1
|
Chung CS, Kou Y, Shemtov SJ, Verheijen BM, Flores I, Love K, Del Dosso A, Thorwald MA, Liu Y, Hicks D, Sun Y, Toney RG, Carrillo L, Nguyen MM, Biao H, Jin Y, Jauregui AM, Quiroz JD, Head E, Moore DL, Simpson S, Thomas KW, Coba MP, Li Z, Benayoun BA, Rosenthal JJC, Kennedy SR, Quadrato G, Gout JF, Chen L, Vermulst M. Transcript errors generate amyloid-like proteins in huwman cells. Nat Commun 2024; 15:8676. [PMID: 39375347 PMCID: PMC11458900 DOI: 10.1038/s41467-024-52886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Aging is characterized by the accumulation of proteins that display amyloid-like behavior. However, the molecular mechanisms by which these proteins arise remain unclear. Here, we demonstrate that amyloid-like proteins are produced in a variety of human cell types, including stem cells, brain organoids and fully differentiated neurons by mistakes that occur in messenger RNA molecules. Some of these mistakes generate mutant proteins already known to cause disease, while others generate proteins that have not been observed before. Moreover, we show that these mistakes increase when cells are exposed to DNA damage, a major hallmark of human aging. When taken together, these experiments suggest a mechanistic link between the normal aging process and age-related diseases.
Collapse
Affiliation(s)
- Claire S Chung
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Yi Kou
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Sarah J Shemtov
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Bert M Verheijen
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Ilse Flores
- University of Southern California, Keck School of Medicine, Los Angeles, USA
| | - Kayla Love
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Ashley Del Dosso
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Max A Thorwald
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Yuchen Liu
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Daniel Hicks
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Yingwo Sun
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Renaldo G Toney
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Lucy Carrillo
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Megan M Nguyen
- University of Washington, Department of Pathology and Laboratory Medicine, Seattle, USA
| | - Huang Biao
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Yuxin Jin
- University of Southern California, Keck School of Medicine, Los Angeles, USA
| | | | | | - Elizabeth Head
- University of California Irvine, Department of Pathology and Laboratory Medicine, Irvine, USA
| | - Darcie L Moore
- University of Wisconsin, Department of Neuroscience, Madison, USA
| | - Stephen Simpson
- University of New Hampshire, Department of Molecular, Cellular, & Biomedical Sciences, Durham, USA
| | - Kelley W Thomas
- University of New Hampshire, Department of Molecular, Cellular, & Biomedical Sciences, Durham, USA
| | - Marcelo P Coba
- University of Southern California, Keck School of Medicine, Los Angeles, USA
| | - Zhongwei Li
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Bérénice A Benayoun
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | | | - Scott R Kennedy
- University of Washington, Department of Pathology and Laboratory Medicine, Seattle, USA
| | - Giorgia Quadrato
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Jean-Francois Gout
- Mississippi State University, Department of Biology, Mississippi State, USA
| | - Lin Chen
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Marc Vermulst
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA.
| |
Collapse
|
2
|
Yang C, Li Z, Tian K, Meng X, Wang X, Song D, Wang X, Xu T, Sun P, Zhong J, Song Y, Ma W, Liu Y, Yu D, Shen R, Jiang C, Cai J. LncRNA-Mediated TPI1 and PKM2 Promote Self-Renewal and Chemoresistance in GBM. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2402600. [PMID: 39342418 DOI: 10.1002/advs.202402600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Temozolomide (TMZ) resistance is one of the major reasons for poor prognosis in patients with glioblastoma (GBM). Long noncoding RNAs (lncRNAs) are involved in multiple biological processes, including TMZ resistance. Linc00942 is a potential regulator of TMZ sensitivity in GBM cells is shown previously. However, the underlying mechanism of TMZ resistance induced by Linc00942 is unknown. In this study, the sequence of Linc00942 by rapid amplification of cDNA ends assay in TMZ-resistant GBM cells is identified and confirmed that Linc00942 contributes to self-renewal and TMZ resistance in GBM cells. Chromatin isolation by RNA purification followed by mass spectrometry (ChIRP-MS) and followed by Western blotting (ChIRP-WB) assays shows that Linc00492 interacted with TPI1 and PKM2, subsequently promoting their phosphorylation, dimerization, and nuclear translocation. The interaction of Linc00942 with TPI1 and PKM2 leads to increased acetylation of H3K4 and activation of the STAT3/P300 axis, resulting in the marked transcriptional activation of SOX9. Moreover, the knockdown of SOX9 reversed TMZ resistance induced by Linc00492 both in vitro and in vivo. In summary, Linc00942 strongly promotes SOX9 expression by interacting with TPI1 and PKM2 is found, thereby driving self-renewal and TMZ resistance in GBM cells. These findings suggest potential combined therapeutic strategies to overcome TMZ resistance in patients with GBM.
Collapse
Affiliation(s)
- Changxiao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Ziwei Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Kaifu Tian
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xinyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Dan Song
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Tianye Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Penggang Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Junzhe Zhong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yu Song
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yuxiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Daohan Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Ruofei Shen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| |
Collapse
|
3
|
Jiang J, Xu J, Ji S, Yu X, Chen J. Unraveling the mysteries of MGMT: Implications for neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189184. [PMID: 39303858 DOI: 10.1016/j.bbcan.2024.189184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Neuroendocrine tumors (NETs) are a diverse group of tumors that arise from neuroendocrine cells and are commonly found in various organs. A considerable proportion of NET patients were diagnosed at an advanced or metastatic stage. Alkylating agents are the primary treatment for NET, and O6-methylguanine methyltransferase (MGMT) remains the first-line of defense against DNA damage caused by these agents. Clinical trials have indicated that MGMT promoter methylation or its low/lacked expression can predict a favorable outcome with Temozolomide in NETs. Its status could help select NET patients who can benefit from alkylating agents. Therefore, MGMT status serves as a biomarker to guide decisions on the efficacy of Temozolomide as a personalized treatment option. Additionally, delving into the regulatory mechanisms of MGMT status can lead to the development of MGMT-targeted therapies, benefiting individuals with high levels of MGMT expression. This review aims to explore the polymorphism of MGMT regulation and summarize its clinical implications in NETs, which would help establish the role of MGMT as a biomarker and its potential as a therapeutic target in NETs. Additionally, we explore the benefits of combining Temozolomide and immunotherapy in MGMT hypermethylated subgroups. Future studies can focus on optimizing Temozolomide administration to induce specific immunomodulatory changes.
Collapse
Affiliation(s)
- Jianyun Jiang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Junfeng Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Vermulst M, Paskvan SL, Chung CS, Franke K, Clegg N, Minot S, Madeoy J, Long AS, Gout JF, Bielas JH. MADDD-seq, a novel massively parallel sequencing tool for simultaneous detection of DNA damage and mutations. Nucleic Acids Res 2024; 52:e76. [PMID: 39149908 PMCID: PMC11381349 DOI: 10.1093/nar/gkae632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/20/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
Our genome is exposed to a wide variety of DNA-damaging agents. If left unrepaired, this damage can be converted into mutations that promote carcinogenesis or the development of genetically inherited diseases. As a result, researchers and clinicians require tools that can detect DNA damage and mutations with exceptional sensitivity. In this study, we describe a massively parallel sequencing tool termed Mutation And DNA Damage Detection-seq (MADDD-seq) that is capable of detecting O6-methyl guanine lesions and mutations simultaneously, with a single assay. To illustrate the dual capabilities of MADDD-seq, we treated WT and DNA repair deficient yeast cells with the DNA-damaging agent MNNG and tracked DNA lesions and mutations over a 24-h time period. This approach allowed us to identify thousands of DNA adducts and mutations in a single sequencing run and gain deep insight into the kinetics of DNA repair and mutagenesis.
Collapse
Affiliation(s)
- Marc Vermulst
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Samantha L Paskvan
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Claire S Chung
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Kathryn Franke
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nigel Clegg
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sam Minot
- Data Core, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jennifer Madeoy
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Annalyssa S Long
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jean-Francois Gout
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Jason H Bielas
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Xu J, Lou X, Wang F, Zhang W, Xu X, Ye Z, Zhuo Q, Wang Y, Jing D, Fan G, Chen X, Zhang Y, Zhou C, Chen J, Qin Y, Yu X, Ji S. MEN1 Deficiency-Driven Activation of the β-Catenin-MGMT Axis Promotes Pancreatic Neuroendocrine Tumor Growth and Confers Temozolomide Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308417. [PMID: 39041891 PMCID: PMC11425246 DOI: 10.1002/advs.202308417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 07/12/2024] [Indexed: 07/24/2024]
Abstract
O6-methylguanine DNA methyltransferase (MGMT) removes alkyl adducts from the guanine O6 position (O6-MG) and repairs DNA damage. High MGMT expression results in poor response to temozolomide (TMZ). However, the biological importance of MGMT and the mechanism underlying its high expression in pancreatic neuroendocrine tumors (PanNETs) remain elusive. Here, it is found that MGMT expression is highly elevated in PanNET tissues compared with paired normal tissues and negatively associated with progression-free survival (PFS) time in patients with PanNETs. Knocking out MGMT inhibits cancer cell growth in vitro and in vivo. Ectopic MEN1 expression suppresses MGMT transcription in a manner that depends on β-Catenin nuclear export and degradation. The Leucine 267 residue of MEN1 is crucial for regulating β-Catenin-MGMT axis activation and chemosensitivity to TMZ. Interference with β-Catenin re-sensitizes tumor cells to TMZ and significantly reduces the cytotoxic effects of high-dose TMZ treatment, and MGMT overexpression counteracts the effects of β-Catenin deficiency. This study reveals the biological importance of MGMT and a new mechanism by which MEN1 deficiency regulates its expression, thus providing a potential combinational strategy for treating patients with TMZ-resistant PanNETs.
Collapse
|
6
|
Fan T, Shen L, Huang Y, Wang X, Zhao L, Zhong R, Wang P, Sun G. Lonidamine Increases the Cytotoxic Effect of 1-[(4-Amino-2-methyl-5-pyrimidinyl)methyl]-3-(2-chloroethyl)-3-nitrosourea via Energy Inhibition, Disrupting Redox Homeostasis, and Downregulating MGMT Expression in Human Lung Cancer Cell Line. ACS OMEGA 2024; 9:36134-36147. [PMID: 39220482 PMCID: PMC11360010 DOI: 10.1021/acsomega.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer ranks as the second most diagnosed cancer and the leading cause of cancer-related deaths worldwide. Novel chemotherapeutic strategies are crucial to efficiently target tumor cells while minimizing toxicity to normal cells. In this study, we proposed a combination strategy using energy blocker lonidamine (LND) and cytotoxic drug nimustine (ACNU, 1-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-3-(2-chloroethyl)-3-nitrosourea) to enhance the killing of a human lung cancer cell line and investigated the potential chemo-sensitizing mechanism of LND. LND was found to remarkably increase the cytotoxicity of ACNU to A549 and H1299 cells without significantly affecting normal lung BEAS2B cells. The combination of LND and ACNU also produced significant effects on cell apoptosis, colony formation, cell migration, and invasion assays compared to single drug treatment. Mechanistically, LND decreased intracellular ATP levels by inhibiting glycolysis and inducing mitochondrial dysfunction. Furthermore, the combination of LND and ACNU could intensify cellular oxidative stress, decrease cellular GSH contents, and increase reactive oxygen species (ROS) production. Notably, LND alone dramatically downregulated the expression of DNA repair protein MGMT (O6-methylguanine-DNA methyltransferase), enhancing DNA interstrand cross-link formation induced by ACNU. Overall, LND represents a potential chemo-sensitizer to enhance ACNU therapy through energy inhibition, disrupting redox homeostasis and downregulating MGMT expression in human lung cancer cell line under preclinical and clinical background.
Collapse
Affiliation(s)
- Tengjiao Fan
- Department
of Medical Technology, Beijing Pharmaceutical
University of Staff and Workers, Beijing 100079, P. R. China
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Lin Shen
- Department
of Dermatology, the First Medical Center of PLA General Hospital, Beijing 100853, P. R. China
| | - Yaxin Huang
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Xin Wang
- Department
of Clinical Trials Center, National Cancer Center/National Clinical
Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, P. R. China
| | - Lijiao Zhao
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Rugang Zhong
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Peng Wang
- Department
of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Guohui Sun
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| |
Collapse
|
7
|
Steinbuch KB, Bucardo M, Tor Y. Emissive Alkylated Guanine Analogs as Probes for Monitoring O 6-Alkylguanine-DNA-transferase Activity. ACS OMEGA 2024; 9:36778-36786. [PMID: 39220506 PMCID: PMC11360037 DOI: 10.1021/acsomega.4c05700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/22/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Human O 6-alkylguanine-DNA-transferase (hAGT) is a repair protein that provides protection from mutagenic events caused by O 6-alkylguanine lesions. As this stoichiometric activity is tissue-specific, indicative of tumor status, and correlated to chemotherapeutic success, tracking the activity of hAGT could prove to be informative for disease diagnosis and therapy. Herein, we explore two families of emissive O 6-methyl- and O 6-benzylguanine analogs based on our previously described th G N and tz G N , thieno- and isothiazolo-guanine surrogates, respectively, as potential reporters. We establish that O 6 -Bn th G N and O 6 -Bn tz G N provide a spectral window to optically monitor hAGT activity, can be used as substrates for the widely used SNAP-Tag delivery system, and are sufficiently bright to be visualized in mammalian cells using fluorescence microscopy.
Collapse
Affiliation(s)
| | | | - Yitzhak Tor
- Department of Chemistry and
Biochemistry, University of California San
Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
8
|
Álvarez-González E, Sierra LM. Tricarboxylic Acid Cycle Relationships with Non-Metabolic Processes: A Short Story with DNA Repair and Its Consequences on Cancer Therapy Resistance. Int J Mol Sci 2024; 25:9054. [PMID: 39201738 PMCID: PMC11355010 DOI: 10.3390/ijms25169054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Metabolic changes involving the tricarboxylic acid (TCA) cycle have been linked to different non-metabolic cell processes. Among them, apart from cancer and immunity, emerges the DNA damage response (DDR) and specifically DNA damage repair. The oncometabolites succinate, fumarate and 2-hydroxyglutarate (2HG) increase reactive oxygen species levels and create pseudohypoxia conditions that induce DNA damage and/or inhibit DNA repair. Additionally, by influencing DDR modulation, they establish direct relationships with DNA repair on at least four different pathways. The AlkB pathway deals with the removal of N-alkylation DNA and RNA damage that is inhibited by fumarate and 2HG. The MGMT pathway acts in the removal of O-alkylation DNA damage, and it is inhibited by the silencing of the MGMT gene promoter by 2HG and succinate. The other two pathways deal with the repair of double-strand breaks (DSBs) but with opposite effects: the FH pathway, which uses fumarate to help with the repair of this damage, and the chromatin remodeling pathway, in which oncometabolites inhibit its repair by impairing the homologous recombination repair (HRR) system. Since oncometabolites inhibit DNA repair, their removal from tumor cells will not always generate a positive response in cancer therapy. In fact, their presence contributes to longer survival and/or sensitization against tumor therapy in some cancer patients.
Collapse
Affiliation(s)
- Enol Álvarez-González
- Departamento de Biología Funcional, Área de Genética, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avda. HUCA s/n, 33011 Oviedo, Spain
| | - Luisa María Sierra
- Departamento de Biología Funcional, Área de Genética, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avda. HUCA s/n, 33011 Oviedo, Spain
| |
Collapse
|
9
|
Wu Z, Dai J, Li J, Zhang Z, Shen X. Exploiting the role of O6-methylguanine-DNA-methyltransferase (MGMT) in gastrointestinal cancers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03365-4. [PMID: 39167167 DOI: 10.1007/s00210-024-03365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Gastrointestinal (GI) cancer is a prevalent disease and is recognized as the primary cause of cancer-related mortality globally. Therefore, there is an urgent need for novel diagnostic and treatment approaches for GC. The methylation of the O(6)-methylguanine DNA methyltransferase (MGMT) gene promoter is a significant factor in the development of colorectal cancer (CRC), namely in roughly 30-40% of cases where the cancer has spread. MGMT plays a role in the repair of DNA damage caused by methylating drugs like temozolomide (TMZ) and chloroethylating compounds like carmustine. As a result, it contributes to the resistance of chemotherapy when these agents are utilized. Although MGMT's role in the development of CRC is well established, its prognostic significance remains a subject of debate. Only a limited number of research have been conducted to examine the prognostic significance of MGMT methylation, yielding varying outcomes. This review explores the structural functions and repair processes of MGMT, focusing on the putative structural and functional significance of the N-terminal domain of MGMT. It also investigates the advancement of cancer treatment techniques that specifically target MGMT.
Collapse
Affiliation(s)
- Ziming Wu
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jie Dai
- Anqing 116 Hospital, Anqing, 246001, Anhui, China
| | - Jie Li
- Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Zhengyu Zhang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zheijiang, China
| | - Xbing Shen
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
10
|
Fujii S, Fuchs RP. Accidental Encounter of Repair Intermediates in Alkylated DNA May Lead to Double-Strand Breaks in Resting Cells. Int J Mol Sci 2024; 25:8192. [PMID: 39125763 PMCID: PMC11311527 DOI: 10.3390/ijms25158192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
In clinics, chemotherapy is often combined with surgery and radiation to increase the chances of curing cancers. In the case of glioblastoma (GBM), patients are treated with a combination of radiotherapy and TMZ over several weeks. Despite its common use, the mechanism of action of the alkylating agent TMZ has not been well understood when it comes to its cytotoxic effects in tumor cells that are mostly non-dividing. The cellular response to alkylating DNA damage is operated by an intricate protein network involving multiple DNA repair pathways and numerous checkpoint proteins that are dependent on the type of DNA lesion, the cell type, and the cellular proliferation state. Among the various alkylating damages, researchers have placed a special on O6-methylguanine (O6-mG). Indeed, this lesion is efficiently removed via direct reversal by O6-methylguanine-DNA methyltransferase (MGMT). As the level of MGMT expression was found to be directly correlated with TMZ efficiency, O6-mG was identified as the critical lesion for TMZ mode of action. Initially, the mode of action of TMZ was proposed as follows: when left on the genome, O6-mG lesions form O6-mG: T mispairs during replication as T is preferentially mis-inserted across O6-mG. These O6-mG: T mispairs are recognized and tentatively repaired by a post-replicative mismatched DNA correction system (i.e., the MMR system). There are two models (futile cycle and direct signaling models) to account for the cytotoxic effects of the O6-mG lesions, both depending upon the functional MMR system in replicating cells. Alternatively, to explain the cytotoxic effects of alkylating agents in non-replicating cells, we have proposed a "repair accident model" whose molecular mechanism is dependent upon crosstalk between the MMR and the base excision repair (BER) systems. The accidental encounter between these two repair systems will cause the formation of cytotoxic DNA double-strand breaks (DSBs). In this review, we summarize these non-exclusive models to explain the cytotoxic effects of alkylating agents and discuss potential strategies to improve the clinical use of alkylating agents.
Collapse
Affiliation(s)
- Shingo Fujii
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille University, 13273 Marseille, France
| | - Robert P. Fuchs
- SAS bioHalosis, Zone Luminy Biotech, 13009 Marseille, France
| |
Collapse
|
11
|
Richardson TE, Walker JM, Hambardzumyan D, Brem S, Hatanpaa KJ, Viapiano MS, Pai B, Umphlett M, Becher OJ, Snuderl M, McBrayer SK, Abdullah KG, Tsankova NM. Genetic and epigenetic instability as an underlying driver of progression and aggressive behavior in IDH-mutant astrocytoma. Acta Neuropathol 2024; 148:5. [PMID: 39012509 PMCID: PMC11252228 DOI: 10.1007/s00401-024-02761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
In recent years, the classification of adult-type diffuse gliomas has undergone a revolution, wherein specific molecular features now represent defining diagnostic criteria of IDH-wild-type glioblastomas, IDH-mutant astrocytomas, and IDH-mutant 1p/19q-codeleted oligodendrogliomas. With the introduction of the 2021 WHO CNS classification, additional molecular alterations are now integrated into the grading of these tumors, given equal weight to traditional histologic features. However, there remains a great deal of heterogeneity in patient outcome even within these established tumor subclassifications that is unexplained by currently codified molecular alterations, particularly in the IDH-mutant astrocytoma category. There is also significant intercellular genetic and epigenetic heterogeneity and plasticity with resulting phenotypic heterogeneity, making these tumors remarkably adaptable and robust, and presenting a significant barrier to the design of effective therapeutics. Herein, we review the mechanisms and consequences of genetic and epigenetic instability, including chromosomal instability (CIN), microsatellite instability (MSI)/mismatch repair (MMR) deficits, and epigenetic instability, in the underlying biology, tumorigenesis, and progression of IDH-mutant astrocytomas. We also discuss the contribution of recent high-resolution transcriptomics studies toward defining tumor heterogeneity with single-cell resolution. While intratumoral heterogeneity is a well-known feature of diffuse gliomas, the contribution of these various processes has only recently been considered as a potential driver of tumor aggressiveness. CIN has an independent, adverse effect on patient survival, similar to the effect of histologic grade and homozygous CDKN2A deletion, while MMR mutation is only associated with poor overall survival in univariate analysis but is highly correlated with higher histologic/molecular grade and other aggressive features. These forms of genomic instability, which may significantly affect the natural progression of these tumors, response to therapy, and ultimately clinical outcome for patients, are potentially measurable features which could aid in diagnosis, grading, prognosis, and development of personalized therapeutics.
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA.
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Balagopal Pai
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
| | - Oren J Becher
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Samuel K McBrayer
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
12
|
Chang C, Chavarro VS, Gerstl JVE, Blitz SE, Spanehl L, Dubinski D, Valdes PA, Tran LN, Gupta S, Esposito L, Mazzetti D, Gessler FA, Arnaout O, Smith TR, Friedman GK, Peruzzi P, Bernstock JD. Recurrent Glioblastoma-Molecular Underpinnings and Evolving Treatment Paradigms. Int J Mol Sci 2024; 25:6733. [PMID: 38928445 PMCID: PMC11203521 DOI: 10.3390/ijms25126733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma is the most common and lethal central nervous system malignancy with a median survival after progression of only 6-9 months. Major biochemical mechanisms implicated in glioblastoma recurrence include aberrant molecular pathways, a recurrence-inducing tumor microenvironment, and epigenetic modifications. Contemporary standard-of-care (surgery, radiation, chemotherapy, and tumor treating fields) helps to control the primary tumor but rarely prevents relapse. Cytoreductive treatment such as surgery has shown benefits in recurrent glioblastoma; however, its use remains controversial. Several innovative treatments are emerging for recurrent glioblastoma, including checkpoint inhibitors, chimeric antigen receptor T cell therapy, oncolytic virotherapy, nanoparticle delivery, laser interstitial thermal therapy, and photodynamic therapy. This review seeks to provide readers with an overview of (1) recent discoveries in the molecular basis of recurrence; (2) the role of surgery in treating recurrence; and (3) novel treatment paradigms emerging for recurrent glioblastoma.
Collapse
Affiliation(s)
- Christopher Chang
- Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
| | - Velina S. Chavarro
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Jakob V. E. Gerstl
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Sarah E. Blitz
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Lennard Spanehl
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Daniel Dubinski
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Pablo A. Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Lily N. Tran
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA;
| | - Saksham Gupta
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luisa Esposito
- Department of Medicine and Surgery, Unicamillus University, 00131 Rome, Italy;
| | - Debora Mazzetti
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Florian A. Gessler
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Gregory K. Friedman
- Division of Pediatrics, Neuro-Oncology Section, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Pierpaolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Fu P, Shen J, Song K, Xu M, Zhou Z, Xu H. Prognostic Factors for Recurrent Glioma: A Population-Based Analysis. Clin Med Insights Oncol 2024; 18:11795549241252652. [PMID: 38883848 PMCID: PMC11177728 DOI: 10.1177/11795549241252652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/03/2024] [Indexed: 06/18/2024] Open
Abstract
Background The overall survival (OS) for patients with recurrent glioma is meager. Also, the effect of radionecrosis and prognostic factors for recurrent glioma remains controversial. In this regard, developing effective predictive models and guiding clinical care is crucial for these patients. Methods We screened patients with recurrent glioma after radiotherapy and those who received surgery between August 1, 2013, and December 31, 2020. Univariate and multivariate Cox regression analyses determined the independent prognostic factors affecting the prognosis of recurrent glioma. Moreover, nomograms were constructed to predict recurrent glioma risk and prognosis. Statistical methods were used to determine the prediction accuracy and discriminability of the nomogram prediction model based on the area under the curve (AUC), the C-index, the decision curve analysis (DCA), and the calibration curve. In order to distinguish high-risk and low-risk groups for OS, the X-Tile and Kaplan-Meier (K-M) survival curves were employed, and the nomogram prediction model was further validated by the X-Tile and K-M survival curves. Results According to a Cox regression analysis, independent prognostic factors of recurrent glioma after radiotherapy with radionecrosis were World Health Organization (WHO) grade and gliosis percentage. We utilized a nomogram prediction model to analyze results visually. The C-index was 0.682 (95% CI: 0.616-0.748). According to receiver operating characteristic (ROC) analysis, calibration plots, and DCA, the nomogram prediction model was found to have a high-performance ability, and all patients were divided into low-risk and high-risk groups based on OS (P < .001). Conclusion WHO grade and gliosis percentage are prognostic factors for recurrent glioma with radionecrosis, and a nomogram prediction model was established based on these two variables. Patients could be divided into high- and low-risk groups with different OS by this model, and it will provide individualized clinical decisions for future treatment.
Collapse
Affiliation(s)
- Pengfei Fu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingjing Shen
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Kun Song
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Xu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhirui Zhou
- Radiation Oncology Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Zhu Y, Li R, Wang Y, Zhang Q, He Y, Shang J, Liu X, Wang F. A Methylation-Gated DNAzyme Circuit for Spatially Controlled Imaging of MicroRNA in Cells and Animals. Anal Chem 2024; 96:9666-9675. [PMID: 38815126 DOI: 10.1021/acs.analchem.4c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Epigenetic modification plays an indispensable role in regulating routine molecular signaling pathways, yet it is rarely used to modulate molecular self-assembly networks. Herein, we constructed a bioorthogonal demethylase-stimulated DNA circuitry (DSC) system for high-fidelity imaging of microRNA (miRNA) in live cells and mice by eliminating undesired off-site signal leakage. The simple and robust DSC system is composed of a primary cell-specific circuitry regulation (CR) module and an ultimate signal-transducing amplifier (SA) module. After the modularly designed DSC system was delivered into target live cells, the DNAzyme of the CR module was site-specifically activated by endogenous demethylase to produce fuel strands for the subsequent miRNA-targeting SA module. Through the on-site and multiply guaranteed molecular recognitions, the lucid yet efficient DSC system realized the reliably amplified in vivo miRNA sensing and enabled the in-depth exploration of the demethylase-involved signal pathway with miRNA in live cells. Our bioorthogonally on-site-activated DSC system represents a universal and versatile biomolecular sensing platform via various demethylase regulations and shows more prospects for more different personalized theragnostics.
Collapse
Affiliation(s)
- Yuxuan Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, P. R. China
| | - Ruomeng Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, P. R. China
| | - Yifei Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, P. R. China
| | - Qingqing Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, P. R. China
| | - Yuqiu He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, P. R. China
| |
Collapse
|
15
|
Ingenerf M, Auernhammer C, Lorbeer R, Winkelmann M, Mansournia S, Mansour N, Hesse N, Heinrich K, Ricke J, Berger F, Schmid-Tannwald C. Utility of clinical and MR imaging parameters for prediction and monitoring of response to capecitabine and temozolomide (CAPTEM) therapy in patients with liver metastases of neuroendocrine tumors. Radiol Oncol 2024; 58:196-205. [PMID: 38613843 PMCID: PMC11165981 DOI: 10.2478/raon-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/20/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND This study explores the predictive and monitoring capabilities of clinical and multiparametric MR parameters in assessing capecitabine and temozolomide (CAPTEM) therapy response in patients with neuroendocrine tumors (NET). PATIENTS AND METHODS This retrospective study (n = 44) assessed CAPTEM therapy response in neuroendocrine liver metastases (NELM) patients. Among 33 monitored patients, as a subgroup of the overall study cohort, pretherapeutic and follow-up MRI data (size, apparent diffusion coefficient [ADC] values, and signal intensities), along with clinical parameters (chromogranin A [CgA] and Ki-67%), were analyzed. Progression-free survival (PFS) served as the reference. Responders were defined as those with PFS ≥ 6 months. RESULTS Most patients were male (75%) and had G2 tumors (76%) with a pancreatic origin (84%). Median PFS was 5.7 months; Overall Survival (OS) was 25 months. Non-responders (NR) had higher Ki-67 in primary tumors (16.5 vs. 10%, p = 0.01) and increased hepatic burden (20% vs. 5%, p = 0.007). NR showed elevated CgA post-treatment, while responders (R) exhibited a mild decrease. ADC changes differed significantly between groups, with NR having decreased ADCmin (-23%) and liver-adjusted ADCmean/ADCmean liver (-16%), compared to R's increases of ADCmin (50%) and ADCmean/ADCmean liver (30%). Receiver operating characteristic (ROC) analysis identified the highest area under the curve (AUC) (0.76) for a single parameter for ∆ ADC mean/liver ADCmean, with a cut-off of < 6.9 (76% sensitivity, 75% specificity). Combining ∆ Size NELM and ∆ ADCmin achieved the best balance (88% sensitivity, 60% specificity) outperforming ∆ Size NELM alone (69% sensitivity, 65% specificity). Kaplan-Meier analysis indicated significantly longer PFS for ∆ ADCmean/ADCmean liver < 6.9 (p = 0.024) and ∆ Size NELM > 0% + ∆ ADCmin < -2.9% (p = 0.021). CONCLUSIONS Survival analysis emphasizes the need for adapted response criteria, involving combined evaluation of CgA, ADC values, and tumor size for monitoring CAPTEM response in hepatic metastasized NETs.
Collapse
Affiliation(s)
- Maria Ingenerf
- Department of Radiology, University Hospital, LMU Munich, Germany
| | - Christoph Auernhammer
- ENETS Centre of Excellence, Interdisciplinary Center of Neuroendocrine Tumours of the GastroEnteroPancreatic System at the University Hospital of Munich (GEPNET-KUM), University Hospital of Munich, Munich, Germany
- Department of Internal Medicine 4, University Hospital, LMU Munich, Munich, Germany
| | - Roberto Lorbeer
- Department of Radiology, University Hospital, LMU Munich, Germany
| | | | - Shiwa Mansournia
- Department of Radiology, University Hospital, LMU Munich, Germany
| | - Nabeel Mansour
- Department of Radiology, University Hospital, LMU Munich, Germany
| | - Nina Hesse
- Department of Radiology, University Hospital, LMU Munich, Germany
| | - Kathrin Heinrich
- Department of Medicine III, University Hospital, University of Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Germany
- ENETS Centre of Excellence, Interdisciplinary Center of Neuroendocrine Tumours of the GastroEnteroPancreatic System at the University Hospital of Munich (GEPNET-KUM), University Hospital of Munich, Munich, Germany
| | - Frank Berger
- Department of Radiology, University Hospital, LMU Munich, Germany
| | - Christine Schmid-Tannwald
- Department of Radiology, University Hospital, LMU Munich, Germany
- ENETS Centre of Excellence, Interdisciplinary Center of Neuroendocrine Tumours of the GastroEnteroPancreatic System at the University Hospital of Munich (GEPNET-KUM), University Hospital of Munich, Munich, Germany
| |
Collapse
|
16
|
Khan H, Rafi Z, Khan MY, Maarfi F, Rehman S, Kaur K, Ahmad MK, Shahab U, Ahmad N, Ahmad S. Epigenetic contributions to cancer: Exploring the role of glycation reactions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:143-193. [PMID: 39179346 DOI: 10.1016/bs.ircmb.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Advanced Glycation End-products (AGEs), with their prolonged half-life in the human body, are emerging as potent diagnostic indicators. Early intervention studies, focusing on AGE cross-link breakers, have shown encouraging results in heart failure patients, paving the way for disease progression monitoring and therapy effectiveness evaluation. AGEs are the byproducts of a non-enzymatic reaction where sugars interact with proteins, lipids, and nucleic acids. These compounds possess the power to alter numerous biological processes, ranging from disrupting molecular conformation and promoting cross-linking to modifying enzyme activity, reducing clearance, and impairing receptor recognition. The damage inflicted by AGEs through the stimulation of intracellular signaling pathways is associated with the onset of chronic diseases across various organ systems. This review consolidates the characteristics of AGEs and the challenges posed by their expression in diverse physiological and pathological states. Furthermore, it highlights the clinical relevance of AGEs and the latest research breakthroughs aimed at reducing AGE accumulation.
Collapse
Affiliation(s)
- Hamda Khan
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Zeeshan Rafi
- Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Yasir Khan
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, India
| | - Farah Maarfi
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, India
| | | | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | | | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| | - Naved Ahmad
- Department of Computer Science and Information System, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia.
| |
Collapse
|
17
|
Yun HS, Kramp TR, Palanichamy K, Tofilon PJ, Camphausen K. MGMT inhibition regulates radioresponse in GBM, GSC, and melanoma. Sci Rep 2024; 14:12363. [PMID: 38811596 PMCID: PMC11136993 DOI: 10.1038/s41598-024-61240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Radiotherapy is the standard treatment for glioblastoma (GBM), but the overall survival rate for radiotherapy treated GBM patients is poor. The use of adjuvant and concomitant temozolomide (TMZ) improves the outcome; however, the effectiveness of this treatment varies according to MGMT levels. Herein, we evaluated whether MGMT expression affected the radioresponse of human GBM, GBM stem-like cells (GSCs), and melanoma. Our results indicated a correlation between MGMT promoter methylation status and MGMT expression. MGMT-producing cell lines ACPK1, GBMJ1, A375, and MM415 displayed enhanced radiosensitivity when MGMT was silenced using siRNA or when inhibited by lomeguatrib, whereas the OSU61, NSC11, WM852, and WM266-4 cell lines, which do not normally produce MGMT, displayed reduced radiosensitivity when MGMT was overexpressed. Mechanistically lomeguatrib prolonged radiation-induced γH2AX retention in MGMT-producing cells without specific cell cycle changes, suggesting that lomeguatrib-induced radiosensitization in these cells is due to radiation-induced DNA double-stranded break (DSB) repair inhibition. The DNA-DSB repair inhibition resulted in cell death via mitotic catastrophe in MGMT-producing cells. Overall, our results demonstrate that MGMT expression regulates radioresponse in GBM, GSC, and melanoma, implying a role for MGMT as a target for radiosensitization.
Collapse
Affiliation(s)
- Hong Shik Yun
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive, 9000 Rockville Pike, Building 10, Bethesda, MD, 20892, USA
| | - Tamalee R Kramp
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive, 9000 Rockville Pike, Building 10, Bethesda, MD, 20892, USA
| | - Kamalakannan Palanichamy
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Philip J Tofilon
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive, 9000 Rockville Pike, Building 10, Bethesda, MD, 20892, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive, 9000 Rockville Pike, Building 10, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Gibson D, Vo AH, Lambing H, Bhattacharya P, Tahir P, Chehab FF, Butowski N. A systematic review of high impact CpG sites and regions for MGMT methylation in glioblastoma [A systematic review of MGMT methylation in GBM]. BMC Neurol 2024; 24:103. [PMID: 38521933 PMCID: PMC10960428 DOI: 10.1186/s12883-024-03605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/17/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND MGMT (O 6 -methylguanine-DNA methyltransferase) promoter methylation is a commonly assessed prognostic marker in glioblastoma (GBM). Epigenetic silencing of the MGMT gene by promoter methylation is associated with greater overall and progression free survival with alkylating agent regimens. To date, there is marked heterogeneity in how MGMT promoter methylation is tested and which CpG sites are interrogated. METHODS To further elucidate which MGMT promoter CpG sites are of greatest interest, we performed comprehensive searches in PubMed, Web of Science, and Embase and reviewed 2,925 article abstracts. We followed the GRADE scoring system to assess risk of bias and the quality of the studies we included. RESULTS We included articles on adult glioblastoma that examined significant sites or regions within MGMT promoter for the outcomes: overall survival, progression free survival, and/or MGMT expression. We excluded systemic reviews and articles on lower grade glioma. fifteen articles met inclusion criteria with variable overlap in laboratory and statistical methods employed, as well as CpG sites interrogated. Pyrosequencing or BeadChip arrays were the most popular methods utilized, and CpG sites between CpG's 70-90 were most frequently investigated. Overall, there was moderate concordance between the CpG sites that the studies reported to be highly predictive of prognosis. Combinations or means of sites between CpG's 73-89 were associated with improved OS and PFS. Six studies identified CpG sites associated with prognosis that were closer to the transcription start site: CpG's 8, 19, 22, 25, 27, 32,38, and CpG sites 21-37, as well as low methylation level of the enhancer regions. CONCLUSION The following systematic review details a comprehensive investigation of the current literature and highlights several potential key CpG sites that demonstrate significant association with OS, PFS, and MGMT expression. However, the relationship between extent of MGMT promoter methylation and survival may be non-linear and could be influenced by potential CpG hotspots, the extent of methylation at each CpG site, and MGMT enhancer methylation status. There were several limitations within the studies such as smaller sample sizes, variance between methylation testing methods, and differences in the various statistical methods to test for association to outcome. Further studies of high impact CpG sites in MGMT methylation is warranted.
Collapse
Affiliation(s)
- David Gibson
- Department of Neuro-Oncology, University of California, San Francisco, 400 Parnassus Ave, San Francisco, CA, USA
- Department of Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anh Huan Vo
- Department of Neuro-Oncology, University of California, San Francisco, 400 Parnassus Ave, San Francisco, CA, USA.
| | - Hannah Lambing
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Prithanjan Bhattacharya
- Department of Neuro-Oncology, University of California, San Francisco, 400 Parnassus Ave, San Francisco, CA, USA
| | - Peggy Tahir
- University of California, San Francisco Library, San Francisco, CA, USA
| | - Farid F Chehab
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas Butowski
- Department of Neuro-Oncology, University of California, San Francisco, 400 Parnassus Ave, San Francisco, CA, USA
| |
Collapse
|
19
|
AghaAmiri S, Ghosh SC, Hernandez Vargas S, Halperin DM, Azhdarinia A. Somatostatin Receptor Subtype-2 Targeting System for Specific Delivery of Temozolomide. J Med Chem 2024; 67:2425-2437. [PMID: 38346097 PMCID: PMC10896214 DOI: 10.1021/acs.jmedchem.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 02/23/2024]
Abstract
Temozolomide (TMZ) is a DNA alkylating agent that produces objective responses in patients with neuroendocrine tumors (NETs) when the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is inactivated. At high doses, TMZ therapy exhausts MGMT activity but also produces dose-limiting toxicities. To reduce off-target effects, we converted the clinically approved radiotracer 68Ga-DOTA-TOC into a peptide-drug conjugate (PDC) for targeted delivery of TMZ to somatostatin receptor subtype-2 (SSTR2)-positive tumor cells. We used an integrated radiolabeling strategy for direct quantitative assessment of receptor binding, pharmacokinetics, and tissue biodistribution. In vitro studies revealed selective binding to SSTR2-positive cells with high affinity (5.98 ± 0.96 nmol/L), internalization, receptor-dependent DNA damage, cytotoxicity, and MGMT depletion. Imaging and biodistribution analysis showed preferential accumulation of the PDC in receptor-positive tumors and high renal clearance. This study identified a trackable SSTR2-targeting system for TMZ delivery and utilizes a modular design that could be broadly applied in PDC development.
Collapse
Affiliation(s)
- Solmaz AghaAmiri
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, 1881 East Road, 3SCR6.4680, Houston, Texas 77054, United States
| | - Sukhen C. Ghosh
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, 1881 East Road, 3SCR6.4680, Houston, Texas 77054, United States
| | - Servando Hernandez Vargas
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, 1881 East Road, 3SCR6.4680, Houston, Texas 77054, United States
| | - Daniel M. Halperin
- Department
of Gastrointestinal Medical Oncology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Ali Azhdarinia
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, 1881 East Road, 3SCR6.4680, Houston, Texas 77054, United States
| |
Collapse
|
20
|
Chen X, Sun J, Li Y, Jiang W, Li Z, Mao J, Zhou L, Chen S, Tan G. Proteomic and metabolomic analyses illustrate the mechanisms of expression of the O 6 -methylguanine-DNA methyltransferase gene in glioblastoma. CNS Neurosci Ther 2024; 30:e14415. [PMID: 37641495 PMCID: PMC10848106 DOI: 10.1111/cns.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
AIM Glioblastoma (GBM) has been reported to be the most common high-grade primary malignant brain tumor in clinical practice and has a poor prognosis. O6 -methylguanine-DNA methyltransferase (MGMT) promoter methylation has been related to prolonged overall survival (OS) in GBM patients after temozolomide treatment. METHODS Proteomics and metabolomics were combined to explore the dysregulated metabolites and possible protein expression alterations in white matter (control group), MGMT promoter unmethylated GBM (GBM group) or MGMT promoter methylation positive GBM (MGMT group). RESULTS In total, 2745 upregulated and 969 downregulated proteins were identified in the GBM group compared to the control group, and 131 upregulated and 299 downregulated proteins were identified in the MGMT group compared to the GBM group. Furthermore, 131 upregulated and 299 downregulated metabolites were identified in the GBM group compared to the control group, and 187 upregulated and 147 downregulated metabolites were identified in the MGMT group compared to the GBM group. The results showed that 94 upregulated and 19 downregulated proteins and 20 upregulated and 16 downregulated metabolites in the MGMT group were associated with DNA repair. KEGG pathway enrichment analysis illustrated that the dysregulated proteins and metabolites were involved in multiple metabolic pathways, including the synthesis and degradation of ketone bodies, amino sugar and nucleotide sugar metabolism. Moreover, integrated metabolomics and proteomics analysis was performed, and six key proteins were identified in the MGMT group and GBM group. Three key pathways were recognized as potential biomarkers for recognizing MGMT promoter unmethylated GBM and MGMT promoter methylation positive GBM from GBM patient samples, with areas under the curve of 0.7895, 0.7326 and 0.7026, respectively. CONCLUSION This study provides novel mechanisms to understand methylation in GBM and identifies some biomarkers for the prognosis of two different GBM types, MGMT promoter unmethylated or methylated GBM, by using metabolomics and proteomics analyses.
Collapse
Affiliation(s)
- Xi Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Jinli Sun
- Department of ReproductionThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Yukui Li
- Department of NeurosurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Weichao Jiang
- Department of NeurosurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Zhangyu Li
- Department of NeurosurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Jianyao Mao
- Department of NeurosurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Liwei Zhou
- Department of NeurosurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Sifang Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Guowei Tan
- Department of NeurosurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| |
Collapse
|
21
|
Jiang LY, Wang GH, Xu JJ, Li XL, Lin XY, Fang X, Zhang HX, Feng M, Jiang CM. CREB-induced LINC00473 promotes chemoresistance to TMZ in glioblastoma by regulating O6-methylguanine-DNA-methyltransferase expression via CEBPα binding. Neuropharmacology 2024; 243:109790. [PMID: 37981063 DOI: 10.1016/j.neuropharm.2023.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
Temozolomide (TMZ) offers substantial therapeutic benefits for glioblastoma (GB), yet its efficacy is hindered the development of chemoresistance. The role of long non-coding RNAs (lncRNAs) in tumorigenesis and chemoresistance has garnered great attention in studies on TMZ resistance. This study aimed to reveal the role of LINC00473 in TMZ chemoresistance and the underlying mechanism in GB. The expression of LINC00473 in TMZ-resistant and TMZ-sensitive GB cells was investigated using qPCR analysis. The role of LINC00473 in regulating TMZ resistance in GB cells was analyzed using the CCK-8 assay, colony formation assay, and flow cytometry. The next steps included assessing if LINC00473 is regulated by CREB and whether LINC00473 promotes chemoresistance through MGMT regulation via CEBPα. Further, chemoresistance delivery between cells via exosomal LINC00473 was validated in vitro and in vivo. Results showed that LINC00473 levels were elevated in TMZ-resistant cells upon CREB activation, and the lncRNA promoted the chemoresistance of GB cells through the upregulation of MGMT expression. Mechanistically, LINC00473 regulated the MGMT expression by binding to CEBPα. The highly-expressed LINC00473 packaged in exosomes transferred chemoresistance to the adjacent TMZ-sensitive GB cells. In conclusion, a novel CREB/LINC00473/CEBPα/MGMT pathway was revealed in the GB TMZ-resistance formation. In addition, an exosome-based mechanism of chemoresistance transmission was revealed, suggesting that LINC00473 could be used as a novel therapeutic target for GB.
Collapse
Affiliation(s)
- Li-Ya Jiang
- Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China; Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Guan-Hao Wang
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China; The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Jing-Jiao Xu
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China; The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Xiao-Li Li
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Xiao-Yan Lin
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Xiang Fang
- Department of Clinical Laboratory Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Hong-Xu Zhang
- Department of Ophthalmology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Mei Feng
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China.
| | - Chun-Ming Jiang
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
22
|
Yang WW, Zhao ML, Liu ML, Liang WB, Zhong X, Zhuo Y. Circular DNAzyme-Switched CRISPR/Cas12a Assay for Electrochemiluminescent Response of Demethylase Activity. ACS Sens 2024; 9:344-350. [PMID: 38198738 DOI: 10.1021/acssensors.3c02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
DNA nanostructure provides powerful tools for DNA demethylase activity detection, but its stability has been significantly challenged. By virtue of circular DNA with resistance to exonuclease degradation, herein, the circular DNAzyme duplex with artificial methylated modification was constructed to identify the target and output the DNA activators to drive the CRISPR/Cas12a, constructing an "on-off-on" electrochemiluminescence (ECL) biosensor for monitoring the activity of the O6-methylguanine-DNA methyltransferase (MGMT). Specifically, the circular DNAzyme duplex consisted of the chimeric RNA-DNA substrate ring with double activator sequences and two single-stranded DNAzymes, whose catalytic domains were premodified with the methyl groups. When the MGMT was present, the methylated DNAzymes were repaired and restored the catalytic activity to cleave the chimeric RNA-DNA substrates, followed by the output of DNA activators to initiate the CRISPR/Cas12a. Subsequently, the ECL signals of silver nanoparticle-modified SnO2 nanospheres (Ag@SnO2) were recovered by releasing the ferrocene-labeled quenching probes (Fc-DNA) from the electrode surface because of the trans-cleavage activity of CRISPR/Cas12a, thus achieving the specific and sensitive ECL detection of MGMT from 2.5 × 10-4 to 2.5 × 102 ng/mL with a low limit (9.69 × 10-5 ng/mL). This strategy affords novel ideas and insights into research on how to project stable nucleic acid probes to detect DNA demethylases beyond traditional methods.
Collapse
Affiliation(s)
- Wei-Wei Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Mei-Ling Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Mei-Ling Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xia Zhong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
23
|
Benjaskulluecha S, Boonmee A, Haque M, Wongprom B, Pattarakankul T, Pongma C, Sri-ngern-ngam K, Keawvilai P, Sukdee T, Saechue B, Kueanjinda P, Palaga T. O 6-methylguanine DNA methyltransferase regulates β-glucan-induced trained immunity of macrophages via farnesoid X receptor and AMPK. iScience 2024; 27:108733. [PMID: 38235325 PMCID: PMC10792243 DOI: 10.1016/j.isci.2023.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Trained immunity is the heightened state of innate immune memory that enhances immune response resulting in nonspecific protection. Epigenetic changes and metabolic reprogramming are critical steps that regulate trained immunity. In this study, we reported the involvement of O6-methylguanine DNA methyltransferase (MGMT), a DNA repair enzyme of lesion induced by alkylating agents, in regulation the trained immunity induced by β-glucan (BG). Pharmacological inhibition or silencing of MGMT expression altered LPS stimulated pro-inflammatory cytokine productions in BG-trained bone marrow derived macrophages (BMMs). Targeted deletion of Mgmt in BMMs resulted in reduction of the trained responses both in vitro and in vivo models. The transcriptomic analysis revealed that the dampening trained immunity in MGMT KO BMMs is partially mediated by ATM/FXR/AMPK axis affecting the MAPK/mTOR/HIF1α pathways and the reduction in glycolysis function. Taken together, a failure to resolve a DNA damage may have consequences for innate immune memory.
Collapse
Affiliation(s)
- Salisa Benjaskulluecha
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atsadang Boonmee
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - MdFazlul Haque
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjawan Wongprom
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chitsuda Pongma
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittitach Sri-ngern-ngam
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornlapat Keawvilai
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thadaphong Sukdee
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjawan Saechue
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- One Health Research Unit, Faculty of Veterinary Science, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Patipark Kueanjinda
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
24
|
Wang Z, Liu Z, Wang PS, Lin HP, Rea M, Kondo K, Yang C. Epigenetic downregulation of O 6-methylguanine-DNA methyltransferase contributes to chronic hexavalent chromium exposure-caused genotoxic effect and cell transformation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122978. [PMID: 37995958 PMCID: PMC11372728 DOI: 10.1016/j.envpol.2023.122978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/07/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a common environmental pollutant and chronic exposure to Cr(VI) causes lung cancer and other types of cancer in humans, although the mechanism of Cr(VI) carcinogenesis remains elusive. Cr(VI) has been considered as a genotoxic carcinogen, but accumulating evidence indicates that Cr(VI) also causes various epigenetic toxic effects that play important roles in Cr(VI) carcinogenesis. However, it is not clear how Cr(VI)-caused epigenetic dysregulations contributes to Cr(VI) carcinogenesis. This study investigates whether Cr(VI) epigenetic toxic effect has an impact on its genotoxic effect. It was found that chronic low dose of Cr(VI) exposure time-dependently down-regulates the expression of a critical DNA damage repair protein O6-methylguanine-DNA methyltransferase (MGMT), leading to the increases of the levels of the highly mutagenic and carcinogenic DNA lesion O6-methylguanine (O6-MeG) in human bronchial epithelial BEAS-2B cells. Moreover, the levels of MGMT and O6-MeG in chronic Cr(VI) exposure-caused human lung cancer tissues are also significantly lower and higher than that in the adjacent normal lung tissues, respectively. It was further determined that chronic low dose of Cr(VI) exposure-transformed BEAS-2B cells display impaired DNA damage repair capacity and a high sensitivity to the toxicity of the alkylating chemotherapeutic drug Temozolomide. In contrast, stably overexpressing MGMT in parental BEAS-2B cells reverses chronic low dose of Cr(VI) exposure-caused DNA damage repair deficiency and significantly reduces cell transformation by Cr(VI). Further mechanistical studies revealed that chronic low dose of Cr(VI) exposure down-regulates MGMT expression through epigenetic mechanisms by increasing DNA methylation and histone H3 repressive modifications. Taken together, these findings suggest that epigenetic down-regulation of a crucial DNA damage repair protein MGMT contributes significantly to the genotoxic effect and cell transformation caused by chronic low dose of Cr(VI) exposure.
Collapse
Affiliation(s)
- Zhishan Wang
- Stony Brook Cancer Center, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY 11794, USA.
| | - Zulong Liu
- Stony Brook Cancer Center, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Po-Shun Wang
- Stony Brook Cancer Center, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Hsuan-Pei Lin
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Matthew Rea
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University Graduate School, Tokushima City 770-8509, Japan
| | - Chengfeng Yang
- Stony Brook Cancer Center, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
25
|
Fang Q. The Versatile Attributes of MGMT: Its Repair Mechanism, Crosstalk with Other DNA Repair Pathways, and Its Role in Cancer. Cancers (Basel) 2024; 16:331. [PMID: 38254819 PMCID: PMC10814553 DOI: 10.3390/cancers16020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT or AGT) is a DNA repair protein with the capability to remove alkyl groups from O6-AlkylG adducts. Moreover, MGMT plays a crucial role in repairing DNA damage induced by methylating agents like temozolomide and chloroethylating agents such as carmustine, and thereby contributes to chemotherapeutic resistance when these agents are used. This review delves into the structural roles and repair mechanisms of MGMT, with emphasis on the potential structural and functional roles of the N-terminal domain of MGMT. It also explores the development of cancer therapeutic strategies that target MGMT. Finally, it discusses the intriguing crosstalk between MGMT and other DNA repair pathways.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
26
|
Chamorro A, Rossetti M, Bagheri N, Porchetta A. Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:71-106. [PMID: 38273204 DOI: 10.1007/10_2023_235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The detection of a protein analyte and use of this type of information for disease diagnosis and physiological monitoring requires methods with high sensitivity and specificity that have to be also easy to use, rapid and, ideally, single step. In the last 10 years, a number of DNA-based sensing methods and sensors have been developed in order to achieve quantitative readout of protein biomarkers. Inspired by the speed, specificity, and versatility of naturally occurring chemosensors based on structure-switching biomolecules, significant efforts have been done to reproduce these mechanisms into the fabrication of artificial biosensors for protein detection. As an alternative, in scaffold DNA biosensors, different recognition elements (e.g., peptides, proteins, small molecules, and antibodies) can be conjugated to the DNA scaffold with high accuracy and precision in order to specifically interact with the target protein with high affinity and specificity. They have several advantages and potential, especially because the transduction signal can be drastically enhanced. Our aim here is to provide an overview of the best examples of structure switching-based and scaffold DNA sensors, as well as to introduce the reader to the rational design of innovative sensing mechanisms and strategies based on programmable functional DNA systems for protein detection.
Collapse
Affiliation(s)
| | - Marianna Rossetti
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | - Neda Bagheri
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
27
|
Minea RO, Thein TZ, Yang Z, Campan M, Ward PM, Schönthal AH, Chen TC. NEO212, temozolomide conjugated to NEO100, exerts superior therapeutic activity over temozolomide in preclinical chemoradiation models of glioblastoma. Neurooncol Adv 2024; 6:vdae095. [PMID: 39022643 PMCID: PMC11252566 DOI: 10.1093/noajnl/vdae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Background The chemotherapeutic standard of care for patients with glioblastoma (GB) is radiation therapy (RT) combined with temozolomide (TMZ). However, during the twenty years since its introduction, this so-called Stupp protocol has revealed major drawbacks, because nearly half of all GBs harbor intrinsic treatment resistance mechanisms. Prime among these are the increased expression of the DNA repair protein O6-guanine-DNA methyltransferase (MGMT) and cellular deficiency in DNA mismatch repair (MMR). Patients with such tumors receive very little, if any, benefit from TMZ. We are developing a novel molecule, NEO212 (TMZ conjugated to NEO100), that harbors the potential to overcome these limitations. Methods We used mouse models that were orthotopically implanted with GB cell lines or primary, radioresistant human GB stem cells, representing different treatment resistance mechanisms. Animals received NEO212 (or TMZ for comparison) without or with RT. Overall survival was recorded, and histology studies quantified DNA damage, apoptosis, microvessel density, and impact on bone marrow. Results In all tumor models, replacing TMZ with NEO212 in a schedule designed to mimic the Stupp protocol achieved a strikingly superior extension of survival, especially in TMZ-resistant and RT-resistant models. While NEO212 displayed pronounced radiation-sensitizing, DNA-damaging, pro-apoptotic, and anti-angiogenic effects in tumor tissue, it did not cause bone marrow toxicity. Conclusions NEO212 is a candidate drug to potentially replace TMZ within the standard Stupp protocol. It has the potential to become the first chemotherapeutic agent to significantly extend overall survival in TMZ-resistant patients when combined with radiation.
Collapse
Affiliation(s)
- Radu O Minea
- Department of Neurological Surgery, Keck School of Medicine (KSOM), University of Southern California (USC), Los Angeles, California, USA
- Norris Comprehensive Cancer Center, KSOM, USC, Los Angeles, California, USA
| | - Thu Zan Thein
- Department of Neurological Surgery, Keck School of Medicine (KSOM), University of Southern California (USC), Los Angeles, California, USA
| | - Zhuoyue Yang
- Department of Molecular Microbiology and Immunology, KSOM, USC, Los Angeles, California, USA
| | - Mihaela Campan
- USC Clinical Laboratories, KSOM, USC, Los Angeles, California, USA
| | - Pamela M Ward
- Department of Pathology, KSOM, USC, Los Angeles, California, USA
| | - Axel H Schönthal
- Department of Molecular Microbiology and Immunology, KSOM, USC, Los Angeles, California, USA
| | - Thomas C Chen
- NeOnc Technologies, Inc., Los Angeles, California, USA
- Department of Neurological Surgery, Keck School of Medicine (KSOM), University of Southern California (USC), Los Angeles, California, USA
- Department of Pathology, KSOM, USC, Los Angeles, California, USA
- Norris Comprehensive Cancer Center, KSOM, USC, Los Angeles, California, USA
| |
Collapse
|
28
|
Tessmer I, Margison GP. The DNA Alkyltransferase Family of DNA Repair Proteins: Common Mechanisms, Diverse Functions. Int J Mol Sci 2023; 25:463. [PMID: 38203633 PMCID: PMC10779285 DOI: 10.3390/ijms25010463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
DNA alkyltransferase and alkyltransferase-like family proteins are responsible for the repair of highly mutagenic and cytotoxic O6-alkylguanine and O4-alkylthymine bases in DNA. Their mechanism involves binding to the damaged DNA and flipping the base out of the DNA helix into the active site pocket in the protein. Alkyltransferases then directly and irreversibly transfer the alkyl group from the base to the active site cysteine residue. In contrast, alkyltransferase-like proteins recruit nucleotide excision repair components for O6-alkylguanine elimination. One or more of these proteins are found in all kingdoms of life, and where this has been determined, their overall DNA repair mechanism is strictly conserved between organisms. Nevertheless, between species, subtle as well as more extensive differences that affect target lesion preferences and/or introduce additional protein functions have evolved. Examining these differences and their functional consequences is intricately entwined with understanding the details of their DNA repair mechanism(s) and their biological roles. In this review, we will present and discuss various aspects of the current status of knowledge on this intriguing protein family.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Geoffrey P. Margison
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
29
|
Trivedi R, Bhat KP. Liquid biopsy: creating opportunities in brain space. Br J Cancer 2023; 129:1727-1746. [PMID: 37752289 PMCID: PMC10667495 DOI: 10.1038/s41416-023-02446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.
Collapse
Affiliation(s)
- Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
30
|
Nahar Metu CL, Sutihar SK, Sohel M, Zohora F, Hasan A, Miah MT, Rani Kar T, Hossain MA, Rahman MH. Unraveling the signaling mechanism behind astrocytoma and possible therapeutics strategies: A comprehensive review. Cancer Rep (Hoboken) 2023; 6:e1889. [PMID: 37675821 PMCID: PMC10598261 DOI: 10.1002/cnr2.1889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/09/2023] [Accepted: 07/28/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND A form of cancer called astrocytoma can develop in the brain or spinal cord and sometimes causes death. A detailed overview of the precise signaling cascade underlying astrocytoma formation has not yet been revealed, although various factors have been investigated. Therefore, our objective was to unravel and summarize our current understanding of molecular genetics and associated signaling pathways with some possible therapeutic strategies for astrocytoma. RECENT FINDINGS In general, four different forms of astrocytoma have been identified in individuals, including circumscribed, diffuse, anaplastic, and multiforme glioblastoma, according to a recent literature review. All types of astrocytoma have a direct connection with some oncogenic signaling cascade. Common signaling is MAPK cascade, including Ras-Raf-ERK, up-regulated with activating EGFR/AKT/PTEN/mTOR and PDGFR. Recent breakthrough studies found that BRAF mutations, including KIAA1549: BRAF and BRAF V600E are responsible for astrocytoma progression. Additionally, cancer progression is influenced by mutations in some tumor suppressor genes, such as the Tp53/ATRX and MGMT mutant. As synthetic medications must cross the blood-brain barrier (BBB), modulating signal systems such as miRNA is the primary option for treating patients with astrocytoma. However, available surgery, radiation therapy, and experimental therapies such as adjuvant therapy, anti-angiogenic therapy, and EGFR-targeting antibody drug are the usual treatment for most types of astrocytoma. Similar to conventional anticancer medications, some phytochemicals slow tumor growth by simultaneously controlling several cellular proteins, including those involved in cell cycle regulation, apoptosis, metastatic spread, tyrosine kinase, growth factor receptor, and antioxidant-related proteins. CONCLUSION In conclusion, cellular and molecular signaling is directly associated with the development of astrocytoma, and a combination of conventional and alternative therapies can improve the malignancy of cancer patients.
Collapse
Affiliation(s)
- Chowdhury Lutfun Nahar Metu
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | - Sunita Kumari Sutihar
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | - Md Sohel
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Fatematuz Zohora
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Akayed Hasan
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Thandu Miah
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Tanu Rani Kar
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Md. Arju Hossain
- Department of Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md Habibur Rahman
- Department of Computer Science and EngineeringIslamic UniversityKushtiaBangladesh
| |
Collapse
|
31
|
Jensen GL, Pourfarrokh N, Volz M, Morales LL, Walker K, Hammonds KP, El-Ghamry M, Wong L, Hodjat P, Castro E, Rao A, Jhavar SG. Improved Pathologic response to chemoradiation in MGMT methylated locally advanced rectal cancer. Clin Transl Radiat Oncol 2023; 42:100667. [PMID: 37560324 PMCID: PMC10406619 DOI: 10.1016/j.ctro.2023.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/11/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND AND PURPOSE With the growing interest in total neoadjuvant treatment for locally advanced rectal adenocarcinoma (LARC) there is an urgent unmet need to identify predictive markers of response to long-course neoadjuvant concurrent chemoradiotherapy (LCRT). O6-Methylguanine (O6-MG)-DNA-methyltransferase (MGMT) gene methylation has been associated in some malignancies with response to concurrent chemoradiotherapy. We attempted to find if pathologic response to LCRT was associated with MGMT promoter hypermethylation (MGMTh). MATERIALS AND METHODS Patients were identified with LARC, available pre-treatment biopsy specimens, and at least 1 year of follow-up who received LCRT followed by surgical resection within 6 months. Biopsies were tested for MGMTh using a Qiagen pyrosequencing kit (Catalog number 970061). The primary outcome of LCRT responsiveness was based on tumor regression grade (TRG), with grades of 0-1 considered to have excellent response and grades of 2-3 considered to be non-responders. Secondary outcomes included overall survival (OS) and recurrence free survival (RFS). RESULTS Of 96 patients who met inclusion criteria, 76 had samples which produced reliable assay results. MGMTh corresponded with higher grade and age of the biopsy specimen. The percentage of responders to LCRT was higher amongst the MGMTh patients than the MGMTn patients (60.0% vs 27.5%, p value = 0.0061). MGMTh was not significantly associated with improved OS (2-year OS of 96.0% vs 98.0%, p = 0.8102) but there was a trend for improved RFS (2-year RFS of 87.6% vs 74.2%, p = 0.0903). CONCLUSION Significantly greater tumor regression following LCRT was seen in MGMTh LARC. Methylation status may help identify good candidates for close observation without surgery following LCRT.
Collapse
Affiliation(s)
- Garrett L. Jensen
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Niloufar Pourfarrokh
- Departments of Pathology, Baylor Scott & White Health, 2401 S. 31 St., Temple, TX 76508, USA
| | - Marcus Volz
- Departments of Pathology, Baylor Scott & White Health, 2401 S. 31 St., Temple, TX 76508, USA
| | - Linden L. Morales
- Departments of Pathology, Baylor Scott & White Health, 2401 S. 31 St., Temple, TX 76508, USA
| | - Kimberly Walker
- Departments of Pathology, Baylor Scott & White Health, 2401 S. 31 St., Temple, TX 76508, USA
| | - Kendall P. Hammonds
- Biostatistics, Baylor Scott & White Health, 2401 S. 31 St., Temple, TX 76508, USA
| | - Moataz El-Ghamry
- Radiation Oncology, Baylor Scott & White Health, 2401 S. 31 St., Temple, TX 76508, USA
| | - Lucas Wong
- Medical Oncology, Baylor Scott & White Health, 2401 S. 31 St., Temple, TX 76508, USA
| | - Parsa Hodjat
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston TX, USA
| | - Eduardo Castro
- Departments of Pathology, Baylor Scott & White Health, 2401 S. 31 St., Temple, TX 76508, USA
| | - Arundhati Rao
- Departments of Pathology, Baylor Scott & White Health, 2401 S. 31 St., Temple, TX 76508, USA
| | - Sameer G. Jhavar
- Radiation Oncology, Baylor Scott & White Health, 2401 S. 31 St., Temple, TX 76508, USA
| |
Collapse
|
32
|
Chen W, Guo S, Wang Y, Shi Y, Guo X, Liu D, Li Y, Wang Y, Xing H, Xia Y, Li J, Wu J, Liang T, Wang H, Liu Q, Jin S, Qu T, Li H, Yang T, Zhang K, Wang Y, Ma W. Novel insight into histological and molecular astrocytoma, IDH-mutant, Grade 4 by the updated WHO classification of central nervous system tumors. Cancer Med 2023; 12:18666-18678. [PMID: 37667984 PMCID: PMC10557904 DOI: 10.1002/cam4.6476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND The latest fifth edition of the World Health Organization (WHO) classification of the central nervous system (CNS) tumors (WHO CNS 5 classification) released in 2021 defined astrocytoma, IDH-mutant, Grade 4. However, the understanding of this subtype is still limited. We conducted this study to describe the features of astrocytoma, IDH-mutant, Grade 4 and explored the similarities and differences between histological and molecular subtypes. METHODS Patients who underwent surgery from January 2011 to January 2022, classified as astrocytoma, IDH-mutant, Grade 4 were included in this study. Clinical, radiological, histopathological, molecular pathological, and survival data were collected for analysis. RESULTS Altogether 33 patients with astrocytoma, IDH-mutant, Grade 4 were selected, including 20 with histological and 13 with molecular WHO Grade 4 astrocytoma. Tumor enhancement, intratumoral-necrosis like presentation, larger peritumoral edema, and more explicit tumor margins were frequently observed in histological WHO Grade 4 astrocytoma. Additionally, molecular WHO Grade 4 astrocytoma showed a tendency for relatively longer overall survival, while a statistical significance was not reached (47 vs. 25 months, p = 0.22). TP53, CDK6, and PIK3CA alteration was commonly observed, while PIK3R1 (p = 0.033), Notch1 (p = 0.027), and Mycn (p = 0.027) alterations may affect the overall survival of molecular WHO Grade 4 astrocytomas. CONCLUSIONS Our study scrutinized IDH-mutant, Grade 4 astrocytoma. Therefore, further classification should be considered as the prognosis varied between histological and molecular WHO Grade 4 astrocytomas. Notably, therapies aiming at PIK3R1, Notch 1, and Mycn may be beneficial.
Collapse
Affiliation(s)
- Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Siying Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- 4+4 Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Xia
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiaming Wu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- 4+4 Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tian Qu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Huanzhang Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kun Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| |
Collapse
|
33
|
Bai P, Fan T, Wang X, Zhao L, Zhong R, Sun G. Modulating MGMT expression through interfering with cell signaling pathways. Biochem Pharmacol 2023; 215:115726. [PMID: 37524206 DOI: 10.1016/j.bcp.2023.115726] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Guanine O6-alkylating agents are widely used as first-line chemotherapeutic drugs due to their ability to induce cytotoxic DNA damage. However, a major hurdle in their effectiveness is the emergence of chemoresistance, largely attributed to the DNA repair pathway mediated by O6-methylguanine-DNA methyltransferase (MGMT). MGMT plays an important role in removing the alkyl groups from lethal O6-alkylguanine (O6-AlkylG) adducts formed by chemotherapeutic alkylating agents. By doing so, MGMT enables tumor cells to evade apoptosis and develop drug resistance toward DNA alkylating agents. Although covalent inhibitors of MGMT, such as O6-benzylguanine (O6-BG) and O6-(4-bromothenyl)guanine (O6-4-BTG or lomeguatrib), have been explored in clinical settings, their utility is limited due to severe delayed hematological toxicity observed in most patients when combined with alkylating agents. Therefore, there is an urgent need to identify new targets and unravel the underlying molecular mechanisms and to develop alternative therapeutic strategies that can overcome MGMT-mediated tumor resistance. In this context, the regulation of MGMT expression via interfering the specific cell signaling pathways (e.g., Wnt/β-catenin, NF-κB, Hedgehog, PI3K/AKT/mTOR, JAK/STAT) emerges as a promising strategy for overcoming tumor resistance, and ultimately enhancing the efficacy of DNA alkylating agents in chemotherapy.
Collapse
Affiliation(s)
- Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
34
|
Zhang W, Chen Y, Li M, Cao S, Wang N, Zhang Y, Wang Y. A PDA-Functionalized 3D Lung Scaffold Bioplatform to Construct Complicated Breast Tumor Microenvironment for Anticancer Drug Screening and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302855. [PMID: 37424037 PMCID: PMC10502821 DOI: 10.1002/advs.202302855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Indexed: 07/11/2023]
Abstract
2D cell culture occupies an important place in cancer progression and drug discovery research. However, it limitedly models the "true biology" of tumors in vivo. 3D tumor culture systems can better mimic tumor characteristics for anticancer drug discovery but still maintain great challenges. Herein, polydopamine (PDA)-modified decellularized lung scaffolds are designed and can serve as a functional biosystem to study tumor progression and anticancer drug screening, as well as mimic the tumor microenvironment. PDA-modified scaffolds with strong hydrophilicity and excellent cell compatibility can promote cell growth and proliferation. After 96 h treatment with 5-FU, cisplatin, and DOX, higher survival rates in PDA-modified scaffolds are observed compared to nonmodified scaffolds and 2D systems. The E-cadhesion formation, HIF-1α-mediated senescence decrease, and tumor stemness enhancement can drive drug resistance and antitumor drug screening of breast cancer cells. Moreover, there is a higher survival rate of CD45+ /CD3+ /CD4+ /CD8+ T cells in PDA-modified scaffolds for potential cancer immunotherapy drug screening. This PDA-modified tumor bioplatform will supply some promising information for studying tumor progression, overcoming tumor resistance, and screening tumor immunotherapy drugs.
Collapse
Affiliation(s)
- Wanheng Zhang
- Department of PharmacyThe First Affiliated Hospitaland College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003China
| | - Yan Chen
- Department of PharmacyThe First Affiliated Hospitaland College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003China
| | - Mengyuan Li
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
| | - Shucheng Cao
- Department of Quantitative Life SciencesMcGill UniversityMontréalQuébecH3A 0G4Canada
| | - Nana Wang
- Department of PediatricsShanghai General HospitalShanghai Jiao Tong UniversityShanghai200080China
| | - Yingjian Zhang
- Department of PharmacyThe First Affiliated Hospitaland College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003China
| | - Yongtao Wang
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| |
Collapse
|
35
|
Gurrieri L, Mercatali L, Ibrahim T, Fausti V, Dall'Agata M, Riva N, Ranallo N, Pasini G, Tazzari M, Foca F, Bartolini D, Riccioni L, Cavatorta C, Morigi FP, Bulgarelli J, Cocchi C, Ghini V, Tosatto L, Martinelli G, Pession A, Ridolfi L. Immuno markers in newly diagnosed glioblastoma patients underwent Stupp protocol after neurosurgery: a retrospective series. J Neurooncol 2023; 164:55-64. [PMID: 37584750 PMCID: PMC10462527 DOI: 10.1007/s11060-023-04357-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/26/2023] [Indexed: 08/17/2023]
Abstract
PURPOSE The aims of our retrospective study investigated the role of immune system in glioblastoma (GBM), which is the most aggressive primary brain tumor in adults characterized by a poor prognosis. The recurrence rate remains high, probably due to "immune-desert" tumor microenvironment (TME) making GBM hidden from the anti-tumoral immune clearance. Considering this, we aimed to create a panel of prognostic markers from blood and tumor tissue correlating with overall survival (OS) and progression-free survival (PFS). METHODS Firstly, we analyzed the inflammatory markers NLR and PLR as the ratio of the absolute neutrophil count and absolute platelet count by the absolute lymphocyte count respectively, collected at different time points in the peripheral blood of 95 patients. Furthermore, in 31 patients of the same cohort, we analyzed the formalin-fixed paraffin embedded samples to further compare the impact of circulating and inflammatory markers within the TME. RESULTS Patients aged < 60 years and with methylated MGMT showed better OS. While, pre-chemotherapy Systemic Inflammatory Index (SII) < 480 was related to a better OS and PFS, we observed that only CD68+macrophage and CD66b+neutrophils expressed in vascular/perivascular area (V) showed a statistically significant prognostic role in median OS and PFS. CONCLUSIONS Thus, we underscored a role of SII as predictive value of response to STUPP protocol. Regarding the TME-related markers, we suggested to take into consideration for future studies with new immunotherapy combinations, each component relating to expression of immune infiltrating subsets.
Collapse
Affiliation(s)
- Lorena Gurrieri
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Laura Mercatali
- Preclinic and Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas, and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40138, Bologna, Italy
| | - Valentina Fausti
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, Italy.
| | - Monia Dall'Agata
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Nada Riva
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Nicoletta Ranallo
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Giuseppe Pasini
- Department of Medical Oncology, "Infermi" Hospital, 47921, Rimini, Italy
| | - Marcella Tazzari
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | | | - Luca Riccioni
- Pathology Unit, "Maurizio Bufalini" Hospital, 47521, Cesena, Italy
| | - Chiara Cavatorta
- Pathology Unit, "Maurizio Bufalini" Hospital, 47521, Cesena, Italy
| | | | - Jenny Bulgarelli
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Claudia Cocchi
- Preclinic and Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Virginia Ghini
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Luigino Tosatto
- Neurosurgery, "Maurizio Bufalini" Hospital, 47521, Cesena, Italy
| | - Giovanni Martinelli
- Scientific Direcrorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Andrea Pession
- Division of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138, Bologna, Italy
| | - Laura Ridolfi
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, Italy
| |
Collapse
|
36
|
An N, Yang X. Prediction of disease-free survival of N1/2 non-small cell lung cancer after adjuvant chemotherapy by the biomarker RPMB. Heliyon 2023; 9:e18266. [PMID: 37501955 PMCID: PMC10368914 DOI: 10.1016/j.heliyon.2023.e18266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
No molecular biomarkers have been proven applicable in clinical practice to identify patients who can benefit from adjuvant chemotherapy in non-small cell lung cancer (NSCLC). In this study, we established a biomarker, RPMB, short for promotor methylation burden of DNA repair genes (DRGs), to identify the subgroup of patients who might benefit from adjuvant chemotherapy in NSCLC. Methylation profiles of 828 NSCLC primary tumors and their clinical information were downloaded from The Cancer Genome Atlas (TCGA) database. The RPMB for each patient after radical resection was calculated and its correlation with the prognosis of NSCLC was extensively investigated. DRGs of NSCLC were much more hypomethylated than the other genes (all p<0.001). RPMB was defined as the ratio of methylated DRGs to the total number of all the DRGs. Patients with higher RPMB values tended to be nonsmokers, had adenocarcinoma, were female and had peripheral tumors. Subgroup analysis of forest plot among different clinical factors showed that high RPMB was significantly correlated to better disease-free survival (DFS) in pathologic N-positive patients after adjuvant chemotherapy (HR = 0.404, n = 62, p = 0.034). Notably, more superior DFS was exhibited in high RPMB NSCLCs with N1 nodal stage compared with those with low RPMB values (HR = 0.348, n = 47, p = 0.043). High RPMB might be used as a potential predictor to identify suitable N-positive NSCLC patients who can benefit from adjuvant chemotherapy after radical surgery.
Collapse
Affiliation(s)
- Ning An
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Xue Yang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| |
Collapse
|
37
|
Zhou Y, Pereira G, Tang Y, James M, Zhang M. 3D Porous Scaffold-Based High-Throughput Platform for Cancer Drug Screening. Pharmaceutics 2023; 15:1691. [PMID: 37376138 DOI: 10.3390/pharmaceutics15061691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Natural polymer-based porous scaffolds have been investigated to serve as three-dimensional (3D) tumor models for drug screening owing to their structural properties with better resemblance to human tumor microenvironments than two-dimensional (2D) cell cultures. In this study, a 3D chitosan-hyaluronic acid (CHA) composite porous scaffold with tunable pore size (60, 120 and 180 µm) was produced by freeze-drying and fabricated into a 96-array platform for high-throughput screening (HTS) of cancer therapeutics. We adopted a self-designed rapid dispensing system to handle the highly viscous CHA polymer mixture and achieved a fast and cost-effective large-batch production of the 3D HTS platform. In addition, the adjustable pore size of the scaffold can accommodate cancer cells from different sources to better mimic the in vivo malignancy. Three human glioblastoma multiforme (GBM) cell lines were tested on the scaffolds to reveal the influence of pore size on cell growth kinetics, tumor spheroid morphology, gene expression and dose-dependent drug response. Our results showed that the three GBM cell lines showed different trends of drug resistance on CHA scaffolds of varying pore size, which reflects the intertumoral heterogeneity across patients in clinical practice. Our results also demonstrated the necessity to have a tunable 3D porous scaffold for adapting the heterogeneous tumor to generate the optimal HTS outcomes. It was also found that CHA scaffolds can produce a uniform cellular response (CV < 0.15) and a wide drug screening window (Z' > 0.5) on par with commercialized tissue culture plates, and therefore, can serve as a qualified HTS platform. This CHA scaffold-based HTS platform may provide an improved alternative to traditional 2D-cell-based HTS for future cancer study and novel drug discovery.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Gillian Pereira
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Yuanzhang Tang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Matthew James
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
38
|
Armijo AL, Thongararm P, Fedeles BI, Yau J, Kay J, Corrigan JJ, Chancharoen M, Chawanthayatham S, Samson L, Carrasco S, Engelward B, Fox J, Croy R, Essigmann J. Molecular origins of mutational spectra produced by the environmental carcinogen N-nitrosodimethylamine and S N1 chemotherapeutic agents. NAR Cancer 2023; 5:zcad015. [PMID: 36992846 PMCID: PMC10041537 DOI: 10.1093/narcan/zcad015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
DNA-methylating environmental carcinogens such as N-nitrosodimethylamine (NDMA) and certain alkylators used in chemotherapy form O 6-methylguanine (m6G) as a functionally critical intermediate. NDMA is a multi-organ carcinogen found in contaminated water, polluted air, preserved foods, tobacco products, and many pharmaceuticals. Only ten weeks after exposure to NDMA, neonatally-treated mice experienced elevated mutation frequencies in liver, lung and kidney of ∼35-fold, 4-fold and 2-fold, respectively. High-resolution mutational spectra (HRMS) of liver and lung revealed distinctive patterns dominated by GC→AT mutations in 5'-Pu-G-3' contexts, very similar to human COSMIC mutational signature SBS11. Commonly associated with alkylation damage, SBS11 appears in cancers treated with the DNA alkylator temozolomide (TMZ). When cells derived from the mice were treated with TMZ, N-methyl-N-nitrosourea, and streptozotocin (two other therapeutic methylating agents), all displayed NDMA-like HRMS, indicating mechanistically convergent mutational processes. The role of m6G in shaping the mutational spectrum of NDMA was probed by removing MGMT, the main cellular defense against m6G. MGMT-deficient mice displayed a strikingly enhanced mutant frequency, but identical HRMS, indicating that the mutational properties of these alkylators is likely owed to sequence-specific DNA binding. In sum, the HRMS of m6G-forming agents constitute an early-onset biomarker of exposure to DNA methylating carcinogens and drugs.
Collapse
Affiliation(s)
- Amanda L Armijo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pennapa Thongararm
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bogdan I Fedeles
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Judy Yau
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jennifer E Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua J Corrigan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marisa Chancharoen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Supawadee Chawanthayatham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian E Carrasco
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, NY 10065, USA
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James G Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert G Croy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John M Essigmann
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
39
|
Martin KC, Ma C, Yip S. From Theory to Practice: Implementing the WHO 2021 Classification of Adult Diffuse Gliomas in Neuropathology Diagnosis. Brain Sci 2023; 13:brainsci13050817. [PMID: 37239289 DOI: 10.3390/brainsci13050817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Diffuse gliomas are the most common type of primary central nervous system (CNS) neoplasm to affect the adult population. The diagnosis of adult diffuse gliomas is dependent upon the integration of morphological features of the tumour with its underlying molecular alterations, and the integrative diagnosis has become of increased importance in the fifth edition of the WHO classification of CNS neoplasms (WHO CNS5). The three major diagnostic entities of adult diffuse gliomas are as follows: (1) astrocytoma, IDH-mutant; (2) oligodendroglioma, IDH-mutant and 1p/19q-codeleted; and (3) glioblastoma, IDH-wildtype. The aim of this review is to summarize the pathophysiology, pathology, molecular characteristics, and major diagnostic updates encountered in WHO CNS5 of adult diffuse gliomas. Finally, the application of implementing the necessary molecular tests for diagnostic workup of these entities in the pathology laboratory setting is discussed.
Collapse
Affiliation(s)
- Karina Chornenka Martin
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Crystal Ma
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
40
|
Foglar M, Aumiller M, Bochmann K, Buchner A, El Fahim M, Quach S, Sroka R, Stepp H, Thon N, Forbrig R, Rühm A. Interstitial Photodynamic Therapy of Glioblastomas: A Long-Term Follow-up Analysis of Survival and Volumetric MRI Data. Cancers (Basel) 2023; 15:cancers15092603. [PMID: 37174068 PMCID: PMC10177153 DOI: 10.3390/cancers15092603] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND The treatment of glioblastomas, the most common primary malignant brain tumors, with a devastating survival perspective, remains a major challenge in medicine. Among the recently explored therapeutic approaches, 5-aminolevulinic acid (5-ALA)-mediated interstitial photodynamic therapy (iPDT) has shown promising results. METHODS A total of 16 patients suffering from de novo glioblastomas and undergoing iPDT as their primary treatment were retrospectively analyzed regarding survival and the characteristic tissue regions discernible in the MRI data before treatment and during follow-up. These regions were segmented at different stages and were analyzed, especially regarding their relation to survival. RESULTS In comparison to the reference cohorts treated with other therapies, the iPDT cohort showed a significantly prolonged progression-free survival (PFS) and overall survival (OS). A total of 10 of 16 patients experienced prolonged OS (≥ 24 months). The dominant prognosis-affecting factor was the MGMT promoter methylation status (methylated: median PFS of 35.7 months and median OS of 43.9 months) (unmethylated: median PFS of 8.3 months and median OS of 15.0 months) (combined: median PFS of 16.4 months and median OS of 28.0 months). Several parameters with a known prognostic relevance to survival after standard treatment were not found to be relevant to this iPDT cohort, such as the necrosis-tumor ratio, tumor volume, and posttreatment contrast enhancement. After iPDT, a characteristic structure (iPDT remnant) appeared in the MRI data in the former tumor area. CONCLUSIONS In this study, iPDT showed its potential as a treatment option for glioblastomas, with a large fraction of patients having prolonged OS. Parameters of prognostic relevance could be derived from the patient characteristics and MRI data, but they may partially need to be interpreted differently compared to the standard of care.
Collapse
Affiliation(s)
- Marco Foglar
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Maximilian Aumiller
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Katja Bochmann
- Max Planck Institute for Psychiatry, Max Planck Society, 80804 Munich, Germany
- Institute of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Alexander Buchner
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mohamed El Fahim
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Ronald Sroka
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Herbert Stepp
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Adrian Rühm
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
41
|
Tang H, Kulkarni S, Peters C, Eddison J, Al-Ani M, Madhusudan S. The Current Status of DNA-Repair-Directed Precision Oncology Strategies in Epithelial Ovarian Cancers. Int J Mol Sci 2023; 24:7293. [PMID: 37108451 PMCID: PMC10138422 DOI: 10.3390/ijms24087293] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Survival outcomes for patients with advanced ovarian cancer remain poor despite advances in chemotherapy and surgery. Platinum-based systemic chemotherapy can result in a response rate of up to 80%, but most patients will have recurrence and die from the disease. Recently, the DNA-repair-directed precision oncology strategy has generated hope for patients. The clinical use of poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA germ-line-deficient and/or platinum-sensitive epithelial ovarian cancers has improved survival. However, the emergence of resistance is an ongoing clinical challenge. Here, we review the current clinical state of PARP inhibitors and other clinically viable targeted approaches in epithelial ovarian cancers.
Collapse
Affiliation(s)
- Hiu Tang
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Sanat Kulkarni
- Department of Medicine, Sandwell and West Birmingham Hospitals, Lyndon, West Bromwich B71 4HJ, UK
| | - Christina Peters
- Department of Oncology, Sussex Cancer Centre, University Hospitals Sussex NHS Foundation Trust, Brighton BN2 5BD, UK
| | - Jasper Eddison
- College of Medical & Dental Sciences, University of Birmingham Medical School, Birmingham B15 2TT, UK
| | - Maryam Al-Ani
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| |
Collapse
|
42
|
Pei J, Su Z, Zeng X, Zhong Y, Zhang Y, Yang Y, Lu Q, Li J, Deng Y. Protocatechuic aldehyde acts synergistically with dacarbazine to augment DNA double-strand breaks and promote apoptosis in cutaneous melanoma cells. BMC Complement Med Ther 2023; 23:111. [PMID: 37024907 PMCID: PMC10077623 DOI: 10.1186/s12906-023-03933-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Despite rapid developments in immunotherapy and targeted therapy, dacarbazine (DTIC)-based chemotherapy still has been placed at the first-line for advanced melanoma patients who are after failure of immunotherapy or targeted therapy. However, the limited response rate and survival benefit challenge the DTIC-based chemotherapy for advanced melanoma patients. METHODS Two melanoma cell lines, A375 and SK-MEL-28 were cultured with PA and DTIC over a range of concentrations for 72 h and the cell viabilities were detected by CCK8 assay. The Bliss model and ZIP model were used for calculating the synergistic effect of PA and DTIC. DNA double-strand breaks in the two cell lines were examined by the Comet assay, and cell apoptosis was analyzed by flow cytometry. The short hairpin RNA (shRNA)-mediated knockdown, Real-time polymerase chain reaction (RT-PCR) and Western blot were performed for molecular analysis. RESULTS In the present study, we report that Protocatechuic aldehyde (PA) synergistically enhances the cytotoxicity of DTIC to two melanoma cell lines, A375 and SK-MEL-28. The combination of PA and DTIC augments DNA double-strand breaks and increases cell apoptosis. Further mechanism study reveals that PA destabilizes MGMT protein (O-6-Methylguanine-DNA Methyltransferase) through the ubiquitin-proteasome process and directly repairs DTIC-induced genetic lesions. Knockdown of MGMT compromises the synergistic effect between PA and DTIC. CONCLUSION Our study demonstrates that the bioactive compound, Protocatechuic aldehyde, synergistically promotes the cytotoxicity of DTIC to melanoma cells through destabilization of MGMT protein. It could be a potential candidate for melanoma chemotherapy.
Collapse
Affiliation(s)
- Junxia Pei
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhou Su
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Xin Zeng
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Ya Zhong
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yamei Zhang
- Key Laboratory of Clinical Genetics, Affiliated hospital of Chengdu University, Chengdu, 610106, China
| | - Yixi Yang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Qiuxia Lu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jian Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China.
- School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China.
| | - Yu Deng
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China.
- School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
43
|
Ohshima K, Nagashima T, Fujiya K, Hatakeyama K, Watanabe Y, Morimoto K, Kamada F, Shimoda Y, Ohnami S, Naruoka A, Serizawa M, Ohnami S, Kenmotsu H, Shiomi A, Tsubosa Y, Bando E, Sugiura T, Sugino T, Terashima M, Uesaka K, Urakami K, Akiyama Y, Yamaguchi K. Whole-genome and Epigenomic Landscapes of Malignant Gastrointestinal Stromal Tumors Harboring KIT Exon 11 557-558 Deletion Mutations. CANCER RESEARCH COMMUNICATIONS 2023; 3:684-696. [PMID: 37377752 PMCID: PMC10124575 DOI: 10.1158/2767-9764.crc-22-0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/12/2022] [Accepted: 03/17/2023] [Indexed: 06/29/2023]
Abstract
Gastrointestinal stromal tumors (GIST) with KIT exon 11 deletions involving in codons 557-558 (KIT Δ557-558) exhibit higher proliferation rates and shorter disease-free survival times compared with GISTs with other KIT exon 11 mutations. We analyzed 30 GIST cases and observed genomic instability and global DNA hypomethylation only in high-risk malignant GISTs with KIT Δ557-558. Whole-genome sequencing revealed that the high-risk malignant GISTs with KIT Δ557-558 (12 cases) had more structural variations (SV), single-nucleotide variants, and insertions and deletions compared with the low-risk, less malignant GISTs with KIT Δ557-558 (six cases) and the high-risk (six cases) or low-risk (6 cases) GISTs with other KIT exon 11 mutations. The malignant GISTs with KIT Δ557-558 showed higher frequency and significance in copy number (CN) reduction on chromosome arms 9p and 22q, and 50% of them had LOH or CN-dependent expression reduction in CDKN2A. In addition, SVs with driver potential were detected in 75% of them, in which AKT3 and MGMT were recurrently identified. Genome-wide DNA methylation and gene expression analyses showed global intergenic DNA hypomethylation, SNAI2 upregulation, and higher expression signatures, including p53 inactivation and chromosomal instability, as characteristics of malignant GISTs with KIT Δ557-558 that distinguished them from other GISTs. These genomic and epigenomic profiling results revealed that KIT Δ557-558 mutations are associated with increased genomic instability in malignant GISTs. Significance We present genomic and epigenomic insights into the malignant progression of GISTs with KIT exon 11 deletions involving in 557-558, demonstrating their unique chromosomal instability and global intergenic DNA hypomethylation.
Collapse
Affiliation(s)
- Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- SRL, Inc., Tokyo, Japan
| | - Keiichi Fujiya
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Keiichi Hatakeyama
- Cancer Multiomics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yuko Watanabe
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Kimiko Morimoto
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Fukumi Kamada
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yuji Shimoda
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Sumiko Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Akane Naruoka
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Masakuni Serizawa
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Shumpei Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Hirotsugu Kenmotsu
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center Hospital, Shizuoka, Japan
- Division of Thoracic Oncology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Akio Shiomi
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuhiro Tsubosa
- Division of Esophageal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Etsuro Bando
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Teiichi Sugiura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Masanori Terashima
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yasuto Akiyama
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Hospital and Research Institute, Shizuoka, Japan
| |
Collapse
|
44
|
Li J, Song C, Gu J, Li C, Zang W, Shi L, Chen L, Zhu L, Zhou M, Wang T, Li H, Qi S, Lu Y. RBBP4 regulates the expression of the Mre11-Rad50-NBS1 (MRN) complex and promotes DNA double-strand break repair to mediate glioblastoma chemoradiotherapy resistance. Cancer Lett 2023; 557:216078. [PMID: 36736531 DOI: 10.1016/j.canlet.2023.216078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/27/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
For treatment of glioblastoma (GBM), temozolomide (TMZ) and radiotherapy (RT) exert antitumor effects by inducing DNA double-strand breaks (DSBs), mainly via futile DNA mismatch repair (MMR) and inducing apoptosis. Here, we provide evidence that RBBP4 modulates glioblastoma resistance to chemotherapy and radiotherapy by recruiting transcription factors and epigenetic regulators that bind to their promoters to regulate the expression of the Mre11-Rad50-NBS1(MRN) complex and the level of DNA-DSB repair, which are closely associated with recovery from TMZ- and radiotherapy-induced DNA damage in U87MG and LN229 glioblastoma cells, which have negative MGMT expression. Disruption of RBBP4 induced GBM cell DNA damage and apoptosis in response to TMZ and radiotherapy and enhanced radiotherapy and chemotherapy sensitivity by the independent pathway of MGMT. These results displayed a possible chemo-radioresistant mechanism in MGMT negative GBM. In addition, the RBBP4-MRN complex regulation axis may provide an interesting target for developing therapy-sensitizing strategies for GBM.
Collapse
Affiliation(s)
- Junjie Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China; Nanfang Glioma Center, Guangzhou, China
| | - Chong Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Neurosurgery, The Central Hospital of Dalian University of Technology, Dalian, China
| | - Junwei Gu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; The First People's Hospital of Xiushui County, Jiujiang, Jiangxi Province, China
| | - Chiyang Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenrui Zang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Linyong Shi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liwen Zhu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Min Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tong Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China; Nanfang Glioma Center, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China; Nanfang Glioma Center, Guangzhou, China
| | - Yuntao Lu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China; Nanfang Glioma Center, Guangzhou, China.
| |
Collapse
|
45
|
Chung C, Verheijen BM, Navapanich Z, McGann EG, Shemtov S, Lai GJ, Arora P, Towheed A, Haroon S, Holczbauer A, Chang S, Manojlovic Z, Simpson S, Thomas KW, Kaplan C, van Hasselt P, Timmers M, Erie D, Chen L, Gout JF, Vermulst M. Evolutionary conservation of the fidelity of transcription. Nat Commun 2023; 14:1547. [PMID: 36941254 PMCID: PMC10027832 DOI: 10.1038/s41467-023-36525-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/03/2023] [Indexed: 03/23/2023] Open
Abstract
Accurate transcription is required for the faithful expression of genetic information. However, relatively little is known about the molecular mechanisms that control the fidelity of transcription, or the conservation of these mechanisms across the tree of life. To address these issues, we measured the error rate of transcription in five organisms of increasing complexity and found that the error rate of RNA polymerase II ranges from 2.9 × 10-6 ± 1.9 × 10-7/bp in yeast to 4.0 × 10-6 ± 5.2 × 10-7/bp in worms, 5.69 × 10-6 ± 8.2 × 10-7/bp in flies, 4.9 × 10-6 ± 3.6 × 10-7/bp in mouse cells and 4.7 × 10-6 ± 9.9 × 10-8/bp in human cells. These error rates were modified by various factors including aging, mutagen treatment and gene modifications. For example, the deletion or modification of several related genes increased the error rate substantially in both yeast and human cells. This research highlights the evolutionary conservation of factors that control the fidelity of transcription. Additionally, these experiments provide a reasonable estimate of the error rate of transcription in human cells and identify disease alleles in a subunit of RNA polymerase II that display error-prone transcription. Finally, we provide evidence suggesting that the error rate and spectrum of transcription co-evolved with our genetic code.
Collapse
Affiliation(s)
- Claire Chung
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Bert M Verheijen
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Zoe Navapanich
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Eric G McGann
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Sarah Shemtov
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Guan-Ju Lai
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Payal Arora
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Atif Towheed
- Children's hospital of Philadelphia, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, PA, USA
| | - Suraiya Haroon
- Children's hospital of Philadelphia, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, PA, USA
| | - Agnes Holczbauer
- Children's hospital of Philadelphia, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, PA, USA
| | - Sharon Chang
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zarko Manojlovic
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen Simpson
- College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, USA
| | - Kelley W Thomas
- College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, USA
| | - Craig Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter van Hasselt
- Department of Metabolic Disease, University of Utrecht, Utrecht, the Netherlands
| | - Marc Timmers
- Department of Urology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dorothy Erie
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Lin Chen
- Department of Molecular and Cellular Biology, University of Southern California, Los Angeles, CA, USA
| | - Jean-Franćois Gout
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Marc Vermulst
- School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
46
|
Prediction of O-6-methylguanine-DNA methyltransferase and overall survival of the patients suffering from glioblastoma using MRI-based hybrid radiomics signatures in machine and deep learning framework. Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
47
|
Bai P, Fan T, Sun G, Wang X, Zhao L, Zhong R. The dual role of DNA repair protein MGMT in cancer prevention and treatment. DNA Repair (Amst) 2023; 123:103449. [PMID: 36680944 DOI: 10.1016/j.dnarep.2023.103449] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Alkylating agents are genotoxic chemicals that can induce and treat various types of cancer. This occurs through covalent bonding with cellular macromolecules, in particular DNA, leading to the loss of functional integrity under the persistence of modifications upon replication. O6-alkylguanine (O6-AlkylG) adducts are proposed to be the most potent DNA lesions induced by alkylating agents. If not repaired correctly, these adducts can result, at the molecular level, in DNA point mutations, chromosome aberrations, recombination, crosslinking, and single- and double-strand breaks (SSB/DSBs). At the cellular level, these lesions can result in malignant transformation, senescence, or cell death. O6-methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein capable of removing the alkyl groups from O6-AlkylG adducts in a damage reversal process that can prevent the adverse biological effects of DNA damage caused by guanine O6-alkylation. MGMT can thereby defend normal cells against tumor initiation, however it can also protect tumor cells against the beneficial effects of chemotherapy. Hence, MGMT can play an important role in both the prevention and treatment of cancer; thus, it can be considered as a double-edged sword. From a clinical perspective, MGMT is a therapeutic target, and it is important to explore the rational development of its clinical exploitation.
Collapse
Affiliation(s)
- Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
48
|
Oh CR, Kim JE, Lee JS, Kim SY, Kim TW, Choi J, Kim J, Park IJ, Lim SB, Park JH, Kim JH, Choi MK, Cha Y, Baek JY, Beom SH, Hong YS. Preoperative Chemoradiotherapy With Capecitabine With or Without Temozolomide in Patients With Locally Advanced Rectal Cancer: A Prospective, Randomised Phase II Study Stratified by O 6-Methylguanine DNA Methyltransferase Status: KCSG-CO17-02. Clin Oncol (R Coll Radiol) 2023; 35:e143-e152. [PMID: 36376167 DOI: 10.1016/j.clon.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/03/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022]
Abstract
AIMS To evaluate the clinical efficacy of adding temozolomide (TMZ) to preoperative capecitabine (CAP)-based chemoradiotherapy in patients with locally advanced rectal cancer (LARC) and validate O6-methylguanine DNA methyltransferase (MGMT) methylation status as a predictive marker for TMZ combined regimens. MATERIALS AND METHODS LARC patients with clinical stage II (cT3-4N0) or III (cTanyN+) disease were enrolled. They were stratified into unmethylated MGMT (uMGMT) and methylated MGMT (mMGMT) groups by methylation-specific polymerase chain reaction before randomisation and were then randomly assigned (1:1) to one of four treatment arms: uMGMT/CAP (arm A), uMGMT/TMZ + CAP (arm B), mMGMT/CAP (arm C) and mMGMT/TMZ + CAP (arm D). The primary end point was the pathological complete response (pCR) rate. RESULTS Between November 2017 and July 2020, 64 patients were randomised. Slow accrual caused early study termination. After excluding four ineligible patients, 60 were included in the full analysis set. The pCR rate was 15.0% (9/60), 0%, 14.3%, 18.8% and 26.7% for the entire cohort, arms A, B, C and D, respectively (P = 0.0498 between arms A and D). The pCR rate was 9.7% in the CAP group (arms A + C), 20.7% in the TMZ + CAP group (arms B + D), 6.9% in the uMGMT group (arms A + B) and 22.6% in the mMGMT group (arms C + D). Grade 1-2 nausea or vomiting was significantly more frequent in the TMZ + CAP treatment groups (arms B + D) than in the CAP treatment groups (arms A + C, P < 0.001) with no difference in grade 3 adverse events. There were no grade 4 or 5 adverse events. CONCLUSION The addition of TMZ to CAP-based chemoradiotherapy tended to improve pCR rates, particularly in those with mMGMT LARC. MGMT status may warrant further investigation as a predictive biomarker for chemotherapeutic agents and radiotherapy.
Collapse
Affiliation(s)
- C R Oh
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - J E Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - J S Lee
- Clinical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - S Y Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - T W Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - J Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - J Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - I J Park
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - S-B Lim
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - J-H Park
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - J H Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - M K Choi
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Y Cha
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - J Y Baek
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - S-H Beom
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Y S Hong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Brighi N, Lamberti G, Andrini E, Mosconi C, Manuzzi L, Donati G, Lisotti A, Campana D. Prospective Evaluation of MGMT-Promoter Methylation Status and Correlations with Outcomes to Temozolomide-Based Chemotherapy in Well-Differentiated Neuroendocrine Tumors. Curr Oncol 2023; 30:1381-1394. [PMID: 36826067 PMCID: PMC9955977 DOI: 10.3390/curroncol30020106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Temozolomide (TEM) as a single agent or in combination with capecitabine (CAPTEM) is active in well-differentiated advanced neuroendocrine tumors (NETs) of gastro-entero-pancreatic and thoracic origin. The predictive role of MGMT-promoter methylation in this setting is controversial. We sought to prospectively evaluate the MGMT-promoter methylation status ability to predict outcomes to TEM-based chemotherapy in patients with NET. A single-center, prospective, observational study has been conducted at the ENETS Center-of-Excellence Outpatient Clinic of the IRCCS Policlinico Sant'Orsola-Malpighi in Bologna, Italy. Patients with advanced, gastro-entero-pancreatic or lung well-differentiated NETs candidate to TEM-based chemotherapy and with available tumor samples for MGMT-promoter methylation assessment were included. The MGMT-promoter methylation status was analyzed by using pyrosequencing. The primary endpoint was progression-free survival (PFS) by the MGMT-promoter methylation status. Secondary endpoints included overall survival (OS), objective response rate (ORR), disease control rate (DCR), and safety. Survival outcomes were compared by restricted mean survival time (RMST) difference. Of 26 screened patients, 22 were finally enrolled in the study. The most frequent NET primary sites were the pancreas (64%) and the lung (23%). MGMT promoter was methylated in five tumors (23%). At a median follow-up time of 47.2 months (95%CI 29.3-89.7), the median PFS was 32.8 months (95%CI 17.2-NA), while the median OS was not reached. Patients in the methylated MGMT group, when compared to those in the unmethylated MGMT group, had longer PFS (median not reached [95%CI NA-NA] vs. 30.2 months [95%CI 15.2-NA], respectively; RMST p = 0.005) and OS (median not reached [95%CI NA-NA] vs. not reached [40.1-NA], respectively; RMST p = 0.019). After adjusting for confounding factors, the MGMT-promoter methylation status was independently associated to the PFS. Numerically higher ORR (60% vs. 24%; p = 0.274) and DCR (100% vs. 88%; p = 1.00) were observed in the methylated vs. unmethylated MGMT group. TEM-based chemotherapy was well-tolerated (adverse events grade ≥3 < 10%). In this prospective study, MGMT-promoter methylation predicted better outcomes to TEM-based chemotherapy in patients with NET.
Collapse
Affiliation(s)
- Nicole Brighi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Giuseppe Lamberti
- Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi University Hospital, ENETS Center of Excellence, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
- Correspondence: ; Tel.: +39-051-2142886
| | - Elisa Andrini
- Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi University Hospital, ENETS Center of Excellence, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| | - Cristina Mosconi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Lisa Manuzzi
- Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi University Hospital, ENETS Center of Excellence, 40138 Bologna, Italy
| | - Giada Donati
- Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi University Hospital, ENETS Center of Excellence, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| | - Andrea Lisotti
- Gastroenterology Unit, Hospital of Imola, University of Bologna, 40026 Bologna, Italy
| | - Davide Campana
- Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi University Hospital, ENETS Center of Excellence, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| |
Collapse
|
50
|
Chemotherapy in Well Differentiated Neuroendocrine Tumors (NET) G1, G2, and G3: A Narrative Review. J Clin Med 2023; 12:jcm12020717. [PMID: 36675645 PMCID: PMC9861419 DOI: 10.3390/jcm12020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Neuroendocrine tumors (NETs) are rare neoplasms with a wide spectrum of clinical behavior, from the long survival of well-differentiated NETs to the dismal prognosis of high-grade neuroendocrine carcinomas (NECs), being G3 NETs a recently recognized intermediate entity. While the role of chemotherapy is well established in NECs, data on NETs mostly derives from small studies, experts' opinions, and extrapolating results from small-cell lung cancer studies. This narrative review aims to summarize available evidence about the use of chemotherapy in the setting of G1-2 NETs and G3 NETs. We performed literature research in PubMed Library for all articles published up to September 2022 about the efficacy of chemotherapy in NETs. Treatment regimens with STZ-5FU, CAPTEM, and anti-metabolite-based treatment are the most active and tolerated in gastroenteropancreatic NETs (GEP-NETs) G1-G2, while platinum-based regimens (FOLFOX/XELOX) and TEM/CAPTEM showed the best activity in thoracic NETs. Solid evidence about chemotherapy efficacy in G3 NETs is still lacking. Literature data support the use of chemotherapy in low-intermediate grade NETs after the failure of other therapies or if tumor shrinkage is needed. Studies assessing G3 NETs independently from NECs are needed to better understand the role of chemotherapy in this setting.
Collapse
|