1
|
Messing S, Widmeyer SRT, Denson JP, Mehalko J, Wall VE, Drew M, Snead K, Hong M, Grose C, Esposito D, Gillette W. Improved production of class I phosphatidylinositol 4,5-bisphosphate 3-kinase. Protein Expr Purif 2025; 225:106582. [PMID: 39173964 PMCID: PMC11421577 DOI: 10.1016/j.pep.2024.106582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Phosphatidylinositol 4,5-bisphosphate 3-kinases (PI3K) are a family of kinases whose activity affects pathways needed for basic cell functions. As a result, PI3K is one of the most mutated genes in all human cancers and serves as an ideal therapeutic target for cancer treatment. Expanding on work done by other groups we improved protein yield to produce stable and pure protein using a variety of modifications including improved solubility tag, novel expression modalities, and optimized purification protocol and buffer. By these means, we achieved a 40-fold increase in yield for p110α/p85α and a 3-fold increase in p110α. We also used these protocols to produce comparable constructs of the β and δ isoforms of PI3K. Increased yield enhanced the efficiency of our downstream high throughput drug discovery efforts on the PIK3 family of kinases.
Collapse
Affiliation(s)
- Simon Messing
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| | - Stephanie R T Widmeyer
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - John-Paul Denson
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jennifer Mehalko
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Vanessa E Wall
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Matthew Drew
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Kelly Snead
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Min Hong
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Carissa Grose
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - William Gillette
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| |
Collapse
|
2
|
Huang J, Wang J. Selective protein degradation through chaperone‑mediated autophagy: Implications for cellular homeostasis and disease (Review). Mol Med Rep 2025; 31:13. [PMID: 39513615 PMCID: PMC11542157 DOI: 10.3892/mmr.2024.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 11/15/2024] Open
Abstract
Cells rely on autophagy for the degradation and recycling of damaged proteins and organelles. Chaperone-mediated autophagy (CMA) is a selective process targeting proteins for degradation through the coordinated function of molecular chaperones and the lysosome‑associated membrane protein‑2A receptor (LAMP2A), pivotal in various cellular processes from signal transduction to the modulation of cellular responses under stress. In the present review, the intricate regulatory mechanisms of CMA were elucidated through multiple signaling pathways such as retinoic acid receptor (RAR)α, AMP‑activated protein kinase (AMPK), p38‑TEEB‑NLRP3, calcium signaling‑NFAT and PI3K/AKT, thereby expanding the current understanding of CMA regulation. A comprehensive exploration of CMA's versatile roles in cellular physiology were further provided, including its involvement in maintaining protein homeostasis, regulating ferroptosis, modulating metabolic diversity and influencing cell cycle and proliferation. Additionally, the impact of CMA on disease progression and therapeutic outcomes were highlighted, encompassing neurodegenerative disorders, cancer and various organ‑specific diseases. Therapeutic strategies targeting CMA, such as drug development and gene therapy were also proposed, providing valuable directions for future clinical research. By integrating recent research findings, the present review aimed to enhance the current understanding of cellular homeostasis processes and emphasize the potential of targeting CMA in therapeutic strategies for diseases marked by CMA dysfunction.
Collapse
Affiliation(s)
- Jiahui Huang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- College of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Jiazhen Wang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| |
Collapse
|
3
|
Seung BJ, Sur JH. Detection of PIK3CA hotspot mutations in canine mammary tumors using droplet digital PCR: tissue validation and liquid biopsy feasibility. Sci Rep 2024; 14:25587. [PMID: 39462049 PMCID: PMC11512996 DOI: 10.1038/s41598-024-76820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Domestic dogs (Canis lupus familiaris) serve as valuable translational models for human cancer research due to their biological similarities. Canine mammary tumors (CMTs), frequently diagnosed in female dogs, share various characteristics with human breast cancers. This study investigates the PIK3CA (H1047R) mutation in CMTs using droplet digital PCR (ddPCR) and explores the potential of liquid biopsy for non-invasive detection. We analyzed 80 formalin-fixed, paraffin-embedded (FFPE) CMT tissue samples and compared ddPCR results with next-generation sequencing (NGS) data, achieving high concordance. Plasma and serum samples were also assessed for mutation concordance with tissue results. Our findings indicate a higher frequency of the PIK3CA (H1047R) mutations in benign and grade I malignant CMTs compared to more aggressive malignancies. The ddPCR assay demonstrated high sensitivity and specificity, with plasma testing showing 78.6% sensitivity and 87.5% specificity, and serum testing showing 66.7% sensitivity and 90.0% specificity. These results highlight the viability of liquid biopsy as a minimally invasive method for monitoring PIK3CA mutations in canine patients. The study suggests that liquid biopsy techniques hold significant promise for improving the early detection and monitoring of canine cancers, warranting further research to refine these methods and explore their applications in canine cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Byung-Joon Seung
- Department of Veterinary Pathology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea.
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| | - Jung-Hyang Sur
- Department of Veterinary Pathology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea.
- Komipharm International Co., Ltd., Siheung-si, Gyonggi-do, 15094, South Korea.
| |
Collapse
|
4
|
Salphati L, Pang J, Plise EG, Cheong J, Braun MG, Friedman LS, Hong Thibodeau R, Jaochico A, Johnson R, Liu N, Nannini M, Sampath D, Song K, Hannan EJ, Staben ST. Preclinical Assessment of the PI3Kα Selective Inhibitor Inavolisib and Prediction of Its Pharmacokinetics and Efficacious Dose in Human. Xenobiotica 2024:1-20. [PMID: 39387185 DOI: 10.1080/00498254.2024.2415103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
1. Small molecule inhibitors of the PI3K pathway have been extensively investigated as potential anticancer agents. Among the effectors in this pathway, PI3Kα is the kinase most frequently associated with the development of tumors, through mutations and amplifications of the PIK3CA gene encoding the p110α catalytic subunit.2. Inavolisib (GDC-0077) is a potent and PI3Kα-selective inhibitor that also specifically triggers the degradation of the mutant p110α protein.3. We characterized inavolisib ADME properties in preclinical in vitro and in vivo studies, assessed its efficacy in the PIK3CA mutant KPL-4 breast cancer xenograft model, and predicted its pharmacokinetics and efficacious dose in humans.4. Inavolisib had a moderate permeability (1.9•10-6 cm/s) in MDCK cells and was a P-gp and Bcrp1 substrate. It appeared metabolically stable in hepatocytes incubations from human and preclinical species. The systemic clearance was low in mouse, monkey and dog and high in rat. Oral bioavailability ranged from 57.5% to 100%. Inavolisib was efficacious in the KPL-4 sub-cutaneous xenograft model.5. The PK/PD model parameters estimated from the efficacy study, combined with PBPK model-predicted human PK profiles, projected that a dose of 3 mg could lead to clinical response. Inavolisib is currently being tested in phase 3 trials.
Collapse
Affiliation(s)
- Laurent Salphati
- Departments of Drug Metabolism and Pharmacokinetics (LS, JP, EGP, JC, AJ, RJ, NL), Chemistry (MGB, EJH, STS), Cancer Signaling (LSF, KS) and Translational Oncology (RHT, MN, DS), Genentech, Inc., South San Francisco, CA 94080
| | - Jodie Pang
- Departments of Drug Metabolism and Pharmacokinetics (LS, JP, EGP, JC, AJ, RJ, NL), Chemistry (MGB, EJH, STS), Cancer Signaling (LSF, KS) and Translational Oncology (RHT, MN, DS), Genentech, Inc., South San Francisco, CA 94080
| | - Emile G Plise
- Departments of Drug Metabolism and Pharmacokinetics (LS, JP, EGP, JC, AJ, RJ, NL), Chemistry (MGB, EJH, STS), Cancer Signaling (LSF, KS) and Translational Oncology (RHT, MN, DS), Genentech, Inc., South San Francisco, CA 94080
| | - Jonathan Cheong
- Departments of Drug Metabolism and Pharmacokinetics (LS, JP, EGP, JC, AJ, RJ, NL), Chemistry (MGB, EJH, STS), Cancer Signaling (LSF, KS) and Translational Oncology (RHT, MN, DS), Genentech, Inc., South San Francisco, CA 94080
| | - Marie-Gabrielle Braun
- Departments of Drug Metabolism and Pharmacokinetics (LS, JP, EGP, JC, AJ, RJ, NL), Chemistry (MGB, EJH, STS), Cancer Signaling (LSF, KS) and Translational Oncology (RHT, MN, DS), Genentech, Inc., South San Francisco, CA 94080
| | - Lori S Friedman
- Departments of Drug Metabolism and Pharmacokinetics (LS, JP, EGP, JC, AJ, RJ, NL), Chemistry (MGB, EJH, STS), Cancer Signaling (LSF, KS) and Translational Oncology (RHT, MN, DS), Genentech, Inc., South San Francisco, CA 94080
| | - Rebecca Hong Thibodeau
- Departments of Drug Metabolism and Pharmacokinetics (LS, JP, EGP, JC, AJ, RJ, NL), Chemistry (MGB, EJH, STS), Cancer Signaling (LSF, KS) and Translational Oncology (RHT, MN, DS), Genentech, Inc., South San Francisco, CA 94080
| | - Allan Jaochico
- Departments of Drug Metabolism and Pharmacokinetics (LS, JP, EGP, JC, AJ, RJ, NL), Chemistry (MGB, EJH, STS), Cancer Signaling (LSF, KS) and Translational Oncology (RHT, MN, DS), Genentech, Inc., South San Francisco, CA 94080
| | - Ryan Johnson
- Departments of Drug Metabolism and Pharmacokinetics (LS, JP, EGP, JC, AJ, RJ, NL), Chemistry (MGB, EJH, STS), Cancer Signaling (LSF, KS) and Translational Oncology (RHT, MN, DS), Genentech, Inc., South San Francisco, CA 94080
| | - Ning Liu
- Departments of Drug Metabolism and Pharmacokinetics (LS, JP, EGP, JC, AJ, RJ, NL), Chemistry (MGB, EJH, STS), Cancer Signaling (LSF, KS) and Translational Oncology (RHT, MN, DS), Genentech, Inc., South San Francisco, CA 94080
| | - Michelle Nannini
- Departments of Drug Metabolism and Pharmacokinetics (LS, JP, EGP, JC, AJ, RJ, NL), Chemistry (MGB, EJH, STS), Cancer Signaling (LSF, KS) and Translational Oncology (RHT, MN, DS), Genentech, Inc., South San Francisco, CA 94080
| | - Deepak Sampath
- Departments of Drug Metabolism and Pharmacokinetics (LS, JP, EGP, JC, AJ, RJ, NL), Chemistry (MGB, EJH, STS), Cancer Signaling (LSF, KS) and Translational Oncology (RHT, MN, DS), Genentech, Inc., South San Francisco, CA 94080
| | - Kyung Song
- Departments of Drug Metabolism and Pharmacokinetics (LS, JP, EGP, JC, AJ, RJ, NL), Chemistry (MGB, EJH, STS), Cancer Signaling (LSF, KS) and Translational Oncology (RHT, MN, DS), Genentech, Inc., South San Francisco, CA 94080
| | - Emily J Hannan
- Departments of Drug Metabolism and Pharmacokinetics (LS, JP, EGP, JC, AJ, RJ, NL), Chemistry (MGB, EJH, STS), Cancer Signaling (LSF, KS) and Translational Oncology (RHT, MN, DS), Genentech, Inc., South San Francisco, CA 94080
| | - Steven T Staben
- Departments of Drug Metabolism and Pharmacokinetics (LS, JP, EGP, JC, AJ, RJ, NL), Chemistry (MGB, EJH, STS), Cancer Signaling (LSF, KS) and Translational Oncology (RHT, MN, DS), Genentech, Inc., South San Francisco, CA 94080
| |
Collapse
|
5
|
Zheng T, Jiang T, Ma H, Zhu Y, Wang M. Targeting PI3K/Akt in Cerebral Ischemia Reperfusion Injury Alleviation: From Signaling Networks to Targeted Therapy. Mol Neurobiol 2024; 61:7930-7949. [PMID: 38441860 DOI: 10.1007/s12035-024-04039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/09/2024] [Indexed: 09/21/2024]
Abstract
Ischemia/reperfusion (I/R) injury is a pathological event that results in reperfusion due to low blood flow to an organ. Cerebral ischemia is a common cerebrovascular disease with high mortality, and reperfusion is the current standard intervention. However, reperfusion may further induce cellular damage and dysfunction known as cerebral ischemia/reperfusion injury (CIRI). Currently, strategies for the clinical management of CIRI are limited, necessitating the exploration of novel and efficacious treatment modalities for the benefit of patients. PI3K/Akt signaling pathway is an important cellular process associated with the disease. Stimulation of the PI3K/Akt pathway enhances I/R injury in multiple organs such as heart, brain, lung, and liver. It stands as a pivotal signaling pathway crucial for diminishing cerebral infarction size and safeguarding the functionality of brain tissue after CIRI. During CIRI, activation of the PI3K/Akt pathway exhibits a protective effect on CIRI. Furthermore, activation of the PI3K/Akt pathway has the potential to augment the activity of antioxidant enzymes, resulting in a decrease in reactive oxygen species (ROS) and the associated oxidative stress. Meanwhile, PI3K/Akt plays a neuroprotective role by inhibiting inflammatory responses and apoptosis. For example, PI3K/Akt interacts with NF-κB, Nrf2, and MAPK signaling pathways to mitigate CIRI. This article is aimed to explore the pivotal role and underlying mechanism of PI3K/Akt in ameliorating CIRI and investigate the influence of ischemic preconditioning and post-processing, as well as the impact of pertinent drugs or activators targeting the PI3K/Akt pathway on CIRI. The primary objective is to furnish compelling evidence supporting the activation of PI3K/Akt in the context of CIRI, elucidating its mechanistic intricacies. By doing so, the paper aims to underscore the critical contribution of PI3K/Akt in mitigating CIRI, providing a theoretical foundation for considering the PI3K/Akt pathway as a viable target for CIRI treatment.
Collapse
Affiliation(s)
- Ting Zheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Taotao Jiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongxiang Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yanping Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Manxia Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
6
|
Randeni N, Xu B. New insights into signaling pathways of cancer prevention effects of polysaccharides from edible and medicinal mushrooms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155875. [PMID: 39029136 DOI: 10.1016/j.phymed.2024.155875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Despite extensive efforts, empirical techniques have yielded limited progress in finding effective anticancer medications, with chemotherapy drugs often associated with drug resistance and serious side effects. Thus, there is a pressing need for novel agents with minimal adverse effects. Natural substances, widely used in treating various illnesses, including cancer, offer promising alternatives. Among these, mushrooms, rich in low molecular weight secondary metabolites, polysaccharides, and polysaccharide-protein complexes, have gained attention for their potential anticancer properties. RESULTS Mushroom polysaccharides have been found to impede oncogenesis and tumor metastasis by directly inhibiting tumor cell growth and indirectly enhancing immune system functions. These polysaccharides engage with numerous cell signaling pathways that influence cancer development and progression. They affect pathways that control cell survival, growth, and differentiation, and they also play a role in adjusting the tumor immune microenvironment. CONCLUSION This review highlights the potential of mushroom polysaccharides as promising anticancer agents due to their ability to modulate cell signaling pathways crucial for cancer development. Understanding the mechanisms underlying their effects on these pathways is essential for harnessing their therapeutic potential and developing novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Nidesha Randeni
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China; Department of Agricultural and Plantation Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
7
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
8
|
Li H, Wen X, Ren Y, Fan Z, Zhang J, He G, Fu L. Targeting PI3K family with small-molecule inhibitors in cancer therapy: current clinical status and future directions. Mol Cancer 2024; 23:164. [PMID: 39127670 DOI: 10.1186/s12943-024-02072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The Phosphatidylinositol-3-kinase (PI3K) family is well-known to comprise three classes of intracellular enzymes. Class I PI3Ks primarily function in signaling by responding to cell surface receptor stimulation, while class II and III are more involved in membrane transport. Under normal physiological conditions, the PI3K signaling network orchestrates cell growth, division, migration and survival. Aberrant activation of the PI3K signaling pathway disrupts cellular activity and metabolism, often marking the onset of cancer. Currently, the Food and Drug Administration (FDA) has approved the clinical use of five class I PI3K inhibitors. These small-molecule inhibitors, which exhibit varying selectivity for different class I PI3K family members, are primarily used in the treatment of breast cancer and hematologic malignancies. Therefore, the development of novel class I PI3K inhibitors has been a prominent research focus in the field of oncology, aiming to enhance potential therapeutic selectivity and effectiveness. In this review, we summarize the specific structures of PI3Ks and their functional roles in cancer progression. Additionally, we critically evaluate small molecule inhibitors that target class I PI3K, with a particular focus on their clinical applications in cancer treatment. Moreover, we aim to analyze therapeutic approaches for different types of cancers marked by aberrant PI3K activation and to identify potential molecular targets amenable to intervention with small-molecule inhibitors. Ultimately, we propose future directions for the development of therapeutic strategies that optimize cancer treatment outcomes by modulating the PI3K family.
Collapse
Affiliation(s)
- Hongyao Li
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Yueting Ren
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Brain Science, Faculty of Medicine, Imperial College, London, SW72AZ, UK
| | - Zhichao Fan
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China.
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China.
| | - Leilei Fu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China.
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
9
|
Cheng Y, Lu Y, Xue J, Wang X, Zhou L, Luo Y, Li Y. DDX19A promotes gastric cancer cell proliferation and migration by activating the PI3K/AKT pathway. Cancer Cell Int 2024; 24:272. [PMID: 39097730 PMCID: PMC11297674 DOI: 10.1186/s12935-024-03448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 07/12/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND DEAD-box RNA helicase 19 A (DDX19A) is overexpressed in cervical squamous cell carcinoma. However, its role in gastric cancer remains unclear. The present study aimed to explore the role and underlying mechanism of DDX19A in the development of gastric cancer. METHODS The expression of DDX19A in gastric cancer and paracancerous tissues was evaluated through quantitative polymerase chain reaction, western blotting, and immunohistochemical staining. The biological functions of DDX19A in gastric cancer were determined using CCK8, plate colony-forming, and Transwell migration assays. The specific mechanism of DDX19A in gastric cancer cells was studied using western blotting, RNA-binding protein immunoprecipitation, mRNA half-life detection, and nuclear and cytoplasmic RNA isolation. RESULTS DDX19A was highly expressed in gastric cancer and positively associated with malignant clinicopathological features and poor prognosis. Additionally, DDX19A promoted gastric cancer cell proliferation, migration, and epithelial-mesenchymal transition phenotypes. Mechanistically, DDX19A activated the PI3K/AKT pathway by upregulating phosphatidylinositol-3-kinase (PIK3CA) expression. Furthermore, DDX19A interacted with PIK3CA mRNA, stabilized it, and facilitated its export from the nucleus. CONCLUSIONS Our study reveals a novel mechanism whereby DDX19A promotes the proliferation and migration of gastric cancer cells by enhancing the stability and nuclear export of PIK3CA mRNA, thereby activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Yanjie Lu
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei Province, China
| | - Jing Xue
- Morphological Experimental Center, Chengde Medical College, Chengde, Hebei Province, China
| | - Xuemei Wang
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Lili Zhou
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Yu Luo
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Yuhong Li
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China.
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei Province, China.
- Department of Pathology, Cancer Research Laboratory, Chengde Medical College, Anyuan Road, Chengde, Hebei, 067000, China.
| |
Collapse
|
10
|
Lanahan SM, Yang L, Jones KM, Qi Z, Cabrera EC, Cominsky LY, Ramaswamy A, Barmada A, Gabernet G, Uthaya Kumar DB, Xu L, Shan P, Wymann MP, Kleinstein SH, Rao VK, Mustillo P, Romberg N, Abraham RS, Lucas CL. PI3Kγ in B cells promotes antibody responses and generation of antibody-secreting cells. Nat Immunol 2024; 25:1422-1431. [PMID: 38961274 DOI: 10.1038/s41590-024-01890-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
The differentiation of naive and memory B cells into antibody-secreting cells (ASCs) is a key feature of adaptive immunity. The requirement for phosphoinositide 3-kinase-delta (PI3Kδ) to support B cell biology has been investigated intensively; however, specific functions of the related phosphoinositide 3-kinase-gamma (PI3Kγ) complex in B lineage cells have not. In the present study, we report that PI3Kγ promotes robust antibody responses induced by T cell-dependent antigens. The inborn error of immunity caused by human deficiency in PI3Kγ results in broad humoral defects, prompting our investigation of roles for this kinase in antibody responses. Using mouse immunization models, we found that PI3Kγ functions cell intrinsically within activated B cells in a kinase activity-dependent manner to transduce signals required for the transcriptional program supporting differentiation of ASCs. Furthermore, ASC fate choice coincides with upregulation of PIK3CG expression and is impaired in the context of PI3Kγ disruption in naive B cells on in vitro CD40-/cytokine-driven activation, in memory B cells on toll-like receptor activation, or in human tonsillar organoids. Taken together, our study uncovers a fundamental role for PI3Kγ in supporting humoral immunity by integrating signals instructing commitment to the ASC fate.
Collapse
Affiliation(s)
- Stephen M Lanahan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lucas Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kate M Jones
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Zhihong Qi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Emylette Cruz Cabrera
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lauren Y Cominsky
- Immunology Graduate Group, Perelman School of Medicine, Philadelphia, PA, USA
| | - Anjali Ramaswamy
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Anis Barmada
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Gisela Gabernet
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Lan Xu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Peiying Shan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - V Koneti Rao
- Primary Immunodeficiency Clinic, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Peter Mustillo
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Detiger SE, Paridaens D, Kemps PG, van Halteren AGS, van Hagen PM, van Laar JAM, Verdijk RM. Histological evidence of MAPK pathway activation across subtypes of adult orbital xanthogranulomatous disease irrespective of the detection of oncogenic mutations. Clin Immunol 2024; 265:110299. [PMID: 38936524 DOI: 10.1016/j.clim.2024.110299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Adult orbital xanthogranulomatous disease (AOXGD) is a spectrum of histiocytoses with four subtypes. Mitogen-activated protein kinase (MAPK) pathway mutations have been detected in various histiocytic neoplasms, little is known about this in AOXGD. Targeted regions of cancer- and histiocytosis-related genes were analyzed and immunohistochemical staining of phosphorylated ERK (pERK), cyclin D1 and PU.1 was performed in 28 AOXGD and 10 control xanthelasma biopsies to assess MAPK pathway activation. Mutations were detected in 7/28 (25%) patients. Positive staining for pERK and/or cyclin D1 was found across all subtypes in 17/27 (63%) patients of whom 12/17 (71%) did not harbour a mutation. Xanthelasma tissue stained negative for pERK and cyclin D1. Relapse occurred in 5/7 (71%) patients with a MAPK pathway mutation compared to 8/21 (38%) patients in whom no mutation could be detected. Molecular analysis and evaluation for systemic disease is warranted to identify patients at risk of recurrent xanthomatous disease.
Collapse
Affiliation(s)
- S E Detiger
- The Rotterdam Eye Hospital, Rotterdam, the Netherlands
| | - D Paridaens
- The Rotterdam Eye Hospital, Department of Oculoplastic, Orbital and Lacrimal Surgery, Rotterdam, the Netherlands; Department of Ophthalmology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - P G Kemps
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - A G S van Halteren
- Department of Internal Medicine, section Clinical Immunology & Allergology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; On behalf of the HOVON Histiocytic and Lymphocytic Diseases Working Group
| | - P M van Hagen
- Department of Internal Medicine, section Clinical Immunology & Allergology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - J A M van Laar
- Department of Internal Medicine, section Clinical Immunology & Allergology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; On behalf of the HOVON Histiocytic and Lymphocytic Diseases Working Group
| | - R M Verdijk
- The Rotterdam Eye Hospital, Rotterdam, the Netherlands; Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pathology, section Ophthalmic Pathology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
12
|
Hosseini FS, Ahmadi A, Kesharwani P, Hosseini H, Sahebkar A. Regulatory effects of statins on Akt signaling for prevention of cancers. Cell Signal 2024; 120:111213. [PMID: 38729324 DOI: 10.1016/j.cellsig.2024.111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Statins, which are primarily used as lipid-lowering drugs, have been found to exhibit anti-tumor effects through modulating and interfering with various signaling pathways. In observational studies, statin use has been associated with a significant reduction in the progression of various cancers, including colon, lung, prostate, pancreas, and esophagus cancer, as well as melanoma and B and T cell lymphoma. The mevalonate pathway, which is affected by statins, plays a crucial role in activating Rho, Ras, and Rab proteins, thereby impacting the proliferation and apoptosis of tumor cells. Statins block this pathway, leading to the inhibition of isoprenoid units, which are critical for the activation of these key proteins, thereby affecting cancer cell behavior. Additionally, statins affect MAPK and Cdk2, which in turn reduce the expression of p21 and p27 cyclin-dependent kinase inhibitors. Akt signaling plays a crucial role in key cancer cell features like proliferation, invasion, and apoptosis by activating multiple effectors in downstream pathways such as FOXO, PTEN, NF-κB, GSK3β, and mTOR. The PI3K/Akt signaling is necessary for many events in the metastatic pathway and has been implicated in the resistance to cytostatic drugs. The Akt/PTEN axis is currently attracting great interest for its role in carcinogenesis. Statins have been shown to activate the purinergic receptor P2X7 and affect Akt signaling, which may have important anti-cancer effects. Hence, targeting Akt shows promise as an effective approach to cancer prevention and therapy. This review aims to provide a comprehensive discussion on the specific impact of statins through Akt signaling in different types of cancer.
Collapse
Affiliation(s)
- Fatemeh Sadat Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdolreza Ahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Gao F, Liu S, Wang J, Wei G, Yu C, Zheng L, Sun L, Wang G, Sun Y, Bao Y, Song Z. TSP50 facilitates breast cancer stem cell-like properties maintenance and epithelial-mesenchymal transition via PI3K p110α mediated activation of AKT signaling pathway. J Exp Clin Cancer Res 2024; 43:201. [PMID: 39030572 PMCID: PMC11264956 DOI: 10.1186/s13046-024-03118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/06/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Studies have confirmed that epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC)-like properties are conducive to cancer metastasis. In recent years, testes-specific protease 50 (TSP50) has been identified as a prognostic factor and is involved in tumorigenesis regulation. However, the role and molecular mechanisms of TSP50 in EMT and CSC-like properties maintenance remain unclear. METHODS The expression and prognostic value of TSP50 in breast cancer were excavated from public databases and explored using bioinformatics analysis. Then the expression of TSP50 and related genes was further validated by quantitative RT-PCR (qRT-PCR), Western blot, and immunohistochemistry (IHC). In order to investigate the function of TSP50 in breast cancer, loss- and gain-of-function experiments were conducted, both in vitro and in vivo. Furthermore, immunofluorescence (IF) and immunoprecipitation (IP) assays were performed to explore the potential molecular mechanisms of TSP50. Finally, the correlation between the expression of TSP50 and related genes in breast cancer tissue microarray and clinicopathological characteristics was analyzed by IHC. RESULTS TSP50 was negatively correlated with the prognosis of patients with breast cancer. TSP50 promoted CSC-like traits and EMT in both breast cancer cells and mouse xenograft tumor tissues. Additionally, inhibition of PI3K/AKT partly reversed TSP50-induced activation of CSC-like properties, EMT and tumorigenesis. Mechanistically, TSP50 and PI3K p85α regulatory subunit could competitively interact with the PI3K p110α catalytic subunit to promote p110α enzymatic activity, thereby activating the PI3K/AKT signaling pathway for CSC-like phenotypes maintenance and EMT promotion. Moreover, IHC analysis of human breast cancer specimens revealed that TSP50 expression was positively correlated with p-AKT and ALDH1 protein levels. Notably, breast cancer clinicopathological characteristics, such as patient survival time, tumor size, Ki67, pathologic stage, N stage, estrogen receptor (ER) and progesterone receptor (PR) levels, correlated well with TSP50/p-AKT/ALDH1 expression status. CONCLUSION The effects of TSP50 on EMT and CSC-like properties promotion were verified to be dependent on PI3K p110α. Together, our study revealed a novel mechanism by which TSP50 facilitates the progression of breast cancer, which can provide new insights into TSP50-based breast cancer treatment strategies.
Collapse
Affiliation(s)
- Feng Gao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Sichen Liu
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China
| | - Jing Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China
| | - Gang Wei
- Department of Breast Surgery, Jilin Province Cancer Hospital, Changchun, 130012, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China
| | - Lihua Zheng
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China
| | - Guannan Wang
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Ying Sun
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yongli Bao
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China.
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China.
| |
Collapse
|
14
|
Lou SY, Zheng FL, Tang YM, Zheng YN, Lu J, An H, Zhang EJ, Cui SL, Zhao HJ. TYM-3-98, a novel selective inhibitor of PI3Kδ, demonstrates promising preclinical antitumor activity in B-cell lymphomas. Life Sci 2024; 347:122662. [PMID: 38670450 DOI: 10.1016/j.lfs.2024.122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
AIMS PI3Kδ is expressed predominately in leukocytes and is commonly found to be aberrantly activated in human B-cell lymphomas. Although PI3Kδ has been intensively targeted for discovering anti-lymphoma drugs, the application of currently approved PI3Kδ inhibitors has been limited due to unwanted systemic toxicities, thus warranting the development of novel PI3Kδ inhibitors with new scaffolds. MAIN METHODS We designed TYM-3-98, an indazole derivative, and evaluated its selectivity for all four PI3K isoforms, as well as its efficacy against various B-cell lymphomas both in vitro and in vivo. KEY FINDINGS We identified TYM-3-98 as a highly selective PI3Kδ inhibitor over other PI3K isoforms at both molecular and cellular levels. It showed superior antiproliferative activity in several B-lymphoma cell lines compared with the approved first-generation PI3Kδ inhibitor idelalisib. TYM-3-98 demonstrated a concentration-dependent PI3K/AKT/mTOR signaling blockage followed by apoptosis induction. In vivo, TYM-3-98 showed good pharmaceutical properties and remarkably reduced tumor growth in a human lymphoma xenograft model and a mouse lymphoma model. SIGNIFICANCE Our findings establish TYM-3-98 as a promising PI3Kδ inhibitor for the treatment of B-cell lymphoma.
Collapse
Affiliation(s)
- Si-Yue Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Binwen Rd, Hangzhou, Zhejiang 310053, China
| | - Fan-Li Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yong-Mei Tang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ya-Nan Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China
| | - Jun Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China
| | - Hai An
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Binwen Rd, Hangzhou, Zhejiang 310053, China
| | - En-Jun Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China
| | - Sun-Liang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hua-Jun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Binwen Rd, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
15
|
Ross DS, Pareja F. Molecular Pathology of Breast Tumors: Diagnostic and Actionable Genetic Alterations. Clin Lab Med 2024; 44:255-275. [PMID: 38821644 DOI: 10.1016/j.cll.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Breast cancer is a heterogenous disease with various histologic subtypes, molecular profiles, behaviors, and response to therapy. After the histologic assessment and diagnosis of an invasive breast carcinoma, the use of biomarkers, multigene expression assays and mutation profiling may be used. With improved molecular assays, the identification of somatic genetic alterations in key oncogenes and tumor suppressor genes are playing an increasingly important role in many areas of breast cancer care. This review summarizes the most clinically significant somatic alterations in breast tumors and how this information is used to facilitate diagnosis, provide potential treatment options, and identify mechanisms of resistance.
Collapse
Affiliation(s)
- Dara S Ross
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
16
|
Vercouillie N, Ren Z, Terras E, Lammens T. Long Non-Coding RNAs in Neuroblastoma: Pathogenesis, Biomarkers and Therapeutic Targets. Int J Mol Sci 2024; 25:5690. [PMID: 38891878 PMCID: PMC11171840 DOI: 10.3390/ijms25115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Neuroblastoma is the most common malignant extracranial solid tumor of childhood. Recent studies involving the application of advanced high-throughput "omics" techniques have revealed numerous genomic alterations, including aberrant coding-gene transcript levels and dysfunctional pathways, that drive the onset, growth, progression, and treatment resistance of neuroblastoma. Research conducted in the past decade has shown that long non-coding RNAs, once thought to be transcriptomic noise, play key roles in cancer development. With the recent and continuing increase in the amount of evidence for the underlying roles of long non-coding RNAs in neuroblastoma, the potential clinical implications of these RNAs cannot be ignored. In this review, we discuss their biological mechanisms of action in the context of the central driving mechanisms of neuroblastoma, focusing on potential contributions to the diagnosis, prognosis, and treatment of this disease. We also aim to provide a clear, integrated picture of future research opportunities.
Collapse
Affiliation(s)
- Niels Vercouillie
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (N.V.); (Z.R.); (E.T.)
| | - Zhiyao Ren
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (N.V.); (Z.R.); (E.T.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Eva Terras
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (N.V.); (Z.R.); (E.T.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Tim Lammens
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (N.V.); (Z.R.); (E.T.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|
17
|
Abdullah KM, Sharma G, Qais FA, Khan I, Takkar S, Kaushal JB, Kanchan RK, Sarwar T, Chakravarti B, Siddiqui JA. Hydroxychloroquine interaction with phosphoinositide 3-kinase modulates prostate cancer growth in bone microenvironment: In vitro and molecular dynamics based approach. Int J Biol Macromol 2024; 266:130912. [PMID: 38513896 DOI: 10.1016/j.ijbiomac.2024.130912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Patients with advanced prostate cancer (PCa) are more likely to develop bone metastases. Tumor cells thrive in the bone microenvironment, interacting with osteoblasts and osteoclasts. Given the PI3K/AKT pathway's metastatic potential and signal integration's ability to modulate cell fates in PCa development, drugs targeting this system have great therapeutic promise. Hydroxychloroquine (HCQ) is an anti-malarial medication commonly used to treat clinical conditions such as rheumatology and infectious disorders. We explored the anti-neoplastic effect of HCQ on PC3 and C4-2B cell lines in the bone microenvironment. Interestingly, HCQ treatment substantially decreases the viability, proliferation, and migration potential of PCa cells in the bone microenvironment. HCQ induces apoptosis and cell cycle arrest, even in the presence of osteoblast-secreted factors. Mechanistically, HCQ inhibited the activity of the PI3K/AKT signaling pathway, which ultimately regulates the proliferation and migration of PCa cells in the bone. The binding energy for docking HCQ with PI3K was -6.7 kcal/mol, and the complex was stabilized by hydrogen bonds, hydrophobic forces, and van der Waals forces. Molecular simulations further validated the structural integrity of the HCQ-PI3K complex without altering PI3K's secondary structure. Our findings underscore the efficacy of HCQ as a potential therapeutic agent in treating PCa.
Collapse
Affiliation(s)
- K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Imran Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Saudi Arabia
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE-68198, USA.
| |
Collapse
|
18
|
Meuten TK, Dean GA, Thamm DH. Review: The PI3K-AKT-mTOR signal transduction pathway in canine cancer. Vet Pathol 2024; 61:339-356. [PMID: 37905509 DOI: 10.1177/03009858231207021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Tumors in dogs and humans share many similar molecular and genetic features, incentivizing a better understanding of canine neoplasms not only for the purpose of treating companion animals, but also to facilitate research of spontaneously developing tumors with similar biologic behavior and treatment approaches in an immunologically competent animal model. Multiple tumor types of both species have similar dysregulation of signal transduction through phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB; AKT), and mechanistic target of rapamycin (mTOR), collectively known as the PI3K-AKT-mTOR pathway. This review aims to delineate the pertinent aspects of the PI3K-AKT-mTOR signaling pathway in health and in tumor development. It will then present a synopsis of current understanding of PI3K-AKT-mTOR signaling in important canine cancers and advancements in targeted inhibitors of this pathway.
Collapse
|
19
|
Fu J, Ling J, Li CF, Tsai CL, Yin W, Hou J, Chen P, Cao Y, Kang Y, Sun Y, Xia X, Jiang Z, Furukawa K, Lu Y, Wu M, Huang Q, Yao J, Hawke DH, Pan BF, Zhao J, Huang J, Wang H, Bahassi EIM, Stambrook PJ, Huang P, Fleming JB, Maitra A, Tainer JA, Hung MC, Lin C, Chiao PJ. Nardilysin-regulated scission mechanism activates polo-like kinase 3 to suppress the development of pancreatic cancer. Nat Commun 2024; 15:3149. [PMID: 38605037 PMCID: PMC11009390 DOI: 10.1038/s41467-024-47242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) develops through step-wise genetic and molecular alterations including Kras mutation and inactivation of various apoptotic pathways. Here, we find that development of apoptotic resistance and metastasis of KrasG12D-driven PDAC in mice is accelerated by deleting Plk3, explaining the often-reduced Plk3 expression in human PDAC. Importantly, a 41-kDa Plk3 (p41Plk3) that contains the entire kinase domain at the N-terminus (1-353 aa) is activated by scission of the precursor p72Plk3 at Arg354 by metalloendopeptidase nardilysin (NRDC), and the resulting p32Plk3 C-terminal Polo-box domain (PBD) is removed by proteasome degradation, preventing the inhibition of p41Plk3 by PBD. We find that p41Plk3 is the activated form of Plk3 that regulates a feed-forward mechanism to promote apoptosis and suppress PDAC and metastasis. p41Plk3 phosphorylates c-Fos on Thr164, which in turn induces expression of Plk3 and pro-apoptotic genes. These findings uncover an NRDC-regulated post-translational mechanism that activates Plk3, establishing a prototypic regulation by scission mechanism.
Collapse
Affiliation(s)
- Jie Fu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Jianhua Ling
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ching-Fei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wenjuan Yin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Junwei Hou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ping Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yu Cao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yichen Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xianghou Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhou Jiang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kenei Furukawa
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yu Lu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qian Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David H Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bih-Fang Pan
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Zhao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jiaxing Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - E I Mustapha Bahassi
- Department of Molecular Genetics, University of Cincinnati Cancer Institute, Cincinnati, OH, 45267, USA
| | - Peter J Stambrook
- Department of Molecular Genetics, University of Cincinnati Cancer Institute, Cincinnati, OH, 45267, USA
| | - Peng Huang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Lin FY, Tsai YT, Huang CY, Lai ZH, Tsai CS, Shih CM, Lin CY, Lin YW. GroEL of Porphyromonas gingivalis-induced microRNAs accelerate tumor neovascularization by downregulating thrombomodulin expression in endothelial progenitor cells. Mol Oral Microbiol 2024; 39:47-61. [PMID: 37188376 DOI: 10.1111/omi.12415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
We found that GroEL in Porphyromonas gingivalis accelerated tumor growth and increased mortality in tumor-bearing mice; GroEL promoted proangiogenic function, which may be the reason for promoting tumor growth. To understand the regulatory mechanisms by which GroEL increases the proangiogenic function of endothelial progenitor cells (EPCs), we explored in this study. In EPCs, MTT assay, wound-healing assay, and tube formation assay were performed to analyze its activity. Western blot and immunoprecipitation were used to study the protein expression along with next-generation sequencing for miRNA expression. Finally, a murine tumorigenesis animal model was used to confirm the results of in vitro. The results indicated that thrombomodulin (TM) direct interacts with PI3 K/Akt to inhibit the activation of signaling pathways. When the expression of TM is decreased by GroEL stimulation, molecules in the PI3 K/Akt signaling axis are released and activated, resulting in increased migration and tube formation of EPCs. In addition, GroEL inhibits TM mRNA expression by activating miR-1248, miR-1291, and miR-5701. Losing the functions of miR-1248, miR-1291, and miR-5701 can effectively alleviate the GroEL-induced decrease in TM protein levels and inhibit the proangiogenic abilities of EPCs. These results were also confirmed in animal experiments. In conclusion, the intracellular domain of the TM of EPCs plays a negative regulatory role in the proangiogenic capabilities of EPCs, mainly through direct interaction between TM and PI3 K/Akt to inhibit the activation of signaling pathways. The effects of GroEL on tumor growth can be reduced by inhibiting the proangiogenic properties of EPCs through the inhibition of the expression of specific miRNAs.
Collapse
Affiliation(s)
- Feng-Yen Lin
- Taipei Heart Institute, Taipei Medical University, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ting Tsai
- Taipei Heart Institute, Taipei Medical University, Taiwan
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Yao Huang
- Taipei Heart Institute, Taipei Medical University, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Ze-Hao Lai
- Institute of Oral Biology, National Yang Ming Chiao Tung University (Yangming Campus), Taipei, Taiwan
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taiwan
| | - Chun-Ming Shih
- Taipei Heart Institute, Taipei Medical University, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yen Lin
- Healthcare Information and Management Department, Ming Chuan University, Taoyuan, Taiwan
| | - Yi-Wen Lin
- Institute of Oral Biology, National Yang Ming Chiao Tung University (Yangming Campus), Taipei, Taiwan
| |
Collapse
|
21
|
Ghashghaei M, Liu Y, Ettles J, Bombaci G, Ramkumar N, Liu Z, Escano L, Miko SS, Kim Y, Waldron JA, Do K, MacPherson K, Yuen KA, Taibi T, Yue M, Arsalan A, Jin Z, Edin G, Karsan A, Morin GB, Kuchenbauer F, Perna F, Bushell M, Vu LP. Translation efficiency driven by CNOT3 subunit of the CCR4-NOT complex promotes leukemogenesis. Nat Commun 2024; 15:2340. [PMID: 38491013 PMCID: PMC10943099 DOI: 10.1038/s41467-024-46665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Protein synthesis is frequently deregulated during tumorigenesis. However, the precise contexts of selective translational control and the regulators of such mechanisms in cancer is poorly understood. Here, we uncovered CNOT3, a subunit of the CCR4-NOT complex, as an essential modulator of translation in myeloid leukemia. Elevated CNOT3 expression correlates with unfavorable outcomes in patients with acute myeloid leukemia (AML). CNOT3 depletion induces differentiation and apoptosis and delayed leukemogenesis. Transcriptomic and proteomic profiling uncovers c-MYC as a critical downstream target which is translationally regulated by CNOT3. Global analysis of mRNA features demonstrates that CNOT3 selectively influences expression of target genes in a codon usage dependent manner. Furthermore, CNOT3 associates with the protein network largely consisting of ribosomal proteins and translation elongation factors in leukemia cells. Overall, our work elicits the direct requirement for translation efficiency in tumorigenesis and propose targeting the post-transcriptional circuitry via CNOT3 as a therapeutic vulnerability in AML.
Collapse
Affiliation(s)
- Maryam Ghashghaei
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Yilin Liu
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada
| | - James Ettles
- CRUK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Giuseppe Bombaci
- Department of Medicine, Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Niveditha Ramkumar
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Zongmin Liu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Leo Escano
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Sandra Spencer Miko
- Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Yerin Kim
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
- Bioinformatics program, University of British Columbia, Vancouver, Canada
| | - Joseph A Waldron
- CRUK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kim Do
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kyle MacPherson
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Katie A Yuen
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Thilelli Taibi
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Marty Yue
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Aaremish Arsalan
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Zhen Jin
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Glenn Edin
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Aly Karsan
- Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Gregg B Morin
- Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Florian Kuchenbauer
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Fabiana Perna
- Department of Medicine, Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffit Cancer Center, Tampa, FL, USA
| | - Martin Bushell
- CRUK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ly P Vu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada.
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada.
| |
Collapse
|
22
|
Mei W, Mei B, Chang J, Liu Y, Zhou Y, Zhu N, Hu M. Role and regulation of FOXO3a: new insights into breast cancer therapy. Front Pharmacol 2024; 15:1346745. [PMID: 38505423 PMCID: PMC10949727 DOI: 10.3389/fphar.2024.1346745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Breast cancer is the most common malignancy in the world, particularly affecting female cancer patients. Enhancing the therapeutic strategies for breast cancer necessitates identifying molecular drug targets that effectively eliminate tumor cells. One of these prominent targets is the forkhead and O3a class (FOXO3a), a member of the forkhead transcription factor subfamily. FOXO3a plays a pivotal role in various cellular processes, including apoptosis, proliferation, cell cycle regulation, and drug resistance. It acts as a tumor suppressor in multiple cancer types, although its specific role in cancer remains unclear. Moreover, FOXO3a shows promise as a potential marker for tumor diagnosis and prognosis in breast cancer patients. In addition, it is actively influenced by common anti-breast cancer drugs like paclitaxel, simvastatin, and gefitinib. In breast cancer, the regulation of FOXO3a involves intricate networks, encompassing post-translational modification post-translational regulation by non-coding RNA (ncRNA) and protein-protein interaction. The specific mechanism of FOXO3a in breast cancer urgently requires further investigation. This review aims to systematically elucidate the role of FOXO3a in breast cancer. Additionally, it reviews the interaction of FOXO3a and its upstream and downstream signaling pathway-related molecules to uncover potential therapeutic drugs and related regulatory factors for breast cancer treatment by regulating FOXO3a.
Collapse
Affiliation(s)
- Wenqiu Mei
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Department of Neurology, Ezhou Central Hospital, Ezhou, China
| | - Bingyin Mei
- Department of Neurology, Ezhou Central Hospital, Ezhou, China
| | - Jing Chang
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yifei Liu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanhong Zhou
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ni Zhu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
23
|
Li GW, Jin YP, Qiu JP, Lu XF. ITGB2 fosters the cancerous characteristics of ovarian cancer cells through its role in mitochondrial glycolysis transformation. Aging (Albany NY) 2024; 16:3007-3020. [PMID: 38345576 PMCID: PMC10911379 DOI: 10.18632/aging.205529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024]
Abstract
Related studies have shown that ITGB2 mediates mitochondrial glycolytic transformation in cancer-associated fibroblasts and participates in tumor occurrence, metastasis and invasion of cancer cells. Based on these studies, we tried to construct a mitochondrial glycolysis regulatory network and explored its effect on mitochondrial homeostasis and ovarian cancer cells' cancerous characteristics. Our research revealed a distinct increase in the expression of ITGB2 and associated signaling pathway elements (PI3K-AKT-mTOR) in cases of ovarian cancer. ITGB2 might control mTOR expression via the PI3K-AKT pathway, thus promote mitochondrial glycolysis transformation and cell energy supply in ovarian cancer. This pathway could also inhibit mitophagy, maintain mitochondrial stability, and enhance the cancerous characteristics in case of ovarian cancer cells by mediating mitochondrial glycolytic transformation. Thus, we concluded that ITGB2-associated signaling route (PI3K-AKT-mTOR) may contribute to the progression of cancerous traits in ovarian cancer via mediating mitochondrial glycolytic transformation.
Collapse
Affiliation(s)
- Guo-Wei Li
- Department of Rehabilitation Science, Nanjing Normal University of Special Education, Nanjing, Jiangsu 210000, China
| | - Yan-Ping Jin
- Department of Obstetrics and Gynecology, Zhongda Hospital Jiangbei Branch, School of Medicine, Southeast University, Nanjing, Jiangsu 210000, China
| | - Jian-Ping Qiu
- Department of Obstetrics and Gynecology, Suzhou Municipal Hospital North, Suzhou, Jiangsu 215000, China
| | - Xiu-Fang Lu
- Department of Obstetrics and Gynecology, Suzhou Municipal Hospital North, Suzhou, Jiangsu 215000, China
| |
Collapse
|
24
|
Qi J, Han B, Wang Z, Jing L, Tian X, Sun J. Chuanzhitongluo Inhibits Neuronal Apoptosis in Mice with Acute Ischemic Stroke by Regulating the PI3K/AKT Signaling Pathway. Neuroscience 2024; 537:21-31. [PMID: 38040086 DOI: 10.1016/j.neuroscience.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND AND PURPOSE Apoptosis is involved in the occurrence and development of acute ischemic stroke (AIS). This study aimed to assess whether Chuanzhitongluo (CZTL), a multi-target and multi-pathway compound preparation, plays a neuroprotective role in AIS by modulating neuronal apoptosis via the PI3K/AKT signaling pathway. METHODS A mouse model of AIS was established by photochemical processes. Cerebral infarction volume was measured by 2% staining with 2, 3, and 5-triphenyl tetrazole chloride (TTC). Neuron apoptosis was assessed by TUNEL staining. Apoptosis RNA arrays were used to detect changes in apoptosis-related gene expression profiles. Western blotting was used to detect proteins involved in the PI3K/AKT signaling pathway. RESULTS The study demonstrated that CZTL could potentially mitigate neuronal apoptosis in AIS mice. This appears to be achieved via the up-regulation of certain genes such as BCL-2, Birc6, and others, coupled with the down-regulation of genes like BAX, Bid, and Casp3. Further validation revealed that CZTL could enhance the expression of BCL-2 and reduce the expression of Cleaved Caspase-3 and BAX at both the gene and protein levels. The study also found that CZTL can enhance the phosphorylation level of the PI3K/AKT signaling pathway. In contrast to these findings, the PI3K inhibitor LY294002 notably amplified neuronal apoptosis in AIS mice. CONCLUSIONS These findings imply that CZTL's ability to inhibit neuronal apoptosis may be linked to the activation of AIS's PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Jianjiao Qi
- Department of Emergency Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Bin Han
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhiyuan Wang
- Department of Integrated Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lihong Jing
- Department of Emergency Internal Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xintao Tian
- Department of Emergency Internal Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Jinping Sun
- Department of Emergency Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
25
|
Li H, Liu J, Qin X, Sun J, Liu Y, Jin F. Function of Long Noncoding RNAs in Glioma Progression and Treatment Based on the Wnt/β-Catenin and PI3K/AKT Signaling Pathways. Cell Mol Neurobiol 2023; 43:3929-3942. [PMID: 37747595 DOI: 10.1007/s10571-023-01414-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
Gliomas are a deadly primary malignant tumor of the central nervous system, with glioblastoma (GBM) representing the most aggressive type. The clinical prognosis of GBM patients remains bleak despite the availability of multiple options for therapy, which has needed us to explore new therapeutic methods to face the rapid progression, short survival, and therapy resistance of glioblastomas. As the Human Genome Project advances, long noncoding RNAs (lncRNAs) have attracted the attention of researchers and clinicians in cancer research. Numerous studies have found aberrant expression of signaling pathways in glioma cells. For example, lncRNAs not only play an integral role in the drug resistance process by regulating the Wnt/β-catenin or PI3K/Akt signaling but are also involved in a variety of malignant biological behaviors such as glioma proliferation, migration, invasion, and tumor apoptosis. Therefore, the present review systematically assesses the existing research evidence on the malignant progression and drug resistance of glioma, focusing on the critical role and potential function of lncRNAs in the Wnt/β-catenin and PI3K/Akt classical pathways to promote and encourage further research in this field.
Collapse
Affiliation(s)
- Hanyun Li
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jilan Liu
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Xianyun Qin
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Jikui Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250014, China.
| | - Yan Liu
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- School of Mental Health, Jining Medical University, Jining, 272013, China.
| | - Feng Jin
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China.
| |
Collapse
|
26
|
Wen S, Unuma K, Funakoshi T, Aki T, Uemura K. Cocaine induces vascular smooth muscle cells proliferation via DRP1-mediated mitochondrial fission and PI3K/HIF-1α signaling. Biochem Biophys Res Commun 2023; 676:30-35. [PMID: 37481940 DOI: 10.1016/j.bbrc.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Long-term cocaine abuse is associated with cardiovascular and pulmonary vascular complications. The vascular toxicity of cocaine can lead to vascular remodeling characterized by excessive proliferation of vascular smooth muscle cells. Though hypoxia-inducible factor (HIF) signaling and mitochondrial fission have been suggested to play essential roles in the pathogenesis of hypoxia-induced vascular remodeling, pathogenetic mechanism for cocaine-related vascular remodeling remains to be elucidated. In this study, we explore the effect of cocaine on the proliferation of vascular smooth muscle cells by in vitro experiments. The findings indicated that the cocaine-induced vascular smooth muscle cell hyperproliferation is achieved by enhancing DRP1-mediated mitochondrial fission and activating PI3K/HIF-1α signaling. Current findings suggested that mitochondrial fission would play a pivotal role in cocaine-related vascular remodeling and would be helpful in understanding the vascular toxicity of cocaine.
Collapse
Affiliation(s)
- Shuheng Wen
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
27
|
Deng RM, Zhou J. The role of PI3K/AKT signaling pathway in myocardial ischemia-reperfusion injury. Int Immunopharmacol 2023; 123:110714. [PMID: 37523969 DOI: 10.1016/j.intimp.2023.110714] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Myocardial ischemia has a high incidence and mortality rate, and reperfusion is currently the standard intervention. However, reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MIRI). There are currently no effective clinical treatments for MIRI. The PI3K/Akt signaling pathway is involved in cardiovascular health and disease and plays an important role in reducing myocardial infarct size and restoring cardiac function after MIRI. Activation of the PI3K/Akt pathway provides myocardial protection through synergistic upregulation of antioxidant, anti-inflammatory, and autophagy activities and inhibition of mitochondrial dysfunction and cardiomyocyte apoptosis. Many studies have shown that PI3K/Akt has a significant protective effect against MIRI. Here, we reviewed the molecular regulation of PI3K/Akt in MIRI and summarized the molecular mechanism by which PI3K/Akt affects MIRI, the effects of ischemic preconditioning and ischemic postconditioning, and the role of related drugs or activators targeting PI3K/Akt in MIRI, providing novel insights for the formulation of myocardial protection strategies. This review provides evidence of the role of PI3K/Akt activation in MIRI and supports its use as a therapeutic target.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Juan Zhou
- Department of thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
28
|
Li X, Liao M, Wang B, Zan X, Huo Y, Liu Y, Bao Z, Xu P, Liu W. A drug repurposing method based on inhibition effect on gene regulatory network. Comput Struct Biotechnol J 2023; 21:4446-4455. [PMID: 37731599 PMCID: PMC10507583 DOI: 10.1016/j.csbj.2023.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
Numerous computational drug repurposing methods have emerged as efficient alternatives to costly and time-consuming traditional drug discovery approaches. Some of these methods are based on the assumption that the candidate drug should have a reversal effect on disease-associated genes. However, such methods are not applicable in the case that there is limited overlap between disease-related genes and drug-perturbed genes. In this study, we proposed a novel Drug Repurposing method based on the Inhibition Effect on gene regulatory network (DRIE) to identify potential drugs for cancer treatment. DRIE integrated gene expression profile and gene regulatory network to calculate inhibition score by using the shortest path in the disease-specific network. The results on eleven datasets indicated the superior performance of DRIE when compared to other state-of-the-art methods. Case studies showed that our method effectively discovered novel drug-disease associations. Our findings demonstrated that the top-ranked drug candidates had been already validated by CTD database. Additionally, it clearly identified potential agents for three cancers (colorectal, breast, and lung cancer), which was beneficial when annotating drug-disease relationships in the CTD. This study proposed a novel framework for drug repurposing, which would be helpful for drug discovery and development.
Collapse
Affiliation(s)
- Xianbin Li
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
- School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, China
| | - Minzhen Liao
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Bing Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Xiangzhen Zan
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Yanhao Huo
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Yue Liu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Zhenshen Bao
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
- School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, China
| | - Peng Xu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
- School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, China
| | - Wenbin Liu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| |
Collapse
|
29
|
Huppert LA, Gumusay O, Idossa D, Rugo HS. Systemic therapy for hormone receptor-positive/human epidermal growth factor receptor 2-negative early stage and metastatic breast cancer. CA Cancer J Clin 2023; 73:480-515. [PMID: 36939293 DOI: 10.3322/caac.21777] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 03/21/2023] Open
Abstract
Hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-negative breast cancer is defined by the presence of the estrogen receptor and/or the progesterone receptor and the absence of HER2 gene amplification. HR-positive/HER2-negative breast cancer accounts for 65%-70% of all breast cancers, and incidence increases with increasing age. Treatment varies by stage, and endocrine therapy is the mainstay of treatment in both early stage and late-stage disease. Combinations with cyclin-dependent kinase 4/6 inhibitors have reduced distant recurrence in the early stage setting and improved overall survival in the metastatic setting. Chemotherapy is used based on stage and tumor biology in the early stage setting and after endocrine resistance for advanced disease. New therapies, including novel endocrine agents and antibody-drug conjugates, are now changing the treatment landscape. With the availability of new treatment options, it is important to define the optimal sequence of treatment to maximize clinical benefit while minimizing toxicity. In this review, the authors first discuss the pathologic and molecular features of HR-positive/HER2-negative breast cancer and mechanisms of endocrine resistance. Then, they discuss current and emerging therapies for both early stage and metastatic HR-positive/HER2-negative breast cancer, including treatment algorithms based on current data.
Collapse
Affiliation(s)
- Laura A Huppert
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Ozge Gumusay
- Department of Medical Oncology, Acibadem University, School of Medicine, Istanbul, Turkey
| | - Dame Idossa
- Masonic Comprehensive Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hope S Rugo
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| |
Collapse
|
30
|
Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, Xu H, Asemi Z. Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract 2023; 248:154669. [PMID: 37422971 DOI: 10.1016/j.prp.2023.154669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Heart failure is a condition that affects the cardio vascular system and occurs if the heart cannot adequately pump the oxygen and blood to the body. Myocardial infarction, reperfusion injury, and this disease is the only a few examples of the numerous cardiovascular illnesses that are impacted by the closely controlled cell deletion process known as apoptosis. Attention has been paid to the creation of alternative diagnostic and treatment modalities for the condition. Recent evidences have shown that some non-coding RNAs (ncRNAs) influence the stability of proteins, control of transcription factors, and HF apoptosis through a variety of methods. Exosomes make a significant paracrine contribution to the regulation of illnesses as well as to the communication between nearby and distant organs. However, it has not yet been determined whether exosomes regulate the cardiomyocyte-tumor cell interaction in ischemia HF to limit the vulnerability of malignancy to ferroptosis. Here, we list the numerous ncRNAs in HF that are connected to apoptosis. In addition, we emphasize the significance of exosomal ncRNAs in the HF.
Collapse
Affiliation(s)
- Ketao Li
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Liping Ma
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhe'jiang 310000, China
| | - Laixing Yan
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing 400051, China
| | - Bing Wang
- Department of cardiology, Zouping People's Hospital, Zouping, Shandong 256299, China
| | - Huiju Xu
- Department of cardiology, Hangzhou Mingzhou Hospital, Hangzhou, Zhe'jiang 311215, China.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
31
|
Kusaba Y, Kajihara I, Sakamoto R, Maeda-Otsuka S, Yamada-Kanazawa S, Sawamura S, Makino K, Aoi J, Masuguchi S, Fukushima S. PIK3CA mutations in cutaneous squamous cell carcinoma. Intractable Rare Dis Res 2023; 12:206-207. [PMID: 37662619 PMCID: PMC10468409 DOI: 10.5582/irdr.2023.01069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Oncogenic PIK3CA mutation activates phosphoinositide 3-kinase (PI3K) enzyme, and PI3K-AKT signaling activation induces several growth-regulatory transcription factors. PIK3CA mutations have attracted attention as biomarker in clinical trials of various inhibitors including PI3K inhibitors. About 80% of PIK3CA mutations in human cancers are observed in 'hot spot' regions: exon 9 (E542K and E545K) and exon 20 (H1047R). There were few reports about clinical significance of PIK3CA mutations in cutaneous cell carcinoma (cSCC). Thus, we investigate the prevalence of three PIK3CA hot spot mutations in 143 cases with cSCC and evaluate the correlation between the presence of these mutations and clinical characteristics by using ddPCR. The frequency of each E542K, E545K and H1047R PIK3CA mutations was 1.4% (2/143), 2.8% (4/143), and 0.7% (1/143) respectively. No significant correlation was found between PIK3CA mutations and clinical characteristics. Although additional basic researches and clinical trials are necessary, various inhibitors may be effective therapeutics for PIK3CA mutation-positive cSCC. Our study revealed the prevalence of PIK3CA mutations in cSCC.
Collapse
Affiliation(s)
- Yudo Kusaba
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ikko Kajihara
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoko Sakamoto
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Saki Maeda-Otsuka
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Saori Yamada-Kanazawa
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Soichiro Sawamura
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunari Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Aoi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinichi Masuguchi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
32
|
Seif SE, Mahmoud Z, Wardakhan WW, Abdou AM, Hassan RA. Design and synthesis of novel hexahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives as potential anticancer agents with antiangiogenic activity via VEGFR-2 inhibition, and down-regulation of PI3K/AKT/mTOR signaling pathway. Drug Dev Res 2023; 84:839-860. [PMID: 37016480 DOI: 10.1002/ddr.22058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 04/06/2023]
Abstract
New thieno[2,3-d]pyrimidine derivatives were designed and synthesized. The National Cancer Institute (NCI) evaluated the synthesized novel compounds against a panel of 60 tumor cell lines for their antiproliferative activity. Compounds 6b, 6f, and 6g showed potent anticancer activity at 10 µM dose, with mean GI of 20.86%, 76.41%, and 31.49%, respectively. Compound 6f was selected for five-dose concentrations evaluation. Compound 6f scored a submicromolar range of GI50 values against 10 cancer cell lines, indicating broad-spectrum and potent antiproliferative activity. Compound 6f TGI values were recorded in the cytostatic range of 4.02-95.1 µM. In comparison to sorafenib, the tested compounds 6b, 6f, and 6g inhibited VEGFR-2 with IC50 values of 0.290 ± 0.032, 0.066 ± 0.004, and 0.16 ± 0.006 µM, correspondingly. Compound 6f significantly reduced the total VEGFR-2 expression and its phosphorylation. Additionally, 6f reduced the phosphorylation of PI3K, Akt, and mTOR pathway proteins. Moreover, the migratory potential of HUVECs was significantly reduced, after 72 h of treatment with compound 6f, resulting in disrupted wound healing patterns which verified the angiogenesis suppression properties of compound 6f. Compound 6f increased the total apoptosis percentage by 21.27-fold compared to sorafenib, which caused a 24.11-fold increase in the total apoptosis percentage. This apoptotic activity was accompanied by a 7.81-fold increase in the level of apoptotic caspase-3. Furthermore, the cell cycle analysis revealed that the target derivative 6f reduced cellular proliferation and induced an arrest in HCT-15 colon cancer cell cycle at the S phase. Molecular modeling was used to determine the binding profile and affinity of derivative 6f toward the VEGFR-2 active site.
Collapse
Affiliation(s)
| | - Zeinab Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Giza, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
33
|
Liao J, Shao M, Wang Y, Yang P, Fu D, Liu M, Gao T, Wei K, Li X, Du J. Xuesaitong promotes myocardial angiogenesis in myocardial infarction mice by inhibiting MiR-3158-3p targeting Nur77. Aging (Albany NY) 2023; 15:4084-4095. [PMID: 37204425 PMCID: PMC10258009 DOI: 10.18632/aging.204671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/21/2023] [Indexed: 05/20/2023]
Abstract
This study aims to investigate the regulatory effect of Xuesaitong (XST) and miR-3158-3p on angiogenesis. All mice were randomly assigned into Sham group, Model group, XST group, XST + miR-3158-3P-overexpression (miRNA-OE) group. XST was found to increase the left ventricular anterior wall thickness at end diastole and end systole (LVAWd and LVAWs), left ventricular internal dimension at end diastole and end systole (LVIDd and LVIDs), fractional shortening (FS), and ejection fraction (EF) and decrease the proportion of fibrotic areas in mice. In contrast to those in Sham group, the protein expressions of Nur77, p-PI3K, HIF-1α, VEGFs, COX-2 in the heart tissues of mice in Model group were elevated and further increased after XST treatment in comparison with those in Model group. Nur77-/- mice were utilized. It was found that XST enhanced cell viability through a methyl thiazolyl tetrazolium assay and facilitated angiogenesis in each group, as assessed by a catheter formation assay. Specifically, XST was shown to promote the formation of blood vessels. Moreover, the protein expression levels of Associated proteins in the heart tissues of Nur77-/- mice were dramatically reduced in mice in Model and XST group compared with those in WT mice. Additionally, the above-mentioned protein expressions in the heart tissues of Nur77-/- mice did not change significantly in mice in Model + miRNA-OE + XST group compared with those in WT mice, suggesting that miR-3158-3p can specifically inhibit the expression of Nur77. In conclusion, XST inhibits miR-3158-3p targeting Nur77 to facilitate myocardial angiogenesis in mice with myocardial infarction.
Collapse
Affiliation(s)
- Jiangquan Liao
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| | - Mingjing Shao
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| | - Yan Wang
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| | - Peng Yang
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| | - Dongliang Fu
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| | - Mengru Liu
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| | - Tong Gao
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing, China
| | - Kangkang Wei
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xianlun Li
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| | - Jinhang Du
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| |
Collapse
|
34
|
Tharin Z, Richard C, Derangère V, Ilie A, Arnould L, Ghiringhelli F, Boidot R, Ladoire S. PIK3CA and PIK3R1 tumor mutational landscape in a pan-cancer patient cohort and its association with pathway activation and treatment efficacy. Sci Rep 2023; 13:4467. [PMID: 36934165 PMCID: PMC10024711 DOI: 10.1038/s41598-023-31593-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 03/14/2023] [Indexed: 03/20/2023] Open
Abstract
There is little data concerning the implications of PIK3CA mutations outside of the known hotspots described in ER+/HER2- metastatic breast cancer (mBC). Similarly, PIK3R1 mutations could also lead to activation of PI3K pathway, but are poorly described. We determined the incidence and type of all somatic PIK3CA and PIK3R1 mutations by whole exome sequencing (WES) in a pan-cancer cohort of 1200 patients. Activation of the PI3K pathway was studied using phospho-AKT immunohistochemistry. Associations between PIK3CA/PIK3R1 mutations and response to chemotherapy were studied in mBC cases. We found 141 patients (11.8%) with a PIK3CA and/or PIK3R1 mutation across 20 different cancer types. The main cancer subtype was mBC (45.4%). Eighty-four mutations (62.2%) occurred in the three described hotspots; 51 mutations occurred outside of these hotspots. In total, 78.4% were considered activating or probably activating. Among PIK3R1 mutations, 20% were loss of function mutations, leading to a constitutional activation of the pathway. Phospho-AKT quantification in tumor samples was in favor of activation of the PI3K pathway in the majority of mutated tumors, regardless of mutation type. In ER+/HER2- mBC, first line chemotherapy efficacy was similar for PIK3CA-mutated and PIK3CA-WT tumors, whereas in triple negative mBC, chemotherapy appeared to be more effective in PIK3CA-WT tumors. In this large, real-life pan-cancer patient cohort, our results indicate that PIK3CA/PIK3R1 mutations are widely spread, and plead in favour of evaluating the efficacy of PI3K inhibitors outside of ER+/HER2- mBC and outside of hotspot mutations.
Collapse
Affiliation(s)
- Zoé Tharin
- Department of Medical Oncology, Centre Georges François Leclerc-UNICANCER, 1 Rue du Professeur Marion, 21000, Dijon, France
| | - Corentin Richard
- Department of Pathology and Tumor Biology, Centre Georges François Leclerc, Dijon, France
| | - Valentin Derangère
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center, Dijon, France
- University of Burgundy-Franche Comté, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Alis Ilie
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Laurent Arnould
- Department of Pathology and Tumor Biology, Centre Georges François Leclerc, Dijon, France
| | - François Ghiringhelli
- Department of Medical Oncology, Centre Georges François Leclerc-UNICANCER, 1 Rue du Professeur Marion, 21000, Dijon, France
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center, Dijon, France
- University of Burgundy-Franche Comté, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Romain Boidot
- Department of Pathology and Tumor Biology, Centre Georges François Leclerc, Dijon, France
- ICMUB UMR CNRS 6302, Dijon, France
| | - Sylvain Ladoire
- Department of Medical Oncology, Centre Georges François Leclerc-UNICANCER, 1 Rue du Professeur Marion, 21000, Dijon, France.
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center, Dijon, France.
- University of Burgundy-Franche Comté, Dijon, France.
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France.
| |
Collapse
|
35
|
Al Hasan M, Sabirianov M, Redwine G, Goettsch K, Yang SX, Zhong HA. Binding and selectivity studies of phosphatidylinositol 3-kinase (PI3K) inhibitors. J Mol Graph Model 2023; 121:108433. [PMID: 36812742 DOI: 10.1016/j.jmgm.2023.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Overexpression of the Phosphatidylinositol 3-kinase (PI3K) proteins have been observed in cancer cells. Targeting the phosphatidylinositol 3-kinase (PI3K) signaling transduction pathway by inhibition of the PI3K substrate recognition sites has been proved to be an effective approach to block cancer progression. Many PI3K inhibitors have been developed. Seven drugs have been approved by the US FDA with a mechanism of targeting the phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway. In this study, we used docking tools to investigate selective binding of ligands toward four different subtypes of PI3Ks (PI3Kα, PI3Kβ, PI3Kγ and PI3Kδ). The affinity predicted from both the Glide dock and the Movable-Type (MT)-based free energy calculations agreed well with the experimental data. The validation of our predicted methods with a large dataset of 147 ligands showed very small mean errors. We identified residues that may dictate the subtype-specific binding. Particularly, residues Asp964, Ser806, Lys890 and Thr886 of PI3Kγ might be utilized for PI3Kγ-selective inhibitor design. Residues Val828, Trp760, Glu826 and Tyr813 may be important for PI3Kδ-selective inhibitor binding.
Collapse
Affiliation(s)
- Mohammad Al Hasan
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Matthew Sabirianov
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Grace Redwine
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Kaitlin Goettsch
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Stephen X Yang
- Westlake High School, 100 Lakeview Canyon Rd, Thousand Oaks, CA, 91362, USA
| | - Haizhen A Zhong
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA.
| |
Collapse
|
36
|
A Rare Case of Multifocal Asynchronous Benign Granular Cell Tumors with PIK3CA Subclonal Mutation Identified in One Tumor by Next-Generation Sequencing. Case Rep Pathol 2023; 2023:2932512. [PMID: 36733477 PMCID: PMC9889140 DOI: 10.1155/2023/2932512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Granular cell tumor (GCT) is a benign neuroectodermal tumor typically in the dermis or subcutis, although deep soft tissues and organs are occasionally involved. Multifocal GCTs are estimated to occur as many as 10% of patients. A 40-year-old female presented with multiple GCTs asynchronously involving various body sites including gastrointestinal, gynecologic, breast, urinary, and soft tissue systems. Pathologic examinations suggested benign GCTs. TruSight Tumor 170 next-generation sequencing (NGS) analysis performed on four resected tumors revealed subclonal mutation of PIK3CA p.H1047R identified in the esophageal GCT but not in the right vulva or the two cecal GCTs, suggesting that each is a primary tumor with a distinct genetic profile, rather than metastasis. PIK3CA p.H1047R is a common mutation in many cancers. Our benign GCT case demonstrates PIK3CA mutation with a low mutant allele frequency of 7%, which may represent an evolving subclone and might confer a more aggressive behavior.
Collapse
|
37
|
Whitford MKM, McCaffrey L. Polarity in breast development and cancer. Curr Top Dev Biol 2023; 154:245-283. [PMID: 37100520 DOI: 10.1016/bs.ctdb.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Mammary gland development and breast cancer progression are associated with extensive remodeling of epithelial tissue architecture. Apical-basal polarity is a key feature of epithelial cells that coordinates key elements of epithelial morphogenesis including cell organization, proliferation, survival, and migration. In this review we discuss advances in our understanding of how apical-basal polarity programs are used in breast development and cancer. We describe cell lines, organoids, and in vivo models commonly used for studying apical-basal polarity in breast development and disease and discuss advantages and limitations of each. We also provide examples of how core polarity proteins regulate branching morphogenesis and lactation during development. We describe alterations to core polarity genes in breast cancer and their associations with patient outcomes. The impact of up- or down-regulation of key polarity proteins in breast cancer initiation, growth, invasion, metastasis, and therapeutic resistance are discussed. We also introduce studies demonstrating that polarity programs are involved in regulating the stroma, either through epithelial-stroma crosstalk, or through signaling of polarity proteins in non-epithelial cell types. Overall, a key concept is that the function of individual polarity proteins is highly contextual, depending on developmental or cancer stage and cancer subtype.
Collapse
Affiliation(s)
- Mara K M Whitford
- Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Luke McCaffrey
- Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
38
|
Shen M, Liu Y, Ma X, Zhu Q. Erbu Zhuyu decoction improves endometrial angiogenesis via uterine natural killer cells and the PI3K/Akt/eNOS pathway a mouse model of embryo implantation dysfunction. Am J Reprod Immunol 2023; 89:e13634. [PMID: 36327113 PMCID: PMC10078112 DOI: 10.1111/aji.13634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 09/17/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND We investigated the effect of Erbu Zhuyu decoction (EBZY) on angiogenesis via uterine natural killer (uNK) cells and the PI3K/Akt/eNOS pathway in embryo implantation dysfunction (EID) mice. METHODS Pregnant mice were randomly divided into blank, model, EBZY, progynova, and aspirin groups. Uteri were excised on the 5th day of pregnancy for analysis. RESULTS Mice in the model group showed pale uteri, a reduced implantation rate, and lower expression levels of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt), endothelial nitric oxide synthase (eNOS) and nitric oxide (NO). Compared to the model group, implantation rates in the medium-dose and high-dose groups of EBZY were significantly higher (P < .05), PI3K and Akt mRNA expression levels in the low-dose group were significantly higher (P < .05, P < .01), and the expression of p-PI3K, p-Akt, and p-eNOS proteins in all treatment groups were significantly increased (P < .01, P < .05). The expression of NO was significantly increased in the low-dose and high-dose groups (P < .01, P < .05, respectively). The level of p-Akt protein in the high-dose group was significantly higher than those in the other treatment groups (P < .01, P < .05). There was no significant difference in the density of uNK cells (P > .05). CONCLUSIONS EBZY facilitated embryo implantation in EID mice by enhancing endometrial angiogenesis via activation of the PI3K/Akt/eNOS pathway, at least in part. There was no evidence to indicate that EBZY could adjust the expression of uNK.
Collapse
Affiliation(s)
- Mengmeng Shen
- Department of Gynecology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Yanfeng Liu
- Department of Gynecology, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
| | - Xiaona Ma
- Department of Gynecology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Qingwen Zhu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
39
|
Royer B, Kaderbhaï CG, Schmitt A. Pharmacokinetics and Pharmacodynamic of Alpelisib. Clin Pharmacokinet 2023; 62:45-53. [PMID: 36633813 DOI: 10.1007/s40262-022-01195-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 01/13/2023]
Abstract
Advanced breast cancers are frequently hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-negative. Some of them harbor a mutation in PIK3CA, a gene encoding the PI3K catalytic subunit α of phosphatidyl-inositol 3-kinase (PI3K), which confers resistance to hormone therapy. Alpelisib is the first oral selective p110 [Formula: see text] PI3K inhibitor approved by FDA and EMA, in association with fulvestrant, based on PFS improvement as compared to fulvestrant alone. The aim of this review is to summarize and critically review the key aspects of alpelisib pharmacokinetics (PK) and pharmacodynamics (PD). Preclinical data have shown that alpelisib IC50 was 50 times lower for the α enzyme than for the β, δ and γ PI3K enzymes, leading to a decrease in intra-tumoral AKT phosphorylation. The PK properties of alpelisib are somehow favorable, with a rapid and important absorption, a limited CYP P450-mediated metabolism and a predominant biliary excretion, with a half-life of 17.5 ± 5.9 h. Only limited drug-drug interactions are expected and there is no need for dose adaptation in mild and moderate renal impaired and mild to severe hepatic impaired patients. Pharmacokinetic/pharmacodynamic relationships were evidenced during drug development for exposure/efficacy, but also exposure/safety. Main adverse events are hyperglycemia, rash, and diarrhea. The first, if not fully contra-indicated in (pre-)diabetic patients, warrants a close follow up when treatment is started and a potential dose reduction when needed. Because of its safety profile, alpelisib require stringent patient selection and close follow-up.
Collapse
Affiliation(s)
- Bernard Royer
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Laboratoire de Pharmacologie Clinique et Toxicologie, CHU Besançon, Besançon, France
| | | | - Antonin Schmitt
- Pharmacy Department, Centre Georges-François Leclerc, 1 rue Pr Marion, 21079, Dijon Cedex, France. .,INSERM U1231, University of Burgundy Franche-Comté, Dijon, France.
| |
Collapse
|
40
|
Nagare S, Lokhande KB, Swamy KV. Molecular Docking and Simulation Studies of Flavanone and its Derived Compounds on PI3K-AKT Pathway Targeting against Cancer. Curr Drug Discov Technol 2023; 20:21-29. [PMID: 35657284 DOI: 10.2174/1570163819666220526150152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/21/2021] [Accepted: 02/28/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Flavanone compounds and their related derivatives are reported in controlling cell cycle, angiogenesis, and metastasis. Phosphoinositide 3-kinases is a major drug target. METHODS Crystalize structure of Phosphoinositide 3-kinases-Akt complex obtained from Protein Data Bank (PDBID: 3CQW) was selected as receptor protein and the binding site has been identified with PDBSum Database. Flavanone and its derivatives were retrieved using freely available existing drug databases like Drug Bank, Zinc, and PubChem. New derivatives were modified by altering the flavanone at Beta ring position. This modification would help in maintaining stable structural conformation and retaining better anticancer activity. Retrieved Flavanone derivatives from the drug database were docked against 3CQW Protein with the advanced docking tool FlexX. MD simulations of the best molecule were performed with the Desmond package by calculating nonbonding interactions such as electrostatic interaction and hydrogen bond stable and favorable conformations were calculated. RESULTS These interaction studies would help identify new potential drug candidates with the help of computer-aided drug designing techniques. CONCLUSION Natural chemicals have received a lot of attention because of their vast range of applications in human health and disease prevention without creating any negative side effects. Molecular docking is an essential approach for drug development since it allows for effective screening of potential therapeutics in a short time. We hypothesized in this paper that natural flavanone and its derivatives may be effective as Akt-1 inhibitors.
Collapse
Affiliation(s)
- Sagar Nagare
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
- Bioinformatics Research Laboratory, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India
| | - K Venkateswara Swamy
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune 412201, India
| |
Collapse
|
41
|
Guvenir Celik E, Eroglu O. Combined treatment with ruxolitinib and MK-2206 inhibits the JAK2/STAT5 and PI3K/AKT pathways via apoptosis in MDA-MB-231 breast cancer cell line. Mol Biol Rep 2023; 50:319-329. [PMID: 36331743 DOI: 10.1007/s11033-022-08034-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Due to deficiencies in the expression of hormone receptors, such as PR, ER and HER2, it is challenging to treat triple-negative breast cancer, which does not respond to single targeted therapy. Ruxolitinib is a Janus kinase (JAK)1/JAK2 inhibitor. MK-2206 is an allosteric AKT inhibitor. Due to the limited activities of ruxolitinib and MK-2206 for monotherapy, the need for cotreatment with other drugs has emerged. This study is the first to examine the effects of ruxolitinib and MK-2206 cotreatment on apoptosis and JAK2/STAT5 and PI3K/AKT signaling in MDA-MB-231 breast cancer cells. Additionally, this work aimed to decrease the side effects of ruxolitinib and increase its anticancer effects with MK-2206 cotreatment. METHODS AND RESULTS Cell viability was reduced in a dose- and time-dependent manner after exposure to ruxolitinib, MK-2206 or both for 48 h, as shown by MTT assay. Ruxolitinib had a synergistic antiproliferative effect, as demonstrated by colony formation and wound healing assays. The effects of ruxolitinib, MK-2206 and their combination on apoptosis, as well as PI3K/AKT and JAK/STAT signaling, were examined by western blot analyses. Cotreatment with ruxolitinib and MK-2206 reduced proliferation with the dual inhibition of JAK2/STAT5 and PI3K/AKT signaling by decreasing PI3K, AKT, JAK2, STAT5, Caspase-9, Caspase-7, PARP, c-Myc, and Bcl-2 and increasing P53 and PTEN protein expression. CONCLUSIONS Our results revealed the roles of P53 and PTEN in the regulation of apoptosis and the PI3K/AKT and JAK2/STAT5 signaling pathways. The dual inhibition of JAK2/STAT5 and PI3K/AKT may reduce metastasis by decreasing tumor cell survival.
Collapse
Affiliation(s)
- Esin Guvenir Celik
- Department of Molecular Biology and Genetics, Faculty of Science, Bilecik Seyh Edebali University, Bilecik, Turkey. .,Biotechnology Research and Application Center, Bilecik Seyh Edebali University, Bilecik, Turkey. .,Department of Molecular Biology and Genetics, Institute of Graduate Education, Bilecik Şeyh Edebali University, Bilecik, Turkey.
| | - Onur Eroglu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilecik Seyh Edebali University, Bilecik, Turkey.,Biotechnology Research and Application Center, Bilecik Seyh Edebali University, Bilecik, Turkey
| |
Collapse
|
42
|
Hsu CM, Lin JJ, Su JH, Liu CI. 13-Acetoxysarcocrassolide induces apoptosis in human hepatocellular carcinoma cells through mitochondrial dysfunction and suppression of the PI3K/AKT/mTOR/p70S6K signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:2276-2285. [PMID: 36416062 PMCID: PMC9704080 DOI: 10.1080/13880209.2022.2145489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/20/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT 13-Acetoxysarcocrasside, isolated from the Taiwanese soft coral Sarcophyton crassocaule Moser (Alcyoniidae), has biological activity and induces apoptosis in hepatocellular carcinoma cells. OBJECTIVE To elucidate the mechanisms underlying apoptosis induced by 13-acetoxysarcocrasside in HA22T and HepG2 hepatocellular carcinoma cells. MATERIAL AND METHODS MTT and morphology assays were employed to assess the anti-proliferative effects of 13-acetoxysarcocrasside (1-5 μM). TUNEL/DAPI staining and annexin V-fluorescein isothiocyanate/propidium iodide staining were used to detect apoptosis. Cells were treated with13-acetoxysarcocrassolide (0, 1, 2, and 4 μM) for 24 h, and the mechanism of cells apoptotic was detected by western blotting. Cells treated with DMSO were the control. RESULTS Survival of the cells decreased with the addition of 13-acetoxysarcocrassolide, and at 4 μM cell survival was inhibited by approximately 40%. After treatment of cells with 13-acetoxysarcocrassolide, the incidence of early/late apoptosis to be 0.3%/0.5%∼5.4%/22.7% for HA22T cells, in the HePG2 cells were 0.6%/0.2%∼14.4%/23.7%. Western blotting analysis showed that the expression of Bax, Bad, cleaved caspase 3, cleaved caspase 9, cleaved-PARP-1, cytochrome c, and p-4EBP1 increased with an increasing concentration of 13-acetoxysarcocrasside (0, 1, 2, and 4 μM), whereas that of Bcl-2, Bcl-xL, Mcl-1, p-Bad, p-PI3K, p-AKT, p-mTOR, p-70S6K, p-S6, p-eIF4E, and p-eIF4B decreased. DISCUSSION AND CONCLUSIONS Apoptosis induced by 13-acetoxysarcocrassolide in HA22T and HepG2 cells is mediated by mitochondrial dysfunction and inactivation of the PI3K/AKT/mTOR/p70S6K pathway. The potential of 13-acetoxysarcocrassolide as a chemotherapeutic agent should be further assessed for use in human hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Chang-Min Hsu
- Antai Medical Care Corporation, Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan
| | - Jen-Jie Lin
- Department of Research & Development, Yu Jun Biotechnology Co., Ltd, Pingtung, Taiwan
| | - Jui-Hsin Su
- Department of Science Education, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Chih-I Liu
- Department of Nursing, Meiho University, Pingtung, Taiwan
| |
Collapse
|
43
|
The role of PI3K/Akt signalling pathway in spinal cord injury. Biomed Pharmacother 2022; 156:113881. [DOI: 10.1016/j.biopha.2022.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
|
44
|
Bezrookove V, Khan IA, Nosrati M, Miller JR, McAllister S, Dar AA, Kashani-Sabet M. BPTF promotes the progression of distinct subtypes of breast cancer and is a therapeutic target. Front Oncol 2022; 12:1011173. [PMID: 36530982 PMCID: PMC9748419 DOI: 10.3389/fonc.2022.1011173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/08/2022] [Indexed: 07/22/2023] Open
Abstract
Purpose To assess the biomarker and functional role of the chromatin remodeling factor, bromodomain PHD finger transcription factor (BPTF), in breast cancer progression. Methods BPTF copy number was assessed using fluorescence in situ hybridization. BPTF expression was regulated in breast cancer cells by shRNA/siRNA-mediated gene silencing and BPTF cDNA overexpression. The effects of regulating BPTF expression were examined on key oncogenic signaling pathways and on breast cancer cell proliferation, apoptosis, and cell cycle progression, as well as in xenograft models. The consequences of pharmacological bromodomain inhibition, alone or in combination with other targeted agents, on breast cancer progression were assessed in culture and in xenograft models. Results BPTF copy number was gained in 34.1% and separately amplified in 8.2% of a breast cancer tissue cohort. Elevated BPTF copy number was significantly associated with increasing patient age and tumor grade and observed in both ER-positive and triple-negative breast cancer (TNBC) subtypes. BPTF copy number gain and amplification were also observed in The Cancer Genome Atlas (TCGA) breast cancer cohort. Stable shRNA-mediated silencing of BPTF significantly inhibited cell proliferation and induced apoptosis in TNBC and ER-positive human breast cancer cell lines. BPTF knockdown suppressed signaling through the phosphoinositide 3 kinase (PI3K) pathway, including reduced expression of phosphorylated AKT (Ser473), phosphorylated GSK-β (Ser9), and CCND1. These findings were confirmed following transient BPTF knockdown by a distinct siRNA in TNBC and ER-positive breast cancer cells. Stable suppression of BPTF expression significantly inhibited the in vivo growth of TNBC cells. Conversely, BPTF cDNA overexpression in TNBC and ER-positive breast cancer cells enhanced breast cancer cell proliferation and reduced apoptosis. BPTF targeting with the bromodomain inhibitor bromosporine, alone or in combination with the PI3K pathway inhibitor gedatolisib, produced significant anti-tumor effects against TNBC cells in vitro and in vivo. Conclusion These studies demonstrate BPTF activation in distinct breast cancer subtypes, identify pathways by which BPTF promotes breast cancer progression, and suggest BPTF as a rational target for breast cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Altaf A. Dar
- *Correspondence: Mohammed Kashani-Sabet, ; Altaf A. Dar,
| | | |
Collapse
|
45
|
The Interaction of Food Allergy and Diabetes: Food Allergy Effects on Diabetic Mice by Intestinal Barrier Destruction and Glucagon-like Peptide 1 Reduction in Jejunum. Foods 2022; 11:foods11233758. [PMID: 36496564 PMCID: PMC9741085 DOI: 10.3390/foods11233758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in food allergies and diabetes leads to the assumption that they are related. This study aimed to (1) verify the interaction between food allergy and diabetes and (2) explore the potential mechanisms by which food allergy promotes diabetes. Female BALB/c mice were grouped into a control group (CK), an ovalbumin-sensitized group (OVA), a diabetes group (STZ), and a diabetic allergic group (STZ + OVA) (Mice were modeled diabetes with STZ first, then were given OVA to model food allergies), and an allergic diabetic group (OVA + STZ) (Mice were modeled food allergies with OVA first, then were given STZ to model diabetes). The results showed that OVA + STZ mice exhibited a more serious Th2 humoral response, and they were more susceptible to diabetes. Furthermore, when the OVA + STZ mice were in the sensitized state, the intestinal barrier function was severely impaired, and mast cell activation was promoted. Moreover, we found that the effect of food allergy on diabetes is related to the inhibition of GLP-1 secretion and the up-regulation of the PI3K/Akt/mTOR/NF-κB P65 signaling pathway in the jejunum. Overall, our results suggest that food allergies have interactions with diabetes, which sheds new light on the importance of food allergies in diabetes.
Collapse
|
46
|
Vollbrecht C, Hoffmann I, Lehmann A, Merkelbach-Bruse S, Fassunke J, Wagener-Ryczek S, Ball M, Dimitrova L, Hartmann A, Stöhr R, Erber R, Weichert W, Pfarr N, Bohlmann L, Jung A, Dietmaier W, Dietel M, Horst D, Hummel M. Proficiency testing of PIK3CA mutations in HR+/HER2-breast cancer on liquid biopsy and tissue. Virchows Arch 2022; 482:697-706. [PMID: 36367572 PMCID: PMC10067656 DOI: 10.1007/s00428-022-03445-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
AbstractPrecision oncology based on specific molecular alterations requires precise and reliable detection of therapeutic targets in order to initiate the optimal treatment. In many European countries—including Germany—assays employed for this purpose are highly diverse and not prescribed by authorities, making inter-laboratory comparison difficult. To ensure reproducible molecular diagnostic results across many laboratories and different assays, ring trials are essential and a well-established tool. Here, we describe the design and results of the ring trial for the detection of therapeutically relevant PIK3CA hotspot mutations in HR+/HER2-breast cancer tissue and liquid biopsy (LB). For PIK3CA mutation detection in tissue samples, 43 of the 54 participants (80%) provided results compliant with the reference values. Participants using NGS-based assays showed higher success rate (82%) than those employing Sanger sequencing (57%). LB testing was performed with two reference materials differing in the length of the mutated DNA fragments. Most participants used NGS-based or commercial real-time PCR assays (70%). The 167 bp fragments led to a successful PIK3CA mutation detection by only 31% of participants whereas longer fragments of 490 bp were detectable even by non-optimal assays (83%). In conclusion, the first ring trial for PIK3CA mutation detection in Germany showed that PIK3CA mutation analysis is broadly established for tissue samples and that NGS-based tests seem to be more suitable than Sanger sequencing. PIK3CA mutation detection in LB should be carried out with assays specifically designed for this purpose in order to avoid false-negative results.
Collapse
Affiliation(s)
- Claudia Vollbrecht
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Pathology, Berlin, Germany.
| | - Inga Hoffmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Annika Lehmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Sabine Merkelbach-Bruse
- Faculty of Medicine and University Hospital Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Jana Fassunke
- Faculty of Medicine and University Hospital Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Svenja Wagener-Ryczek
- Faculty of Medicine and University Hospital Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Markus Ball
- Faculty of Medicine and University Hospital Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | | | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany
| | - Robert Stöhr
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany
| | - Ramona Erber
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Nicole Pfarr
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Lisa Bohlmann
- Pathologisches Institut of the Ludwig-Maximilian-Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Andreas Jung
- Pathologisches Institut of the Ludwig-Maximilian-Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | | | - Manfred Dietel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - David Horst
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Michael Hummel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| |
Collapse
|
47
|
Lanahan SM, Wymann MP, Lucas CL. The role of PI3Kγ in the immune system: new insights and translational implications. Nat Rev Immunol 2022; 22:687-700. [PMID: 35322259 PMCID: PMC9922156 DOI: 10.1038/s41577-022-00701-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Over the past two decades, new insights have positioned phosphoinositide 3-kinase-γ (PI3Kγ) as a context-dependent modulator of immunity and inflammation. Recent advances in protein structure determination and drug development have allowed for generation of highly specific PI3Kγ inhibitors, with the first now in clinical trials for several oncology indications. Recently, a monogenic immune disorder caused by PI3Kγ deficiency was discovered in humans and modelled in mice. Human inactivated PI3Kγ syndrome confirms the immunomodulatory roles of PI3Kγ and strengthens newly defined roles of this molecule in modulating inflammatory cytokine release in macrophages. Here, we review the functions of PI3Kγ in the immune system and discuss how our understanding of its potential as a therapeutic target has evolved.
Collapse
Affiliation(s)
- Stephen M Lanahan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
48
|
Pelargonidin inhibits vascularization and metastasis of brain gliomas by blocking the PI3K/AKT/mTOR pathway. J Biosci 2022. [DOI: 10.1007/s12038-022-00281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Vitamin B 2 Prevents Glucocorticoid-Caused Damage of Blood Vessels in Osteonecrosis of the Femoral Head. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4006184. [PMID: 35845964 PMCID: PMC9279053 DOI: 10.1155/2022/4006184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 12/19/2022]
Abstract
Osteonecrosis of the femoral head (ONFH) is a disorder that can cause collapse of the femoral head. The damage and dysfunction of femoral head microvascular endothelial cells are related to the pathogenesis of glucocorticoid-induced ONFH. Reports suggest that vitamin B2 can promote osteoblast differentiation and prevent low bone mineral density and prevent reperfusion oxidative injury. To explore the effect and possible molecular mechanism of vitamin B2 on the ONFH and Human Umbilical Vein Endothelial Cells (HUVECs), we performed a rat model of ONFH by dexamethasone. The rats were randomly divided into four groups: control group, vitamin B2 group, dexamethasone group, and dexamethasone combined with vitamin B2 treatment group. HUVECs were used to further prove the role and mechanism of vitamin B2 in vitro. In patients, according to immunohistochemical and qRT-PCR of the femoral head, the angiogenic capacity of the ONFH femoral head is compromised. In vivo, it showed that vitamin B2 could inhibit glucocorticoid-induced ONFH-like changes in rats by suppressing cell apoptosis, promoting the regeneration of blood vessels, and increasing bone mass. According to in vitro results, vitamin B2 could induce the migration of HUVECs, enhance the expression of angiogenesis-related factors, and inhibit glucocorticoid-induced apoptosis. The underlying mechanism may be that vitamin B2 activates the PI3K signaling pathway. Vitamin B2 alleviated dexamethasone-induced ONFH, and vitamin B2 could promote the proliferation and migration of HUVECs and inhibit their apoptosis by activating the PI3K/Akt signaling pathway. Vitamin B2 may be a potentially effective treatment for ONFH.
Collapse
|
50
|
Bordini M, Soglia F, Davoli R, Zappaterra M, Petracci M, Meluzzi A. Molecular Pathways and Key Genes Associated With Breast Width and Protein Content in White Striping and Wooden Breast Chicken Pectoral Muscle. Front Physiol 2022; 13:936768. [PMID: 35874513 PMCID: PMC9304951 DOI: 10.3389/fphys.2022.936768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/17/2022] [Indexed: 01/10/2023] Open
Abstract
Growth-related abnormalities affecting modern chickens, known as White Striping (WS) and Wooden Breast (WB), have been deeply investigated in the last decade. Nevertheless, their precise etiology remains unclear. The present study aimed at providing new insights into the molecular mechanisms involved in their onset by identifying clusters of co-expressed genes (i.e., modules) and key loci associated with phenotypes highly related to the occurrence of these muscular disorders. The data obtained by a Weighted Gene Co-expression Network Analysis (WGCNA) were investigated to identify hub genes associated with the parameters breast width (W) and total crude protein content (PC) of Pectoralis major muscles (PM) previously harvested from 12 fast-growing broilers (6 normal vs. 6 affected by WS/WB). W and PC can be considered markers of the high breast yield of modern broilers and the impaired composition of abnormal fillets, respectively. Among the identified modules, the turquoise (r = -0.90, p < 0.0001) and yellow2 (r = 0.91, p < 0.0001) were those most significantly related to PC and W, and therefore respectively named “protein content” and “width” modules. Functional analysis of the width module evidenced genes involved in the ubiquitin-mediated proteolysis and inflammatory response. GTPase activator activity, PI3K-Akt signaling pathway, collagen catabolic process, and blood vessel development have been detected among the most significant functional categories of the protein content module. The most interconnected hub genes detected for the width module encode for proteins implicated in the adaptive responses to oxidative stress (i.e., THRAP3 and PRPF40A), and a member of the inhibitor of apoptosis family (i.e., BIRC2) involved in contrasting apoptotic events related to the endoplasmic reticulum (ER)-stress. The protein content module showed hub genes coding for different types of collagens (such as COL6A3 and COL5A2), along with MMP2 and SPARC, which are implicated in Collagen type IV catabolism and biosynthesis. Taken together, the present findings suggested that an ER stress condition may underly the inflammatory responses and apoptotic events taking place within affected PM muscles. Moreover, these results support the hypothesis of a role of the Collagen type IV in the cascade of events leading to the occurrence of WS/WB and identify novel actors probably involved in their onset.
Collapse
Affiliation(s)
- Martina Bordini
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Francesca Soglia
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Roberta Davoli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
- *Correspondence: Martina Zappaterra,
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Adele Meluzzi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| |
Collapse
|