1
|
Zhang Y, Gao Z, Qi Z, Xu J, Xue J, Xiong L, Wang J, Huang Y, Qin S. Fractionated radiotherapy initiated at the early stage of bone metastasis is effective to prolong survival in mouse model. Cancer Biol Ther 2025; 26:2455756. [PMID: 39834121 DOI: 10.1080/15384047.2025.2455756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND AND PURPOSE Bone metastasis is common for breast cancer and associated with poor prognosis. Currently, radiotherapy (RT) serves as the standard treatment for patients exhibiting symptoms of bone metastasis to alleviate pain. Whether earlier application of RT will better control bone metastasis remains unclear. METHODS We utilized a mouse model of breast cancer bone metastasis by intra-femoral injection of 4T1-luc breast tumor cells. The bone metastasis was treated by RT using various doses, timings, and modalities. Tumor growth was assessed through bioluminescence imaging, and lung metastases was quantified following lung tissue fixation. Flow cytometry was employed to analyze alterations in immune cell populations. RESULTS Single high-dose RT suppressed tumor growth of bone metastases, but caused severe side effects. Conversely, fractionated RT mitigated tumor growth in bone metastases with fewer adverse effects. Fractioned RT initiated at the early stage of bone metastasis effectively inhibited tumor growth in the bone, suppressed secondary lung metastases, and prolonged mouse survival. In line with the known pro- and anti-metastatic effects of neutrophils and T cells in breast cancer, respectively, earlier fractioned RT consistently decreased the proportions of neutrophils while increased the proportions of T cells in both the bone and the lung tissues. CONCLUSION The data suggest that fractionated RT can inhibit the progression of early stage of bone metastasis and reduce secondary lung metastasis, leading to favorable outcomes. Therefore, these findings provide preclinical evidence to support the application of fractionated RT to treat patients with bone metastasis as earlier as possible.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhunyi Gao
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziwei Qi
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jiahe Xu
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiao Xue
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lujie Xiong
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junhui Wang
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuhui Huang
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Songbing Qin
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Qin F, Zheng H, Wu J, Liu Z, Zheng Y, Yang X, Chen J, Deng W, Luo Z, Tan J, Cai W, Jian B, Zeng Y, Qin X, Liao H. APOC1 expressed in macrophages promotes the pulmonary metastasis of colorectal cancer via CCL2/CCL5. Int Immunopharmacol 2025; 154:114611. [PMID: 40194454 DOI: 10.1016/j.intimp.2025.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/16/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Metastasis is the main cause of death in colorectal cancer (CRC), and the lungs are common sites of metastasis. However, there is little effective target to intervene colorectal cancer pulmonary metastasis (CCPM), especially on its unique immune microenvironment. In this study, sixteen genes were identified as core CCPM-related differentially expressed genes (DEGs) between CRC and CCPM. Three genes including Apolipoprotein C1 (APOC1) were associated with prognosis, stage and metastasis of CRC. In immunohistochemistry, APOC1 was mainly expressed in macrophages, and expressed more in CCPM than CRC. Patients with synchronous CCPM, higher stage, poorer OS and CCPM-free interval tended to have higher expression. In experiments in vitro, knockdown of APOC1 in macrophages reduced the migration, invasion, and epithelial-mesenchymal transition of CRC cells. Knockdown of APOC1 in macrophages significantly decreased secretion of chemokines like CCL2 and CCL5. The pro-metastatic effect of macrophages expressing APOC1 was partially blocked by the antibodies of CCL2 and CCL5. Activation of STAT3 was a key process in APOC1's regulation of CCL2 and CCL5. In experiments in vivo, knockdown of APOC1 in macrophages reduced pulmonary metastasis. To conclude, APOC1 is one of core CCPM-related DEGs and associated with the metastasis and survival of CRC. Macrophages expressing APOC1 promote the CCPM by APOC1-STAT3-CCL2/CCL5 axis. APOC1 and macrophages expressing APOC1 play vital roles and may be potential therapeutic targets in CCPM.
Collapse
Affiliation(s)
- Fei Qin
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Haosheng Zheng
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jiayan Wu
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zui Liu
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yuzhen Zheng
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xingping Yang
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Junguo Chen
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Weihao Deng
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Ziyin Luo
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jian Tan
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Weijie Cai
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Bozhu Jian
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yushuai Zeng
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xianyu Qin
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| | - Hongying Liao
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
3
|
Hergueta-Redondo M, Sánchez-Redondo S, Hurtado B, Santos V, Pérez-Martínez M, Ximénez-Embún P, McDowell SAC, Mazariegos MS, Mata G, Torres-Ruiz R, Rodríguez-Perales S, Martínez L, Graña-Castro O, Megias D, Quail D, Quintela-Fandino M, Peinado H. The impact of a high fat diet and platelet activation on pre-metastatic niche formation. Nat Commun 2025; 16:2897. [PMID: 40175356 PMCID: PMC11965330 DOI: 10.1038/s41467-025-57938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/07/2025] [Indexed: 04/04/2025] Open
Abstract
There is active crosstalk between tumor cells and the tumor microenvironment during metastatic progression, a process that is significantly affected by obesity, particularly in breast cancer. Here we analyze the impact of a high fat diet (HFD) on metastasis, focusing on the role of platelets in the formation of premetastatic niches (PMNs). We find that a HFD provokes pre-activation of platelets and endothelial cells, promoting the formation of PMNs in the lung. These niches are characterized by increased vascular leakiness, platelet activation and overexpression of fibronectin in both platelets and endothelial cells. A HFD promotes interactions between platelets, tumor cells and endothelial cells within PMNs, enhancing tumor cell homing and metastasis. Importantly, therapeutic interventions like anti-platelet antibody administration or a dietary switch reduce metastatic cell homing and outgrowth. Moreover, blocking fibronectin reduces the interaction of tumor cells with endothelial cells. Importantly, when coagulation parameters prior to neoadjuvant treatment are considered, triple negative breast cancer (TNBC) female patients with reduced Partial Thromboplastin time (aPTT) had a significantly shorter time to relapse. These findings highlight how diet and platelet activation in pre-metastatic niches affect tumor cell homing and metastasis, suggesting potential therapeutic interventions and prognostic markers for TNBC patients.
Collapse
Affiliation(s)
- Marta Hergueta-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sara Sánchez-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Begoña Hurtado
- Cancer Cell Cycle Group, Preclinical & Translational Research Department, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Vanesa Santos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Pérez-Martínez
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sheri A C McDowell
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Marina S Mazariegos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center (SCC), Lund University, Lund, Sweden
| | - Gadea Mata
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Department of Mathematics and Computer Science, University of La Rioja, La Rioja, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigacion Sanitaria Fundacion Jiménez Díaz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Lola Martínez
- Flow Cytometry Core Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA-Nemesio Díez), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, 28925, Alcorcón, Spain
| | - Diego Megias
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Advanced Optical Microscopy - ISCIII Madrid, Madrid, Spain
| | - Daniela Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Medical Oncology, Hospital de Fuenlabrada, Madrid, Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
4
|
Catalano G, Alaimo L, Chatzipanagiotou OP, Rashid Z, Kawashima J, Ruzzenente A, Aucejo F, Marques HP, Bandovas J, Hugh T, Bhimani N, Maithel SK, Kitago M, Endo I, Pawlik TM. Recurrence patterns and prediction of survival after recurrence for gallbladder cancer. J Gastrointest Surg 2025; 29:101997. [PMID: 39971095 DOI: 10.1016/j.gassur.2025.101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Gallbladder cancer (GBC) is associated with a poor prognosis. Recurrence patterns and their effect on survival remain ill-defined. This study aimed to analyze recurrence patterns and develop a machine learning (ML) model to predict survival after recurrence (SAR) of GBC. METHODS Patients who underwent curative-intent resection of GBC between 1999 and 2022 were identified using an international database. An Extreme Gradient Boosting ML model to predict SAR was developed and validated. RESULTS Among 348 patients, 110 (31.6%) developed disease recurrence during follow-up. The most common recurrence site was local (29.1%), followed by multiple site (26.4%), liver (21.8%), peritoneal (18.2%), and lung (0.05%). The median SAR was the longest in patients with lung recurrence (36.0 months), followed by those with local recurrence (15.7 months). In contrast, patients with peritoneal (8.9 months), liver (8.5 months), or multiple-site (6.4 months) recurrence had a considerably shorter SAR. Patients with multiple-site recurrence had a worse SAR than individuals with single-site recurrence (6.4 vs 11.10 months, respectively; P =.014). The model demonstrated good performance in the evaluation and bootstrapping cohorts (area under the receiver operating characteristic curve: 71.4 and 71.0, respectively). The most influential variables were American Society of Anesthesiologists classification, local recurrence, receipt of adjuvant chemotherapy, American Joint Committee on Cancer T and N categories, and developing early disease recurrence (<12 months). To enable clinical applicability, an easy-to-use calculator was made available (https://catalano-giovanni.shinyapps.io/SARGB). CONCLUSION Except for lung recurrence, SAR for GBC was poor. A subset of patients with less aggressive disease biology may have favorable SAR. ML-based SAR prediction may help individuate candidates for curative re-resection when feasible.
Collapse
Affiliation(s)
- Giovanni Catalano
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States; Division of General and Hepatobiliary Surgery, University of Verona, Verona, Italy
| | - Laura Alaimo
- Division of General and Hepatobiliary Surgery, University of Verona, Verona, Italy
| | - Odysseas P Chatzipanagiotou
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States
| | - Zayed Rashid
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States
| | - Jun Kawashima
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States
| | - Andrea Ruzzenente
- Division of General and Hepatobiliary Surgery, University of Verona, Verona, Italy
| | - Federico Aucejo
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Cleveland Clinic Foundation, Digestive Diseases and Surgery Institute, Cleveland, OH, United States
| | - Hugo P Marques
- Department of Surgery, Hospital Curry Cabral, Lisbon, Portugal
| | - Joao Bandovas
- Department of Surgery, Hospital Curry Cabral, Lisbon, Portugal
| | - Tom Hugh
- Department of Surgery, School of Medicine, The University of Sydney, Sydney, Australia
| | - Nazim Bhimani
- Department of Surgery, School of Medicine, The University of Sydney, Sydney, Australia
| | - Shishir K Maithel
- Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Minoru Kitago
- Department of Surgery, Keio University, Tokyo, Japan
| | - Itaru Endo
- Yokohama City University School of Medicine, Yokohama, Japan
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States.
| |
Collapse
|
5
|
Whitman MA, Mantri M, Spanos E, Estroff LA, De Vlaminck I, Fischbach C. Bone mineral density affects tumor growth by shaping microenvironmental heterogeneity. Biomaterials 2025; 315:122916. [PMID: 39490060 DOI: 10.1016/j.biomaterials.2024.122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Breast cancer bone metastasis is a major cause of mortality in patients with advanced breast cancer. Although decreased mineral density is a known risk factor for bone metastasis, the underlying mechanisms remain poorly understood because studying the isolated effect of bone mineral density on tumor heterogeneity is challenging with conventional approaches. Moreover, mineralized biomaterials are commonly utilized for clinical bone defect repair, but how mineralized biomaterials affect the foreign body response and wound healing is unclear. Here, we investigate how bone mineral affects tumor growth and microenvironmental complexity in vivo by combining single-cell RNA-sequencing with mineral-containing or mineral-free decellularized bone matrices. We discover that the absence of bone mineral significantly influences fibroblast and immune cell heterogeneity, promoting phenotypes that increase tumor growth and alter the response to injury or disease. Importantly, we observe that the stromal response to bone mineral content depends on the murine tumor model used. While lack of bone mineral induces tumor-promoting microenvironments in both immunocompromised and immunocompetent animals, these changes are mediated by altered fibroblast phenotype in immunocompromised mice and macrophage polarization in immunocompetent mice. Collectively, our findings suggest that bone mineral density affects tumor growth by impacting microenvironmental complexity in an organism-dependent manner.
Collapse
Affiliation(s)
- Matthew A Whitman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Emmanuel Spanos
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14850, USA
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
6
|
Zhang C, Song Y, Yang H, Wu K. Myeloid cells are involved in tumor immunity, metastasis and metabolism in tumor microenvironment. Cell Biol Toxicol 2025; 41:62. [PMID: 40131539 PMCID: PMC11937113 DOI: 10.1007/s10565-025-10012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Bone marrow-derived cells in the tumor microenvironment, including macrophages, neutrophils, dendritic cells, myeloid-derived suppressor cells, eosinophils and basophils, participate in the generation, development, invasion and metastasis of tumors by producing different cytokines and interacting with other cell types, and play a pro-tumor or anti-tumor role in regulating tumor immunity. Due to the complexity of cell types in the tumor microenvironment and the unknown process of tumor development and metastasis, cancer treatment to achieve better survival status remains challenging. In this article, we summarize the effects of myeloid cells in tumor microenvironment on tumor immunity, cancer migration, and crosstalk with metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism), which will help to further study the tumor microenvironment and seek targeted therapeutic strategies for patients.
Collapse
Affiliation(s)
- Chenbo Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310000, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Ying Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Huanming Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310000, China.
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Kui Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310000, China.
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- BGI Genomics, Harbin, 150023, Heilongjiang, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
7
|
Vogel FCE, Schulze A. An unexpected player in organ tropism: aspartate functions as signalling molecule to drive lung metastasis. Signal Transduct Target Ther 2025; 10:95. [PMID: 40113746 PMCID: PMC11926209 DOI: 10.1038/s41392-025-02189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Affiliation(s)
- Felix C E Vogel
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
8
|
Ngo JM, Williams JK, Temoche-Diaz MM, Murugupandiyan A, Schekman R. p62 sorts Lupus La and selected microRNAs into breast cancer-derived exosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644464. [PMID: 40166149 PMCID: PMC11957149 DOI: 10.1101/2025.03.20.644464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Exosomes are multivesicular body-derived extracellular vesicles that are secreted by metazoan cells. Exosomes have utility as disease biomarkers, and exosome-mediated miRNA secretion has been proposed to facilitate tumor growth and metastasis. Previously, we demonstrated that the Lupus La protein (La) mediates the selective incorporation of miR-122 into metastatic breast cancer-derived exosomes; however, the mechanism by which La itself is sorted into exosomes remains unknown. Using unbiased proximity labeling proteomics, biochemical fractionation, superresolution microscopy and genetic tools, we establish that the selective autophagy receptor p62 sorts La and miR-122 into exosomes. We then performed small RNA sequencing and found that p62 depletion reduces the exosomal secretion of tumor suppressor miRNAs and results in their accumulation within cells. Our data indicate that p62 is a quality control factor that modulates the miRNA composition of exosomes. Cancer cells may exploit p62-dependent exosome cargo sorting to eliminate tumor suppressor miRNAs and thus to promote cell proliferation.
Collapse
Affiliation(s)
- Jordan Matthew Ngo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Justin Krish Williams
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | | | - Abinayaa Murugupandiyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
9
|
Lucotti S, Ogitani Y, Kenific CM, Geri J, Kim YH, Gu J, Balaji U, Bojmar L, Shaashua L, Song Y, Cioffi M, Lauritzen P, Joseph OM, Asao T, Grandgenett PM, Hollingsworth MA, Peralta C, Pagano AE, Molina H, Lengel HB, Dunne EG, Jing X, Schmitter M, Borriello L, Miller T, Zhang H, Romin Y, Manova K, Paul D, Remmel HL, O'Reilly EM, Jarnagin WR, Kelsen D, Castellino SM, Giulino-Roth L, Jones DR, Condeelis JS, Pascual V, Bussel JB, Boudreau N, Matei I, Entenberg D, Bromberg JF, Simeone DM, Lyden D. Extracellular vesicles from the lung pro-thrombotic niche drive cancer-associated thrombosis and metastasis via integrin beta 2. Cell 2025; 188:1642-1661.e24. [PMID: 39938515 DOI: 10.1016/j.cell.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/08/2024] [Accepted: 01/15/2025] [Indexed: 02/14/2025]
Abstract
Cancer is a systemic disease with complications beyond the primary tumor site. Among them, thrombosis is the second leading cause of death in patients with certain cancers (e.g., pancreatic ductal adenocarcinoma [PDAC]) and advanced-stage disease. Here, we demonstrate that pro-thrombotic small extracellular vesicles (sEVs) are secreted by C-X-C motif chemokine 13 (CXCL13)-reprogrammed interstitial macrophages in the non-metastatic lung microenvironment of multiple cancers, a niche that we define as the pro-thrombotic niche (PTN). These sEVs package clustered integrin β2 that dimerizes with integrin αX and interacts with platelet-bound glycoprotein (GP)Ib to induce platelet aggregation. Blocking integrin β2 decreases both sEV-induced thrombosis and lung metastasis. Importantly, sEV-β2 levels are elevated in the plasma of PDAC patients prior to thrombotic events compared with patients with no history of thrombosis. We show that lung PTN establishment is a systemic consequence of cancer progression and identify sEV-β2 as a prognostic biomarker of thrombosis risk as well as a target to prevent thrombosis and metastasis.
Collapse
Affiliation(s)
- Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| | - Yusuke Ogitani
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Candia M Kenific
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Geri
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Young Hun Kim
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinghua Gu
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Uthra Balaji
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Linda Bojmar
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lee Shaashua
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Yi Song
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michele Cioffi
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Pernille Lauritzen
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Oveen M Joseph
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Tetsuhiko Asao
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Thoracic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Respiratory Medicine, Juntendo University, Tokyo, Japan
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Alexandra E Pagano
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Harry B Lengel
- Thoracic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth G Dunne
- Thoracic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaohong Jing
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Madeleine Schmitter
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Lucia Borriello
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Fox Chase Cancer Center, Cancer Signaling and Microenvironment Program, Philadelphia, PA, USA
| | - Thomas Miller
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Haiying Zhang
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Yevgeniy Romin
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katia Manova
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - H Lawrence Remmel
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Atossa Therapeutics, Inc., Seattle, WA, USA; Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eileen M O'Reilly
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William R Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Kelsen
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sharon M Castellino
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Lisa Giulino-Roth
- Department of Pediatrics, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - David R Jones
- Thoracic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John S Condeelis
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Department of Cell Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Cancer Dormancy Institute, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Virginia Pascual
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - James B Bussel
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Nancy Boudreau
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - David Entenberg
- Integrated Imaging Program for Cancer Research, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Department of Cell Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Cancer Dormancy Institute, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Jacqueline F Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Diane M Simeone
- Department of Surgery, UC San Diego Health, San Diego, CA, USA; Moores Cancer Center, UC San Diego Health, San Diego, CA, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Zhou H, Zhang R, Men K, Tang L, Wang Y, Yang L. A Novel Systemic siDR6 Delivery System Based on DP7-C for the Treatment of Metastatic Lung Cancer. Int J Nanomedicine 2025; 20:3623-3642. [PMID: 40125426 PMCID: PMC11930241 DOI: 10.2147/ijn.s488213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/06/2025] [Indexed: 03/25/2025] Open
Abstract
Background The treatment of metastatic lung cancer, a common complication of many primary cancers, has historically been a significant clinical challenge. Once lung metastasis occurs, patients' survival is often significantly shortened. Therefore, prevention and treatment of lung metastases is an important aspect of cancer treatment. In this study, a simple, low-toxicity, cholesterol-modified cationic cell-penetrating peptide DP7 (DP7-C), in combination with siDR6 was used for intravenous administration for the treatment of lung metastases. Methods Initially, clinical databases were analyzed to determine the expression levels of death receptor 6 (DR6) in metastatic tumors and the correlation between DR6 expression and patient survival times. The DP7-C/siDR6 micelles were prepared by a self-assembly method. By cultivating 293T, B16F10 and LL2 cells, the in vitro experiments were performed to assess the transfection efficiency, safety and anti-cancer ability of DP7-C/siDR6, while its targeting efficiency and prevention of lungs were investigated by mouse experiments. Furthermore, the therapeutic efficacy of DP7-C/siDR6 was demonstrated in the LL2 model of lung cancer in situ, the B16F10 model of artificial lung metastasis, and the 4T1 model of spontaneous lung metastasis. Results The clinical data analysis revealed that DR6 was highly expressed in the majority of metastatic tumors and that patients with high DR6 expression exhibited significantly shorter survival times. The DP7-C/siDR6 showed high transfection efficiency, and it could inhibit tumor cell growth by suppressing the STAT3 signaling pathway. Subsequent mouse experiments demonstrated that intravenous administration of DP7-C/siDR6 resulted in efficient lung targeting. The inhibition of DR6 expression on lung endothelial cells was found to prevent metastasis-induced primary necrosis of lung endothelial cells, thereby preventing tumor metastasis. And the DP7-C/siDR6 treatment showed excellent therapeutic efficacy in the tumor models. Conclusion The systemic delivery of DP7-C micelles carrying siDR6 provide an alternative therapeutic strategy to halt cancer lung metastasis.
Collapse
Affiliation(s)
- Hongyou Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Rui Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ke Men
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
11
|
Azar BKY, Vakhshiteh F. The Pre-metastatic Niche: How Cancer Stem Cell-Derived Exosomal MicroRNA Fit into the Puzzle. Stem Cell Rev Rep 2025:10.1007/s12015-025-10866-z. [PMID: 40095238 DOI: 10.1007/s12015-025-10866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Cancer metastasis is a complicated biological process that critically affects cancer progression, patient outcomes, and treatment plans. A significant step in metastasis is the formation of a pre-metastatic niche (PMN). A small subset of cells within tumors, known as cancer stem cells (CSCs), possess unique characteristics including, differentiation into different cell types within the tumor, self-renewal, and resistance to conventional therapies, that enable them to initiate tumors and drive metastasis. PMN plays an important role in preparing secondary organs for the arrival and proliferation of CSCs, thereby facilitating metastasis. CSC-derived exosomes are crucial components in the complex interplay between CSCs and the tumor microenvironment. These exosomes function as transporters of various substances that can promote cancer progression, metastasis, and modulation of pre-metastatic environments by delivering microRNA (miRNA, miR) cargo. This review aims to illustrate how exosomal miRNAs (exo-miRs) secreted by CSCs can predispose PMN and promote angiogenesis and metastasis.
Collapse
Affiliation(s)
- Behjat Kheiri Yeghaneh Azar
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
12
|
Liu QL, Zhou H, Wang Z, Chen Y. Exploring the role of gut microbiota in colorectal liver metastasis through the gut-liver axis. Front Cell Dev Biol 2025; 13:1563184. [PMID: 40181829 PMCID: PMC11965903 DOI: 10.3389/fcell.2025.1563184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Colorectal liver metastasis (CRLM) represents a major therapeutic challenge in colorectal cancer (CRC), with complex interactions between the gut microbiota and the liver tumor microenvironment (TME) playing a crucial role in disease progression via the gut-liver axis. The gut barrier serves as a gatekeeper, regulating microbial translocation, which influences liver colonization and metastasis. Through the gut-liver axis, the microbiota actively shapes the TME, where specific microbial species and their metabolites exert dual roles in immune modulation. The immunologically "cold" nature of the liver, combined with the influence of the gut microbiota on liver immunity, complicates effective immunotherapy. However, microbiota-targeted interventions present promising strategies to enhance immunotherapy outcomes by modulating the gut-liver axis. Overall, this review highlights the emerging evidence on the role of the gut microbiota in CRLM and provides insights into the molecular mechanisms driving the dynamic interactions within the gut-liver axis.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute of Digestive Surgery, Institute of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Huijie Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Health Management Center, General Practice Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqiang Wang
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Chen
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
Miao K, Zhang A, Yang X, Zhang Y, Lin A, Wang L, Zhang X, Sun H, Xu J, Zhang J, Feng Y, Shao F, Guo S, Weng Z, Luo P, Wang D, Gao S, Zhao XY, Xu X, Deng CX. Lymphatic system is the mainstream for breast cancer dissemination and metastasis revealed by single-cell lineage tracing. Mol Cancer 2025; 24:75. [PMID: 40075470 PMCID: PMC11899007 DOI: 10.1186/s12943-025-02279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer metastasis is the primary cause of cancer-related death, yet the forces that drive cancer cells through various steps and different routes to distinct target organs/tissues remain elusive. In this study, we applied a barcoding system based single-cell lineage tracing approach to study the metastasis rate and route of breast cancer cells and their interactions with the tumor microenvironment (TME) during metastasis. The results indicate that only a small fraction of cells, accounting for fewer than 3% of total barcodes, can intravasate from the primary site into the blood circulation, whereas more cells disseminate through the lymphatic system to different organs. Tumor cells derived from the same progenitor cell exhibit different gene expression patterns in different soils, and the cancer cell-TME communication paradigm varies significantly between primary and metastatic tumors. Furthermore, metastable cells require a prewired particular cytokine expression ability which may be specific for lymph metastasis route although the underlying mechanism requires further investigation. In summary, leveraging a single-cell lineage tracing system, we demonstrate that the crosstalk between tumor cells and the TME is the driving force controlling the preferential metastatic fate of cancer cells through the lymphatic system.
Collapse
Affiliation(s)
- Kai Miao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China.
| | - Aiping Zhang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Division of Hepatobiliary & Pancreatic, Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiaodan Yang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yipeng Zhang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Anqi Lin
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lijian Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xin Zhang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Heng Sun
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jun Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jingyao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuzhao Feng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Fangyuan Shao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Sen Guo
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhihui Weng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Peng Luo
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Dong Wang
- Department of Developmental Biology, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuai Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiao-Yang Zhao
- Department of Developmental Biology, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoling Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
14
|
Bertolazzi G, Cancila V, Vacca D, Belmonte B, Lecis D, Moghaddam PS, Di Napoli A, Colombo MP, Pruneri G, Del Sal G, Scita G, Fassan M, Vecchione A, Bicciato S, Tripodo C. Extraction of a stromal metastatic gene signature in breast cancer via spatial profiling. J Exp Clin Cancer Res 2025; 44:89. [PMID: 40065328 PMCID: PMC11892262 DOI: 10.1186/s13046-025-03353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The identification of molecular features characterizing metastatic disease is a critical area of oncology research, as metastatic foci often exhibit distinct biological behaviors compared to primary tumors. While the focus has largely been on the neoplastic cells themselves, the characterization of the associated stroma remains largely underexplored, with significant implications for understanding metastasis. MAIN BODY By employing spatially resolved transcriptomics, we analyzed the transcriptional features of primary breast adenocarcinoma and its associated metastatic foci, on a representative set of microregions. We identified a stromal metastatic (Met) signature, which was subsequently validated across transcriptomic reference human breast cancer (BC) datasets and in spatial transcriptomics of a murine model. CONCLUSION We discuss the potential of a stromal Met signature to pinpoint metastatic breast cancer, serving as a prognostic tool that can provide a foundation for the exploration of tumor-extrinsic molecular hallmarks of BC metastatic foci.
Collapse
Affiliation(s)
- Giorgio Bertolazzi
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Davide Vacca
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Daniele Lecis
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Parsa Sirati Moghaddam
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Giancarlo Pruneri
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Giannino Del Sal
- Advanced Pathology Laboratory, IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamelllo 16, Milan, 20239, Italy
- Cancer Cell Signaling, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giorgio Scita
- Advanced Pathology Laboratory, IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamelllo 16, Milan, 20239, Italy
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
- Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Silvio Bicciato
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Claudio Tripodo
- Advanced Pathology Laboratory, IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamelllo 16, Milan, 20239, Italy.
- Department of Oncology and Hematology-Oncology, University of Milan, Milano, Italia.
| |
Collapse
|
15
|
Wang Y, Zhang X, Li X, Cheng M, Cui X. The vascular microenvironment and its stem cells regulate vascular homeostasis. Front Cell Dev Biol 2025; 13:1544129. [PMID: 40114970 PMCID: PMC11922910 DOI: 10.3389/fcell.2025.1544129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
The vascular microenvironment comprises of anatomical structures, extracellular matrix components, and various cell populations, which play a crucial role in regulating vascular homeostasis and influencing vascular structure and function. Under physiological conditions, intrinsic regulation of the vascular microenvironment is required to sustain vascular homeostasis. In contrast, under pathological conditions, alterations to this microenvironment lead to vascular injury and pathological remodeling. According to the anatomy, the vascular microenvironment can be subdivided into three sections from the inside out. The vascular endothelial microenvironment, centered on vascular endothelial cells (VECs), includes the extracellular matrix and various vascular physicochemical factors. The VECs interact with vascular physicochemical factors to regulate the function of various parenchymal cells, including hepatocytes, neurons and tumor cells. The vascular wall microenvironment, comprising the vasa vasorum and their unique stem/progenitor cell niches, plays a pivotal role in vascular inflammation and pathological remodeling. Additionally, the perivascular microenvironment, which includes perivascular adipose tissue, consists of adipocytes and stem cells, which contribute to the pathological processes of atherosclerosis. It is anticipated that targeted regulation of the vascular microenvironment will emerge as a novel approach for the treatment of various diseases. Accordingly, this review will examine the structure of the vascular microenvironment, the regulation of vascular function by vascular cells and stem/progenitor cells, and the role of the vascular microenvironment in regulating cardiovascular diseases.
Collapse
Affiliation(s)
- Yanhui Wang
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xiaoyun Zhang
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xin Li
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Min Cheng
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xiaodong Cui
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| |
Collapse
|
16
|
Zhang Y, Li Z, Zhang J, Mafa T, Zhang J, Zhu H, Chen L, Zong Z, Yang L. Fibrinogen: A new player and target on the formation of pre-metastatic niche in tumor metastasis. Crit Rev Oncol Hematol 2025; 207:104625. [PMID: 39826884 DOI: 10.1016/j.critrevonc.2025.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
Tumor metastasis involves a series of complex and coordinated processes, which is the main cause of patient death and still a significant challenge in cancer treatment. Pre-metastatic niches (PMN), a specialized microenvironment that develops in distant organs prior to the arrival of metastatic cancer cells, plays a crucial role in driving tumor metastasis. The development of PMN depends on a complex series of cellular and molecular components including tumor-derived factors, bone marrow-derived cells, resident immune cells, and extracellular matrix. Fibrinogen, a key factor in the typical blood clotting process, is related to tumor metastasis and prognosis, according to a growing body of evidence in recent years. Fibrinogen has emerged as an important factor in mediating the formation of tumor microenvironment. Nevertheless, a clear and detailed mechanism by which fibrinogen promotes tumor metastasis remains unknown. In this review, we first explore the roles of fibrinogen in the development of PMN from four perspectives: immunosuppression, inflammation, angiogenesis, and extracellular matrix remodeling. We highlight the significance of fibrinogen in shaping PMN and discuss its potential therapeutic values, opening new avenues for targeting fibrinogen to prevent or treat metastasis.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Rd, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College, Nanchang University, No. 1299 Xuefu Ave, Nanchang, Jiangxi 330031, China
| | - Zelin Li
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Rd, Nanchang, Jiangxi 330006, China; The First Clinical Medical College, Nanchang University, No. 1299 Xuefu Ave, Nanchang, Jiangxi 330031, China
| | - Jiamao Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Rd, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College, Nanchang University, No. 1299 Xuefu Ave, Nanchang, Jiangxi 330031, China
| | - Tatenda Mafa
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Jingyu Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang, Jiangxi 330006, China
| | - Hui Zhu
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Rd, Nanchang, Jiangxi 330006, China
| | - Lifang Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Rd, Nanchang, Jiangxi 330006, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang, Jiangxi 330006, China
| | - Lingling Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Rd, Nanchang, Jiangxi 330006, China; Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
17
|
Tang T, Yang T, Xue H, Liu X, Yu J, Liang C, Li D, Xiang C, Zheng J, Wei L, Ma B. Breast cancer stem cell-derived exosomal lnc-PDGFD induces fibroblast-niche formation and promotes lung metastasis. Oncogene 2025; 44:601-617. [PMID: 39633064 PMCID: PMC11850284 DOI: 10.1038/s41388-024-03237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with high metastatic potential and lack of therapeutic targets. Breast cancer stem cells (BCSCs) are enriched in TNBC and contribute to its metastatic propensity. Accumulating evidence suggests that cancer-derived exosomes are key drivers of premetastatic niche formation in distal organs. However, the function and underlying mechanism of BCSC-derived exosomes in TNBC metastasis remain elusive. Here, we demonstrated that BCSC-derived exosomes exhibit a greater capacity to activate fibroblasts and promote TNBC cell metastasis to the lung than non-BCSC-derived exosomes. Additionally, we found that upregulation of exosomal long non-coding RNA platelet derived growth factor D (lnc-PDGFD) expression in BCSCs is responsible for fibroblast activation through YBX1/NF-kB signaling in the lung. Activated fibroblasts further promote tumor progression by secreting IL-11. Taken together, BCSC-derived exosomes enriched with lnc-PDGFD could activate fibroblasts, thereby facilitating lung metastasis in TNBC patients. These results provide new insights into the mechanism of TNBC metastasis to the lung.
Collapse
Affiliation(s)
- Tingting Tang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Tao Yang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Huijie Xue
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiao Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jie Yu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Chen Liang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Dameng Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Chenxi Xiang
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Liang Wei
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Bo Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
18
|
Pranzini E, Ippolito L, Pardella E, Giannoni E, Chiarugi P. Adapt and shape: metabolic features within the metastatic niche. Trends Endocrinol Metab 2025; 36:205-218. [PMID: 39122599 DOI: 10.1016/j.tem.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
The success of disseminating cancer cells (DTCs) at specific metastatic sites is influenced by several metabolic factors. Even before DTCs arrival, metabolic conditioning from the primary tumor participates in creating a favorable premetastatic niche at distant organs. In addition, DTCs adjust their metabolism to better survive along the metastatic journey and successfully colonize their ultimate destination. However, the idea that the environment of the target organs may metabolically impact the metastatic fate is often underestimated. Here, we review the coexistence of two distinct strategies by which cancer cells shape and/or adapt to the metabolic profile of colonized tissues, ultimately creating a proper soil for their seeding and proliferation.
Collapse
Affiliation(s)
- Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni, 50, 50134 Firenze, (FI), Italy
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni, 50, 50134 Firenze, (FI), Italy
| | - Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni, 50, 50134 Firenze, (FI), Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni, 50, 50134 Firenze, (FI), Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni, 50, 50134 Firenze, (FI), Italy.
| |
Collapse
|
19
|
Dunbar KJ, Efe G, Cunningham K, Esquea E, Navaridas R, Rustgi AK. Regulation of metastatic organotropism. Trends Cancer 2025; 11:216-231. [PMID: 39732596 PMCID: PMC11903188 DOI: 10.1016/j.trecan.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/30/2024]
Abstract
Metastasis is responsible for most cancer-related deaths. Different cancers have their own preferential sites of metastases, a phenomenon termed metastatic organotropism. The mechanisms underlying organotropism are multifactorial and include the generation of a pre-metastatic niche (PMN), metastatic homing, colonization, dormancy, and metastatic outgrowth. Historically, studies of metastatic organotropism have been limited by a lack of models allowing direct comparison of cells exhibiting different patterns of tropism. However, new innovative models and large-scale sequencing efforts have propelled organotropism research. Herein, we summarize the recent discoveries in metastatic organotropism regulation, focusing on lung, liver, brain, and bone tropism. We discuss how emerging technologies are continuing to improve our ability to model and, hopefully, predict and treat organotropism.
Collapse
Affiliation(s)
- Karen J Dunbar
- Herbert Irving Comprehensive Cancer Center, New York, NY, 10032, USA.
| | - Gizem Efe
- Herbert Irving Comprehensive Cancer Center, New York, NY, 10032, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Katherine Cunningham
- Herbert Irving Comprehensive Cancer Center, New York, NY, 10032, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Emily Esquea
- Herbert Irving Comprehensive Cancer Center, New York, NY, 10032, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Raul Navaridas
- Herbert Irving Comprehensive Cancer Center, New York, NY, 10032, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, New York, NY, 10032, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA; Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
20
|
Hayashi H, Seki S, Tomita T, Kato M, Ashihara N, Chano T, Sanjo H, Kawade M, Yan C, Sakai H, Tomida H, Tanaka M, Iwaya M, Taki S, Nakazawa Y, Soejima Y, Ueno Y, Hiratsuka S. Synthetic short mRNA prevents metastasis via innate-adaptive immunity. Nat Commun 2025; 16:1925. [PMID: 40000682 PMCID: PMC11862117 DOI: 10.1038/s41467-025-57123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Although most cancer deaths are caused by metastasis, there are no effective therapeutic approaches. This study describes the efficacy of a short synthetic mRNA (s-mRNA) designed by the sequence of non-vesicular extracellular IL1β-mRNA found in the pre-metastatic lung of tumor-bearing mice. The administration of s-mRNA inhibits murine lung metastasis by inducing the innate and adaptive immune systems. s-mRNA binds to ZC3H12D, an RNA-binding protein on natural killer cells and cytotoxic T lymphocytes. The ZC3H12D-s-mRNA complex translocated to the nucleus without being involved in translation. This process induces cytolytic activity and cell death in cancer cells without inducing a cytokine storm, and immune cells retain their antitumor activity. Although the antitumor activity of cytotoxic lymphocytes declines as the disease progresses in cancer patients, s-mRNA induces sustained high killing capacities of natural killer cells and cytotoxic T lymphocytes from colon cancer patients. Therefore, s-mRNA could be a breakthrough solution to prevent metastasis.
Collapse
Affiliation(s)
- Hikaru Hayashi
- Department of Biochemistry and Molecular Biology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
- Department of Surgery, Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Sayaka Seki
- Department of Biochemistry and Molecular Biology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Takeshi Tomita
- Department of Biochemistry and Molecular Biology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Masayoshi Kato
- Department of Biochemistry and Molecular Biology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Norihiro Ashihara
- Department of Biochemistry and Molecular Biology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Tokuhiro Chano
- Department of Medical Genetics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Hideki Sanjo
- Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Miwa Kawade
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Chenhui Yan
- Department of Biochemistry and Molecular Biology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Hiroki Sakai
- Department of Biochemistry and Molecular Biology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
- Department of Surgery, Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Hidenori Tomida
- Department of Biochemistry and Molecular Biology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
- Department of Surgery, Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Miyuki Tanaka
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Mai Iwaya
- Department of Laboratory Medicine, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Shinsuke Taki
- Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Yuji Soejima
- Department of Surgery, Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Yoshihito Ueno
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Sachie Hiratsuka
- Department of Biochemistry and Molecular Biology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan.
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan.
| |
Collapse
|
21
|
Fang P, Yang J, Zhang H, Shuai D, Li M, Chen L, Liu L. Emerging roles of intratumoral microbiota: a key to novel cancer therapies. Front Oncol 2025; 15:1506577. [PMID: 40071093 PMCID: PMC11893407 DOI: 10.3389/fonc.2025.1506577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Microorganisms, including bacteria, viruses, and fungi, have been found to play critical roles in tumor microenvironments. Due to their low biomass and other obstacles, the presence of intratumor microbes has been challenging to definitively establish. However, advances in biotechnology have enabled researchers to reveal the association between intratumor microbiota and cancer. Recent studies have shown that tumor tissues, once thought to be sterile, actually contain various microorganisms. Disrupted mucosal barriers and adjacent normal tissues are important sources of intratumor microbiota. Additionally, microbes can invade tumors by traveling through the bloodstream to the tumor site and infiltrating through damaged blood vessels. These intratumor microbiota may promote the initiation and progression of cancers by inducing genomic instability and mutations, affecting epigenetic modifications, activating oncogenic pathways, and promoting inflammatory responses. This review summarizes the latest advancements in this field, including techniques and methods for identifying and culturing intratumor microbiota, their potential sources, functions, and roles in the efficacy of immunotherapy. It explores the relationship between gut microbiota and intratumor microbiota in cancer patients, and whether altering gut microbiota might influence the characteristics of intratumor microbiota and the host immune microenvironment. Additionally, the review discusses the prospects and limitations of utilizing intratumor microbiota in antitumor immunotherapy.
Collapse
Affiliation(s)
- Pengzhong Fang
- Departments of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jing Yang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Huiyun Zhang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Diankui Shuai
- Departments of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Min Li
- Departments of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lin Chen
- Departments of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liping Liu
- Departments of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
22
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XHF, Zheng J. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther 2025; 10:57. [PMID: 39979279 PMCID: PMC11842613 DOI: 10.1038/s41392-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The progression of malignant tumors leads to the development of secondary tumors in various organs, including bones, the brain, liver, and lungs. This metastatic process severely impacts the prognosis of patients, significantly affecting their quality of life and survival rates. Research efforts have consistently focused on the intricate mechanisms underlying this process and the corresponding clinical management strategies. Consequently, a comprehensive understanding of the biological foundations of tumor metastasis, identification of pivotal signaling pathways, and systematic evaluation of existing and emerging therapeutic strategies are paramount to enhancing the overall diagnostic and treatment capabilities for metastatic tumors. However, current research is primarily focused on metastasis within specific cancer types, leaving significant gaps in our understanding of the complex metastatic cascade, organ-specific tropism mechanisms, and the development of targeted treatments. In this study, we examine the sequential processes of tumor metastasis, elucidate the underlying mechanisms driving organ-tropic metastasis, and systematically analyze therapeutic strategies for metastatic tumors, including those tailored to specific organ involvement. Subsequently, we synthesize the most recent advances in emerging therapeutic technologies for tumor metastasis and analyze the challenges and opportunities encountered in clinical research pertaining to bone metastasis. Our objective is to offer insights that can inform future research and clinical practice in this crucial field.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Graduate School of Biomedical Science, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lijun Deng
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
23
|
Peralta M, Dupas A, Larnicol A, Lefebvre O, Goswami R, Stemmelen T, Molitor A, Carapito R, Girardo S, Osmani N, Goetz JG. Endothelial calcium firing mediates the extravasation of metastatic tumor cells. iScience 2025; 28:111690. [PMID: 39898056 PMCID: PMC11787530 DOI: 10.1016/j.isci.2024.111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/08/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
Metastatic dissemination is driven by genetic, biochemical, and biophysical cues that favor the distant colonization of organs and the formation of life-threatening secondary tumors. We have previously demonstrated that endothelial cells (ECs) actively remodel during extravasation by enwrapping arrested tumor cells (TCs) and extruding them from the vascular lumen while maintaining perfusion. In this work, we dissect the cellular and molecular mechanisms driving endothelial remodeling. Using high-resolution intravital imaging in zebrafish embryos, we demonstrate that the actomyosin network of ECs controls tissue remodeling and subsequent TC extravasation. Furthermore, we uncovered that this cytoskeletal remodeling is driven by altered endothelial-calcium (Ca2+) signaling caused by arrested TCs. Accordingly, we demonstrated that the inhibition of voltage-dependent calcium L-type channels impairs extravasation. Lastly, we identified P2X4, TRP, and Piezo1 mechano-gated Ca2+ channels as key mediators of the process. These results further highlight the central role of endothelial remodeling during the extravasation of TCs and open avenues for successful therapeutic targeting.
Collapse
Affiliation(s)
- Marina Peralta
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Amandine Dupas
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Annabel Larnicol
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Lefebvre
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Ruchi Goswami
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Tristan Stemmelen
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d’ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67091 Strasbourg, France
| | - Anne Molitor
- Laboratoire d’ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
| | - Raphael Carapito
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d’ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67091 Strasbourg, France
| | - Salvatore Girardo
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Naël Osmani
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Jacky G. Goetz
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| |
Collapse
|
24
|
Gnanagurusamy J, Krishnamoorthy S, Muruganatham B, Selvamurugan N, Muthusami S. Analysing the relevance of TGF-β and its regulators in cervical cancer to identify therapeutic and diagnostic markers. Gene 2025; 938:149166. [PMID: 39701195 DOI: 10.1016/j.gene.2024.149166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
The role of transforming growth factor-beta (TGF-β) is dual, such that, it inhibits tumor development in initial stage and promotes metastasis in later stage. The present study is aimed to analyse the relevance of different types of TGF-β and their receptors on the overall survival (OS) and TGF-β driven gene expression in individuals with cervical cancer (CC) using ONCODB and GEPIA databases. The in-silico gene expression analysis showed, TGF-β1 and TGFβR2 are upregulated in cells infected with human papilloma virus (HPV)16, whereas, TGF-β2, TGFβR1 and TGFβR3 expression were downregulated. In HPV 18 infected cells, TGF-β1, TGF-β2 and TGFβR1 were downregulated, meanwhile, TGF-β3, TGFβR2 and TGFβR3 were upregulated. OS analysis of CC patients with different TGF-β expression revealed that, TGF-β1, TGF-β2, TGF-β3 and TGFβR2 were associated with reduced survival rate. Further, we identified four microRNAs (miRNAs) (hsa-miR-21-5p, hsa-miR-29b-3p, hsa-miR-101-3p and hsa-miR-130a-3p) interacted favorably with TGF-β in HPV 16 and 18 positive samples using MIENTURNET. This present review further emphasizes that, targeting TGF-β could be a novel and futuristic approach for CC management and therapeutics.
Collapse
Affiliation(s)
- Jayapradha Gnanagurusamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India; Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India; Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Bharathi Muruganatham
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India; Centre for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur Chennai 603 203 Tamil Nadu, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India; Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India.
| |
Collapse
|
25
|
Chen H, Liu L, Xing G, Zhang D, A. N, Huang J, Li Y, Zhao G, Liu M. Exosome tropism and various pathways in lung cancer metastasis. Front Immunol 2025; 16:1517495. [PMID: 40028322 PMCID: PMC11868168 DOI: 10.3389/fimmu.2025.1517495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Lung cancer, characterized by its high morbidity and mortality rates, has the capability to metastasize to various organs, thereby amplifying its detrimental impact and fatality. The metastasis of lung cancer is a complex biological phenomenon involving numerous physiological transformations. Exosomes, small membranous vesicles enriched with biologically active components, are pivotal in mediating intercellular communication and regulating physiological functions due to their specificity and stability. Extensive research has elucidated the production and functions of exosomes in cancer contexts. Multitude of evidence demonstrates a strong association between lung cancer metastasis and exosomes. Additionally, the concept of the pre-metastatic niche is crucial in the metastatic process facilitated by exosomes. This review emphasizes the role of exosomes in mediating lung cancer metastasis and their impact on the disease's development and the progression to other tissues. Furthermore, it explores the potential of exosomes as biomarkers for lung cancer metastasis, offering significant insights for future clinical advancements.
Collapse
Affiliation(s)
- Hui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lin Liu
- Department of Drug Dispensing, The Third Hospital of Mianyang, Sichuan Mental Health Center, MianYang, China
| | - Gang Xing
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Niumuqie A.
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianlin Huang
- Department of Pharmacy, Luzhou Naxi District People’s Hospital, Luzhou, China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ge Zhao
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
26
|
Ilg MM, Lapthorn AR, Harding SL, Minhas T, Koduri G, Bustin SA, Cellek S. Development of a phenotypic screening assay to measure activation of cancer-associated fibroblasts. Front Pharmacol 2025; 16:1526495. [PMID: 40017592 PMCID: PMC11865240 DOI: 10.3389/fphar.2025.1526495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
Background In cancer metastasis, tumor cells condition distant tissues to create a supportive environment, or metastatic niche, by driving the activation of cancer-associated fibroblasts (CAFs). These CAFs remodel the extracellular matrix, creating a microenvironment that supports tumor growth and compromises immune cell function, enabling cancer cells to evade immune detection. Consequently, targeting the activation of CAFs has been proposed as a therapeutic strategy to hinder metastatic spread. Our objective was to develop the first in vitro phenotypic screening assay capable of assessing this activation process. Methods Human primary lung fibroblasts were co-cultured with highly invasive breast cancer cells (MDA-MB-231) to identify changes in the expression of selected genes using RT-qPCR. An In-Cell ELISA (ICE)-based assay using human lung fibroblasts, MDA-MB-231 cells and human monocytes (THP-1 cells) was developed to measure the activation of CAFs. Another ELISA assay was used to measure released osteopontin. Results When lung fibroblast were co-cultured with MDA-MB-231 cells, among the 10 selected genes, the genes for osteopontin (SPP1), insulin like growth factor 1 (IGF1), periostin (POSTN) and α-smooth muscle actin (α-SMA, ACTA2) elicited the greatest fold change (55-, 37-, 8- and 5-fold respectively). Since osteopontin, IGF-1 and periostin are secreted proteins and α-SMA is an intracellular cytoskeleton protein, α-SMA was chosen to be the readout biomarker for the ICE assay. When fibroblasts were co-cultured with MDA-MB-231 cells and monocytes in the 96 well ICE assay, α-SMA expression was increased 2.3-fold yielding a robust Z' of 0.56. A secondary, low throughput assay was developed by measuring the release of osteopontin which showed a 6-fold increase when fibroblasts were co-cultured with MDA-MB-231 cells and monocytes. Discussion This phenotypic assay is the first to measure the activation of CAFs in a 96-well format, making it suitable for medium-to high-throughput screening of potential therapeutic compounds. By focusing on observable cellular phenotypic changes rather than targeting specific molecular pathways, this assay allows for a broader and unbiased identification of compounds capable of modulating CAF activation.
Collapse
Affiliation(s)
- Marcus M. Ilg
- Fibrosis Research Group, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Alice R. Lapthorn
- Fibrosis Research Group, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Sophie L. Harding
- Fibrosis Research Group, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Tariq Minhas
- The Essex Cardiothoracic Centre, Basildon University Hospital, Basildon, United Kingdom
| | - Gouri Koduri
- Southend University Hospital NHS Foundation Trust, Westcliff-on-Sea, United Kingdom
| | - Stephen A. Bustin
- Fibrosis Research Group, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Selim Cellek
- Fibrosis Research Group, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, United Kingdom
| |
Collapse
|
27
|
Agrawal A, Javanmardi Y, Watson SA, Serwinski B, Djordjevic B, Li W, Aref AR, Jenkins RW, Moeendarbary E. Mechanical signatures in cancer metastasis. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:3. [PMID: 39917412 PMCID: PMC11794153 DOI: 10.1038/s44341-024-00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/20/2024] [Indexed: 02/09/2025]
Abstract
The cancer metastatic cascade includes a series of mechanical barrier-crossing events, involving the physical movement of cancer cells from their primary location to a distant organ. This review describes the physical changes that influence tumour proliferation, progression, and metastasis. We identify potential mechanical signatures at every step of the metastatic cascade and discuss some latest mechanobiology-based therapeutic interventions to highlight the importance of interdisciplinary approaches in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ayushi Agrawal
- Department of Mechanical Engineering, University College London, London, UK
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London, UK
| | - Sara A. Watson
- Department of Mechanical Engineering, University College London, London, UK
- Division of Biosciences, University College London, London, UK
| | - Bianca Serwinski
- Department of Mechanical Engineering, University College London, London, UK
- Northeastern University London, London, UK
| | - Boris Djordjevic
- Department of Mechanical Engineering, University College London, London, UK
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Amir R. Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
- Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, UK
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
28
|
Zhand S, Goss DM, Cheng YY, Warkiani ME. Recent Advances in Microfluidics for Nucleic Acid Analysis of Small Extracellular Vesicles in Cancer. Adv Healthc Mater 2025; 14:e2401295. [PMID: 39707658 DOI: 10.1002/adhm.202401295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Small extracellular vesicles (sEVs) are membranous vesicles released from cellular structures through plasma membrane budding. These vesicles contain cellular components such as proteins, lipids, mRNAs, microRNAs, long-noncoding RNA, circular RNA, and double-stranded DNA, originating from the cells they are shed from. Ranging in size from ≈25 to 300 nm and play critical roles in facilitating cell-to-cell communication by transporting signaling molecules. The discovery of sEVs in bodily fluids and their involvement in intercellular communication has revolutionized the fields of diagnosis, prognosis, and treatment, particularly in diseases like cancer. Conventional methods for isolating and analyzing sEVs, particularly their nucleic acid content face challenges including high costs, low purity, time-consuming processes, limited standardization, and inconsistent yield. The development of microfluidic devices, enables improved precision in sorting, isolating, and molecular-level separation using small sample volumes, and offers significant potential for the enhanced detection and monitoring of sEVs associated with cancer. These advanced techniques hold great promise for creating next-generation diagnostic and prognostic tools given their possibility of being cost-effective, simple to operate, etc. This comprehensive review explores the current state of research on microfluidic devices for the detection of sEV-derived nucleic acids as biomarkers and their translation into practical point-of-care and clinical applications.
Collapse
Affiliation(s)
- Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dale Mark Goss
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Theranostics, Sechenov First Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
29
|
Torre-Cea I, Berlana-Galán P, Guerra-Paes E, Cáceres-Calle D, Carrera-Aguado I, Marcos-Zazo L, Sánchez-Juanes F, Muñoz-Félix JM. Basement membranes in lung metastasis growth and progression. Matrix Biol 2025; 135:135-152. [PMID: 39719224 DOI: 10.1016/j.matbio.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
The lung is a highly vascularized tissue that often harbors metastases from various extrathoracic malignancies. Lung parenchyma consists of a complex network of alveolar epithelial cells and microvessels, structured within an architecture defined by basement membranes. Consequently, understanding the role of the extracellular matrix (ECM) in the growth of lung metastases is essential to uncover the biology of this pathology and developing targeted therapies. These basement membranes play a critical role in the progression of lung metastases, influencing multiple stages of the metastatic cascade, from the acquisition of an aggressive phenotype to intravasation, extravasation and colonization of secondary sites. This review examines the biological composition of basement membranes, focusing on their core components-collagens, fibronectin, and laminin-and their specific roles in cancer progression. Additionally, we discuss the function of integrins as primary mediators of cell adhesion and signaling between tumor cells, basement membranes and the extracellular matrix, as well as their implications for metastatic growth in the lung. We also explore vascular co-option (VCO) as a form of tumor growth resistance linked to basement membranes and tumor vasculature. Finally, the review covers current clinical therapies targeting tumor adhesion, extracellular matrix remodeling, and vascular development, aiming to improve the precision and effectiveness of treatments against lung metastases.
Collapse
Affiliation(s)
- Irene Torre-Cea
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Patricia Berlana-Galán
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Elena Guerra-Paes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Daniel Cáceres-Calle
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Iván Carrera-Aguado
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Laura Marcos-Zazo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Fernando Sánchez-Juanes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain.
| | - José M Muñoz-Félix
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain.
| |
Collapse
|
30
|
Deguchi A, Maru Y. S100A8 as a potential therapeutic target for cancer metastasis. Cancer Sci 2025; 116:322-328. [PMID: 39581861 PMCID: PMC11786323 DOI: 10.1111/cas.16407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Metastasis is a major cause of cancer-related deaths. Similar to the tumor microenvironment formation, the premetastatic niche develops in distant organs before the arrival of tumor cells. Elucidating the mechanism(s) underlying premetastatic niche formation could contribute to the establishment of effective therapeutic targets for metastasis. Our research indicates that primary tumors hijack Toll-like receptor 4 (TLR4) signaling to establish a premetastatic niche in the lungs by utilizing an endogenous ligand S100A8. S100A8 is expressed not only in immune cells but also in various types of tumor cells. By focusing on S100A8 as a therapeutic target, we identified at least three multivalent S100A8 inhibitory peptides. Here, we review the tumor-promoting role of S100A8-mediated TLR4 signaling and propose S100A8 as a potential therapeutic target for aggressive cancer.
Collapse
Affiliation(s)
- Atsuko Deguchi
- Institute of Advanced Biomedical Engineering and ScienceTokyo Women's Medical UniversityTokyoJapan
- Department of PharmacologyTokyo Women's Medical UniversityTokyoJapan
| | - Yoshiro Maru
- Department of PharmacologyTokyo Women's Medical UniversityTokyoJapan
- Future Robotics OrganizationWaseda UniversityTokyoJapan
| |
Collapse
|
31
|
Zhu HN, Guo YF, Lin Y, Sun ZC, Zhu X, Li Y. Radiomics analysis of thoracic vertebral bone marrow microenvironment changes before bone metastasis of breast cancer based on chest CT. J Bone Oncol 2025; 50:100653. [PMID: 39712652 PMCID: PMC11655691 DOI: 10.1016/j.jbo.2024.100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Bone metastasis from breast cancer significantly elevates patient morbidity and mortality, making early detection crucial for improving outcomes. This study utilizes radiomics to analyze changes in the thoracic vertebral bone marrow microenvironment from chest computerized tomography (CT) images prior to bone metastasis in breast cancer, and constructs a model to predict metastasis. METHODS This study retrospectively gathered data from breast cancer patients who were diagnosed and continuously monitored for five years from January 2013 to September 2023. Radiomic features were extracted from the bone marrow of thoracic vertebrae on non-contrast chest CT scans. Multiple machine learning algorithms were utilized to construct various radiomics models for predicting the risk of bone metastasis, and the model with optimal performance was integrated with clinical features to develop a nomogram. The effectiveness of this combined model was assessed through receiver operating characteristic (ROC) analysis as well as decision curve analysis (DCA). RESULTS The study included a total of 106 patients diagnosed with breast cancer, among whom 37 developed bone metastases within five years. The radiomics model's area under the curve (AUC) for the test set, calculated using logistic regression, is 0.929, demonstrating superior predictive performance compared to alternative machine learning models. Furthermore, DCA demonstrated the potential of radiomics models in clinical application, with a greater clinical benefit in predicting bone metastasis than clinical model and nomogram. CONCLUSION CT-based radiomics can capture subtle changes in the thoracic vertebral bone marrow before breast cancer bone metastasis, offering a predictive tool for early detection of bone metastasis in breast cancer.
Collapse
Affiliation(s)
- Hao-Nan Zhu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yi-Fan Guo
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - YingMin Lin
- The Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zhi-Chao Sun
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xi Zhu
- Department of Radiology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou, University, Yangzhou, Jiangsu, China
| | - YuanZhe Li
- Center of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
32
|
Doglioni G, Fernández-García J, Igelmann S, Altea-Manzano P, Blomme A, La Rovere R, Liu XZ, Liu Y, Tricot T, Nobis M, An N, Leclercq M, El Kharraz S, Karras P, Hsieh YH, Solari FA, Martins Nascentes Melo L, Allies G, Scopelliti A, Rossi M, Vermeire I, Broekaert D, Ferreira Campos AM, Neven P, Maetens M, Van Baelen K, Alkan HF, Planque M, Floris G, Sickmann A, Tasdogan A, Marine JC, Scheele CLGJ, Desmedt C, Bultynck G, Close P, Fendt SM. Aspartate signalling drives lung metastasis via alternative translation. Nature 2025; 638:244-250. [PMID: 39743589 DOI: 10.1038/s41586-024-08335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
Lung metastases occur in up to 54% of patients with metastatic tumours1,2. Contributing factors to this high frequency include the physical properties of the pulmonary system and a less oxidative environment that may favour the survival of cancer cells3. Moreover, secreted factors from primary tumours alter immune cells and the extracellular matrix of the lung, creating a permissive pre-metastatic environment primed for the arriving cancer cells4,5. Nutrients are also primed during pre-metastatic niche formation6. Yet, whether and how nutrients available in organs in which tumours metastasize confer cancer cells with aggressive traits is mostly undefined. Here we found that pulmonary aspartate triggers a cellular signalling cascade in disseminated cancer cells, resulting in a translational programme that boosts aggressiveness of lung metastases. Specifically, we observe that patients and mice with breast cancer have high concentrations of aspartate in their lung interstitial fluid. This extracellular aspartate activates the ionotropic N-methyl-D-aspartate receptor in cancer cells, which promotes CREB-dependent expression of deoxyhypusine hydroxylase (DOHH). DOHH is essential for hypusination, a post-translational modification that is required for the activity of the non-classical translation initiation factor eIF5A. In turn, a translational programme with TGFβ signalling as a central hub promotes collagen synthesis in lung-disseminated breast cancer cells. We detected key proteins of this mechanism in lung metastases from patients with breast cancer. In summary, we found that aspartate, a classical biosynthesis metabolite, functions in the lung environment as an extracellular signalling molecule to promote aggressiveness of metastases.
Collapse
Affiliation(s)
- Ginevra Doglioni
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sebastian Igelmann
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Laboratory of Metabolic Regulation and Signaling in Cancer, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-University of Seville-CSIC-University Pablo de Olavide, Seville, Spain
| | - Arnaud Blomme
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium
| | - Rita La Rovere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Xiao-Zheng Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Yawen Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Tine Tricot
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Max Nobis
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
- Intravital Imaging Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ning An
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium
| | - Marine Leclercq
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium
| | - Sarah El Kharraz
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Yu-Heng Hsieh
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Fiorella A Solari
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | | | - Gabrielle Allies
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Annalisa Scopelliti
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Matteo Rossi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ines Vermeire
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ana Margarida Ferreira Campos
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Patrick Neven
- Department of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - Marion Maetens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Karen Van Baelen
- Department of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - H Furkan Alkan
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Spatial Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Giuseppe Floris
- Department of Pathology, UZ Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Laboratory of Translational Cell And Tissue Research, KU Leuven, Leuven, Belgium
| | - Albert Sickmann
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
- Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Colinda L G J Scheele
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Pierre Close
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
33
|
Li Z, Feng Z, Chen M, Shi X, Cui B, Sun Y, Zhang H, Li Y, Chen C, Feng Y, Han J, Xing X, Liu H, Sun T. Rbfox3 Promotes Transformation of MDSC-Like Tumor Cells to Shape Immunosuppressive Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404585. [PMID: 39777898 PMCID: PMC11848546 DOI: 10.1002/advs.202404585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/30/2024] [Indexed: 01/11/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) within the tumor microenvironment (TME) contribute to the malignant progression of tumors by exerting immunosuppressive effects. Bacterial lipopolysaccharides (LPS) have been widely demonstrated in various types of solid tumors. LPS can promote the malignant progression of tumors, which mechanism has not yet been fully elucidated. In this study, a type of MDSC-like tumor cells (MLTCs) is found in tumor tissues induced by low-dose and long-term LPS stimulation. MLTCs can simultaneously express tumor cell and MDSCs markers. Similar to MDSCs, MLTCs can produce arginine, nitric oxide, and reactive oxygen species and inhibit the activity of NK and T cells to promote the formation of an immunosuppressive microenvironment. MLTCs can also promote tumor cell proliferation and vasculogenic mimicry formation. CRISPR-Cas9 activity screening studies identified RNA-binding Fox-1 homolog 3 (Rbfox3) as a critical protein for MLTCs formation after LPS treatment. Rbfox3 can transcriptionally regulate the expression of Ass1 in the form of phase-separated particles. Crocin can inhibit the generation of MLTCs by disrupting phase-separated particles of Rbfox3 and enhance the anti-tumor effects of immune checkpoint inhibitors (ICIs).
Collapse
Affiliation(s)
- Zhiyang Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin International Joint Academy of BiomedicineTianjin300457China
| | - Zhuangzhuang Feng
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Mengzhan Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Xinxiu Shi
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Bijia Cui
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Yujie Sun
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin International Joint Academy of BiomedicineTianjin300457China
| | - Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Caihong Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Yiqian Feng
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Xuewu Xing
- Department of OrthopedicsTianjin First Central HospitalTianjin300190China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| |
Collapse
|
34
|
Pote MS, Gacche RN. Exosomal signaling in cancer metastasis: Molecular insights and therapeutic opportunities. Arch Biochem Biophys 2025; 764:110277. [PMID: 39709108 DOI: 10.1016/j.abb.2024.110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Exosomes are membrane-bound extracellular vesicles that play a role in exchanging biological products across membranes and serve as intermediaries in intercellular communication to maintain normal homeostasis. Numerous molecules, including lipids, proteins, and nucleic acids are enclosed in exosomes. Exosomes are constantly released into the extracellular environment and exhibit distinct characteristics based on the secreted cells that produce them. Exosome-mediated cell-to-cell communication has reportedly been shown to affect multiple cancer hallmarks, such as immune response modulation, pre-metastatic niche formation, angiogenesis, stromal cell reprogramming, extracellular matrix architecture remodeling, or even drug resistance, and eventually the development and metastasis of cancer cells. Exosomes can be used as therapeutic targets and possible diagnostic biomarkers by selectively loading oncogenic molecules into them. We highlight the important roles that exosomes play in cancer development in this review, which may lead to the development of fresh approaches for future clinical uses.
Collapse
Affiliation(s)
- Manasi S Pote
- Tumor Biology Laboratory, Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, (MS), India
| | - Rajesh N Gacche
- Tumor Biology Laboratory, Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, (MS), India.
| |
Collapse
|
35
|
Ozair A, Wilding H, Bhanja D, Mikolajewicz N, Glantz M, Grossman SA, Sahgal A, Le Rhun E, Weller M, Weiss T, Batchelor TT, Wen PY, Haas-Kogan DA, Khasraw M, Rudà R, Soffietti R, Vollmuth P, Subbiah V, Bettegowda C, Pham LC, Woodworth GF, Ahluwalia MS, Mansouri A. Leptomeningeal metastatic disease: new frontiers and future directions. Nat Rev Clin Oncol 2025; 22:134-154. [PMID: 39653782 DOI: 10.1038/s41571-024-00970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
Leptomeningeal metastatic disease (LMD), encompassing entities of 'meningeal carcinomatosis', neoplastic meningitis' and 'leukaemic/lymphomatous meningitis', arises secondary to the metastatic dissemination of cancer cells from extracranial and certain intracranial malignancies into the leptomeninges and cerebrospinal fluid. The clinical burden of LMD has been increasing secondary to more sensitive diagnostics, aggressive local therapies for discrete brain metastases, and improved management of extracranial disease with targeted and immunotherapeutic agents, resulting in improved survival. However, owing to drug delivery challenges and the unique microenvironment of LMD, novel therapies against systemic disease have not yet translated into improved outcomes for these patients. Underdiagnosis and misdiagnosis are common, response assessment remains challenging, and the prognosis associated with this disease of whole neuroaxis remains extremely poor. The dearth of effective therapies is further challenged by the difficulties in studying this dynamic disease state. In this Review, a multidisciplinary group of experts describe the emerging evidence and areas of active investigation in LMD and provide directed recommendations for future research. Drawing upon paradigm-changing advances in mechanistic science, computational approaches, and trial design, the authors discuss domain-specific and cross-disciplinary strategies for optimizing the clinical and translational research landscape for LMD. Advances in diagnostics, multi-agent intrathecal therapies, cell-based therapies, immunotherapies, proton craniospinal irradiation and ongoing clinical trials offer hope for improving outcomes for patients with LMD.
Collapse
Affiliation(s)
- Ahmad Ozair
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hannah Wilding
- Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Debarati Bhanja
- Department of Neurosurgery, NYU Langone Medical Center, New York, NY, USA
| | - Nicholas Mikolajewicz
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Glantz
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Stuart A Grossman
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Center, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Emilie Le Rhun
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Tracy T Batchelor
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Daphne A Haas-Kogan
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Mustafa Khasraw
- Preston Robert Tisch Brain Tumour Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin, Italy
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin, Italy
- Department of Oncology, Candiolo Institute for Cancer Research, FPO-IRCCS, Candiolo, Turin, Italy
| | - Philipp Vollmuth
- Division for Computational Radiology and Clinical AI, University Hospital Bonn, Bonn, Germany
- Division for Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vivek Subbiah
- Early Phase Drug Development Program, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Chetan Bettegowda
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lily C Pham
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Brain Tumor Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Brain Tumor Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Manmeet S Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
36
|
Fan Y, Song S, Pizzi MP, Zou G, Vykoukal JV, Yoshimura K, Jin J, Calin GA, Waters RE, Gan Q, Wang L, Hanash S, Dhar SS, Ajani JA. Exosomal Galectin-3 promotes peritoneal metastases in gastric adenocarcinoma via microenvironment alterations. iScience 2025; 28:111564. [PMID: 39811647 PMCID: PMC11731617 DOI: 10.1016/j.isci.2024.111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/22/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Peritoneal carcinomatosis (PC) in gastric adenocarcinoma (GAC) is the most common metastatic site and leads to a short median survival. Exosomes have been shown to remodel the microenvironment, facilitating tumor metastases. However, the functional component in GAC cell-derived exosomes that remodel the landscape in the peritoneal cavity remains unclear. To address this, we performed in-depth proteomic profiling of ascites-derived exosomes from patients with PC, and we found that Galectin-3 was highly enriched in exosomes derived from malignant ascites. exosomal Galectin-3 was the crucial regulator of PC. Blockage of exosomal Galectin-3 significantly inhibited tumor metastases and prolonged overall survival. Exosomal Galectin-3 activated cancer-associated fibroblasts through integrin α1β1/FAK/Akt/mTOR/CXCL12 signaling. Combined inhibition of the CXCL12-CXCR4 axis and exosomal Galectin-3 enhanced the efficacy of anti-PD-1 immunotherapy, leading to significantly diminished PC progression and durable antitumor responses. These findings provide a rationale for clinical strategy of targeting exosomal Galectin-3 to treat PC.
Collapse
Affiliation(s)
- Yibo Fan
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shumei Song
- Coriell Institute for Medical Research, Camden, NJ 08103, USA
| | - Melissa Pool Pizzi
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gengyi Zou
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jody V Vykoukal
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katsuhiro Yoshimura
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A Calin
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rebecca E Waters
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qiong Gan
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shilpa S Dhar
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
37
|
Wang C, Tian H, Shang J. Critical Reflections on Tumor Microenvironmental Alterations in Peritoneal Metastases. Gastroenterology 2025:S0016-5085(25)00042-3. [PMID: 39824394 DOI: 10.1053/j.gastro.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/20/2025]
Affiliation(s)
- Chenxi Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Huichuan Tian
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Jin Shang
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
38
|
Ng M, Cerezo-Wallis D, Ng LG, Hidalgo A. Adaptations of neutrophils in cancer. Immunity 2025; 58:40-58. [PMID: 39813993 DOI: 10.1016/j.immuni.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
There is a renewed interest in neutrophil biology, largely instigated by their prominence in cancer. From an immunologist's perspective, a conceptual breakthrough is the realization that prototypical inflammatory, cytotoxic leukocytes can be tamed to promote the survival and growth of other cells. This has sparked interest in defining the biological principles and molecular mechanisms driving the adaptation of neutrophils to cancer. Yet, many questions remain: is this adaptation mediated by reprogramming mature neutrophils inside the tumoral mass, or rather by rewiring granulopoiesis in the bone marrow? Why, in some instances, are neutrophils beneficial and in others detrimental to cancer? How many different functional programs can be induced in neutrophils by tumors, and is this dependent on the type of tumor? This review summarizes what we know about these questions and discusses therapeutic strategies based on our incipient knowledge of how neutrophils adapt to cancer.
Collapse
Affiliation(s)
- Melissa Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore.
| | - Daniela Cerezo-Wallis
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Andres Hidalgo
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
39
|
Cao J, Feng B, Xv Y, Yu J, Cao S, Ma C. Continued attention: The role of exosomal long non-coding RNAs in tumors over the past three years. Int Immunopharmacol 2025; 144:113666. [PMID: 39577219 DOI: 10.1016/j.intimp.2024.113666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
This review summarizes the research on exosomal lncRNAs in tumors over the past three years. It highlights the significant roles of exosomal lncRNAs in modulating various cellular processes within the tumor microenvironment. Exosomal lncRNAs have been shown to influence the behavior of tumor cells, promoting proliferation, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, glycolysis, and contributing to tumor growth and metabolism. Moreover, exosomal lncRNAs have been found to interact with immune cells, such as modulating the functions of macrophages and influencing the overall immune response against tumors. Fibroblasts within the tumor microenvironment are also affected by exosomal lncRNAs, which can alter the extracellular matrix (ECM) and stromal composition. Notably, these exosomal lncRNAs hold promise in the diagnosis and treatment of tumors, offering potential biomarkers and therapeutic targets for improved clinical outcomes.
Collapse
Affiliation(s)
- Jiarui Cao
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Bo Feng
- Henan Province Hospital of TCM, Zhengzhou, Henan 450002, China.
| | - Yanchao Xv
- Henan Province Hospital of TCM, Zhengzhou, Henan 450002, China.
| | - Jiangfan Yu
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Shasha Cao
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Chunzheng Ma
- Henan Province Hospital of TCM, Zhengzhou, Henan 450002, China.
| |
Collapse
|
40
|
Kuett L, Bollhagen A, Tietscher S, Sobottka B, Eling N, Varga Z, Moch H, de Souza N, Bodenmiller B. Distant Metastases of Breast Cancer Resemble Primary Tumors in Cancer Cell Composition but Differ in Immune Cell Phenotypes. Cancer Res 2025; 85:15-31. [PMID: 39437149 DOI: 10.1158/0008-5472.can-24-1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Breast cancer is the most commonly diagnosed cancer in women, with distant metastasis being the main cause of breast cancer-related deaths. Elucidating the changes in the tumor and immune ecosystems that are associated with metastatic disease is essential to improve understanding and ultimately treatment of metastasis. Here, we developed an in-depth, spatially resolved single-cell atlas of the phenotypic diversity of tumor and immune cells in primary human breast tumors and matched distant metastases, using imaging mass cytometry to analyze a total of 75 unique antibody targets. Although the same tumor cell phenotypes were typically present in primary tumors and metastatic sites, suggesting a strong founder effect of the primary tumor, their proportions varied between matched samples. Notably, the metastatic site did not influence tumor phenotype composition, except for the brain. Metastatic sites exhibited a lower number of immune cells overall but had a higher proportion of myeloid cells as well as exhausted and cytotoxic T cells. Myeloid cells showed distinct tissue-specific compositional signatures and increased presence of potentially matrix remodeling phenotypes in metastatic sites. This analysis of tumor and immune cell phenotypic composition of metastatic breast cancer highlights the heterogeneity of the disease within patients and across distant metastatic sites, indicating myeloid cells as the predominant immune modulators that could potentially be targeted at these sites. Significance: Multiplex imaging analysis of matched primary and metastatic breast tumors provides a phenotypic and spatial map of tumor microenvironments, revealing similar compositions of cancer cells and divergent immunologic features between matched samples.
Collapse
Affiliation(s)
- Laura Kuett
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Alina Bollhagen
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Sandra Tietscher
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Bettina Sobottka
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Nils Eling
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Natalie de Souza
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Sugiyama S, Yumimoto K, Nakayama KI. Immune Cell Profiling Reveals a Common Pattern in Premetastatic Niche Formation Across Various Cancer Types. Cancer Med 2025; 14:e70557. [PMID: 39740041 DOI: 10.1002/cam4.70557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Metastasis is the major cause of cancer-related mortality. The premetastatic niche is a promising target for its prevention. However, the generality and cellular dynamics in premetastatic niche formation have remained unclear. AIMS This study aimed to elucidate the generality and cellular dynamics in premetastatic niche formation. MATERIALS AND METHODS We performed comprehensive flow cytometric analysis of lung and peripheral immune cells at three time points (early premetastatic, late premetastatic, and micrometastatic phases) for mice with subcutaneous implants of three types of cancer cells (breast cancer, lung cancer, or melanoma cells). The immuno-cell profiles were then used to predict the metastatic phase by machine learning. RESULTS We found a common pattern of changes in both lung and peripheral immune cell profiles across the three cancer types, including a decrease in the proportion of eosinophils in the early premetastatic phase, an increase in that of regulatory T cells in the late premetastatic phase, and an increase in that of polymorphonuclear myeloid-derived suppressor cells and a decrease in that of B cells in the micrometastatic phase. Machine learning using immune cell profiles could predict the metastatic phase with approximately 75% accuracy. DISCUSSION Validation of our findings in humans will require data on the presence or absence of micrometastases in patients and the accumulation of comprehensive and temporal information on immune cells. In addition, blood proteins, extracellular vesicles, DNA, RNA, or metabolites may be useful for more accurate prediction. CONCLUSION The discovery of generalities in premetastatic niche formation allow prediction of metastatic phase and provide a basis for the development of methods for early detection and prevention of cancer metastasis in a cancer type-independent manner.
Collapse
Affiliation(s)
- Shigeaki Sugiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kanae Yumimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Dynamic Chemical Life Science Laboratory, Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Anticancer Strategies Laboratory, Advanced Research Initiative, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Qian BZ, Ma RY. Immune Microenvironment in Breast Cancer Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:413-432. [PMID: 39821036 DOI: 10.1007/978-3-031-70875-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Metastatic disease is the final stage of breast cancer that accounts for vast majority of patient death. Mounting data over recent years strongly support the critical roles of the immune microenvironment in determining breast cancer metastasis. The latest single-cell studies provide further molecular evidence illustrating the heterogeneity of this immune microenvironment. This chapter summarizes major discoveries on the role of various immune cells in metastasis progression and discusses future research opportunities. Studies investigating immune heterogeneity within primary breast cancer and across different metastasis target organs can potentially lead to more precise treatment strategies with improved efficacy.
Collapse
Affiliation(s)
- Bin-Zhi Qian
- Department of Oncology, Fudan University Shanghai Cancer Center, Zhangjiang-Fudan International Innovation Center, Shanghai Medical College, The Human Phenome Institute, Fudan University, Shanghai, China.
| | - Ruo-Yu Ma
- Department of Oncology, Fudan University Shanghai Cancer Center, Zhangjiang-Fudan International Innovation Center, Shanghai Medical College, The Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
43
|
DU N, Wan H, Guo H, Zhang X, Wu X. [Myeloid-derived suppressor cells as important factors and potential targets for breast cancer progression]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:785-795. [PMID: 39686697 PMCID: PMC11736353 DOI: 10.3724/zdxbyxb-2024-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Recurrence and metastasis remain the leading cause of death in breast cancer patients due to the lack of effective treatment. A microenvironment suitable for cancer cell growth, referred to as pre-metastatic niche (PMN), is formed in distant organs before metastasis occurs. Myeloid-derived suppressor cells (MDSCs) are a heterogenous population of immature myeloid cells with immunosuppressive effects. They can expand in large numbers in breast cancer patients and participate in the formation of PMN. MDSCs can remodel the extracellular matrix of pulmonary vascular endothelial cells and recruit cancer stem cells to promote the lung metastasis of breast cancer. Furthermore, MDSCs facilitate immune evasion of breast cancer cells to impact the efficacy of immunotherapy. It is proposed that MDSCs represent a potential therapeutic target for the inhibition of recurrence and metastasis in breast cancer. Therapeutic strategies targeting MDSCs have shown promising efficacy in preclinical studies and clinical trials. This review presents a summary of the principal factors involved in the recruitment and activation of MDSCs during the formation of PMN, and outlines MDSCs functions such as immunosuppression and the current targeted therapies against MDSCs, aiming to provide new ideas for the treatment of distant metastases in breast cancer.
Collapse
Affiliation(s)
- Nannan DU
- Breast Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China.
| | - Hua Wan
- Breast Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Hailing Guo
- Department of Orthopaedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xukuan Zhang
- Breast Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xueqing Wu
- Breast Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China.
| |
Collapse
|
44
|
Palencia-Campos A, Ruiz-Cañas L, Abal-Sanisidro M, López-Gil JC, Batres-Ramos S, Saraiva SM, Yagüe B, Navarro D, Alcalá S, Rubiolo JA, Bidan N, Sánchez L, Mura S, Hermann PC, de la Fuente M, Sainz B. Reprogramming tumor-associated macrophages with lipid nanosystems reduces PDAC tumor burden and liver metastasis. J Nanobiotechnology 2024; 22:795. [PMID: 39719597 DOI: 10.1186/s12951-024-03010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/12/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) requires innovative therapeutic strategies to counteract its progression and metastatic potential. Since the majority of patients are diagnosed with advanced metastatic disease, treatment strategies targeting not only the primary tumor but also metastatic lesions are needed. Tumor-Associated Macrophages (TAMs) have emerged as central players, significantly influencing PDAC progression and metastasis. Our objective was to validate an innovative therapeutic strategy involving the reprogramming of TAMs using lipid nanosystems to prevent the formation of a pro-metastatic microenvironment in the liver. RESULTS In vitro results demonstrate that M2-polarized macrophages lose their M2-phenotype following treatment with lipid nanoemulsions composed of vitamin E and sphingomyelin (VitE:SM), transitioning to an M0/M1 state. Specifically, VitE:SM nanoemulsion treatment decreased the expression of macrophage M2 markers such as Arg1 and Egr2, while M1 markers such as Cd86, Il-1b and Il-12b increased. Additionally, the TGF-βR1 inhibitor Galunisertib (LY2157299) was loaded into VitE:SM nanoemulsions and delivered to C57BL/6 mice orthotopically injected with KPC PDAC tumor cells. Treated mice showed diminished primary tumor growth and reduced TAM infiltration in the liver. Moreover, we observed a decrease in liver metastasis with the nanoemulsion treatment in an intrasplenic model of PDAC liver metastasis. Finally, we validated the translatability of our VitE:SM nanosystem therapy in a human cell-based 3D co-culture model in vivo, underscoring the pivotal role of macrophages in the nanosystem's therapeutic effect in the context of human PDAC metastasis. CONCLUSIONS The demonstrated effectiveness and safety of our nanosystem therapy highlights a promising therapeutic approach for PDAC, showcasing its potential in reprogramming TAMs and mitigating the occurrence of liver metastasis.
Collapse
Affiliation(s)
- Adrián Palencia-Campos
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
| | - Laura Ruiz-Cañas
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
- Biobanco Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Marcelina Abal-Sanisidro
- Nano-Oncology and Translational Therapeutics Group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Spain
- University of Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red, CIBERONC, ISCIII, Área Cáncer, Madrid, Spain
| | - Juan Carlos López-Gil
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
- Department of Biochemistry, Autónoma University of Madrid (UAM), 28029, Madrid, Spain
| | - Sandra Batres-Ramos
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
| | - Sofia Mendes Saraiva
- Nano-Oncology and Translational Therapeutics Group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red, CIBERONC, ISCIII, Área Cáncer, Madrid, Spain
| | - Balbino Yagüe
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
| | - Diego Navarro
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
- Department of Biochemistry, Autónoma University of Madrid (UAM), 28029, Madrid, Spain
| | - Sonia Alcalá
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
| | - Juan A Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela (USC), Lugo, Spain
- Laboratorio Mixto de Biotecnología Acuática, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, 2000, Rosario, Argentina
| | - Nadège Bidan
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela (USC), Lugo, Spain
| | - Simona Mura
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | | | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red, CIBERONC, ISCIII, Área Cáncer, Madrid, Spain
- DIVERSA Technologies S.L, Edificio Emprendia, Campus Sur, 15782, Santiago de Compostela, Spain
| | - Bruno Sainz
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain.
- Centro de Investigación Biomédica en Red, CIBERONC, ISCIII, Área Cáncer, Madrid, Spain.
| |
Collapse
|
45
|
Gao T, Li J, Cheng T, Wang X, Wang M, Xu Z, Mu Y, He X, Xing J, Liu S. Ovarian cancer-derived TGF-β1 induces cancer-associated adipocytes formation by activating SMAD3/TRIB3 pathway to establish pre-metastatic niche. Cell Death Dis 2024; 15:930. [PMID: 39719444 DOI: 10.1038/s41419-024-07311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
Ovarian cancer (OC) is prone to adipose tissue metastasis. However, the underlying molecular mechanisms remain elusive. Here, we observed that omental adipocytes were induced into cancer-associated adipocytes (CAAs) by OC-derived TGF-β1 to establish a pre-metastatic niche (PMN) through collagen and fibronectin secretion. Mechanistically, OC-derived TGF-β1 binds to adipocyte membrane receptors and thus activates intracellular signaling by SMAD3 phosphorylation. The activation of TGF-β1/SMAD3 signaling pathway dedifferentiates adipocytes into CAAs by upregulating Tribbles homolog 3 (TRIB3), which suppresses the phosphorylation of CEBPβ. Additionally, CAAs secrete collagen I, collagen VI, and fibronectin to remodel the extracellular matrix and promote the adhesion of OC cells. Pharmacological inhibition of the TGF-β1/SMAD3 pathway significantly inhibits CAAs and PMN formation, thereby reducing the OC metastatic burden. Our findings indicate that the formation of CAAs and PMN in adipose tissues facilitates OC cell implantation and blocking the TGF-β1/SMAD3 signaling pathway could prevent OC omental metastasis.
Collapse
Affiliation(s)
- Tian Gao
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
- Department of Obstetrics and Gynaecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jibin Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Tianyi Cheng
- Department of Obstetrics and Gynaecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xingguo Wang
- Department of Obstetrics and Gynaecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Mengqing Wang
- Department of Obstetrics and Gynaecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhiyang Xu
- Department of Obstetrics and Gynaecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Mu
- Department of Obstetrics and Gynaecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Jinliang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Shujuan Liu
- Department of Obstetrics and Gynaecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
46
|
Dong Q, Dong M, Liu X, Zhou J, Wu S, Liu Z, Niu W, Liu T. Salivary adenoid cystic carcinoma-derived α2,6-sialylated extracellular vesicles increase vascular permeability by triggering ER-stress in endothelial cells and promote lung metastasis. Cancer Lett 2024; 611:217407. [PMID: 39710056 DOI: 10.1016/j.canlet.2024.217407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Salivary adenoid cystic carcinoma (SACC) tends to metastasize to the lungs in the early stages of the disease. Factors secreted by the primary tumor can induce the formation of a supportive microenvironment in distant organs prior to metastasis, a process known as pre-metastatic niche (PMN) formation. Extracellular vesicles (EVs) participate in PMN formation. In this study, α2,6-sialylation of EVs derived from SACC cells with high metastatic potential increased vascular permeability, thereby facilitating tumor metastasis to the lungs. Mechanistic studies indicated that EV α2,6-sialylation triggers protein kinase R-like endoplasmic reticulum kinase (PERK)-eukaryotic initiation factor 2α (eIF2α)-dependent activation of endoplasmic reticulum (ER) stress in the endothelium, leading to the disruption of vascular endothelial cadherin membrane expression. Sialidase or an ER stress inhibitor rescued vascular permeability induced by SACC EVs, which decreased the number of SACC cells extravasating into the lungs both in vitro and in vivo. This study identified a critical role of α2,6-sialylation of SACC EVs in lung metastasis. The findings indicate that EV α2,6-sialylation-induced ER stress in endothelial cells might be a therapeutic target for preventing SACC lung metastasis.
Collapse
Affiliation(s)
- Qi Dong
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Ming Dong
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Xue Liu
- Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China
| | - Jiasheng Zhou
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Saixuan Wu
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Ziyao Liu
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, Dalian, 116044, China.
| | - Tingjiao Liu
- Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China.
| |
Collapse
|
47
|
Li D, Chu X, Ma Y, Zhang F, Tian X, Yang Y, Yang Y. Tumor-derived exosomes: Unravelling the pathogenesis of pancreatic cancer with liver metastases and exploring the potential for clinical translation. Cancer Lett 2024; 611:217403. [PMID: 39709178 DOI: 10.1016/j.canlet.2024.217403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Pancreatic cancer (PC) is one of the most malignant solid cancers, and PC metastasis, particularly liver metastasis, is a major cause of cancer mortality. A key event in tumor metastasis is the formation of pre-metastatic niche (PMN), which provides a microenvironment conducive to tumor cells colonization and progression. Various molecules loaded in tumor-derived exosomes (TDEs) contribute to PMN formation and distant tumor metastasis, by regulating immune and stromal cell function, inducing angiogenesis, and promoting metabolic reprogramming. Therefore, therapies targeting PMN may offer novel advantages to prevent tumor metastasis at an earlier stage. In this review, we summarize multifaceted mechanisms underlying hepatic PMN formation, with a focus on how PC TDEs participate in angiogenesis and vascular permeability, create immune suppressive microenvironment, remodel the extracellular matrix, and regulate metabolic reprogramming. In addition, we highlight the promise of TDEs for early diagnosis and effective therapy of PC liver metastases.
Collapse
Affiliation(s)
- Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiangyu Chu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Fusheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
48
|
Vrynas A, Bazban-Shotorbani S, Arfan S, Satia K, Ashna M, Zhang A, Visan D, Chen A, Carter M, Blackhall F, Simpson KL, Dive C, Huang P, Au SH. Circulating tumor cells shed large extracellular vesicles in capillary bifurcations that activate endothelial and immune cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589880. [PMID: 38659882 PMCID: PMC11042361 DOI: 10.1101/2024.04.17.589880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Circulating tumor cells (CTCs) and their clusters are the drivers of metastasis, but we have an incomplete understanding of how they interact with capillary beds. Using microfluidic models mimicking human capillary bifurcations, we observed cell size- and bifurcation-dependent shedding of nuclei-free fragments by patient CTCs, CTC-derived explant cells and numerous cancer cell lines. Shedding reduced cell sizes up to 61%, facilitating their transit through bifurcations. We demonstrated that shed fragments were a novel subclass of large extracellular vesicles (LEVs), "shearosomes", that require shear stress for their biogenesis and whose proteome was associated with immune-related pathways. Shearosomes exhibited functions characteristic of previously identified EVs including cell-directed internalization by endothelial and immune cells, and intercellular communication abilities such as disruption of endothelial barrier integrity, polarization of monocytes into M2 tumor-promoting macrophages and interactions between endothelial and immune cells. Cumulatively, these findings suggest that CTCs shed shearosomes in capillary beds that drive key processes involved in the formation of pre-metastatic niches.
Collapse
Affiliation(s)
- Angelos Vrynas
- Department of Bioengineering, Imperial College London; London, SW7 2AZ, United Kingdom
| | | | - Sara Arfan
- Division of Molecular Pathology, The Institute of Cancer Research; London, SM2 5NG, United Kingdom
| | - Karishma Satia
- Cancer Research UK National Biomarker Centre, University of Manchester; Manchester, M13 9PL, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence; Manchester, M13 9PL, United Kingdom
| | - Mymuna Ashna
- Department of Bioengineering, Imperial College London; London, SW7 2AZ, United Kingdom
| | - Aoyu Zhang
- Department of Bioengineering, Imperial College London; London, SW7 2AZ, United Kingdom
| | - Diana Visan
- Department of Bioengineering, Imperial College London; London, SW7 2AZ, United Kingdom
| | - Aisher Chen
- Department of Bioengineering, Imperial College London; London, SW7 2AZ, United Kingdom
| | - Mathew Carter
- Cancer Research UK National Biomarker Centre, University of Manchester; Manchester, M13 9PL, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence; Manchester, M13 9PL, United Kingdom
- Medical Oncology, Christie Hospital National Health Service (NHS) Foundation Trust; Manchester, M20 4BX, United Kingdom
| | - Fiona Blackhall
- Cancer Research UK Lung Cancer Centre of Excellence; Manchester, M13 9PL, United Kingdom
- Medical Oncology, Christie Hospital National Health Service (NHS) Foundation Trust; Manchester, M20 4BX, United Kingdom
- The Division of Cancer Sciences, Faculty of Biology, Medicine, and Health, University of Manchester; Manchester, M13 9PL, United Kingdom
| | - Kathryn L Simpson
- Cancer Research UK National Biomarker Centre, University of Manchester; Manchester, M13 9PL, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence; Manchester, M13 9PL, United Kingdom
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester; Manchester, M20 4BX, United Kingdom
| | - Caroline Dive
- Cancer Research UK National Biomarker Centre, University of Manchester; Manchester, M13 9PL, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence; Manchester, M13 9PL, United Kingdom
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester; Manchester, M20 4BX, United Kingdom
| | - Paul Huang
- Division of Molecular Pathology, The Institute of Cancer Research; London, SM2 5NG, United Kingdom
- Cancer Research UK Convergence Science Centre; London, SW7 2AZ, United Kingdom
| | - Sam H Au
- Department of Bioengineering, Imperial College London; London, SW7 2AZ, United Kingdom
- Cancer Research UK Convergence Science Centre; London, SW7 2AZ, United Kingdom
| |
Collapse
|
49
|
Jiang X, Wang J, Lin L, Du L, Ding Y, Zheng F, Xie H, Wang Y, Hu M, Liu B, Xu M, Zhai J, Wang X, Ye J, Cao W, Feng C, Feng J, Hou Z, Meng M, Qiu J, Li Q, Shi Y, Wang Y. Macrophages promote pre-metastatic niche formation of breast cancer through aryl hydrocarbon receptor activity. Signal Transduct Target Ther 2024; 9:352. [PMID: 39690159 DOI: 10.1038/s41392-024-02042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 12/19/2024] Open
Abstract
Macrophages that acquire an immunosuppressive phenotype play a crucial role in establishing the pre-metastatic niche (PMN), which is essential for facilitating breast cancer metastasis to distant organs. Our study showed that increased activity of the aryl hydrocarbon receptor (AHR) in lung macrophages plays a crucial role in establishing the immunosuppressive PMN in breast cancer. Specifically, AHR activation led to high expression of PD-L1 on macrophages by directly binding to the promoter of Pdl1. This upregulation of PD-L1 promoted the differentiation of regulatory T cells (Tregs) within the PMN, further enhancing immunosuppressive conditions. Mice with Ahr conditional deletion in macrophages had reduced lung metastasis of breast cancer. The elevated AHR levels in PMN macrophages were induced by GM-CSF, which was secreted by breast cancer cells. Mechanistically, the activated STAT5 signaling pathway induced by GM-CSF prevented AHR from being ubiquitinated, thereby sustaining its activity in macrophages. In breast cancer patients, the expression of AHR and PD-L1 was correlated with increased Treg cell infiltration, and higher levels of AHR were associated with a poor prognosis. These findings reveal that the crosstalk of breast cancer cells, lung macrophages, and Treg cells via the GM-CSF-STAT5-AHR-PD-L1 cascade modulates the lung pre-metastatic niche during breast cancer progression.
Collapse
Affiliation(s)
- Xu Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Jiaqi Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liangyu Lin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liming Du
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yayun Ding
- The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Fanjun Zheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongzhen Xie
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingyuan Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Benming Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Muhan Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingjie Zhai
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuefeng Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiayin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Cao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao Feng
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Jingyi Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zongliu Hou
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, China
| | - Mingyao Meng
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China.
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
50
|
Isogai T, Hirosawa KM, Suzuki KGN. Recent Advancements in Imaging Techniques for Individual Extracellular Vesicles. Molecules 2024; 29:5828. [PMID: 39769916 PMCID: PMC11728280 DOI: 10.3390/molecules29245828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Extracellular vesicles (EVs), secreted from most cells, are small lipid membranes of vesicles of 30 to 1000 nm in diameter and contain nucleic acids, proteins, and intracellular organelles originating from donor cells. EVs play pivotal roles in intercellular communication, particularly in forming niches for cancer cell metastasis. However, EVs derived from donor cells exhibit significant heterogeneity, complicating the investigation of EV subtypes using ensemble averaging methods. In this context, we highlight recent studies that characterize individual EVs using advanced techniques, including single-fluorescent-particle tracking, single-metal-nanoparticle tracking, single-non-label-particle tracking, super-resolution microscopy, and atomic force microscopy. These techniques have facilitated high-throughput analyses of the properties of individual EV particles such as their sizes, compositions, and physical properties. Finally, we address the challenges that need to be resolved via single-particle (-molecule) imaging and super-resolution microscopy in future research.
Collapse
Affiliation(s)
- Tatsuki Isogai
- The United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan;
| | - Koichiro M. Hirosawa
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan;
| | - Kenichi G. N. Suzuki
- The United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan;
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan;
- Division of Advanced Bioimaging, National Cancer Center Research Institute (NCCRI), Tokyo 104-0045, Japan
| |
Collapse
|