1
|
Javaid T, Bhattarai M, Venkataraghavan A, Held M, Faik A. Specific protein interactions between rice members of the GT43 and GT47 families form various central cores of putative xylan synthase complexes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:856-878. [PMID: 38261531 DOI: 10.1111/tpj.16640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Members of the glycosyltransferase (GT)43 and GT47 families have been associated with heteroxylan synthesis in both dicots and monocots and are thought to assemble into central cores of putative xylan synthase complexes (XSCs). Currently, it is unknown whether protein-protein interactions within these central cores are specific, how many such complexes exist, and whether these complexes are functionally redundant. Here, we used gene association network and co-expression approaches in rice to identify four OsGT43s and four OsGT47s that assemble into different GT43/GT47 complexes. Using two independent methods, we showed that (i) these GTs assemble into at least six unique complexes through specific protein-protein interactions and (ii) the proteins interact directly in vitro. Confocal microscopy showed that, when alone, all OsGT43s were retained in the endoplasmic reticulum (ER), while all OsGT47s were localized in the Golgi. co-expression of OsGT43s and OsGT47s displayed complexes that form in the ER but accumulate in Golgi. ER-to-Golgi trafficking appears to require interactions between OsGT43s and OsGT47s. Comparison of the central cores of the three putative rice OsXSCs to wheat, asparagus, and Arabidopsis XSCs, showed great variation in GT43/GT47 combinations, which makes the identification of orthologous central cores between grasses and dicots challenging. However, the emerging picture is that all central cores from these species seem to have at least one member of the IRX10/IRX10-L clade in the GT47 family in common, suggesting greater functional importance for this family in xylan synthesis. Our findings provide a new framework for future investigation of heteroxylan biosynthesis and function in monocots.
Collapse
Affiliation(s)
- Tasleem Javaid
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| | - Matrika Bhattarai
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| | | | - Michael Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, 45701, USA
| | - Ahmed Faik
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| |
Collapse
|
2
|
Weigert Muñoz A, Zhao W, Sieber SA. Monitoring host-pathogen interactions using chemical proteomics. RSC Chem Biol 2024; 5:73-89. [PMID: 38333198 PMCID: PMC10849124 DOI: 10.1039/d3cb00135k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 02/10/2024] Open
Abstract
With the rapid emergence and the dissemination of microbial resistance to conventional chemotherapy, the shortage of novel antimicrobial drugs has raised a global health threat. As molecular interactions between microbial pathogens and their mammalian hosts are crucial to establish virulence, pathogenicity, and infectivity, a detailed understanding of these interactions has the potential to reveal novel therapeutic targets and treatment strategies. Bidirectional molecular communication between microbes and eukaryotes is essential for both pathogenic and commensal organisms to colonise their host. In particular, several devastating pathogens exploit host signalling to adjust the expression of energetically costly virulent behaviours. Chemical proteomics has emerged as a powerful tool to interrogate the protein interaction partners of small molecules and has been successfully applied to advance host-pathogen communication studies. Here, we present recent significant progress made by this approach and provide a perspective for future studies.
Collapse
Affiliation(s)
- Angela Weigert Muñoz
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 D-85748 Garching Germany
| | - Weining Zhao
- College of Pharmacy, Shenzhen Technology University Shenzhen 518118 China
| | - Stephan A Sieber
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 D-85748 Garching Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Germany
| |
Collapse
|
3
|
Zhang Z, Luo W, Chen G, Chen J, Lin S, Ren T, Lin Z, Zhao C, Wen H, Nie Q, Meng X, Zhang X. Chicken muscle antibody array reveals the regulations of LDHA on myoblast differentiation through energy metabolism. Int J Biol Macromol 2024; 254:127629. [PMID: 37890747 DOI: 10.1016/j.ijbiomac.2023.127629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Myoblast proliferation and differentiation are highly dynamic and regulated processes in skeletal muscle development. Given that proteins serve as the executors for the majority of biological processes, exploring key regulatory factors and mechanisms at the protein level offers substantial opportunities for understanding the skeletal muscle development. In this study, a total of 607 differentially expressed proteins between proliferation and differentiation in myoblasts were screened out using our chicken muscle antibody array. Biological function analysis revealed the importance of energy production processes and compound metabolic processes in myogenesis. Our antibody array specifically identified an upregulation of LDHA during differentiation, which was associated with the energy metabolism. Subsequent investigation demonstrated that LDHA promoted the glycolysis and TCA cycle, thereby enhancing myoblasts differentiation. Mechanistically, LDHA promotes the glycolysis and TCA cycle but inhibits the ETC oxidative phosphorylation through enhancing the NADH cycle, providing the intermediate metabolites that improve the myoblasts differentiation. Additionally, increased glycolytic ATP by LDHA induces Akt phosphorylation and activate the PI3K-Akt pathway, which might also contribute to the promotion of myoblasts differentiation. Our studies not only present a powerful tool for exploring myogenic regulatory factors in chicken muscle, but also identify a novel role for LDHA in modulating myoblast differentiation through its regulation of cellular NAD+ levels and subsequent downstream effects on mitochondrial function.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Orthaepedics and Traumatology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Genghua Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Jiahui Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Shudai Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Tuanhui Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zetong Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Changbin Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Huaqiang Wen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xun Meng
- School of Life Sciences, Northwest University, Xi'an 710069, China; Abmart, 333 Guiping Road, Shanghai 200033, China.
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Ren J, Wang H, Wei C, Yang X, Yu X. Development of a protein microarray for profiling circulating autoantibodies in human diseases. Proteomics Clin Appl 2022; 16:e2100132. [PMID: 36006834 DOI: 10.1002/prca.202100132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To develop a robust microarray platform to detect thousands of serological autoantibodies (AAbs) simultaneously in different diseases. EXPERIMENTAL DESIGN An AAbMap microarray was prepared by printing a total of 4032 purified His-tagged human proteins and peptide probes on a chemically-modified slide. The sensitivity, dynamic range, and the inter- and intra-array reproducibility of the AAb microarray were then systematically tested and optimized. Finally, the large-scale profiling of AAbs in the serum of patients with different human diseases using the AAbMap microarray was demonstrated. RESULTS The dynamic range of antibody (Ab) detection was 2 to 3 orders of magnitude with the lowest limit of detection (LOD) of 68 pg/mL. The intra-array (r) correlation of duplicate spots was 1.00, whereas the inter-array correlations between different arrays and batches were 0.99 and 0.97 to 0.98, respectively. Notably, 132, 266, 171, and 84 AAbs were detected in pooled serum from healthy controls (HCs) or patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), or lung cancer (LC), respectively. These AAbs included antibodies that target well-known disease biomarkers, such as anti-cyclic citrullinated peptide, anti-ribonucleoprotein, and anti-nucleosome. CONCLUSIONS AND CLINICAL RELEVANCE We developed a microarray platform to measure thousands of serological AAbs simultaneously with high sensitivity and reproducibility. The array can help study autoimmunity and complement genomics, proteomics, and metabolomics data for systematic investigations of human diseases.
Collapse
Affiliation(s)
- Jing Ren
- School of Basic Medicine Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Hongye Wang
- National Center for Protein Sciences Beijing (PHOENIX Center), State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, PR China
| | - Chundi Wei
- National Center for Protein Sciences Beijing (PHOENIX Center), State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, PR China
| | - Xiaoming Yang
- School of Basic Medicine Sciences, Anhui Medical University, Hefei, Anhui, PR China.,National Center for Protein Sciences Beijing (PHOENIX Center), State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, PR China
| | - Xiaobo Yu
- National Center for Protein Sciences Beijing (PHOENIX Center), State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, PR China
| |
Collapse
|
5
|
Becker T, Cappel C, Di Matteo F, Sonsalla G, Kaminska E, Spada F, Cappello S, Damme M, Kielkowski P. AMPylation profiling during neuronal differentiation reveals extensive variation on lysosomal proteins. iScience 2021; 24:103521. [PMID: 34917898 PMCID: PMC8668991 DOI: 10.1016/j.isci.2021.103521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/20/2021] [Accepted: 11/23/2021] [Indexed: 12/02/2022] Open
Abstract
Protein AMPylation is a posttranslational modification with an emerging role in neurodevelopment. In metazoans two highly conserved protein AMP-transferases together with a diverse group of AMPylated proteins have been identified using chemical proteomics and biochemical techniques. However, the function of AMPylation remains largely unknown. Particularly problematic is the localization of thus far identified AMPylated proteins and putative AMP-transferases. We show that protein AMPylation is likely a posttranslational modification of luminal lysosomal proteins characteristic in differentiating neurons. Through a combination of chemical proteomics, gel-based separation of modified and unmodified proteins, and an activity assay, we determine that the modified, lysosomal soluble form of exonuclease PLD3 increases dramatically during neuronal maturation and that AMPylation correlates with its catalytic activity. Together, our findings indicate that AMPylation is a so far unknown lysosomal posttranslational modification connected to neuronal differentiation and it may provide a molecular rationale behind lysosomal storage diseases and neurodegeneration. Profiling of AMPylation during neuronal differentiation AMPylation is a potential PTM of luminal lysosomal proteins Phos-tag gel enables the separation of non-AMPylated and AMPylated proteins The modified lysosomal soluble form of PLD3 increases during neuronal maturation
Collapse
Affiliation(s)
- Tobias Becker
- LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Cedric Cappel
- University of Kiel, Institute of Biochemistry, Olshausenstr. 40, 24098 Kiel, Germany
| | - Francesco Di Matteo
- Max Planck Institute of Psychiatry, Kraepelinstraße 2, 80804 Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Kraepelinstraße 2-10, 80804 Munich, Germany
| | - Giovanna Sonsalla
- LMU Munich, Department of Physiological Genomics, Biomedical Center (BMC), Großhadernerstr. 9, 82152 Planegg, Germany.,Helmholtz Zentrum München, Institute for Stem Cell Research, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.,Graduate School of Systemic Neurosciences (GSN), Großhadernerstr. 2, 82152 Planegg, Germany
| | - Ewelina Kaminska
- LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Fabio Spada
- LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Silvia Cappello
- Max Planck Institute of Psychiatry, Kraepelinstraße 2, 80804 Munich, Germany
| | - Markus Damme
- University of Kiel, Institute of Biochemistry, Olshausenstr. 40, 24098 Kiel, Germany
| | - Pavel Kielkowski
- LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
6
|
Rauh T, Brameyer S, Kielkowski P, Jung K, Sieber SA. MS-Based in Situ Proteomics Reveals AMPylation of Host Proteins during Bacterial Infection. ACS Infect Dis 2020; 6:3277-3289. [PMID: 33259205 PMCID: PMC9558369 DOI: 10.1021/acsinfecdis.0c00740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
Bacteria utilize versatile strategies
to propagate infections within
human cells, e.g., by the injection of effector proteins,
which alter crucial signaling pathways. One class of such virulence-associated
proteins is involved in the AMPylation of eukaryotic Rho GTPases with
devastating effects on viability. In order to get an inventory of
AMPylated proteins, several technologies have been developed. However,
as they were designed for the analysis of cell lysates, knowledge
about AMPylation targets in living cells is largely lacking. Here,
we implement a chemical-proteomic method for deciphering AMPylated
host proteins in situ during bacterial infection.
HeLa cells treated with a previously established cell permeable pronucleotide
probe (pro-N6pA) were infected with Vibrio parahaemolyticus, and modified host proteins were identified upon probe enrichment
and LC-MS/MS analysis. Three already known targets of the AMPylator
VopS—Rac1, RhoA, and Cdc42—could be confirmed, and several
other Rho GTPases were additionally identified. These hits were validated
in comparative studies with V. parahaemolyticus wild type and a mutant producing an inactive VopS (H348A). The method
further allowed to decipher the sites of modification and facilitated
a time-dependent analysis of AMPylation during infection. Overall,
the methodology provides a reliable detection of host AMPylation in situ and thus a versatile tool in monitoring infection
processes.
Collapse
Affiliation(s)
- Theresa Rauh
- Department of Chemistry, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Sophie Brameyer
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Pavel Kielkowski
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Kirsten Jung
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Stephan A. Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
7
|
Xu M, Wang D, Wang H, Zhang X, Liang T, Dai J, Li M, Zhang J, Zhang K, Xu D, Yu X. COVID-19 diagnostic testing: Technology perspective. Clin Transl Med 2020; 10:e158. [PMID: 32898340 PMCID: PMC7443140 DOI: 10.1002/ctm2.158] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
The corona virus disease 2019 (COVID-19) is a highly contagious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More than 18 million people were infected with a total of 0.7 million deaths in ∼188 countries. Controlling the spread of SARS-CoV-2 is therefore inherently dependent on identifying and isolating infected individuals, especially since COVID-19 can result in little to no symptoms. Here, we provide a comprehensive review of the different primary technologies used to test for COVID-19 infection, discuss the advantages and disadvantages of each technology, and highlight the studies that have employed them. We also describe technologies that have the potential to accelerate SARS-CoV-2 detection in the future, including digital PCR, CRISPR, and microarray. Finally, remaining challenges in COVID-19 diagnostic testing are discussed, including (a) the lack of universal standards for diagnostic testing; (b) the identification of appropriate sample collection site(s); (c) the difficulty in performing large population screening; and (d) the limited understanding of SARS-COV-2 viral invasion, replication, and transmission.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina
| | - Dan Wang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Hongye Wang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Xiaomei Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Te Liang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Jiayu Dai
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Meng Li
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Jiahui Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Kai Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina
| | - Xiaobo Yu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| |
Collapse
|
8
|
Sieber SA, Cappello S, Kielkowski P. From Young to Old: AMPylation Hits the Brain. Cell Chem Biol 2020; 27:773-779. [PMID: 32521229 DOI: 10.1016/j.chembiol.2020.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/19/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023]
Abstract
Protein post-translational modifications (PTMs) are implicated in numerous physiological processes and significantly contribute to complex regulatory networks of protein functions. Recently, a protein PTM called AMPylation was found to play a role in modulation of neurodevelopment and neurodegeneration. Combination of biochemical and chemical proteomic studies has uncovered the prevalence of this PTM in regulation of diverse metabolic pathways. In metazoans, thus far two protein AMP transferases have been identified to introduce AMPylation: FICD and SELO. These two proteins were found to be involved in unfolded protein response and redox homeostasis on the cellular level and in the case of FICD to adjust the development of glial cells and neurons in Drosophila and cerebral organoids, respectively. Together with findings on AMPylation and its association with toxic protein aggregation, we summarize in this Perspective the knowledge and putative future directions of protein AMPylation research.
Collapse
Affiliation(s)
- Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Silvia Cappello
- Max Planck Institute of Psychiatry, Kraepelinstraße 2, 80804 München, Germany
| | - Pavel Kielkowski
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany.
| |
Collapse
|
9
|
Qi H, Wang F, Tao SC. Proteome microarray technology and application: higher, wider, and deeper. Expert Rev Proteomics 2019; 16:815-827. [PMID: 31469014 DOI: 10.1080/14789450.2019.1662303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Introduction: Protein microarray is a powerful tool for both biological study and clinical research. The most useful features of protein microarrays are their miniaturized size (low reagent and sample consumption), high sensitivity and their capability for parallel/high-throughput analysis. The major focus of this review is functional proteome microarray. Areas covered: For proteome microarray, this review will discuss some recently constructed proteome microarrays and new concepts that have been used for constructing proteome microarrays and data interpretation in past few years, such as PAGES, M-NAPPA strategy, VirD technology, and the first protein microarray database. this review will summarize recent proteomic scale applications and address the limitations and future directions of proteome microarray technology. Expert opinion: Proteome microarray is a powerful tool for basic biological and clinical research. It is expected to see improvements in the currently used proteome microarrays and the construction of more proteome microarrays for other species by using traditional strategies or novel concepts. It is anticipated that the maximum number of features on a single microarray and the number of possible applications will be increased, and the information that can be obtained from proteome microarray experiments will more in-depth in the future.
Collapse
Affiliation(s)
- Huan Qi
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University , Shanghai , China
| | - Fei Wang
- School of Pharmacy, Shanghai Jiao Tong University , Shanghai , China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
10
|
Xu M, Deng J, Xu K, Zhu T, Han L, Yan Y, Yao D, Deng H, Wang D, Sun Y, Chang C, Zhang X, Dai J, Yue L, Zhang Q, Cai X, Zhu Y, Duan H, Liu Y, Li D, Zhu Y, Radstake TRDJ, Balak DM, Xu D, Guo T, Lu C, Yu X. In-depth serum proteomics reveals biomarkers of psoriasis severity and response to traditional Chinese medicine. Theranostics 2019; 9:2475-2488. [PMID: 31131048 PMCID: PMC6526001 DOI: 10.7150/thno.31144] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/22/2019] [Indexed: 12/23/2022] Open
Abstract
Serum and plasma contain abundant biological information that reflect the body's physiological and pathological conditions and are therefore a valuable sample type for disease biomarkers. However, comprehensive profiling of the serological proteome is challenging due to the wide range of protein concentrations in serum. Methods: To address this challenge, we developed a novel in-depth serum proteomics platform capable of analyzing the serum proteome across ~10 orders or magnitude by combining data obtained from Data Independent Acquisition Mass Spectrometry (DIA-MS) and customizable antibody microarrays. Results: Using psoriasis as a proof-of-concept disease model, we screened 50 serum proteomes from healthy controls and psoriasis patients before and after treatment with traditional Chinese medicine (YinXieLing) on our in-depth serum proteomics platform. We identified 106 differentially-expressed proteins in psoriasis patients involved in psoriasis-relevant biological processes, such as blood coagulation, inflammation, apoptosis and angiogenesis signaling pathways. In addition, unbiased clustering and principle component analysis revealed 58 proteins discriminating healthy volunteers from psoriasis patients and 12 proteins distinguishing responders from non-responders to YinXieLing. To further demonstrate the clinical utility of our platform, we performed correlation analyses between serum proteomes and psoriasis activity and found a positive association between the psoriasis area and severity index (PASI) score with three serum proteins (PI3, CCL22, IL-12B). Conclusion: Taken together, these results demonstrate the clinical utility of our in-depth serum proteomics platform to identify specific diagnostic and predictive biomarkers of psoriasis and other immune-mediated diseases.
Collapse
|
11
|
Yang L, Yu Y, Ma C, Wang H, Dai J, Duan H, Fu Z, Wu P, Wang D, Yu X. Development of RBC Membrane Antigen Arrays for Validating Blood Grouping Reagents. J Proteome Res 2018; 17:3237-3245. [PMID: 30114910 DOI: 10.1021/acs.jproteome.8b00370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibody reagents have been remained as a standard approach to characterize blood group (BG) antigens in clinic. The specificity and cross-reactivity of these BG antibodies are routine detected using the gel microcolumn assay (GMA). However, the GMA is neither specific nor sensitive, thus increasing the risk of improperly matched RBC transfusions. In this work, we describe a bead-based RBC membrane antigen array to detect BG antibody-antigen binding with ∼700-fold higher sensitivity and dynamic range than the GMA. RBC membrane antigen arrays were fabricated using fragmented RBC membranes highly enriched in BG panel antigens. The arrays were then used to screen the interactions of 15 BG reagents to three antigen panels. The majority of the antibody reactions (i.e., 86.7%; 39/45) aligned with those obtained with the GMA. The six cross-reactive, nonspecific antibody reactions identified only by our arrays (i.e., 13.3%; 6/45) were confirmed by agglutination inhibition and genotyping assays. These results demonstrate that our RBC membrane antigen array has great potential in screening BG antibodies and improving the safety of RBC transfusions.
Collapse
Affiliation(s)
- Lu Yang
- Department of Blood Transfusion , Chinese PLA General Hospital , Beijing , 100853 , China
| | - Yang Yu
- Department of Blood Transfusion , Chinese PLA General Hospital , Beijing , 100853 , China
| | - Chunya Ma
- Department of Blood Transfusion , Chinese PLA General Hospital , Beijing , 100853 , China
| | - Hongye Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (PHOENIX Center, Beijing) , Beijing Institute of Lifeomics , Beijing , 102206 , China
| | - Jiayu Dai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (PHOENIX Center, Beijing) , Beijing Institute of Lifeomics , Beijing , 102206 , China
| | - Hu Duan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (PHOENIX Center, Beijing) , Beijing Institute of Lifeomics , Beijing , 102206 , China
| | - Zhonglin Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (PHOENIX Center, Beijing) , Beijing Institute of Lifeomics , Beijing , 102206 , China
| | - Ping Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (PHOENIX Center, Beijing) , Beijing Institute of Lifeomics , Beijing , 102206 , China
| | - Deqing Wang
- Department of Blood Transfusion , Chinese PLA General Hospital , Beijing , 100853 , China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (PHOENIX Center, Beijing) , Beijing Institute of Lifeomics , Beijing , 102206 , China
| |
Collapse
|
12
|
Arévalo-Pinzón G, González-González M, Suárez CF, Curtidor H, Carabias-Sánchez J, Muro A, LaBaer J, Patarroyo MA, Fuentes M. Self-assembling functional programmable protein array for studying protein-protein interactions in malaria parasites. Malar J 2018; 17:270. [PMID: 30016987 PMCID: PMC6050706 DOI: 10.1186/s12936-018-2414-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Background Plasmodium vivax is the most widespread malarial species, causing significant morbidity worldwide. Knowledge is limited regarding the molecular mechanism of invasion due to the lack of a continuous in vitro culture system for these species. Since protein–protein and host–cell interactions play an essential role in the microorganism’s invasion and replication, elucidating protein function during invasion is critical when developing more effective control methods. Nucleic acid programmable protein array (NAPPA) has thus become a suitable technology for studying protein–protein and host–protein interactions since producing proteins through the in vitro transcription/translation (IVTT) method overcomes most of the drawbacks encountered to date, such as heterologous protein production, stability and purification. Results Twenty P. vivax proteins on merozoite surface or in secretory organelles were selected and successfully cloned using gateway technology. Most constructs were displayed in the array expressed in situ, using the IVTT method. The Pv12 protein was used as bait for evaluating array functionality and co-expressed with P. vivax cDNA display in the array. It was found that Pv12 interacted with Pv41 (as previously described), as well as PvMSP142kDa, PvRBP1a, PvMSP8 and PvRAP1. Conclusions NAPPA is a high-performance technique enabling co-expression of bait and query in situ, thereby enabling interactions to be analysed rapidly and reproducibly. It offers a fresh alternative for studying protein–protein and ligand–receptor interactions regarding a parasite which is difficult to cultivate (i.e. P. vivax). Electronic supplementary material The online version of this article (10.1186/s12936-018-2414-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriela Arévalo-Pinzón
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - María González-González
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.,Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| | - Carlos Fernando Suárez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Calle 222 # 55-37, Bogotá, Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | | | - Antonio Muro
- Unidad de Investigación Enfermedades Infecciosas y Tropicales (e-INTRO), Instituto de Investigación Biomédica de Salamanca-Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (IBSAL-CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Universitario Miguel de Unamuno s/n, 37007, Salamanca, Spain
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - Manuel Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain. .,Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
13
|
Abstract
Click chemistry has emerged as a powerful tool in our arsenal for unlocking new biology. This includes its utility in both chemical biology and drug discovery. An emerging application of click chemistry is in the development of biochemical assays for high-throughput screening to identify new chemical probes and drug leads. This Feature Article will discuss the advancements in click chemistry that were necessary for the development of a new class of biochemical assay, catalytic enzyme-linked click chemistry assay or cat-ELCCA. Inspired by enzyme immunoassays, cat-ELCCA was designed as a click chemistry-based amplification assay where bioorthogonally-tagged analytes and enzymes are used in place of the enzyme-linked secondary antibodies used in immunoassays. The result is a robust assay format with demonstrated applicability in several important areas of biology and drug discovery, including post-translational modifications, pre-microRNA maturation, and protein-protein and RNA-protein interactions. Through the use of cat-ELCCA and other related click chemistry-based assays, new chemical probes for interrogating promising drug targets have been discovered. These examples will be discussed, in addition to a future outlook on the impact of this approach in probe and drug discovery.
Collapse
Affiliation(s)
- Amanda L Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
14
|
Abstract
INTRODUCTION High-content protein microarrays in principle enable the functional interrogation of the human proteome in a broad range of applications, including biomarker discovery, profiling of immune responses, identification of enzyme substrates, and quantifying protein-small molecule, protein-protein and protein-DNA/RNA interactions. As with other microarrays, the underlying proteomic platforms are under active technological development and a range of different protein microarrays are now commercially available. However, deciphering the differences between these platforms to identify the most suitable protein microarray for the specific research question is not always straightforward. Areas covered: This review provides an overview of the technological basis, applications and limitations of some of the most commonly used full-length, recombinant protein and protein fragment microarray platforms, including ProtoArray Human Protein Microarrays, HuProt Human Proteome Microarrays, Human Protein Atlas Protein Fragment Arrays, Nucleic Acid Programmable Arrays and Immunome Protein Arrays. Expert commentary: The choice of appropriate protein microarray platform depends on the specific biological application in hand, with both more focused, lower density and higher density arrays having distinct advantages. Full-length protein arrays offer advantages in biomarker discovery profiling applications, although care is required in ensuring that the protein production and array fabrication methodology is compatible with the required downstream functionality.
Collapse
Affiliation(s)
- Jessica G Duarte
- a Cancer Immunobiology Laboratory, Olivia Newton-John Cancer Research Institute/School of Cancer Medicine , La Trobe University , Heidelberg , Australia
| | - Jonathan M Blackburn
- b Institute of Infectious Disease and Molecular Medicine & Department of Integrative Biomedical Sciences, Faculty of Health Sciences , University of Cape Town , Observatory, South Africa
| |
Collapse
|
15
|
Yu X, Noll RR, Romero Dueñas BP, Allgood SC, Barker K, Caplan JL, Machner MP, LaBaer J, Qiu J, Neunuebel MR. Legionella effector AnkX interacts with host nuclear protein PLEKHN1. BMC Microbiol 2018; 18:5. [PMID: 29433439 PMCID: PMC5809941 DOI: 10.1186/s12866-017-1147-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 12/21/2017] [Indexed: 11/13/2022] Open
Abstract
Background The intracellular bacterial pathogen Legionella pneumophila proliferates in human alveolar macrophages, resulting in a severe pneumonia termed Legionnaires’ disease. Throughout the course of infection, L. pneumophila remains enclosed in a specialized membrane compartment that evades fusion with lysosomes. The pathogen delivers over 300 effector proteins into the host cell, altering host pathways in a manner that sets the stage for efficient pathogen replication. The L. pneumophila effector protein AnkX targets host Rab GTPases and functions in preventing fusion of the Legionella-containing vacuole with lysosomes. However, the current understanding of AnkX’s interaction with host proteins and the means through which it exerts its cellular function is limited. Results Here, we investigated the protein interaction network of AnkX by using the nucleic acid programmable protein array (NAPPA), a high-density platform comprising 10,000 unique human ORFs. This approach facilitated the discovery of PLEKHN1 as a novel interaction partner of AnkX. We confirmed this interaction through multiple independent in vitro pull-down, co-immunoprecipitation, and cell-based assays. Structured illumination microscopy revealed that endogenous PLEKHN1 is found in the nucleus and on vesicular compartments, whereas ectopically produced AnkX co-localized with lipid rafts at the plasma membrane. In mammalian cells, HaloTag-AnkX co-localized with endogenous PLEKHN1 on vesicular compartments. A central fragment of AnkX (amino acids 491–809), containing eight ankyrin repeats, extensively co-localized with endogenous PLEKHN1, indicating that this region may harbor a new function. Further, we found that PLEKHN1 associated with multiple proteins involved in the inflammatory response. Conclusions Altogether, our study provides evidence that in addition to Rab GTPases, the L. pneumophila effector AnkX targets nuclear host proteins and suggests that AnkX may have novel functions related to manipulating the inflammatory response. Electronic supplementary material The online version of this article (10.1186/s12866-017-1147-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Rebecca R Noll
- Department of Biological Sciences, University of Delaware, 105 The Green, Newark, DE, 19716, USA
| | - Barbara P Romero Dueñas
- Department of Biological Sciences, University of Delaware, 105 The Green, Newark, DE, 19716, USA
| | - Samual C Allgood
- Department of Biological Sciences, University of Delaware, 105 The Green, Newark, DE, 19716, USA
| | - Kristi Barker
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Jeffrey L Caplan
- Department of Biological Sciences, University of Delaware, 105 The Green, Newark, DE, 19716, USA.,Delaware Biotechnology Institute, University of Delaware, Newark, 19716, DE, USA
| | - Matthias P Machner
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Ji Qiu
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| | - M Ramona Neunuebel
- Department of Biological Sciences, University of Delaware, 105 The Green, Newark, DE, 19716, USA.
| |
Collapse
|
16
|
Abstract
In spite of its greatly scientific and technological importance, developing rapid, low cost and sensitive microarray sensors for onsite monitoring heavy metal contamination remains challenging. Here we develop a DNA nanostructured microarray (DNM) with a tubular three-dimensional sensing surface and an ordered nanotopography for rapid and sensitive multiplex detection of heavy metal ions. In our design, DNA tetrahedral-structured probes (TSPs) are used to engineer the sensing interface with spatially resolved and density-tunable sensing spots, improving the micro-confined molecular recognition. Meanwhile, a bubble-mediated shuttle reaction inside the DNM-functionalized microchannel improves the target-capturing efficiency. Thus, the sensitive and selective detection of multiple heavy metal ions (i.e., Hg2+, Ag+, and Pb2+) with this novel DNM biosensor can be achieved within 5 min. Moreover, the detection limit is down to 10, 10, and 20 nM for Hg2+, Ag+, and Pb2+, respectively. Therefore, the DNM biosensor capable of simultaneously detecting multiple heavy metal ions with sensitivity and selectivity shows great potential to be point-of-test devices.
Collapse
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Xiangmeng Qu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China.
| |
Collapse
|
17
|
Abstract
INTRODUCTION Cell-free protein microarrays represent a special form of protein microarray which display proteins made fresh at the time of the experiment, avoiding storage and denaturation. They have been used increasingly in basic and translational research over the past decade to study protein-protein interactions, the pathogen-host relationship, post-translational modifications, and antibody biomarkers of different human diseases. Their role in the first blood-based diagnostic test for early stage breast cancer highlights their value in managing human health. Cell-free protein microarrays will continue to evolve to become widespread tools for research and clinical management. Areas covered: We review the advantages and disadvantages of different cell-free protein arrays, with an emphasis on the methods that have been studied in the last five years. We also discuss the applications of each microarray method. Expert commentary: Given the growing roles and impact of cell-free protein microarrays in research and medicine, we discuss: 1) the current technical and practical limitations of cell-free protein microarrays; 2) the biomarker discovery and verification pipeline using protein microarrays; and 3) how cell-free protein microarrays will advance over the next five years, both in their technology and applications.
Collapse
Affiliation(s)
- Xiaobo Yu
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences , Beijing Institute of Lifeomics , Beijing , China
| | - Brianne Petritis
- b The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute , Arizona State University , Tempe , AZ , USA
| | - Hu Duan
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences , Beijing Institute of Lifeomics , Beijing , China
| | - Danke Xu
- c State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , China
| | - Joshua LaBaer
- b The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute , Arizona State University , Tempe , AZ , USA
| |
Collapse
|
18
|
Liu X, Tian R, Liu D, Wang Z. Development of Sphere-Polymer Brush Hierarchical Nanostructure Substrates for Fabricating Microarrays with High Performance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38101-38108. [PMID: 28990756 DOI: 10.1021/acsami.7b09505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, a sphere-polymer brush hierarchical nanostructure-modified glass slide has been developed for fabricating high-performance microarrays. The substrate consists of a uniform 160 nm silica particle-self-assembled monolayer on a glass slide with a postcoated poly(glycidyl methacrylate) (PGMA) brush layer (termed PGMA@3D(160) substrate), which can provide three-dimensional (3D) polymer brushes containing abundant epoxy groups for directly immobilizing various biomolecules. As a typical example, the interactions of three monosaccharides (4-aminophenyl β-d-galactopyranoside, 4-aminophenyl β-d-glucopyranoside, and 4-aminophenyl α-d-mannopyranoside) with two lectins (biotinylated ricinus communis agglutinin 120 and biotinylated concanavalin A from Canavalia ensiformis) have been assessed by PGMA@3D(160) substrate-based carbohydrate microarrays. The carbohydrate microarrays show good selectivity, strong multivalent interaction, and low limit of detection (LOD) in the picomolar range without any signal amplification. Furthermore, the proposed sphere-polymer brush hierarchical nanostructure substrates can be easily extended to fabricate other types of microarrays for DNA and protein detection. PGMA@3D(160) substrate-based microarrays exhibit higher reaction efficiencies and lower LODs (by at least 1 order of magnitude) in comparison to those of two-dimensional microarrays, which are fabricated on planar epoxy substrates, making it a promising platform for bioanalytical and biomedical applications.
Collapse
Affiliation(s)
- Xia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, P. R. China
| | - Rongrong Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Dianjun Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, P. R. China
| |
Collapse
|
19
|
Yu X, Song L, Petritis B, Bian X, Wang H, Viloria J, Park J, Bui H, Li H, Wang J, Liu L, Yang L, Duan H, McMurray DN, Achkar JM, Magee M, Qiu J, LaBaer J. Multiplexed Nucleic Acid Programmable Protein Arrays. Theranostics 2017; 7:4057-4070. [PMID: 29109798 PMCID: PMC5667425 DOI: 10.7150/thno.20151] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Rationale: Cell-free protein microarrays display naturally-folded proteins based on just-in-time in situ synthesis, and have made important contributions to basic and translational research. However, the risk of spot-to-spot cross-talk from protein diffusion during expression has limited the feature density of these arrays. Methods: In this work, we developed the Multiplexed Nucleic Acid Programmable Protein Array (M-NAPPA), which significantly increases the number of displayed proteins by multiplexing as many as five different gene plasmids within a printed spot. Results: Even when proteins of different sizes were displayed within the same feature, they were readily detected using protein-specific antibodies. Protein-protein interactions and serological antibody assays using human viral proteome microarrays demonstrated that comparable hits were detected by M-NAPPA and non-multiplexed NAPPA arrays. An ultra-high density proteome microarray displaying > 16k proteins on a single microscope slide was produced by combining M-NAPPA with a photolithography-based silicon nano-well platform. Finally, four new tuberculosis-related antigens in guinea pigs vaccinated with Bacillus Calmette-Guerin (BCG) were identified with M-NAPPA and validated with ELISA. Conclusion: All data demonstrate that multiplexing features on a protein microarray offer a cost-effective fabrication approach and have the potential to facilitate high throughput translational research.
Collapse
Affiliation(s)
- Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (PHOENIX Center, Beijing), Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Lusheng Song
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Brianne Petritis
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Xiaofang Bian
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Haoyu Wang
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jennifer Viloria
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jin Park
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Hoang Bui
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Han Li
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jie Wang
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Lei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (PHOENIX Center, Beijing), Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Liuhui Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (PHOENIX Center, Beijing), Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Hu Duan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (PHOENIX Center, Beijing), Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - David N. McMurray
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Jacqueline M. Achkar
- Department of Medicine, Albert Einstein College of Medicine, NY 10461, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mitch Magee
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Ji Qiu
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Joshua LaBaer
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
20
|
Abstract
Lung cancer is the most common cause of cancer-related death worldwide, less than 7% of patients survive 10 years following diagnosis across all stages of lung cancer. Late stage of diagnosis and lack of effective and personalized medicine reflect the need for a better understanding of the mechanisms that underlie lung cancer progression. Quantitative proteomics provides the relative different protein abundance in normal and cancer patients which offers the information for molecular interactions, signaling pathways, and biomarker identification. Here we introduce both theoretical and practical applications in the use of quantitative proteomics approaches, with principles of current technologies and methodologies including gel-based, label free, stable isotope labeling as well as targeted proteomics. Predictive markers of drug resistance, candidate biomarkers for diagnosis, and prognostic markers in lung cancer have also been discovered and analyzed by quantitative proteomic analysis. Moreover, construction of protein networks enables to provide an opportunity to interpret disease pathway and improve our understanding in cancer therapeutic strategies, allowing the discovery of molecular markers and new therapeutic targets for lung cancer.
Collapse
Affiliation(s)
| | - Hsueh-Fen Juan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan. .,Department of Life Science, National Taiwan University, Taipei, Taiwan. .,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
21
|
Qu X, Yang F, Chen H, Li J, Zhang H, Zhang G, Li L, Wang L, Song S, Tian Y, Pei H. Bubble-Mediated Ultrasensitive Multiplex Detection of Metal Ions in Three-Dimensional DNA Nanostructure-Encoded Microchannels. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16026-16034. [PMID: 28429586 DOI: 10.1021/acsami.7b03645] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of rapid and sensitive point-of-test devices for on-site monitoring of heavy-metal contamination has great scientific and technological importance. However, developing fast, inexpensive, and sensitive microarray sensors to achieve such a goal remains challenging. In this work, we present a DNA-nanostructured microarray (DNM) with a tubular three-dimensional sensing surface and an ordered nanotopography. This microarray enables enhanced molecular interaction toward the rapid and sensitive multiplex detection of heavy-metal ions. In our design, the use of DNA tetrahedral-structured probes engineers the sensing interface with spatially resolved and density-tunable sensing spots that improve the microconfined molecular recognition. A bubble-mediated shuttle reaction was used inside the DNM-functionalized microchannel to improve the target-capturing efficiency. Using this novel DNM biosensor, the sensitive and selective detection of multiple heavy-metal ions (i.e., Hg2+, Ag+, and Pb2+) was achieved within 5 min, the detection limit was down to 10, 10, and 20 nM for Hg2+, Ag+, and Pb2+, respectively. The feasibility of our DNM sensor was further demonstrated by probing heavy-metal ions in real water samples with a direct optical readout. Beyond metal ions, this unique DNM sensor can easily be extended to in vitro bioassays and clinical diagnostics.
Collapse
Affiliation(s)
- Xiangmeng Qu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University , 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Fan Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine , Wuhan 430065, P. R. China
| | - Hong Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, P. R. China
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China
| | - Hongbo Zhang
- Department of Pharmaceutical Science, Åbo Akademic University , FI-20520 Turku, Finland
| | - Guojun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine , Wuhan 430065, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University , 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China
| | - Shiping Song
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University , 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University , 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
22
|
Tang Y, Qiu J, Machner M, LaBaer J. Discovering Protein-Protein Interactions Using Nucleic Acid Programmable Protein Arrays. CURRENT PROTOCOLS IN CELL BIOLOGY 2017; 74:15.21.1-15.21.14. [PMID: 28256722 DOI: 10.1002/cpcb.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have developed a protocol enabling the study of protein-protein interactions (PPIs) at the proteome level using in vitro-synthesized proteins. Assay preparation requires molecular cloning of the query gene into a vector that supports in vitro transcription/translation (IVTT) and appends a HaloTag to the query protein of interest. In parallel, protein microarrays are prepared by printing plasmids encoding glutathione S-transferase (GST)-tagged target proteins onto a carrier matrix/glass slide coated with antibody directed against GST. At the time of the experiment, the query protein and the target protein are produced separately through IVTT. The query protein is then applied to nucleic acid programmable protein arrays (NAPPA) that display thousands of freshly produced target proteins captured by anti-GST antibody. Interactions between the query and immobilized target proteins are detected through addition of a fluorophore-labeled HaloTag ligand. Our protocol allows the elucidation of PPIs in a high-throughput fashion using proteins produced in vitro, obviating the scientific challenges, high cost, and laborious work, as well as concerns about protein stability, which are usually present in protocols using conventional protein arrays. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Yanyang Tang
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Ji Qiu
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Matthias Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona
| |
Collapse
|
23
|
Manuel G, Lupták A, Corn RM. A Microwell-Printing Fabrication Strategy for the On-Chip Templated Biosynthesis of Protein Microarrays for Surface Plasmon Resonance Imaging. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:20984-20990. [PMID: 28706572 PMCID: PMC5504410 DOI: 10.1021/acs.jpcc.6b03307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A two-step templated, ribosomal biosynthesis/printing method for the fabrication of protein microarrays for surface plasmon resonance imaging (SPRI) measurements is demonstrated. In the first step, a sixteen component microarray of proteins is created in microwells by cell free on chip protein synthesis; each microwell contains both an in vitro transcription and translation (IVTT) solution and 350 femtomoles of a specific DNA template sequence that together are used to create approximately 40 picomoles of a specific hexahistidine-tagged protein. In the second step, the protein microwell array is used to contact print one or more protein microarrays onto nitrilotriacetic acid (NTA)-functionalized gold thin film SPRI chips for real-time SPRI surface bioaffinity adsorption measurements. Even though each microwell array element only contains approximately 40 picomoles of protein, the concentration is sufficiently high for the efficient bioaffinity adsorption and capture of the approximately 100 femtomoles of hexahistidine-tagged protein required to create each SPRI microarray element. As a first example, the protein biosynthesis process is verified with fluorescence imaging measurements of a microwell array containing His-tagged green fluorescent protein (GFP), yellow fluorescent protein (YFP) and mCherry (RFP), and then the fidelity of SPRI chips printed from this protein microwell array is ascertained by measuring the real-time adsorption of various antibodies specific to these three structurally related proteins. This greatly simplified two-step synthesis/printing fabrication methodology eliminates most of the handling, purification and processing steps normally required in the synthesis of multiple protein probes, and enables the rapid fabrication of SPRI protein microarrays from DNA templates for the study of protein-protein bioaffinity interactions.
Collapse
Affiliation(s)
| | - Andrej Lupták
- Corresponding Authors: Robert M. Corn,
, phone: 1-949-824-1746 and Andrej Luptak,
, phone: 1-949-824-9132
| | - Robert M. Corn
- Corresponding Authors: Robert M. Corn,
, phone: 1-949-824-1746 and Andrej Luptak,
, phone: 1-949-824-9132
| |
Collapse
|
24
|
Lorenz DA, Garner AL. A click chemistry-based microRNA maturation assay optimized for high-throughput screening. Chem Commun (Camb) 2016; 52:8267-70. [PMID: 27284591 DOI: 10.1039/c6cc02894b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Catalytic enzyme-linked click-chemistry assays (cat-ELCCA) are an emerging class of biochemical assay. Herein we report on expanding the toolkit of cat-ELCCA to include the kinetically superior inverse-electron demand Diels-Alder (IEDDA) reaction. The result is a technology with improved sensitivity and reproducibility, enabling automated high-throughput screening.
Collapse
Affiliation(s)
- Daniel A Lorenz
- Program in Chemical Biology, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
25
|
Terborg RA, Pello J, Mannelli I, Torres JP, Pruneri V. Ultrasensitive interferometric on-chip microscopy of transparent objects. SCIENCE ADVANCES 2016; 2:e1600077. [PMID: 27386571 PMCID: PMC4928994 DOI: 10.1126/sciadv.1600077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/19/2016] [Indexed: 05/03/2023]
Abstract
Light microscopes can detect objects through several physical processes, such as scattering, absorption, and reflection. In transparent objects, these mechanisms are often too weak, and interference effects are more suitable to observe the tiny refractive index variations that produce phase shifts. We propose an on-chip microscope design that exploits birefringence in an unconventional geometry. It makes use of two sheared and quasi-overlapped illuminating beams experiencing relative phase shifts when going through the object, and a complementary metal-oxide-semiconductor image sensor array to record the resulting interference pattern. Unlike conventional microscopes, the beams are unfocused, leading to a very large field of view (20 mm(2)) and detection volume (more than 0.5 cm(3)), at the expense of lateral resolution. The high axial sensitivity (<1 nm) achieved using a novel phase-shifting interferometric operation makes the proposed device ideal for examining transparent substrates and reading microarrays of biomarkers. This is demonstrated by detecting nanometer-thick surface modulations on glass and single and double protein layers.
Collapse
Affiliation(s)
- Roland A. Terborg
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Josselin Pello
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Ilaria Mannelli
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Juan P. Torres
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
| | - Valerio Pruneri
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Corresponding author.
| |
Collapse
|
26
|
Yu X, Petritis B, LaBaer J. Advancing translational research with next-generation protein microarrays. Proteomics 2016; 16:1238-50. [PMID: 26749402 PMCID: PMC7167888 DOI: 10.1002/pmic.201500374] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/23/2015] [Accepted: 01/04/2016] [Indexed: 01/14/2023]
Abstract
Protein microarrays are a high-throughput technology used increasingly in translational research, seeking to apply basic science findings to enhance human health. In addition to assessing protein levels, posttranslational modifications, and signaling pathways in patient samples, protein microarrays have aided in the identification of potential protein biomarkers of disease and infection. In this perspective, the different types of full-length protein microarrays that are used in translational research are reviewed. Specific studies employing these microarrays are presented to highlight their potential in finding solutions to real clinical problems. Finally, the criteria that should be considered when developing next-generation protein microarrays are provided.
Collapse
Affiliation(s)
- Xiaobo Yu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (The PHOENIX Center, Beijing)BeijingP. R. China
- The Virginia G. Piper Center for Personalized DiagnosticsBiodesign InstituteArizona State UniversityTempeAZUSA
| | - Brianne Petritis
- The Virginia G. Piper Center for Personalized DiagnosticsBiodesign InstituteArizona State UniversityTempeAZUSA
| | - Joshua LaBaer
- The Virginia G. Piper Center for Personalized DiagnosticsBiodesign InstituteArizona State UniversityTempeAZUSA
| |
Collapse
|
27
|
|
28
|
Khater S, Mohanty D. Deciphering the Molecular Basis of Functional Divergence in AMPylating Enzymes by Molecular Dynamics Simulations and Structure Guided Phylogeny. Biochemistry 2015; 54:5209-24. [PMID: 26249842 DOI: 10.1021/acs.biochem.5b00351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Fic domain was recently shown to catalyze AMPylation-the transfer of AMP from ATP to hydroxyl side chains of diverse eukaryotic proteins, ranging from RhoGTPases to chaperon BiP. We have carried out a series of explicit solvent molecular dynamics (MD) simulations up to 1 μs duration on the apo, holo, and substrate/product bound IbpA Fic domain (IbpAFic2). Simulations on holo-IbpAFic2 revealed that binding of Mg(2+) to α and β phosphates is crucial for preserving catalytically important contacts involving ATP. Comparative analysis of the MD trajectories demonstrated how binding of ATP allosterically induces conformational changes in the distal switch II binding region of Fic domains thereby aiding in substrate recognition. Our simulations have also identified crucial aromatic-aromatic interactions which stabilize the orientation of the catalytic histidine for inline nucleophilic attack during AMPylation, thus providing a structural basis for the evolutionary conservation of these aromatic residue pairs in Fic domains. On the basis of analysis of interacting interface residue pairs that persist over the microsecond trajectory, we identified a tetrapeptide stretch involved in substrate recognition. The structure-based genome-wide search revealed a distinct conservation pattern for this segment in different Fic subfamilies, further supporting its proposed role in substrate recognition. In addition, combined use of simulations and phylogenetic analysis has helped in the discovery of a new subfamily of Fic proteins that harbor a conserved Lys/Arg in place of the inhibitory Glu of the regulatory helix. We propose the novel possibility of auto-enhancement of AMPylation activity in this new subfamily via the movement of regulatory helix, in contrast to auto-inhibition seen in most Fic proteins.
Collapse
Affiliation(s)
- Shradha Khater
- Bioinformatics Center, National Institute of Immunology , Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasisa Mohanty
- Bioinformatics Center, National Institute of Immunology , Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
29
|
Bhattacharjee S, Noor JJ, Gohain B, Gulabani H, Dnyaneshwar IK, Singla A. Post-translational modifications in regulation of pathogen surveillance and signaling in plants: The inside- (and perturbations from) outside story. IUBMB Life 2015; 67:524-32. [PMID: 26177826 DOI: 10.1002/iub.1398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022]
Abstract
In its lifetime a plant is exposed to pathogens of diverse types. Although methods of surveillance are broadly pathogen-individualized, immune signaling ultimately connect to common core networks maintained by key protein hubs. Defense elicitations modulate these hubs to re-allocate energy from central metabolic pathway into processes that execute immunity. Because unregulated defenses severely decrease growth and productivity of the host, signaling regulators within the networks function to achieve cellular equilibrium once the threat is minimized. Protein modifications by post-translational processes regulate the molecular switches and crosstalks between interconnected pathways spatially and temporally. Covalent modification of host targets connected to hubs are strategies used by most virulent effectors and result in re-routing signals to suppress host defenses. Resistance is a result of activation of specialized classes of receptors that short-circuit effector activities by co-localizing via post-translational modifications (PTMs) with effector targets. Despite advancement in proteome methodologies, our understanding of how PTMs regulate plant defenses remains elusive. This review presents protein-modifications as forefront regulators of plant innate immunity.
Collapse
Affiliation(s)
- Saikat Bhattacharjee
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Jewel Jameeta Noor
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Bornali Gohain
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Hitika Gulabani
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | | | - Ankit Singla
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| |
Collapse
|