wu XA, Briley WE, Mirkin CA. Spherical nucleic acids as a divergent platform for synthesizing RNA-nanoparticle conjugates through enzymatic ligation. ACS NANO 2014; 8:8837-43. [PMID: 25144723 PMCID: PMC4174098 DOI: 10.1021/nn503601s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/15/2014] [Indexed: 05/26/2023]
Abstract
Herein, we describe a rapid, divergent method for using spherical nucleic acids (SNAs) as a universal platform for attaching RNA to DNA-modified nanoparticles using enzyme-mediated techniques. This approach provides a sequence-specific method for the covalent attachment of one or more in vitro transcribed RNAs to a universal SNA scaffold, regardless of RNA sequence. The RNA-nanoparticle constructs are shown to effectively knock down two different gene targets using a single, dual-ligated nanoparticle construct.
Collapse
Affiliation(s)
- Jessica L. Rouge
- Department of Chemistry and International Institute for Nanotechnology, Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Liangliang Hao
- Department of Chemistry and International Institute for Nanotechnology, Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Xiaochen A. Wu
- Department of Chemistry and International Institute for Nanotechnology, Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - William E. Briley
- Department of Chemistry and International Institute for Nanotechnology, Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|