1
|
Prichard K, Chau N, Xue J, Krauss M, Sakoff JA, Gilbert J, Bahnik C, Muehlbauer M, Radetzki S, Robinson PJ, Haucke V, McCluskey A. Inhibition Clathrin Mediated Endocytosis: Pitstop 1 and Pitstop 2 Chimeras. ChemMedChem 2024; 19:e202400253. [PMID: 38894585 DOI: 10.1002/cmdc.202400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Twenty-five chimera compounds of Pitstop 1 and 2 were synthesised and screened for their ability to block the clathrin terminal domain-amphiphysin protein-protein interaction (NTD-PPI using an ELISA) and clathrin mediated endocytosis (CME) in cells. Library 1 was based on Pitstop 2, but no notable clathrin PPI or in-cell activity was observed. With the Pitstop 1, 16 analogues were produced with 1,8-naphthalic imide core as a foundation. Analogues with methylene spaced linkers and simple amides showed a modest to good range of PPI inhibition (7.6-42.5 μM, naphthyl 39 and 4-nitrophenyl 40 respectively) activity. These data reveal the importance of the naphthalene sulfonate moiety, with no des-SO3 analogue displaying PPI inhibition. This was consistent with the observed analogue docked poses within the clathrin terminal domain Site 1 binding pocket. Further modifications targeted the naphthalene imide moiety, with the installation of 5-Br (45 a), 5-OH (45 c) and 5-propyl ether (45 d) moieties. Among them, the OH 45 c and propyl ether 45 d retained PPI inhibition, with propyl ether 45 d being the most active with a PPI inhibition IC50=7.3 μM. This is 2x more potent than Pitstop 2 and 3x more potent than Pitstop 1.
Collapse
Affiliation(s)
- Kate Prichard
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ngoc Chau
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Hawkesbury Road, Westmead, Sydney, Australia
| | - Jing Xue
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Hawkesbury Road, Westmead, Sydney, Australia
| | - Michael Krauss
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Jennette A Sakoff
- Experimental Therapeutics Group, Medical Oncology, Calvary Mater Newcastle Hospital, Edith Street, Waratah, NSW, 2298, Australia
| | - Jayne Gilbert
- Experimental Therapeutics Group, Medical Oncology, Calvary Mater Newcastle Hospital, Edith Street, Waratah, NSW, 2298, Australia
| | - Claudia Bahnik
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Maria Muehlbauer
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Silke Radetzki
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Hawkesbury Road, Westmead, Sydney, Australia
| | - Volker Haucke
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
2
|
Gomez IM, Uriarte M, Fernandez G, Barrile F, Castrogiovanni D, Cantel S, Fehrentz JA, De Francesco PN, Perello M. Hypothalamic tanycytes internalize ghrelin from the cerebrospinal fluid: Molecular mechanisms and functional implications. Mol Metab 2024; 90:102046. [PMID: 39401613 PMCID: PMC11532763 DOI: 10.1016/j.molmet.2024.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
OBJECTIVE The peptide hormone ghrelin exerts potent effects in the brain, where its receptor is highly expressed. Here, we investigated the role of hypothalamic tanycytes in transporting ghrelin across the blood-cerebrospinal fluid (CSF) interface. METHODS We investigated the internalization and transport of fluorescent ghrelin (Fr-ghrelin) in primary cultures of rat hypothalamic tanycytes, mouse hypothalamic explants, and mice. We also tested the impact of inhibiting clathrin-mediated endocytosis of ghrelin in the brain ventricular system on the orexigenic and locomotor effects of the hormone. RESULTS In vitro, we found that Fr-ghrelin is selectively and rapidly internalized at the soma of tanycytes, via a GHSR-independent and clathrin-dependent mechanism, and then transported to the endfoot. In hypothalamic explants, we also found that Fr-ghrelin is internalized at the apical pole of tanycytes. In mice, Fr-ghrelin present in the CSF was rapidly internalized by hypothalamic β-type tanycytes in a clathrin-dependent manner, and pharmacological inhibition of clathrin-mediated endocytosis in the brain ventricular system prolonged the ghrelin-induced locomotor effects. CONCLUSIONS We propose that tanycyte-mediated transport of ghrelin is functionally relevant, as it may contribute to reduce the concentration of this peptide hormone in the CSF and consequently shortens the duration of its central effects.
Collapse
Affiliation(s)
- Ivana M Gomez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Maia Uriarte
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Franco Barrile
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Daniel Castrogiovanni
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron-UMR5247, Pôle Chimie Balard Recherche, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron-UMR5247, Pôle Chimie Balard Recherche, Montpellier, France
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina.
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina; Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
3
|
O'Brien NS, Gilbert J, McCluskey A, Sakoff JA. 2,3-Dihydroquinazolin-4(1 H)-ones and quinazolin-4(3 H)-ones as broad-spectrum cytotoxic agents and their impact on tubulin polymerisation. RSC Med Chem 2024; 15:1686-1708. [PMID: 38784470 PMCID: PMC11110758 DOI: 10.1039/d3md00600j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/27/2024] [Indexed: 05/25/2024] Open
Abstract
Tubulin plays a central role in mitosis and has been the target of multiple anticancer drugs, including paclitaxel. Herein two separate families of 2,3-dihydroquinazoline-4(1H)-ones and quinazoline-4(3H) ones, comprising 57 compounds in total, were synthesised. Screening against a broad panel of human cancer cell lines (HT29 colon, U87 and SJ-G2 glioblastoma, MCF-7 breast, A2780 ovarian, H460 lung, A431 skin, Du145 prostate, BE2-C neuroblastoma, and MIA pancreas) reveals these analogues to be broad spectrum cytotoxic compounds. Of particular note, 2-styrylquinazolin-4(3H)-one 51, 2-(4-hydroxystyryl)quinazolin-4(3H)-one 63, 2-(2-methoxystyryl)quinazolin-4(3H)-one 64 and 2-(3-methoxystyryl)quinazolin-4(3H)-one 65 and 2-(naphthalen-1-yl)-2,3-dihydroquinazolin-4(1H)-one 39 exhibited sub-μM potency growth inhibition values. Of these 1-naphthyl 39 has activity <50 nM against the HT29, U87, A2780, H460 and BE2-C cell lines. Molecular modelling of these compounds, e.g. 2-(naphthalen-1-yl)-2,3-dihydroquinazolin-4(1H)-one 39, 2-(2-methoxystyryl)quinazolin-4(3H)-one 64, 2-(3-methoxystyryl)quinazolin-4(3H)-one 65, and 2-(4-methoxystyryl)quinazolin-4(3H)-one 50 docked to the known tubulin polymerisation inhibitor sites highlighted well conserved interactions within the colchicine binding pocket. These compounds were examined in a tubulin polymerisation assay alongside the known tubulin polymerisation promotor, paclitaxel (69), and tubulin inhibitor, nocodazole (68). Of the analogues examined, indoles 43 and 47 were modest promotors of tubulin polymerisation, but less effective than paclitaxel. Analogues 39, 64, and 65 showed reduced microtubule formation consistent with tubulin inhibition. The variation in ring methoxy substituent with 50, 64 and 65, from o- to m- to p-, results in a concomitant reduction in cytotoxicity and a reduction in tubulin polymerisation, with p-OCH350 being the least active in this series of analogues. This presents 64 as a tubulin polymerisation inhibitor possessing novel chemotype and sub micromolar cytotoxicity. Naphthyl 39, with complete inhibition of tubulin polymerisation, gave rise to a sub 0.2 μM cell line cytotoxicity. Compounds 39 and 64 induced G2 + M cell cycle arrest indicative of inhibition of tubulin polymerisation, with 39 inducing an equivalent effect on cell cycle arrest as nocodazole (68).
Collapse
Affiliation(s)
- Nicholas S O'Brien
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle University Drive Callaghan NSW 2308 Australia +61(0)249215472 +61(0)249216486
| | - Jayne Gilbert
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital Edith Street Waratah 2298 NSW Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle University Drive Callaghan NSW 2308 Australia +61(0)249215472 +61(0)249216486
| | - Jennette A Sakoff
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital Edith Street Waratah 2298 NSW Australia
| |
Collapse
|
4
|
Liashkovich I, Stefanello ST, Vidyadharan R, Haufe G, Erofeev A, Gorelkin PV, Kolmogorov V, Mizdal CR, Dulebo A, Bulk E, Kouzel IU, Shahin V. Pitstop-2 and its novel derivative RVD-127 disrupt global cell dynamics and nuclear pores integrity by direct interaction with small GTPases. Bioeng Transl Med 2023; 8:e10425. [PMID: 37476059 PMCID: PMC10354767 DOI: 10.1002/btm2.10425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is an essential cell physiological process of broad biomedical relevance. Since the recent introduction of Pitstop-2 as a potent CME inhibitor, we and others have reported on substantial clathrin-independent inhibitory effects. Herein, we developed and experimentally validated a novel fluorescent derivative of Pitstop-2, termed RVD-127, to clarify Pitstop-2 diverse effects. Using RVD-127, we were able to trace additional protein targets of Pitstop-2. Besides inhibiting CME, Pitstop-2 and RVD-127 proved to directly and reversibly bind to at least two members of the small GTPase superfamily Ran and Rac1 with particularly high efficacy. Binding locks the GTPases in a guanosine diphosphate (GDP)-like conformation disabling their interaction with their downstream effectors. Consequently, overall cell motility, mechanics and nucleocytoplasmic transport integrity are rapidly disrupted at inhibitor concentrations well below those required to significantly reduce CME. We conclude that Pitstop-2 is a highly potent, reversible inhibitor of small GTPases. The inhibition of these molecular switches of diverse crucial signaling pathways, including nucleocytoplasmic transport and overall cell dynamics and motility, clarifies the diversity of Pitstop-2 activities. Moreover, considering the fundamental importance and broad implications of small GTPases in physiology, pathophysiology and drug development, Pitstop-2 and RVD-127 open up novel avenues.
Collapse
Affiliation(s)
| | | | | | - Günter Haufe
- Organic Chemistry Institute, University of MünsterMünsterGermany
| | - Alexander Erofeev
- National University of Science and Technology «MISiS»MoscowRussia
- Department of ChemistryLomonosov Moscow State UniversityMoscowRussia
| | | | | | | | | | - Etmar Bulk
- Institute of Physiology II, University of MünsterMünsterGermany
| | | | - Victor Shahin
- Institute of Physiology II, University of MünsterMünsterGermany
| |
Collapse
|
5
|
Tonello R, Anderson WB, Davidson S, Escriou V, Yang L, Schmidt BL, Imlach WL, Bunnett NW. The contribution of endocytosis to sensitization of nociceptors and synaptic transmission in nociceptive circuits. Pain 2023; 164:1355-1374. [PMID: 36378744 PMCID: PMC10182228 DOI: 10.1097/j.pain.0000000000002826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
ABSTRACT Chronic pain involves sensitization of nociceptors and synaptic transmission of painful signals in nociceptive circuits in the dorsal horn of the spinal cord. We investigated the contribution of clathrin-dependent endocytosis to sensitization of nociceptors by G protein-coupled receptors (GPCRs) and to synaptic transmission in spinal nociceptive circuits. We determined whether therapeutic targeting of endocytosis could ameliorate pain. mRNA encoding dynamin (Dnm) 1 to 3 and adaptor-associated protein kinase 1 (AAK1), which mediate clathrin-dependent endocytosis, were localized to primary sensory neurons of dorsal root ganglia of mouse and human and to spinal neurons in the dorsal horn of the mouse spinal cord by RNAScope. When injected intrathecally to mice, Dnm and AAK1 siRNA or shRNA knocked down Dnm and AAK1 mRNA in dorsal root ganglia neurons, reversed mechanical and thermal allodynia and hyperalgesia, and normalized nonevoked behavior in preclinical models of inflammatory and neuropathic pain. Intrathecally administered inhibitors of clathrin, Dnm, and AAK1 also reversed allodynia and hyperalgesia. Disruption of clathrin, Dnm, and AAK1 did not affect normal motor functions of behaviors. Patch clamp recordings of dorsal horn neurons revealed that Dnm1 and AAK1 disruption inhibited synaptic transmission between primary sensory neurons and neurons in lamina I/II of the spinal cord dorsal horn by suppressing release of synaptic vesicles from presynaptic primary afferent neurons. Patch clamp recordings from dorsal root ganglion nociceptors indicated that Dnm siRNA prevented sustained GPCR-mediated sensitization of nociceptors. By disrupting synaptic transmission in the spinal cord and blunting sensitization of nociceptors, endocytosis inhibitors offer a therapeutic approach for pain treatment.
Collapse
Affiliation(s)
- Raquel Tonello
- Department of Molecular Pathobiology, Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10010, USA
- Pain Research Center, New York University
| | - Wayne B. Anderson
- Department of Physiology and Monash Biomedicine Discovery Institute, Monash University, VIC 3800, Australia
| | - Steve Davidson
- Department of Anesthesiology, College of Medicine, University of Cincinnati, Cincinnati, USA
| | | | - Lei Yang
- NYU Dentistry Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA
| | - Brian L. Schmidt
- Department of Molecular Pathobiology, Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10010, USA
- Pain Research Center, New York University
- NYU Dentistry Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA
| | - Wendy L. Imlach
- Department of Physiology and Monash Biomedicine Discovery Institute, Monash University, VIC 3800, Australia
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10010, USA
- Pain Research Center, New York University
| |
Collapse
|
6
|
Li W, Hu J, Li X, Lu Z, Li X, Wang C, Yu S. Receptor-Dependent Endocytosis Mediates α-Synuclein Oligomer Transport Into Red Blood Cells. Front Aging Neurosci 2022; 14:899892. [PMID: 35669464 PMCID: PMC9163663 DOI: 10.3389/fnagi.2022.899892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Detection of oligomeric α-synuclein (o-α-Syn) in red blood cells (RBCs) has been shown to be promising in diagnosing Parkinson’s disease and other synucleinopathies. However, if RBC o-α-Syn derive from plasma and can reflect changes of plasma o-α-Syn remains unclear. In this study, synthetic o-α-Syn was intravenously injected into mice and dynamic changes in plasma and RBC o-α-Syn levels were investigated. Injection of o-α-Syn induced a temporary increase in plasma o-α-Syn levels, which then decreased to a relatively stable level. In contrast, levels of RBC o-α-Syn increased steadily and significantly. Besides, α-Syn-immunoreactive particles were observed in RBCs of the injected mice, suggesting that RBCs can actively take up and enrich o-α-Syn from plasma. Moreover, incubation of o-α-Syn with isolated RBCs at concentrations lower than those of endogenous o-α-Syn led to a time- and concentration-dependent o-α-Syn elevation in RBCs, which was impaired by lowering the temperature and treatment with proteinase K. The o-α-Syn accumulation in RBCs was also inhibited by specific inhibitors of receptor-dependent endocytosis, including dynamin- and clathrin-dependent endocytosis. The above results suggest that plasma o-α-Syn can be actively transported into RBCs via receptor-dependent endocytic pathways.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Junya Hu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Xin Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Zhe Lu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Xuying Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
- *Correspondence: Chaodong Wang,
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing, China
- Shun Yu,
| |
Collapse
|
7
|
Jaramillo-Polanco J, Lopez-Lopez C, Yu Y, Neary E, Hegron A, Canals M, Bunnett NW, Reed DE, Lomax AE, Vanner SJ. Opioid-Induced Pronociceptive Signaling in the Gastrointestinal Tract Is Mediated by Delta-Opioid Receptor Signaling. J Neurosci 2022; 42:3316-3328. [PMID: 35256532 PMCID: PMC9034783 DOI: 10.1523/jneurosci.2098-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Opioid tolerance (OT) leads to dose escalation and serious side effects, including opioid-induced hyperalgesia (OIH). We sought to better understand the mechanisms underlying this event in the gastrointestinal tract. Chronic in vivo administration of morphine by intraperitoneal injection in male C57BL/6 mice evoked tolerance and evidence of OIH in an assay of colonic afferent nerve mechanosensitivity; this was inhibited by the δ-opioid receptor (DOPr) antagonist naltrindole when intraperitoneally injected in previous morphine administration. Patch-clamp studies of DRG neurons following overnight incubation with high concentrations of morphine, the µ-opioid receptors (MOPr) agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin (DAMGO) or the DOPr agonist [D-Ala2, D-Leu5]-Enkephalin evoked hyperexcitability. The pronociceptive actions of these opioids were blocked by the DOPr antagonist SDM25N but not the MOPr antagonist D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 The hyperexcitability induced by DAMGO was reversed after a 1 h washout, but reapplication of low concentrations of DAMGO or [D-Ala2, D-Leu5]-Enkephalin restored the hyperexcitability, an effect mediated by protein kinase C. DOPr-dependent DRG neuron hyperexcitability was blocked by the endocytosis inhibitor Pitstop 2, and the weakly internalizing DOPr agonist ARM390 did not cause hyperexcitability. Bioluminescence resonance energy transfer studies in HEK cells showed no evidence of switching of G-protein signaling from Gi to a Gs pathway in response to either high concentrations or overnight incubation of opioids. Thus, chronic high-dose opioid exposure leads to opioid tolerance and features of OIH in the colon. This action is mediated by DOPr signaling and is dependent on receptor endocytosis and downstream protein kinase C signaling.SIGNIFICANCE STATEMENT Opioids are effective in the treatment of abdominal pain, but escalating doses can lead to opioid tolerance and potentially opioid-induced hyperalgesia. We found that δ-opioid receptor (DOPr) plays a central role in the development of opioid tolerance and opioid-induced hyperalgesia in colonic afferent nociceptors following prolonged exposure to high concentrations of MOPr or DOPr agonists. Furthermore, the role of DOPr was dependent on OPr internalization and activation of a protein kinase C signaling pathway. Thus, targeting DOPr or key components of the downstream signaling pathway could mitigate adverse side effects by opioids.
Collapse
Affiliation(s)
- Josue Jaramillo-Polanco
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Cintya Lopez-Lopez
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Yang Yu
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Emma Neary
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Alan Hegron
- Department of Molecular Pathobiology, Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, New York 10010
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, New York 10010
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Alan E Lomax
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada
| |
Collapse
|
8
|
Watanabe Y, Nihonyanagi H, Numano R, Shibata T, Takashima K, Kurita H. Influence of Electroporation Medium on Delivery of Cell-Impermeable Small Molecules by Electrical Short-Circuiting via an Aqueous Droplet in Dielectric Oil: A Comparison of Different Fluorescent Tracers. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22072494. [PMID: 35408109 PMCID: PMC9003051 DOI: 10.3390/s22072494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 05/23/2023]
Abstract
Membrane permeabilization stimulated by high-voltage electric pulses has been used to deliver cell-impermeable exogenous molecules. The electric field effect on the cells depends on various experimental parameters, such as electric field strength, the number of electric pulses, and the electroporation medium. In this study, we show the influence of the electroporation medium on membrane permeabilization stimulated by electrical short-circuiting via an aqueous droplet in dielectric oil, a novel methodology developed by our previous investigations. We investigated the membrane permeabilization by three methods, influx of calcium ions, uptake of nucleic acid-binding fluorophores (YO-PRO-1), and calcein leakage. We demonstrated that the external medium conductivity had a significant impact on the cells in all described experiments. The short-circuiting using a low-conductivity electroporation medium enhanced the formation of both transient and irreversible membrane pores. We also found that clathrin-mediated endocytosis contributed to YO-PRO-1 uptake when a cell culture medium was used as an electroporation medium.
Collapse
Affiliation(s)
- Yuki Watanabe
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan; (Y.W.); (H.N.); (R.N.); (K.T.)
| | - Hirohito Nihonyanagi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan; (Y.W.); (H.N.); (R.N.); (K.T.)
| | - Rika Numano
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan; (Y.W.); (H.N.); (R.N.); (K.T.)
- The Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan
| | - Takayuki Shibata
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan;
| | - Kazunori Takashima
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan; (Y.W.); (H.N.); (R.N.); (K.T.)
| | - Hirofumi Kurita
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan; (Y.W.); (H.N.); (R.N.); (K.T.)
| |
Collapse
|
9
|
Tremblay CS, Ting SB, McCluskey A, Robinson PJ, Curtis DJ. Shutting the gate: targeting endocytosis in acute leukemia. Exp Hematol 2021; 104:17-31. [PMID: 34563604 DOI: 10.1016/j.exphem.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Endocytosis entails selective packaging of cell surface cargos in cytoplasmic vesicles, thereby controlling key intrinsic cellular processes as well as the response of normal and malignant cells to their microenvironment. The purpose of this review is to outline the latest advances in the development of endocytosis-targeting therapeutic strategies in hematological malignancies.
Collapse
Affiliation(s)
- Cedric S Tremblay
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Stephen B Ting
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Clinical Haematology, Eastern Health, Box Hill, Victoria, Australia; Department of Clinical Haematology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Adam McCluskey
- Chemistry, Centre for Chemical Biology, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Phillip J Robinson
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia; Cell Signalling Unit, Children's Medical Research Institute, Sydney, New South Wales, Australia
| | - David J Curtis
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Clinical Haematology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Receptor tyrosine kinases and cancer: oncogenic mechanisms and therapeutic approaches. Oncogene 2021; 40:4079-4093. [PMID: 34079087 DOI: 10.1038/s41388-021-01841-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023]
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane receptors of great clinical interest due to their role in disease, notably cancer. Since their discovery, several mechanisms of RTK dysregulation have been identified, resulting in multiple cancer types displaying 'oncogenic addiction' to RTKs. As a result, RTKs have represented a major class for targeted therapeutics over the past two decades, with numerous small molecule-based tyrosine kinase inhibitor (TKI) therapeutics having been developed and clinically approved for several cancers. However, many of the current RTK inhibitor treatments eventually result in the rapid development of acquired resistance and subsequent tumor relapse. Recent technological advances and tools are being generated for the identification of novel RTK small molecule therapeutics. These newer technologies will be important for the identification of diverse types of RTK inhibitors, targeting both the receptors themselves as well as key cellular factors that play important roles in the RTK signaling cascade.
Collapse
|
11
|
Kurita H, Nihonyanagi H, Watanabe Y, Sugano K, Shinozaki R, Kishikawa K, Numano R, Takashima K. Mechanistic studies of gene delivery into mammalian cells by electrical short-circuiting via an aqueous droplet in dielectric oil. PLoS One 2020; 15:e0243361. [PMID: 33275626 PMCID: PMC7717561 DOI: 10.1371/journal.pone.0243361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 11/20/2022] Open
Abstract
We have developed a novel methodology for the delivery of cell-impermeable molecules, based on electrical short-circuiting via a water droplet in dielectric oil. When a cell suspension droplet is placed between a pair of electrodes with an intense DC electric field, droplet bouncing and droplet deformation, which results in an instantaneous short-circuit, can be induced, depending on the electric field strength. We have demonstrated successful transfection of various mammalian cells using the short-circuiting; however, the molecular mechanism remains to be elucidated. In this study, flow cytometric assays were performed with Jurkat cells. An aqueous droplet containing Jurkat cells and plasmids carrying fluorescent proteins was treated with droplet bouncing or short-circuiting. The short-circuiting resulted in sufficient cell viability and fluorescent protein expression after 24 hours’ incubation. In contrast, droplet bouncing did not result in successful gene transfection. Transient membrane pore formation was investigated by uptake of a cell-impermeable fluorescence dye YO-PRO-1 and the influx of calcium ions. As a result, short-circuiting increased YO-PRO-1 fluorescence intensity and intracellular calcium ion concentration, but droplet bouncing did not. We also investigated the contribution of endocytosis to the transfection. The pre-treatment of cells with endocytosis inhibitors decreased the efficiency of gene transfection in a concentration-dependent manner. Besides, the use of pH-sensitive dye conjugates indicated the formation of an acidic environment in the endosomes after the short-circuiting. Endocytosis is a possible mechanism for the intracellular delivery of exogenous DNA.
Collapse
Affiliation(s)
- Hirofumi Kurita
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- * E-mail:
| | - Hirohito Nihonyanagi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Yuki Watanabe
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Kenta Sugano
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Ryuto Shinozaki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Kenta Kishikawa
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Rika Numano
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Kazunori Takashima
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
12
|
A novel naphthalimide that selectively targets breast cancer via the arylhydrocarbon receptor pathway. Sci Rep 2020; 10:13978. [PMID: 32814815 PMCID: PMC7438328 DOI: 10.1038/s41598-020-70597-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/25/2020] [Indexed: 11/23/2022] Open
Abstract
We report that the naphthalimide analogue 2-(2-aminophenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (NAP-6) is a highly potent and selective breast cancer targeting molecule. These effects are mediated via the aryl hydrocarbon receptor (AHR) pathway and the subsequent induction of CYP1 metabolising monooxygenases in breast cancer cell line models. Indeed the triple negative breast cancer cell line MDA-MB-468 with a GI50 value of 100 nM is greater than 500-fold more sensitive to NAP-6 compared with other tumour derived cell models. Within 1 h exposure of these cells to NAP-6, CYP1A1 expression increases 25-fold, rising to 250-fold by 24 h. A smaller concurrent increase in CYP1A2 and CYP1B1 is also observed. Within 24 h these cells present with DNA damage as evident by enhanced H2AXγ expression, cell cycle checkpoint activation via increased CHK2 expression, S-phase cell cycle arrest and cell death. Specific small molecule inhibitors of the AHR and CYP1 family ameliorate these events. A positive luciferase reporter assay for NAP-6 induced XRE binding further confirms the role of the AHR in this phenomenon. Non-sensitive cell lines fail to show these biological effects. For the first time we identify 2-(2-aminophenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione as a new AHR ligand that selectively targets breast cancer.
Collapse
|
13
|
Izumida M, Hayashi H, Tanaka A, Kubo Y. Cathepsin B Protease Facilitates Chikungunya Virus Envelope Protein-Mediated Infection via Endocytosis or Macropinocytosis. Viruses 2020; 12:v12070722. [PMID: 32635194 PMCID: PMC7412492 DOI: 10.3390/v12070722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Chikungunya virus (CHIKV) is an enveloped virus that enters host cells and transits within the endosomes before starting its replication cycle, the precise mechanism of which is yet to be elucidated. Endocytosis and endosome acidification inhibitors inhibit infection by CHIKV, murine leukemia virus (MLV), or SARS-coronavirus, indicating that these viral entries into host cells occur through endosomes and require endosome acidification. Although endosomal cathepsin B protease is necessary for MLV, Ebola virus, and SARS-CoV infections, its role in CHIKV infection is unknown. Our results revealed that endocytosis inhibitors attenuated CHIKV-pseudotyped MLV vector infection in 293T cells but not in TE671 cells. In contrast, macropinocytosis inhibitors attenuated CHIKV-pseudotyped MLV vector infection in TE671 cells but not in 293T cells, suggesting that CHIKV host cell entry occurs via endocytosis or macropinocytosis, depending on the cell lines used. Cathepsin B inhibitor and knockdown by an shRNA suppressed CHIKV-pseudotyped MLV vector infection both in 293T and TE671 cells. These results show that cathepsin B facilitates CHIKV infection regardless of the entry pathway.
Collapse
Affiliation(s)
- Mai Izumida
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Correspondence: (M.I.); (Y.K.)
| | - Hideki Hayashi
- Medical University Research Administrator, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan;
| | - Atsushi Tanaka
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - Yoshinao Kubo
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Correspondence: (M.I.); (Y.K.)
| |
Collapse
|
14
|
Portes J, Barrias E, Travassos R, Attias M, de Souza W. Toxoplasma gondii Mechanisms of Entry Into Host Cells. Front Cell Infect Microbiol 2020; 10:294. [PMID: 32714877 PMCID: PMC7340009 DOI: 10.3389/fcimb.2020.00294] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/19/2020] [Indexed: 01/12/2023] Open
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan parasite. Toxoplasma can invade and multiply inside any nucleated cell of a wide range of homeothermic hosts. The canonical process of internalization involves several steps: an initial recognition of the host cell surface and a sequential secretion of proteins from micronemes followed by rhoptries that assemble a macromolecular complex constituting a specialized and transient moving junction. The parasite is then internalized via an endocytic process with the establishment of a parasitophorous vacuole (PV), that does not fuse with lysosomes, where the parasites survive and multiply. This process of host cell invasion is usually referred to active penetration. Using different cell types and inhibitors of distinct endocytic pathways, we show that treatment of host cells with compounds that interfere with clathrin-mediated endocytosis (hypertonic sucrose medium, chlorpromazine hydrochloride, and pitstop 2 inhibited the internalization of tachyzoites). In addition, treatments that interfere with macropinocytosis, such as incubation with amiloride or IPA-3, increased parasite attachment to the host cell surface but significantly blocked parasite internalization. Immunofluorescence microscopy showed that markers of macropinocytosis, such as the Rab5 effector rabankyrin 5 and Pak1, are associated with parasite-containing cytoplasmic vacuoles. These results indicate that entrance of T. gondii into mammalian cells can take place both by the well-characterized interaction of parasite and host cell endocytic machinery and other processes, such as the clathrin-mediated endocytosis, and macropinocytosis.
Collapse
Affiliation(s)
- Juliana Portes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Emile Barrias
- Laboratório de Metrologia Aplicada à Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia- Inmetro, Rio de Janeiro, Brazil
| | - Renata Travassos
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Márcia Attias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Endosomal signaling of delta opioid receptors is an endogenous mechanism and therapeutic target for relief from inflammatory pain. Proc Natl Acad Sci U S A 2020; 117:15281-15292. [PMID: 32546520 DOI: 10.1073/pnas.2000500117] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Whether G protein-coupled receptors signal from endosomes to control important pathophysiological processes and are therapeutic targets is uncertain. We report that opioids from the inflamed colon activate δ-opioid receptors (DOPr) in endosomes of nociceptors. Biopsy samples of inflamed colonic mucosa from patients and mice with colitis released opioids that activated DOPr on nociceptors to cause a sustained decrease in excitability. DOPr agonists inhibited mechanically sensitive colonic nociceptors. DOPr endocytosis and endosomal signaling by protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) pathways mediated the sustained inhibitory actions of endogenous opioids and DOPr agonists. DOPr agonists stimulated the recruitment of Gαi/o and β-arrestin1/2 to endosomes. Analysis of compartmentalized signaling revealed a requirement of DOPr endocytosis for activation of PKC at the plasma membrane and in the cytosol and ERK in the nucleus. We explored a nanoparticle delivery strategy to evaluate whether endosomal DOPr might be a therapeutic target for pain. The DOPr agonist DADLE was coupled to a liposome shell for targeting DOPr-positive nociceptors and incorporated into a mesoporous silica core for release in the acidic and reducing endosomal environment. Nanoparticles activated DOPr at the plasma membrane, were preferentially endocytosed by DOPr-expressing cells, and were delivered to DOPr-positive early endosomes. Nanoparticles caused a long-lasting activation of DOPr in endosomes, which provided sustained inhibition of nociceptor excitability and relief from inflammatory pain. Conversely, nanoparticles containing a DOPr antagonist abolished the sustained inhibitory effects of DADLE. Thus, DOPr in endosomes is an endogenous mechanism and a therapeutic target for relief from chronic inflammatory pain.
Collapse
|
16
|
Sewduth R, Pandolfi S, Steklov M, Sheryazdanova A, Zhao P, Criem N, Baietti M, Lechat B, Quarck R, Impens F, Sablina A. The Noonan Syndrome Gene Lztr1 Controls Cardiovascular Function by Regulating Vesicular Trafficking. Circ Res 2020; 126:1379-1393. [PMID: 32175818 PMCID: PMC8575076 DOI: 10.1161/circresaha.119.315730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Noonan syndrome (NS) is one of the most frequent genetic disorders. Bleeding problems are among the most common, yet poorly defined complications associated with NS. A lack of consensus on the management of bleeding complications in patients with NS indicates an urgent need for new therapeutic approaches. OBJECTIVE Bleeding disorders have recently been described in patients with NS harboring mutations of LZTR1 (leucine zipper-like transcription regulator 1), an adaptor for CUL3 (CULLIN3) ubiquitin ligase complex. Here, we assessed the pathobiology of LZTR1-mediated bleeding disorders. METHODS AND RESULTS Whole-body and vascular specific knockout of Lztr1 results in perinatal lethality due to cardiovascular dysfunction. Lztr1 deletion in blood vessels of adult mice leads to abnormal vascular leakage. We found that defective adherent and tight junctions in Lztr1-depleted endothelial cells are caused by dysregulation of vesicular trafficking. LZTR1 affects the dynamics of fusion and fission of recycling endosomes by controlling ubiquitination of the ESCRT-III (endosomal sorting complex required for transport III) component CHMP1B (charged multivesicular protein 1B), whereas NS-associated LZTR1 mutations diminish CHMP1B ubiquitination. LZTR1-mediated dysregulation of CHMP1B ubiquitination triggers endosomal accumulation and subsequent activation of VEGFR2 (vascular endothelial growth factor receptor 2) and decreases blood levels of soluble VEGFR2 in Lztr1 haploinsufficient mice. Inhibition of VEGFR2 activity by cediranib rescues vascular abnormalities observed in Lztr1 knockout mice Conclusions: Lztr1 deletion phenotypically overlaps with bleeding diathesis observed in patients with NS. ELISA screening of soluble VEGFR2 in the blood of LZTR1-mutated patients with NS may predict both the severity of NS phenotypes and potential responders to anti-VEGF therapy. VEGFR inhibitors could be beneficial for the treatment of bleeding disorders in patients with NS.
Collapse
Affiliation(s)
- R. Sewduth
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - S. Pandolfi
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - M. Steklov
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - A. Sheryazdanova
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - P. Zhao
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - N. Criem
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - M.F. Baietti
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - B. Lechat
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - R. Quarck
- University Hospitals and Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - F. Impens
- Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
- VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium
- VIB Proteomics Core, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - A.A. Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
17
|
Cold Atmospheric Plasma Stimulates Clathrin-Dependent Endocytosis to Repair Oxidised Membrane and Enhance Uptake of Nanomaterial in Glioblastoma Multiforme Cells. Sci Rep 2020; 10:6985. [PMID: 32332819 PMCID: PMC7181794 DOI: 10.1038/s41598-020-63732-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/25/2020] [Indexed: 01/16/2023] Open
Abstract
Cold atmospheric plasma (CAP) enhances uptake and accumulation of nanoparticles and promotes synergistic cytotoxicity against cancer cells. However, the mechanisms are not well understood. In this study, we investigate the enhanced uptake of theranostic nanomaterials by CAP. Numerical modelling of the uptake of gold nanoparticle into U373MG Glioblastoma multiforme (GBM) cells predicts that CAP may introduce a new uptake route. We demonstrate that cell membrane repair pathways play the main role in this stimulated new uptake route, following non-toxic doses of dielectric barrier discharge CAP. CAP treatment induces cellular membrane damage, mainly via lipid peroxidation as a result of reactive oxygen species (ROS) generation. Membranes rich in peroxidised lipids are then trafficked into cells via membrane repairing endocytosis. We confirm that the enhanced uptake of nanomaterials is clathrin-dependent using chemical inhibitors and silencing of gene expression. Therefore, CAP-stimulated membrane repair increases endocytosis and accelerates the uptake of gold nanoparticles into U373MG cells after CAP treatment. We demonstrate the utility of CAP to model membrane oxidative damage in cells and characterise a previously unreported mechanism of membrane repair to trigger nanomaterial uptake. This knowledge will underpin the development of new delivery strategies for theranostic nanoparticles into cancer cells.
Collapse
|
18
|
O'Brien NS, McCluskey A. A Facile Microwave and SnCl2 Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones. Aust J Chem 2020. [DOI: 10.1071/ch20101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An elegantly simple, facile, and robust approach to a scaffold of biological importance, 2,3-dihydroquinazolin-4(1H)-ones, is reported. A catalytic 1% SnCl2/microwave-mediated approach afforded access to pure material, collected by cooling and filtration after 20-min microwave irradiation at 120°C. A total of 41 analogues were prepared in isolated yields of 17–99%. This process was highly tolerant of aliphatic, aromatic, heterocyclic, and acyclic aldehydes, but furan, pyrrole, and thiophene aldehyde reactivity correlated with propensity towards electrophilic addition and/or Diels–Alder addition. As a result, thiophene afforded high yields (80%) whereas pyrrole carboxaldehyde failed to react. With simple cinnamaldehydes, and in the SbCl3-mediated reaction, and with α,β-unsaturated aldehydes the equivalent quinazolin-4(3H)-ones, and not the 2,3-dihydroquinazolin-4(1H)-ones, was favoured.
Collapse
|
19
|
Ramírez-García PD, Retamal JS, Shenoy P, Imlach W, Sykes M, Truong N, Constandil L, Pelissier T, Nowell CJ, Khor SY, Layani LM, Lumb C, Poole DP, Lieu T, Stewart GD, Mai QN, Jensen DD, Latorre R, Scheff NN, Schmidt BL, Quinn JF, Whittaker MR, Veldhuis NA, Davis TP, Bunnett NW. A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain. NATURE NANOTECHNOLOGY 2019; 14:1150-1159. [PMID: 31686009 PMCID: PMC7765343 DOI: 10.1038/s41565-019-0568-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/02/2019] [Indexed: 05/11/2023]
Abstract
Nanoparticle-mediated drug delivery is especially useful for targets within endosomes because of the endosomal transport mechanisms of many nanomedicines within cells. Here, we report the design of a pH-responsive, soft polymeric nanoparticle for the targeting of acidified endosomes to precisely inhibit endosomal signalling events leading to chronic pain. In chronic pain, the substance P (SP) neurokinin 1 receptor (NK1R) redistributes from the plasma membrane to acidified endosomes, where it signals to maintain pain. Therefore, the NK1R in endosomes provides an important target for pain relief. The pH-responsive nanoparticles enter cells by clathrin- and dynamin-dependent endocytosis and accumulate in NK1R-containing endosomes. Following intrathecal injection into rodents, the nanoparticles, containing the FDA-approved NK1R antagonist aprepitant, inhibit SP-induced activation of spinal neurons and thus prevent pain transmission. Treatment with the nanoparticles leads to complete and persistent relief from nociceptive, inflammatory and neuropathic nociception and offers a much-needed non-opioid treatment option for chronic pain.
Collapse
Affiliation(s)
- Paulina D Ramírez-García
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| | - Jeffri S Retamal
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| | - Priyank Shenoy
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| | - Wendy Imlach
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Matthew Sykes
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Nghia Truong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| | - Luis Constandil
- Laboratory of Neurobiology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile, Santiago, Chile
| | - Teresa Pelissier
- Laboratory of Neurobiology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile, Santiago, Chile
| | - Cameron J Nowell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Song Y Khor
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| | - Louis M Layani
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| | - Chris Lumb
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| | - Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| | - Gregory D Stewart
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Quynh N Mai
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| | - Dane D Jensen
- Departments of Surgery and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, Columbia University in the City of New York, New York , NY, USA
| | - Rocco Latorre
- Departments of Surgery and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, Columbia University in the City of New York, New York , NY, USA
| | - Nicole N Scheff
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, USA
| | - Brian L Schmidt
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, USA
| | - John F Quinn
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| | - Michael R Whittaker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| | - Nicholas A Veldhuis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia.
| | - Thomas P Davis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia.
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia.
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia.
- Departments of Surgery and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, Columbia University in the City of New York, New York , NY, USA.
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
20
|
Barrias E, Reignault L, de Carvalho TM, de Souza W. Clathrin coated pit dependent pathway for Trypanosoma cruzi internalization into host cells. Acta Trop 2019; 199:105057. [PMID: 31202818 DOI: 10.1016/j.actatropica.2019.105057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
Abstract
A number of intracellular pathogens are internalized by host cells via multiple endocytic pathways, including Trypanosoma cruzi, the etiological agent of Chagas disease. Clathrin-mediated endocytosis is the most characterized endocytic pathway in mammalian cells. Its machinery was described as being required in mammalian cells for the internalization of large particles, including pathogenic bacteria, fungi, and large virus. To investigate whether T. cruzi entry into host cells can also take advantage of the clathrin-coated vesicle-dependent process, we utilized well-known inhibitors of clathrin-coated vesicle formation (sucrose hypertonic medium, chlorpromazine hydrochloride and pitstop 2) and small interference RNA (siRNA). All treatments drastically reduced the internalization of infective trypomastigotes and amastigotes of T. cruzi by phagocytic (macrophages) and epithelial cells. Clathrin labeling, as observed by fluorescence and electron microscopy, was also observed around the parasites from the initial stages of infection until the complete formation of the parasitophorous vacuole. These unexpected observations suggest the participation of the clathrin pathway in the T. cruzi entry process.
Collapse
|
21
|
Özgün Köse S, Öziç C, Yılmaz F, Ersöz A, Say R. DNA ligase photocrosslinked cryogenic column based biotinylation kit for viral hybridization and detection. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Ho PWM, Chan AS, Pavlos NJ, Sims NA, Martin TJ. Brief exposure to full length parathyroid hormone-related protein (PTHrP) causes persistent generation of cyclic AMP through an endocytosis-dependent mechanism. Biochem Pharmacol 2019; 169:113627. [PMID: 31476292 DOI: 10.1016/j.bcp.2019.113627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
Parathyroid hormone (PTH)-related protein (PTHrP) (gene name Pthlh) was discovered as the factor responsible for the humoral hypercalcemia of malignancy. It shares such sequence similarity with PTH in the amino-terminal region that the two are equally able to act through a single G protein-coupled receptor, PTH1R. A number of biological activities are ascribed to domains of PTHrP beyond the amino-terminal domain. PTH functions as a circulating hormone, but PTHrP is generated locally in many tissues including bone, where it acts as a paracrine factor on osteoblasts and osteocytes. The present study compares how PTH and PTHrP influence cyclic AMP (cAMP) formation through adenylyl cyclase, the first event in cell activation through PTH1R. Brief exposure to full length PTHrP(1-141) in several osteoblastic cell culture systems was followed by sustained adenylyl cyclase activity for more than an hour after ligand washout. This effect was dose-dependent and was not found with shorter PTHrP or PTH peptides even though they were fully able to activate adenylyl cyclase with acute treatment. The persistent activation response to PTHrP(1-141) was seen also with later events in the cAMP/PKA pathway, including persistent activation of CRE-luciferase and sustained regulation of several CREB-responsive mRNAs, up to 24 h after the initial exposure. Pharmacologic blockade of endocytosis prevented the persistent activation of cAMP and gene responses. We conclude that full length PTHrP, the likely local physiological effector in bone, differs in intracellular action to PTH by undergoing endosomal translocation to induce a prolonged adenylyl cyclase activation in its target cells.
Collapse
Affiliation(s)
- Patricia W M Ho
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Audrey S Chan
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Nathan J Pavlos
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Natalie A Sims
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - T John Martin
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia.
| |
Collapse
|
23
|
Jimenez-Vargas NN, Pattison LA, Zhao P, Lieu T, Latorre R, Jensen DD, Castro J, Aurelio L, Le GT, Flynn B, Herenbrink CK, Yeatman HR, Edgington-Mitchell L, Porter CJH, Halls ML, Canals M, Veldhuis NA, Poole DP, McLean P, Hicks GA, Scheff N, Chen E, Bhattacharya A, Schmidt BL, Brierley SM, Vanner SJ, Bunnett NW. Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. Proc Natl Acad Sci U S A 2018; 115:E7438-E7447. [PMID: 30012612 PMCID: PMC6077730 DOI: 10.1073/pnas.1721891115] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Once activated at the surface of cells, G protein-coupled receptors (GPCRs) redistribute to endosomes, where they can continue to signal. Whether GPCRs in endosomes generate signals that contribute to human disease is unknown. We evaluated endosomal signaling of protease-activated receptor-2 (PAR2), which has been proposed to mediate pain in patients with irritable bowel syndrome (IBS). Trypsin, elastase, and cathepsin S, which are activated in the colonic mucosa of patients with IBS and in experimental animals with colitis, caused persistent PAR2-dependent hyperexcitability of nociceptors, sensitization of colonic afferent neurons to mechanical stimuli, and somatic mechanical allodynia. Inhibitors of clathrin- and dynamin-dependent endocytosis and of mitogen-activated protein kinase kinase-1 prevented trypsin-induced hyperexcitability, sensitization, and allodynia. However, they did not affect elastase- or cathepsin S-induced hyperexcitability, sensitization, or allodynia. Trypsin stimulated endocytosis of PAR2, which signaled from endosomes to activate extracellular signal-regulated kinase. Elastase and cathepsin S did not stimulate endocytosis of PAR2, which signaled from the plasma membrane to activate adenylyl cyclase. Biopsies of colonic mucosa from IBS patients released proteases that induced persistent PAR2-dependent hyperexcitability of nociceptors, and PAR2 association with β-arrestins, which mediate endocytosis. Conjugation to cholestanol promoted delivery and retention of antagonists in endosomes containing PAR2 A cholestanol-conjugated PAR2 antagonist prevented persistent trypsin- and IBS protease-induced hyperexcitability of nociceptors. The results reveal that PAR2 signaling from endosomes underlies the persistent hyperexcitability of nociceptors that mediates chronic pain of IBS. Endosomally targeted PAR2 antagonists are potential therapies for IBS pain. GPCRs in endosomes transmit signals that contribute to human diseases.
Collapse
Affiliation(s)
- Nestor N Jimenez-Vargas
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, ON K7L 2V7, Canada
| | - Luke A Pattison
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Peishen Zhao
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Rocco Latorre
- Department of Surgery, Columbia University College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Dane D Jensen
- Department of Surgery, Columbia University College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Joel Castro
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, SA 5000, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Luigi Aurelio
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Giang T Le
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Bernard Flynn
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Carmen Klein Herenbrink
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Holly R Yeatman
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Laura Edgington-Mitchell
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Christopher J H Porter
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Michelle L Halls
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Meritxell Canals
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Nicholas A Veldhuis
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Daniel P Poole
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter McLean
- Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Gareth A Hicks
- Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Nicole Scheff
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010
| | - Elyssa Chen
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010
| | - Aditi Bhattacharya
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010
| | - Brian L Schmidt
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010
| | - Stuart M Brierley
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, SA 5000, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, ON K7L 2V7, Canada
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia;
- Department of Surgery, Columbia University College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
24
|
Jensen DD, Lieu T, Halls ML, Veldhuis NA, Imlach WL, Mai QN, Poole DP, Quach T, Aurelio L, Conner J, Herenbrink CK, Barlow N, Simpson JS, Scanlon MJ, Graham B, McCluskey A, Robinson PJ, Escriou V, Nassini R, Materazzi S, Geppetti P, Hicks GA, Christie MJ, Porter CJH, Canals M, Bunnett NW. Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief. Sci Transl Med 2018; 9:9/392/eaal3447. [PMID: 28566424 DOI: 10.1126/scitranslmed.aal3447] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/17/2017] [Indexed: 12/25/2022]
Abstract
Typically considered to be cell surface sensors of extracellular signals, heterotrimeric GTP-binding protein (G protein)-coupled receptors (GPCRs) control many pathophysiological processes and are the target of 30% of therapeutic drugs. Activated receptors redistribute to endosomes, but researchers have yet to explore whether endosomal receptors generate signals that control complex processes in vivo and are viable therapeutic targets. We report that the substance P (SP) neurokinin 1 receptor (NK1R) signals from endosomes to induce sustained excitation of spinal neurons and pain transmission and that specific antagonism of the NK1R in endosomes with membrane-anchored drug conjugates provides more effective and sustained pain relief than conventional plasma membrane-targeted antagonists. Pharmacological and genetic disruption of clathrin, dynamin, and β-arrestin blocked SP-induced NK1R endocytosis and prevented SP-stimulated activation of cytosolic protein kinase C and nuclear extracellular signal-regulated kinase, as well as transcription. Endocytosis inhibitors prevented sustained SP-induced excitation of neurons in spinal cord slices in vitro and attenuated nociception in vivo. When conjugated to cholestanol to promote endosomal targeting, NK1R antagonists selectively inhibited endosomal signaling and sustained neuronal excitation. Cholestanol conjugation amplified and prolonged the antinociceptive actions of NK1R antagonists. These results reveal a critical role for endosomal signaling of the NK1R in the complex pathophysiology of pain and demonstrate the use of endosomally targeted GPCR antagonists.
Collapse
Affiliation(s)
- Dane D Jensen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Michelle L Halls
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nicholas A Veldhuis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Wendy L Imlach
- Discipline of Pharmacology, University of Sydney, New South Wales 2006, Australia
| | - Quynh N Mai
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Tim Quach
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Luigi Aurelio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Joshua Conner
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Carmen Klein Herenbrink
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Nicholas Barlow
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jamie S Simpson
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Martin J Scanlon
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bimbil Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Adam McCluskey
- School of Environmental and Life Sciences, University of Newcastle, New South Wales 2308, Australia
| | - Phillip J Robinson
- Children's Medical Research Institute, University of Sydney, New South Wales 2145, Australia
| | - Virginie Escriou
- Unité de Technologies Chimiques et Biologiques pour la Sante, CNRS UMR8258, INSERM U1022, Université Paris Descartes, Chimie ParisTech, 75006 Paris, France
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, 6-50139 Florence, Italy
| | - Serena Materazzi
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, 6-50139 Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, 6-50139 Florence, Italy
| | | | - Macdonald J Christie
- Discipline of Pharmacology, University of Sydney, New South Wales 2006, Australia
| | - Christopher J H Porter
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. .,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Meritxell Canals
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. .,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. .,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.,Departments of Surgery and Pharmacology, Columbia University College of Physicians and Surgeons, Columbia University, 21 Audubon Avenue, Room 209, New York City, NY 10032, USA
| |
Collapse
|
25
|
Ménard L, Floc'h N, Martin MJ, Cross DAE. Reactivation of Mutant-EGFR Degradation through Clathrin Inhibition Overcomes Resistance to EGFR Tyrosine Kinase Inhibitors. Cancer Res 2018; 78:3267-3279. [PMID: 29555874 DOI: 10.1158/0008-5472.can-17-2195] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/16/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022]
Abstract
Tyrosine kinase inhibitors (TKI) targeting mutant EGFR in non-small cell lung cancer (NSCLC) have been successful to control cancer growth, but acquired resistance inevitably occurs, including mutations directly on EGFR, for example, T790M and C797S. Strategies to prevent such acquired mutations by reducing mutant-EGFR expression have met limited success. Here, we propose a new model of mutant-EGFR trafficking and demonstrate that clathrin inhibition induces rapid degradation across a large panel of endogenous mutant-EGFR (Ex19del, L858R, and Ex20Ins). This panel included mutant-EGFR (T790M) resistant to the first- and second-generation EGFR inhibitors and to the third-generation TKI osimertinib and occurs through both mutational (C797S) and nonmutational EGFR mechanisms. Clathrin-mediated endocytosis inhibition of mutant EGFR induced a macropinocytosis-dependent lysosomal pathway associated with a loss of mutant-EGFR-dependent signaling (pAKT, pERK). Moreover, induction of this macropinocytic pathway led to robust apoptosis-dependent death across all mutant-EGFR cell lines tested, including those resistant to TKIs. We, therefore, propose a novel strategy to target mutant-EGFR refractory to approved existing TKI treatments in NSCLC and where new treatment strategies remain a key area of unmet need.Significance: These findings extend our mechanistic understanding of NSCLC mutant EGFR trafficking biology, the role that trafficking may play in resistance of mutant EGFR to tyrosine kinase inhibitors, and provide new therapeutic and biological insights to tackle this fundamental issue and improve benefit to patients. Cancer Res; 78(12); 3267-79. ©2018 AACR.
Collapse
Affiliation(s)
- Ludovic Ménard
- IMED Oncology, AstraZeneca, Cambridge, Cambridgeshire, United Kingdom.
| | - Nicolas Floc'h
- IMED Oncology, AstraZeneca, Cambridge, Cambridgeshire, United Kingdom
| | - Matthew J Martin
- IMED Oncology, AstraZeneca, Cambridge, Cambridgeshire, United Kingdom
| | - Darren A E Cross
- IMED Oncology, AstraZeneca, Cambridge, Cambridgeshire, United Kingdom.
| |
Collapse
|
26
|
Yarwood RE, Imlach WL, Lieu T, Veldhuis NA, Jensen DD, Klein Herenbrink C, Aurelio L, Cai Z, Christie MJ, Poole DP, Porter CJH, McLean P, Hicks GA, Geppetti P, Halls ML, Canals M, Bunnett NW. Endosomal signaling of the receptor for calcitonin gene-related peptide mediates pain transmission. Proc Natl Acad Sci U S A 2017; 114:12309-12314. [PMID: 29087309 PMCID: PMC5699040 DOI: 10.1073/pnas.1706656114] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are considered to function primarily at the plasma membrane, where they interact with extracellular ligands and couple to G proteins that transmit intracellular signals. Consequently, therapeutic drugs are designed to target GPCRs at the plasma membrane. Activated GPCRs undergo clathrin-dependent endocytosis. Whether GPCRs in endosomes control pathophysiological processes in vivo and are therapeutic targets remains uncertain. We investigated the contribution of endosomal signaling of the calcitonin receptor-like receptor (CLR) to pain transmission. Calcitonin gene-related peptide (CGRP) stimulated CLR endocytosis and activated protein kinase C (PKC) in the cytosol and extracellular signal regulated kinase (ERK) in the cytosol and nucleus. Inhibitors of clathrin and dynamin prevented CLR endocytosis and activation of cytosolic PKC and nuclear ERK, which derive from endosomal CLR. A cholestanol-conjugated antagonist, CGRP8-37, accumulated in CLR-containing endosomes and selectively inhibited CLR signaling in endosomes. CGRP caused sustained excitation of neurons in slices of rat spinal cord. Inhibitors of dynamin, ERK, and PKC suppressed persistent neuronal excitation. CGRP8-37-cholestanol, but not unconjugated CGRP8-37, prevented sustained neuronal excitation. When injected intrathecally to mice, CGRP8-37-cholestanol inhibited nociceptive responses to intraplantar injection of capsaicin, formalin, or complete Freund's adjuvant more effectively than unconjugated CGRP8-37 Our results show that CLR signals from endosomes to control pain transmission and identify CLR in endosomes as a therapeutic target for pain. Thus, GPCRs function not only at the plasma membrane but also in endosomes to control complex processes in vivo. Endosomal GPCRs are a drug target that deserve further attention.
Collapse
Affiliation(s)
- Rebecca E Yarwood
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- The Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Wendy L Imlach
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- The Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Nicholas A Veldhuis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- The Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Dane D Jensen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- The Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Carmen Klein Herenbrink
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- The Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Luigi Aurelio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- The Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Zhijian Cai
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
| | | | - Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- The Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Christopher J H Porter
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- The Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Peter McLean
- Takeda Pharmaceuticals Inc., Cambridge, MA 02139
| | | | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, 50139 Florence, Italy
| | - Michelle L Halls
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- The Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Meritxell Canals
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
- The Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
- The Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Surgery, Columbia University, New York, NY 10032
- Department of Pharmacology, Columbia University, New York, NY 10032
| |
Collapse
|
27
|
Novel mechanism of regulation of the 5-lipoxygenase/leukotriene B 4 pathway by high-density lipoprotein in macrophages. Sci Rep 2017; 7:12989. [PMID: 29021582 PMCID: PMC5636875 DOI: 10.1038/s41598-017-13154-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
High-density lipoprotein (HDL) interacts with various cells, particularly macrophages, in functional cell-HDL interactions. Here, we found that HDL protein quality and lipid quality play critical roles in HDL functions. HDL fractions from healthy volunteers (HDLHealthy) and patients with recurrent coronary atherosclerotic disease (HDLCAD) were prepared. To analyse functional HDL-macrophage interactions, macrophages were co-incubated with each HDL, and lipid mediator production was assessed by liquid chromatography/mass spectrometry-based metabololipidomics. HDLHealthy treatment attenuated the pro-inflammatory lipid mediator production, particularly that of leukotriene (LT) B4, and this treatment enhanced lipoxin (LX) B4 and resolvin (Rv) E2 production. HDLHealthy treatment enhanced the proteasome-mediated degradation of the LTB4-producing enzyme 5-lipoxygenase (LO) in activated macrophages; however, HDLCAD did not show these anti-inflammatory effects. HDLHealthy was engulfed by macrophages via clathrin-mediated endocytosis, which was a critical step in 5-LO/LTB4 regulation. We also found that HDLCAD showed higher levels of the LTB4-producing enzymes and thus promoted LTB4 production from HDLCAD. In addition, LTB4 attenuated HDL endocytosis, HDL-mediated 5-LO degradation in macrophages, and HDL-derived augmentation of macrophage phagocytosis. These results indicated that local LTB4 produced de novo from HDLCAD regulates HDL-macrophage functional interactions and plays critical roles in dysfunctional, inflammatory HDL characteristics.
Collapse
|
28
|
Entry Studies of New World Arenaviruses. Methods Mol Biol 2017. [PMID: 28986829 DOI: 10.1007/978-1-4939-6981-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Identification of cell moieties involved in viral binding and internalization is essential since their expression would render a cell susceptible. Further steps that allow the uncoating of the viral particle at the right subcellular localization have been intensively studied. These "entry" steps could determine cell permissiveness and often define tissue and host tropism. Therefore applying the right and, when possible, straightforward experimental approaches would shorten avenues to the complete knowledge of this first and key step of any viral life cycle. Mammarenaviruses are enveloped viruses that enter the host cell via receptor-mediated endocytosis. In this chapter we present a set of customized experimental approaches and tools that were used to describe the entry of Junín virus (JUNV), and other New World mammarenavirus members, into mammalian cells.
Collapse
|
29
|
Aggarwal A, Hitchen TL, Ootes L, McAllery S, Wong A, Nguyen K, McCluskey A, Robinson PJ, Turville SG. HIV infection is influenced by dynamin at 3 independent points in the viral life cycle. Traffic 2017; 18:392-410. [PMID: 28321960 DOI: 10.1111/tra.12481] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/19/2022]
Abstract
CD4 T cells are important cellular targets for HIV-1, yet the primary site of HIV fusion remains unresolved. Candidate fusion sites are either the plasma membrane or from within endosomes. One area of investigation compounding the controversy of this field, is the role of the protein dynamin in the HIV life cycle. To understand the role of dynamin in primary CD4 T cells we combined dynamin inhibition with a series of complementary assays based on single particle tracking, HIV fusion, detection of HIV DNA products and active viral transcription. We identify 3 levels of dynamin influence on the HIV life cycle. Firstly, dynamin influences productive infection by preventing cell cycle progression. Secondly, dynamin influences endocytosis rates and increases the probability of endosomal fusion. Finally, we provide evidence in resting CD4 T cells that dynamin directly regulates the HIV fusion reaction at the plasma membrane. We confirm this latter observation using 2 divergent dynamin modulating compounds, one that enhances dynamin conformations associated with dynamin ring formation (ryngo-1-23) and the other that preferentially targets dynamin conformations that appear in helices (dyngo-4a). This in-depth understanding of dynamin's roles in HIV infection clarifies recent controversies and furthermore provides evidence for dynamin regulation specifically in the HIV fusion reaction.
Collapse
Affiliation(s)
- Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Tina L Hitchen
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Lars Ootes
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Samantha McAllery
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Andrew Wong
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Khanh Nguyen
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Adam McCluskey
- Centre for Chemical Biology, Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia
| | - Phillip J Robinson
- Children's Medical Research Institute, The University of Sydney, New South Wales, Australia
| | - Stuart G Turville
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| |
Collapse
|
30
|
Robertson MJ, Horatscheck A, Sauer S, von Kleist L, Baker JR, Stahlschmidt W, Nazaré M, Whiting A, Chau N, Robinson PJ, Haucke V, McCluskey A. 5-Aryl-2-(naphtha-1-yl)sulfonamido-thiazol-4(5H)-ones as clathrin inhibitors. Org Biomol Chem 2016; 14:11266-11278. [PMID: 27853797 DOI: 10.1039/c6ob02308h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of a (Z)-5-((6,8-dichloro-4-oxo-4H-chromen-3-yl)methylene)-2-thioxothiazolidin-4-one (2), rhodanine-based lead that led to the Pitstop® 2 family of clathrin inhibitors is described herein. Head group substitution and bioisosteric replacement of the rhodanine core with a 2-aminothiazol-4(5H)-one scaffold eliminated off target dynamin activity. A series of N-substituents gave first phenylglycine (20, IC50 ∼ 20 μM) then phenyl (25, IC50 ∼ 7.1 μM) and 1-napthyl sulfonamide (26, Pitstop® 2 compound, IC50 ∼ 1.9 μM) analogues with good activity, validating this approach. A final library exploring the head group resulted in three analogues displaying either slight improvements or comparable activity (33, 38, and 29 with IC50 ∼ 1.4, 1.6 and 1.8 μM respectively) and nine others with IC50 < 10 μM. These results were rationalized using in silico docking studies. Docking studies predicted enhanced Pitstop® 2 family binding, not a loss of binding, within the Pistop® groove of the reported clathrin mutant invalidating recent assumptions of poor selectivity for this family of clathrin inhibitors.
Collapse
Affiliation(s)
- Mark J Robertson
- Chemistry, Priority Research Centre for Chemical Biology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| | - André Horatscheck
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Samantha Sauer
- Chemistry, Priority Research Centre for Chemical Biology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| | - Lisa von Kleist
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jennifer R Baker
- Chemistry, Priority Research Centre for Chemical Biology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| | - Wiebke Stahlschmidt
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Marc Nazaré
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Ainslie Whiting
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW 2145, Australia
| | - Ngoc Chau
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW 2145, Australia
| | - Phillip J Robinson
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW 2145, Australia
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Adam McCluskey
- Chemistry, Priority Research Centre for Chemical Biology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
31
|
Poole DP, Lieu T, Pelayo JC, Eriksson EM, Veldhuis NA, Bunnett NW. Inflammation-induced abnormalities in the subcellular localization and trafficking of the neurokinin 1 receptor in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2015; 309:G248-59. [PMID: 26138465 PMCID: PMC4537929 DOI: 10.1152/ajpgi.00118.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/24/2015] [Indexed: 01/31/2023]
Abstract
Activated G protein-coupled receptors traffic to endosomes and are sorted to recycling or degradative pathways. Endosomes are also a site of receptor signaling of sustained and pathophysiologically important processes, including inflammation. However, the mechanisms of endosomal sorting of receptors and the impact of disease on trafficking have not been fully defined. We examined the effects of inflammation on the subcellular distribution and trafficking of the substance P (SP) neurokinin 1 receptor (NK1R) in enteric neurons. We studied NK1R trafficking in enteric neurons of the mouse colon using immunofluorescence and confocal microscopy. The impact of inflammation was studied in IL10(-/-)-piroxicam and trinitrobenzenesulfonic acid colitis models. NK1R was localized to the plasma membrane of myenteric and submucosal neurons of the uninflamed colon. SP evoked NK1R endocytosis and recycling. Deletion of β-arrestin2, which associates with the activated NK1R, accelerated recycling. Inhibition of endothelin-converting enzyme-1 (ECE-1), which degrades endosomal SP, prevented recycling. Inflammation was associated with NK1R endocytosis in myenteric but not submucosal neurons. Whereas the NK1R in uninflamed neurons recycled within 60 min, NK1R recycling in inflamed neurons was delayed for >120 min, suggesting defective recycling machinery. Inflammation was associated with β-arrestin2 upregulation and ECE-1 downregulation, which may contribute to the defective NK1R recycling. We conclude that inflammation evokes redistribution of NK1R from the plasma membrane to endosomes of myenteric neurons through enhanced SP release and defective NK1R recycling. Defective recycling may be secondary to upregulation of β-arrestin2 and downregulation of ECE-1. Internalized NK1R may generate sustained proinflammatory signals that disrupt normal neuronal functions.
Collapse
Affiliation(s)
- Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Victoria, Australia;
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Juan Carlos Pelayo
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Emily M Eriksson
- Population Health & Immunity, Walter and Eliza Hall Institute, Parkville, Victoria, Australia; and Department of Laboratory Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A Veldhuis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Victoria, Australia; Department of Genetics, The University of Melbourne, Parkville, Victoria, Australia
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia; Department of Anaesthesia and Peri-operative Medicine, Monash University, Victoria, Australia
| |
Collapse
|