1
|
Gu Q, Qi A, Wang N, Zhou Z, Zhou X. Unlocking Immunity: Innovative prostate cancer vaccine strategies. Int Immunopharmacol 2024; 142:113137. [PMID: 39276448 DOI: 10.1016/j.intimp.2024.113137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Prostate Cancer (PCa) is a leading cause of cancer-related mortality in men, especially in Western societies. The objective of this research is to address the unmet need for effective treatments in advanced or recurrent PCa, where current strategies fall short of offering a cure. The focus is on leveraging immunotherapy and cancer vaccines to target the tumor's unique immunological microenvironment. MAIN RESULTS Despite immunotherapy's success in other cancers, its effectiveness in PCa has been limited by the tumor's immunosuppressive characteristics. However, cancer vaccines that engage Tumor-Specific Antigens (TSA) and Tumor-Associated Antigens (TAA) have emerged as a promising approach. Preclinical and clinical investigations of Dendritic Cell (DC) vaccines, DNA vaccines, mRNA vaccines, peptide vaccines, and viral vectors have shown their potential to elicit anti-tumor immune responses. The exploration of combination therapies with immune checkpoint inhibitors and the advent of novel adjuvants and oral microparticle vaccines present innovative strategies to improve efficacy and compliance. CONCLUSION The development of cancer vaccines for PCa holds significant potential. Future directions include optimizing vaccine design, refining combination therapy strategies, and creating patient-friendly administration methods. The integration of interdisciplinary knowledge and innovative clinical trial designs is essential for advancing personalized and precision immunotherapy for PCa.
Collapse
Affiliation(s)
- Qiannan Gu
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, Jiangsu 210009, China
| | - Anning Qi
- Medical Laboratory, Liuhe People's Hospital of Jiangsu Province, Nanjing 211500, Jiangsu, China
| | - Ne Wang
- Jiangning Hospital Tiandi New City Branch, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211198, Jiangsu Province, China
| | - Zhenxian Zhou
- Nanjing Second People's Hospital, 211103, Jiangsu Province, China
| | - Xiaohui Zhou
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, Jiangsu 210009, China; Jiangning Outpatient Department of China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Jalil AT, Abdulhadi MA, Al-Ameer LR, Taher WM, Abdulameer SJ, Abosaooda M, Fadhil AA. Peptide-Based Therapeutics in Cancer Therapy. Mol Biotechnol 2024; 66:2679-2696. [PMID: 37768503 DOI: 10.1007/s12033-023-00873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023]
Abstract
A monster called cancer is still one of the most challenging human problems and one of the leading causes of death in the world. Different types of treatment methods are used for cancer therapy; however, there are challenges such as high cost and harmful side effects in using these methods. Recent years have witnessed a surge in the development of therapeutic peptides for a wide range of diseases, notably cancer. Peptides are preferred over antibiotics, radiation therapy, and chemotherapy in the treatment of cancer due to a number of aspects, including flexibility, easy modification, low immunogenicity, and inexpensive cost of production. The use of therapeutic peptides in cancer treatment is a novel and intriguing strategy. These peptides provide excellent prospects for targeted drug delivery because of their high selectivity, specificity, small dimensions, good biocompatibility, and simplicity of modification. Target specificity and minimal toxicity are benefits of therapeutic peptides. Additionally, peptides can be used to design antigens or adjuvants for vaccine development. Here, types of therapeutic peptides for cancer therapy will be discussed, such as peptide-based cancer vaccines and tumor-targeting peptides (TTP) and cell-penetrating peptides (CPP).
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq.
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Lubna R Al-Ameer
- College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | | | - Sada Jasim Abdulameer
- Biology Department, College of Education for Pure Science, Wasit University, Kut, Wasit, Iraq
| | | | - Ali A Fadhil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
3
|
Bakhshivand M, Masoumi J, Ghorbaninezhad F, Aghebati-Maleki L, Shanebandi D, Sandoghchian Shotorbani S, Jadidi-Niaragh F, Baghbanzadeh A, Hemmat N, Baghbani E, Ghaffari A, Baradaran B. Boosting immunotherapy efficacy: Empowering the Potency of Dendritic cells loaded with breast cancer lysates through CTLA-4 suppression. Heliyon 2024; 10:e37699. [PMID: 39309891 PMCID: PMC11416247 DOI: 10.1016/j.heliyon.2024.e37699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Anticancer immunotherapies with a dendritic Cell (DC) basis are becoming more popular. However, it has been suggested that the tumor's immunosuppressive mechanisms, such as inhibitory immunological checkpoint molecules, reduce the effectiveness of anticancer immunogenicity mediated by DC. Thus, overcoming immune checkpoints and inducing effective antigen-specific T-cell responses uniquely produced with malignant cells represent the key challenges. Among the inhibitory immune checkpoints, DCs' ability to mature and present antigens is decreased by CTLA-4 expression. Consequently, we hypothesized that by expressing CTLA-4 cells on DCs, the T cells' activation against tumor antigens would be suppressed when confronted with these antigens presented by DCs. In this research, by loading cell lysate of breast cancer (BC) on DCs and the other hand by inhibiting the induction of CTLA-4 using small interfering RNA (siRNA), we assessed the functional activities and phenotypes of DCs, and also the responses associated with T-cells following co-culture DC/T cell. Our research has shown that the suppression of CTLA-4 enhanced the stimulating capabilities of DCs. Additionally, CTLA-4-suppressed BC cell lysate-loaded DCs produced more IL-4 and IFN-ϒ and increased T cell induction in contrast to DCs without CTLA-4 suppression. Together, our data point to CTLA-4-suppressed DCs loaded with BC cell lysate as a potentially effective treatment method. However, further research is required before employing this method in therapeutic contexts.
Collapse
Affiliation(s)
- Mohammad Bakhshivand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Dariush Shanebandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghaffari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Do CTP, Prochnau JY, Dominguez A, Wang P, Rao MK. The Road Ahead in Pancreatic Cancer: Emerging Trends and Therapeutic Prospects. Biomedicines 2024; 12:1979. [PMID: 39335494 PMCID: PMC11428787 DOI: 10.3390/biomedicines12091979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
This review explores the challenges and emerging trends in pancreatic cancer therapy. In particular, we focus on the tumor microenvironment and the potential of immunotherapy for pancreatic cancer. Pancreatic ductal adenocarcinoma, characterized by its dense stromal architecture, presents unique challenges for effective treatment. Recent advancements have emphasized the role of the tumor microenvironment in therapeutic resistance and disease progression. We discuss novel strategies targeting the desmoplastic barrier and immunosuppressive cells to enhance immune cell infiltration and activation. Recent clinical trials, particularly those involving novel immunotherapeutic agents and tumor vaccines, are examined to understand their efficacy and limitations. Our analysis reveals that combining immunotherapy with chemotherapy, radiation therapy, or drugs targeting epigenetic processes shows promise, improving overall survival rates and response to treatment. For instance, trials utilizing checkpoint inhibitors in combination with standard chemotherapies have extended disease-free survival by up to 6 months compared to chemotherapy alone. Importantly, vaccines targeting specific tumor neoantigens have shown the potential to increase patient survival. However, these approaches also face significant challenges, including overcoming the immunosuppressive tumor microenvironment and enhancing the delivery and efficacy of therapeutic agents. By providing an overview of both the promising results and the obstacles encountered, this review aims to highlight ongoing efforts to refine immunotherapy approaches for better patient outcomes.
Collapse
Affiliation(s)
- Chris T P Do
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jack Y Prochnau
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Angel Dominguez
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Pei Wang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Manjeet K Rao
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
5
|
Chen L, Kang Z, Shen J, Zhao R, Miao Y, Zhang L, Zheng Z, Zhang Z, Liu N, Wang C, Fang H, Zhou J, Wang Y, Liu Z, Yang Y, Chen Q. An emerging antibacterial nanovaccine for enhanced chemotherapy by selectively eliminating tumor-colonizing bacteria. Sci Bull (Beijing) 2024; 69:2565-2579. [PMID: 38918142 DOI: 10.1016/j.scib.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/22/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Fusobacterium nucleatum (F. nucleatum), an oral anaerobe, is prevalent in colorectal cancer and is closely related to increased cancer cell growth, metastasis, and poor treatment outcomes. Bacterial vaccines capable of selectively eliminating bacteria present a promising approach to targeting intratumor F. nucleatum, thereby enhancing cancer treatment. Although adjuvants have been employed to enhance the immune response, the vaccine's effectiveness is constrained by inadequate T-cell activation necessary for eradicating intracellular pathogens. In this study, we developed a minimalistic, biomimetic nanovaccine by integrating highly immunostimulatory adjuvant cholesterol-modified CpG oligonucleotides into the autologously derived F. nucleatum membranes. Compared to the traditional vaccines consisting of inactivated bacteria and Alum adjuvant, the nanovaccine coupled with bacterial membranes and adjuvants could remarkably improve multiple antigens and adjuvant co-delivery to dendritic cells, maximizing their ability to achieve effective antigen presentation and strong downstream immune progress. Notably, the nanovaccine exhibits outstanding selective prophylactic and therapeutic effects, eliminating F. nucleatum without affecting intratumoral and gut microbiota. It significantly enhances chemotherapy efficacy and reduces cancer metastasis in F. nucleatum-infected colorectal cancer. Overall, this work represents the rational application of bacterial nanovaccine and provides a blueprint for future development in enhancing the antitumor effect against bacterial-infected cancer.
Collapse
Affiliation(s)
- Linfu Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zheyu Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jingjing Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Rui Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yu Miao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Lin Zhang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zixuan Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zhemin Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Nanhui Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Cheng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Huapan Fang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jun Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
6
|
Moon DO. Advancing Cancer Therapy: The Role of KIF20A as a Target for Inhibitor Development and Immunotherapy. Cancers (Basel) 2024; 16:2958. [PMID: 39272816 PMCID: PMC11393963 DOI: 10.3390/cancers16172958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The analysis begins with a detailed examination of the gene expression and protein structure of KIF20A, highlighting its interaction with critical cellular components that influence key processes such as Golgi membrane transport and mitotic spindle assembly. The primary focus is on the development of specific KIF20A inhibitors, detailing their roles and the challenges encountered in enhancing their efficacy, such as achieving specificity, overcoming tumor resistance, and optimizing delivery systems. Additionally, it delves into the prognostic value of KIF20A across multiple cancer types, emphasizing its role as a novel tumor-associated antigen, which lays the groundwork for the development of targeted peptide vaccines. The therapeutic efficacy of these vaccines as demonstrated in recent clinical trials is discussed. Future directions are proposed, including the integration of precision medicine strategies to personalize treatments and the use of combination therapies to improve outcomes. By concentrating on the significant potential of KIF20A as both a direct target for inhibitors and an antigen in cancer vaccines, this review sets a foundation for future research aimed at harnessing KIF20A for effective cancer treatment.
Collapse
Affiliation(s)
- Dong Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
7
|
Chen H, Zhu Z, Lv K, Qi Y, Si X, Ma S, Song W, Chen X. Uniform Polymeric Nanovaccine Platform for Improving the Availability and Efficacy of Neoantigen Peptides. NANO LETTERS 2024; 24:10114-10123. [PMID: 39109634 DOI: 10.1021/acs.nanolett.4c02196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Personalized cancer vaccines targeting specific neoantigens have been envisioned as one of the most promising approaches in cancer immunotherapy. However, the physicochemical variability of the identified neoantigens limits their efficacy as well as vaccine manufacturing in a uniform format. Herein, we developed a uniform nanovaccine platform based on poly(2-oxazoline)s (POx) to chemically conjugate neoantigen peptides, regardless of their physicochemical properties. This vaccine system could self-assemble into nanoparticles with uniform size (around 50 nm) and improve antigen accumulation as well as infiltration in the lymph node to increase antigen presentation. In vivo vaccination using this system conjugated with three predicted peptide neoantigen peptides from the MC38 tumor cell line induced 100% robust CD8+ T cell responses and superior tumor clearance compared to free peptides. This POx-based vaccine carrier represents a generalizable approach to increase the availability and efficacy of screened neoantigen peptides for a personalized cancer vaccine.
Collapse
Affiliation(s)
- Hongyu Chen
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhenyi Zhu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Kuncheng Lv
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yibo Qi
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Sheng Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Wantong Song
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xuesi Chen
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| |
Collapse
|
8
|
Peng S, Yan Y, Ogino K, Ma G, Xia Y. Spatiotemporal coordination of antigen presentation and co-stimulatory signal for enhanced anti-tumor vaccination. J Control Release 2024; 374:312-324. [PMID: 39153722 DOI: 10.1016/j.jconrel.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Controlled-release systems enhance anti-tumor effects by leveraging local antigen persistence for antigen-presenting cells (APCs) recruitment and T cell engagement. However, constant antigen presentation alone tends to induce dysfunction in tumor-specific CD8+ T cells, neglecting the synergistic effects of co-stimulatory signal. To address this, we developed a soft particle-stabilized emulsion (SPE) to deliver lipopeptides with controlled release profiles by adjusting their hydrophobic chain lengths: C6-SPE (fast release), C10-SPE (medium release), and C16-SPE (slow release). Following administration, C6-SPE release antigen rapidly, inducing early antigen presentation, whereas C16-SPE's slow-release delays antigen presentation. Both scenarios missed the critical window for coordinating with the expression of CD86, leading to either T cell apoptosis or suboptimal activation. In contrast, C10-SPE achieved a spatiotemporally synergetic effect of the MHC-I-peptide complex and co-stimulatory signal (CD86), leading to effective dendritic cell (DC) activation, enhanced T cell activation, and tumor regression in EG7-OVA bearing mice. Additionally, co-delivery of cytosine-phosphate-guanine (CpG) with SPE provided a sustained expression of the CD86 window for DC activation, improving the immune response and producing robust anti-tumor effects with C6-SPE comparable to C10-SPE. These findings highlight that synchronizing the spatiotemporal dynamics of antigen presentation and APC activation may confer an optimal strategy for enhanced vaccinations.
Collapse
Affiliation(s)
- Sha Peng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan
| | - Yumeng Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
9
|
D'Aniello A, Del Bene A, Mottola S, Mazzarella V, Cutolo R, Campagna E, Di Maro S, Messere A. The bright side of chemistry: Exploring synthetic peptide-based anticancer vaccines. J Pept Sci 2024; 30:e3596. [PMID: 38571326 DOI: 10.1002/psc.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The present review focuses on synthetic peptide-based vaccine strategies in the context of anticancer intervention, paying attention to critical aspects such as peptide epitope selection, adjuvant integration, and nuanced classification of synthetic peptide cancer vaccines. Within this discussion, we delve into the diverse array of synthetic peptide-based anticancer vaccines, each derived from tumor-associated antigens (TAAs), including melanoma antigen recognized by T cells 1 (Melan-A or MART-1), mucin 1 (MUC1), human epidermal growth factor receptor 2 (HER-2), tumor protein 53 (p53), human telomerase reverse transcriptase (hTERT), survivin, folate receptor (FR), cancer-testis antigen 1 (NY-ESO-1), and prostate-specific antigen (PSA). We also describe the synthetic peptide-based vaccines developed for cancers triggered by oncovirus, such as human papillomavirus (HPV), and hepatitis C virus (HCV). Additionally, the potential synergy of peptide-based vaccines with common therapeutics in cancer was considered. The last part of our discussion deals with the realm of the peptide-based vaccines delivery, highlighting its role in translating the most promising candidates into effective clinical strategies. Although this discussion does not cover all the ongoing peptide vaccine investigations, it aims at offering valuable insights into the chemical modifications and the structural complexities of anticancer peptide-based vaccines.
Collapse
Affiliation(s)
- Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Erica Campagna
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| |
Collapse
|
10
|
Espinosa-Carrasco G, Chiu E, Scrivo A, Zumbo P, Dave A, Betel D, Kang SW, Jang HJ, Hellmann MD, Burt BM, Lee HS, Schietinger A. Intratumoral immune triads are required for immunotherapy-mediated elimination of solid tumors. Cancer Cell 2024; 42:1202-1216.e8. [PMID: 38906155 PMCID: PMC11413804 DOI: 10.1016/j.ccell.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 03/11/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Tumor-specific CD8+ T cells are frequently dysfunctional and unable to halt tumor growth. We investigated whether tumor-specific CD4+ T cells can be enlisted to overcome CD8+ T cell dysfunction within tumors. We find that the spatial positioning and interactions of CD8+ and CD4+ T cells, but not their numbers, dictate anti-tumor responses in the context of adoptive T cell therapy as well as immune checkpoint blockade (ICB): CD4+ T cells must engage with CD8+ T cells on the same dendritic cell during the effector phase, forming a three-cell-type cluster (triad) to license CD8+ T cell cytotoxicity and cancer cell elimination. When intratumoral triad formation is disrupted, tumors progress despite equal numbers of tumor-specific CD8+ and CD4+ T cells. In patients with pleural mesothelioma treated with ICB, triads are associated with clinical responses. Thus, CD4+ T cells and triads are required for CD8+ T cell cytotoxicity during the effector phase and tumor elimination.
Collapse
Affiliation(s)
| | - Edison Chiu
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aurora Scrivo
- Department of Developmental and Molecular Biology, and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Asim Dave
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sung Wook Kang
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Hee-Jin Jang
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D Hellmann
- Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Bryan M Burt
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA; Division of Thoracic Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Hyun-Sung Lee
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
11
|
Hao Q, Long Y, Yang Y, Deng Y, Ding Z, Yang L, Shu Y, Xu H. Development and Clinical Applications of Therapeutic Cancer Vaccines with Individualized and Shared Neoantigens. Vaccines (Basel) 2024; 12:717. [PMID: 39066355 PMCID: PMC11281709 DOI: 10.3390/vaccines12070717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRASG12D), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies.
Collapse
Affiliation(s)
- Qing Hao
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yuhang Long
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yi Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yiqi Deng
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenyu Ding
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
- Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Center of Clinical Laboratory Medicine, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Goto K, Ueno T, Sakaue S. Induction of antigen-specific immunity by mesoporous silica nanoparticles incorporating antigen peptides. J Biosci Bioeng 2024:S1389-1723(24)00161-0. [PMID: 38890051 DOI: 10.1016/j.jbiosc.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) are physically and chemically stable inorganic nanomaterials that have been attracting much attention as carriers for drug delivery systems in the field of nanomedicine. In the present study, we investigated the potential of MSN vaccines that incorporate antigen peptides for use in cancer immunotherapy. In vitro experiments demonstrated that fluorescently labeled MSNs accumulated in a line of mouse dendritic cells (DC2.4 cells), where the particles localized to the cytosol. These observations could suggest that MSNs have potential for use in delivering the loaded molecules into antigen-presenting cells, thereby stimulating the host acquired immune system. In vivo experiments demonstrated prolonged survival in mice implanted with ovalbumin (OVA)-expressing lymphoma cells (E.G7-OVA cells) following subcutaneous inoculation with MSNs incorporating OVA antigen peptides. Furthermore, OVA-specific immunoglobulin G antibodies and cytotoxic T lymphocytes were detected in the serum and the spleen cells, respectively, of mice inoculated with an MSN-OVA vaccine, indicating the induction of antigen-specific responses in both the humoral and cellular immune systems. These results suggested that the MSN therapies incorporating antigen peptides may serve as novel vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Koichi Goto
- Division of Applied Life Sciences, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Tomoya Ueno
- Division of Applied Life Sciences, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Saki Sakaue
- Division of Applied Life Sciences, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
13
|
Josi R, Speiser DE, de Brot S, Vogt AC, Sevick-Muraca EM, Tolstonog GV, Bachmann MF, Mohsen MO. A tetravalent nanovaccine that inhibits growth of HPV-associated head and neck carcinoma via dendritic and T cell activation. iScience 2024; 27:109439. [PMID: 38523774 PMCID: PMC10957412 DOI: 10.1016/j.isci.2024.109439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/17/2023] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
The global incidence of human papillomavirus (HPV) associated head and neck carcinoma is on the rise, in response to this a tetravalent therapeutic vaccine named Qβ-HPVag was developed. This vaccine, utilizing virus-like particles (VLPs) loaded with toll-like receptor ligands and chemically coupled to four HPV16-derived peptides, demonstrated strong anti-tumor effects in a murine head and neck cancer model. Qβ-HPVag impeded tumor progression, increased infiltration of HPV-specific T cells, and significantly improved survival. The vaccine`s efficacy was associated with immune repolarization in the tumor microenvironment, characterized by expanded activated dendritic cell subsets (cDC1, cDC2, DC3). Notably, mice responding to treatment exhibited a higher percentage of migratory DC3 cells expressing CCR7. These findings suggest promising prospects for optimized VLP-based vaccines in treating HPV-associated head and neck cancer.
Collapse
Affiliation(s)
- Romano Josi
- Department of Rheumatology and Immunology, University Hospital of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), Bern, Switzerland
| | - Daniel E. Speiser
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Anne-Cathrine Vogt
- Department of Rheumatology and Immunology, University Hospital of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), Bern, Switzerland
| | - Eva M. Sevick-Muraca
- Center for Molecular Imaging, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Genrich V. Tolstonog
- Department of Otolaryngology – Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Martin F. Bachmann
- Department of Rheumatology and Immunology, University Hospital of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Nuffield Department of Medicine, The Henry Welcome Building for Molecular Physiology, The Jenner Institute, University of Oxford, Oxford, UK
| | - Mona O. Mohsen
- Department of Rheumatology and Immunology, University Hospital of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Tajarub Research & Development, Doha, State of Qatar
| |
Collapse
|
14
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Advances in Therapeutic Cancer Vaccines, Their Obstacles, and Prospects Toward Tumor Immunotherapy. Mol Biotechnol 2024:10.1007/s12033-024-01144-3. [PMID: 38625508 DOI: 10.1007/s12033-024-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Over the past few decades, cancer immunotherapy has experienced a significant revolution due to the advancements in immune checkpoint inhibitors (ICIs) and adoptive cell therapies (ACTs), along with their regulatory approvals. In recent times, there has been hope in the effectiveness of cancer vaccines for therapy as they have been able to stimulate de novo T-cell reactions against tumor antigens. These tumor antigens include both tumor-associated antigen (TAA) and tumor-specific antigen (TSA). Nevertheless, the constant quest to fully achieve these abilities persists. Therefore, this review offers a broad perspective on the existing status of cancer immunizations. Cancer vaccine design has been revolutionized due to the advancements made in antigen selection, the development of antigen delivery systems, and a deeper understanding of the strategic intricacies involved in effective antigen presentation. In addition, this review addresses the present condition of clinical tests and deliberates on their approaches, with a particular emphasis on the immunogenicity specific to tumors and the evaluation of effectiveness against tumors. Nevertheless, the ongoing clinical endeavors to create cancer vaccines have failed to produce remarkable clinical results as a result of substantial obstacles, such as the suppression of the tumor immune microenvironment, the identification of suitable candidates, the assessment of immune responses, and the acceleration of vaccine production. Hence, there are possibilities for the industry to overcome challenges and enhance patient results in the coming years. This can be achieved by recognizing the intricate nature of clinical issues and continuously working toward surpassing existing limitations.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
15
|
Nishiyama H, Yonese J, Kawahara T, Matsumoto R, Miyake H, Matsubara N, Uemura H, Eto M, Azuma H, Obara W, Terai A, Fukasawa S, Suekane S. TAS0313 plus Pembrolizumab for Post-Chemotherapy Immune Checkpoint Inhibitor-Naïve Locally Advanced or Metastatic Urothelial Carcinoma. Mol Cancer Ther 2024; 23:532-540. [PMID: 38060587 PMCID: PMC10985476 DOI: 10.1158/1535-7163.mct-23-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/18/2023] [Accepted: 12/01/2023] [Indexed: 04/04/2024]
Abstract
We evaluated the efficacy and safety of TAS0313, a multi-epitope long peptide vaccine, plus pembrolizumab in post-chemotherapy immune checkpoint inhibitor-naïve patients with locally advanced/metastatic urothelial carcinoma (la/mUC). TAS0313 9 mg was administered subcutaneously followed by pembrolizumab 200 mg on Day 1, and as monotherapy on Day 8 and 15 of Cycles 1 and 2, and Day 1 of subsequent cycles in 21-day cycles. The primary endpoint was the objective response rate (ORR). Secondary endpoints included progression-free survival (PFS), overall survival (OS), and safety. Biomarkers of response were assessed. In 36 patients enrolled, the ORR was 33.3% (complete response: 7 patients; partial response: 5 patients). Median PFS was 5.0 months; 6- and 12-month progression-free rates were 46.4% and 36.5%, respectively. Median OS was not reached; 6-, 12-, and 24-month OS rates were 83.3%, 72.2%, and 55.1%, respectively. In post hoc analysis, patients with a tumor infiltrating CD8+ lymphocyte (CD8+ TIL) count ≥99 and/or programmed cell death ligand 1 (PD-L1) combined positive score (CPS) ≥50 and lymphocyte count >1,380 cells/μL had higher ORRs and prolonged PFS versus patients with a CD8+ TIL count <99, PD-L1 CPS <50, and lymphocyte count ≤1,380 cells/μL. Thirty-four (94.4%) patients receiving combination therapy experienced treatment-related adverse events (AE), with pyrexia (n = 15, 41.7%), injection-site reactions (n = 15, 41.7%), injection-site induration (n = 6, 16.7%), and malaise (n = 6, 16.7%) the most common. No grade ≥3 treatment-related AEs occurred in ≥10% of patients. TAS0313 plus pembrolizumab combination therapy showed promising efficacy and manageable safety in la/mUC. Clinical Trial Registration: JapicCTI-183824.
Collapse
Affiliation(s)
| | - Junji Yonese
- Department of Urology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - Ryuji Matsumoto
- Department of Renal and Genitourinary Surgery, Hokkaido University, Sapporo, Japan
| | - Hideaki Miyake
- Department of Urology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Nobuaki Matsubara
- Division of Medical Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Hiroji Uemura
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Yokohama, Japan
| | - Masatoshi Eto
- Department of Urology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Wataru Obara
- Department of Urology, Iwate Medical University, Yahaba, Japan
| | - Akito Terai
- Department of Urology, Kurashiki Central Hospital, Kurashiki, Japan
| | - Satoshi Fukasawa
- Prostate Center and Division of Urology, Chiba Cancer Center, Chiba, Japan
| | - Shigetaka Suekane
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
16
|
Katsikis PD, Ishii KJ, Schliehe C. Challenges in developing personalized neoantigen cancer vaccines. Nat Rev Immunol 2024; 24:213-227. [PMID: 37783860 DOI: 10.1038/s41577-023-00937-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 10/04/2023]
Abstract
The recent success of cancer immunotherapies has highlighted the benefit of harnessing the immune system for cancer treatment. Vaccines have a long history of promoting immunity to pathogens and, consequently, vaccines targeting cancer neoantigens have been championed as a tool to direct and amplify immune responses against tumours while sparing healthy tissue. In recent years, extensive preclinical research and more than one hundred clinical trials have tested different strategies of neoantigen discovery and vaccine formulations. However, despite the enthusiasm for neoantigen vaccines, proof of unequivocal efficacy has remained beyond reach for the majority of clinical trials. In this Review, we focus on the key obstacles pertaining to vaccine design and tumour environment that remain to be overcome in order to unleash the true potential of neoantigen vaccines in cancer therapy.
Collapse
Affiliation(s)
- Peter D Katsikis
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Christopher Schliehe
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
17
|
Bao P, Gu H, Ye J, He J, Zhong Z, Yu A, Zhang X. Chimeric Exosomes Functionalized with STING Activation for Personalized Glioblastoma Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306336. [PMID: 38072677 PMCID: PMC10853748 DOI: 10.1002/advs.202306336] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/13/2023] [Indexed: 02/10/2024]
Abstract
A critical challenge of existing cancer vaccines is to orchestrate the demands of antigen-enriched furnishment and optimal antigen-presentation functionality within antigen-presenting cells (APCs). Here, a complementary immunotherapeutic strategy is developed using dendritic cell (DC)-tumor hybrid cell-derived chimeric exosomes loaded with stimulator of interferon genes (STING) agonists (DT-Exo-STING) for maximized tumor-specific T-cell immunity. These chimeric carriers are furnished with broad-spectrum antigen complexes to elicit a robust T-cell-mediated inflammatory program through direct self-presentation and indirect DC-to-T immunostimulatory pathway. This chimeric exosome-assisted delivery strategy possesses the merits versus off-the-shelf cyclic dinucleotide (CDN) delivery techniques in both the brilliant tissue-homing capacity, even across the intractable blood-brain barrier (BBB), and the desired cytosolic entry for enhanced STING-activating signaling. The improved antigen-presentation performance with this nanovaccine-driven STING activation further enhances tumor-specific T-cell immunoresponse. Thus, DT-Exo-STING reverses immunosuppressive glioblastoma microenvironments to pro-inflammatory, tumoricidal states, leading to an almost obliteration of intracranial primary lesions. Significantly, an upscaling option that harnesses autologous tumor tissues for personalized DT-Exo-STING vaccines increases sensitivity to immune checkpoint blockade (ICB) therapy and exerts systemic immune memory against post-operative glioma recrudesce. These findings represent an emerging method for glioblastoma immunotherapy, warranting further exploratory development in the clinical realm.
Collapse
Affiliation(s)
- Peng Bao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Hui‐Yun Gu
- Department of Orthopedic Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhan430071P. R. China
| | - Jing‐Jie Ye
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Jin‐Lian He
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Zhenlin Zhong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Ai‐Xi Yu
- Department of Orthopedic Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhan430071P. R. China
| | - Xian‐Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P. R. China
- Department of Orthopedic Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhan430071P. R. China
| |
Collapse
|
18
|
Khazaei S, Varela-Calviño R, Rad-Malekshahi M, Quattrini F, Jokar S, Rezaei N, Balalaie S, Haririan I, Csaba N, Garcia-Fuentes M. Self-assembled peptide/polymer hybrid nanoplatform for cancer immunostimulating therapies. Drug Deliv Transl Res 2024; 14:455-473. [PMID: 37721693 PMCID: PMC10761384 DOI: 10.1007/s13346-023-01410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 09/19/2023]
Abstract
Integrating peptide epitopes in self-assembling materials is a successful strategy to obtain nanovaccines with high antigen density and improved efficacy. In this study, self-assembling peptides containing MAGE-A3/PADRE epitopes were designed to generate functional therapeutic nanovaccines. To achieve higher stability, peptide/polymer hybrid nanoparticles were formulated by controlled self-assembly of the engineered peptides. The nanoparticles showed good biocompatibility to both human red blood- and dendritic cells. Incubation of the nanoparticles with immature dendritic cells triggered immune effects that ultimately activated CD8 + cells. The antigen-specific and IgG antibody responses of healthy C57BL/6 mice vaccinated with the nanoparticles were analyzed. The in vivo results indicate a specific response to the nanovaccines, mainly mediated through a cellular pathway. This research indicates that the immunogenicity of peptide epitope vaccines can be effectively enhanced by developing self-assembled peptide-polymer hybrid nanostructures.
Collapse
Affiliation(s)
- Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ruben Varela-Calviño
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Federico Quattrini
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Noemi Csaba
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Marcos Garcia-Fuentes
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
19
|
Zeng L, Zheng W, Zhang J, Wang J, Ji Q, Wu X, Meng Y, Zhu X. An epitope encoded by uORF of RNF10 elicits a therapeutic anti-tumor immune response. Mol Ther Oncolytics 2023; 31:100737. [PMID: 38020063 PMCID: PMC10654591 DOI: 10.1016/j.omto.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Tumor-specific antigens (TSAs) are crucial for tumor-specific immune response that reduces tumor burden and thus serve as important targets for immunotherapy. Identification of novel TSAs can provide new strategies for immunotherapies. In this study, we demonstrated that the upstream open reading frame (uORF) of RNF10 encodes an antigenic peptide (RNF10 uPeptide), capable of eliciting a T cell-mediated anti-tumor immune response. We initially demonstrated the immunogenicity of the RNF10 uPeptide in a CT26 tumor mouse model, by showing that its epitope was specifically recognized by CD8+ T cells. Vaccination of mice with the long form of the RNF10 uPeptide conferred strong anti-tumor activity. Next, we proved that the human RNF10 uORF could be translated. In addition, we predicted the binding of an RNF10 uPeptide epitope to HLA-A∗02:01 (HLA-A2). This HLA-A2-restricted epitope of the RNF10 uPeptide induced a potent specific human T cell response. Finally, we showed that an HLA-A2-restricted cytotoxic T cell (CTL) clone, derived from a pancreatic cancer patient, recognized the RNF10 uPeptide epitope (RLFGQQQRA) and lysed HLA-A2+ pancreatic carcinoma cells expressing the RNF10 uPeptide. These results indicate that the RNF10 uPeptide could be a promising target for pancreatic carcinoma immunotherapy.
Collapse
Affiliation(s)
- Lili Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Pathology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Wei Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiahui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiawen Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qing Ji
- Department of Pathology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Xinglong Wu
- Department of Pathology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yaming Meng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Xiaofeng Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast and Thyroid Center, Guangzhou Women and Children’s Medical Center, Guangzhou 510000, China
| |
Collapse
|
20
|
Fan T, Zhang M, Yang J, Zhu Z, Cao W, Dong C. Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal Transduct Target Ther 2023; 8:450. [PMID: 38086815 PMCID: PMC10716479 DOI: 10.1038/s41392-023-01674-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 12/18/2023] Open
Abstract
With the development and regulatory approval of immune checkpoint inhibitors and adoptive cell therapies, cancer immunotherapy has undergone a profound transformation over the past decades. Recently, therapeutic cancer vaccines have shown promise by eliciting de novo T cell responses targeting tumor antigens, including tumor-associated antigens and tumor-specific antigens. The objective was to amplify and diversify the intrinsic repertoire of tumor-specific T cells. However, the complete realization of these capabilities remains an ongoing pursuit. Therefore, we provide an overview of the current landscape of cancer vaccines in this review. The range of antigen selection, antigen delivery systems development the strategic nuances underlying effective antigen presentation have pioneered cancer vaccine design. Furthermore, this review addresses the current status of clinical trials and discusses their strategies, focusing on tumor-specific immunogenicity and anti-tumor efficacy assessment. However, current clinical attempts toward developing cancer vaccines have not yielded breakthrough clinical outcomes due to significant challenges, including tumor immune microenvironment suppression, optimal candidate identification, immune response evaluation, and vaccine manufacturing acceleration. Therefore, the field is poised to overcome hurdles and improve patient outcomes in the future by acknowledging these clinical complexities and persistently striving to surmount inherent constraints.
Collapse
Affiliation(s)
- Ting Fan
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Mingna Zhang
- Postgraduate Training Base, Shanghai East Hospital, Jinzhou Medical University, Shanghai, 200120, China
| | - Jingxian Yang
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Zhounan Zhu
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Wanlu Cao
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China.
| | - Chunyan Dong
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Zhang Y, Zuo B, Yu Z, Zhao K, Zhang Y, He K, Seow Y, Yin H. Complete remission of tumors in mice with neoantigen-painted exosomes and anti-PD-1 therapy. Mol Ther 2023; 31:3579-3593. [PMID: 37919900 PMCID: PMC10727972 DOI: 10.1016/j.ymthe.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/14/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Neoantigen-based cancer vaccines are emerging as promising tumor therapies, but enhancement of immunogenicity can further improve therapeutic outcomes. Here, we demonstrate that anchoring different peptide neoantigens on subcutaneously administered serum exosomes promote lymph node homing and dendritic cell uptake, resulting in significantly enhanced antigenicity in vitro and in vivo. Exosomes anchoring of melanoma peptide neoantigens augmented the magnitude and breadth of T cell response in vitro and in vivo, to a greater extent with CD8+ T cell responses. Simultaneous decoration of different peptide neoantigens on serum exosomes induced potent tumor suppression and neoantigen-specific immune responses in mice with melanoma and colon cancer. Complete tumor eradication and sustainable immunological memory were achieved with neoantigen-painted serum exosome vaccines in combination with programmed cell death protein 1 (PD-1) antibodies in mice with colon cancer. Importantly, human serum exosomes loaded with peptide neoantigens elicited significant tumor growth retardation and immune responses in human colon cancer 3-dimensional (3D) multicellular spheroids. Our study demonstrates that serum exosomes direct in vivo localization, increase dendritic cell uptake, and enhance the immunogenicity of antigenic peptides and thus provides a general delivery tool for peptide antigen-based personalized immunotherapy.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Bingfeng Zuo
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Zezhen Yu
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Kangjie Zhao
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yali Zhang
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Kai He
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yiqi Seow
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - HaiFang Yin
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China; Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
22
|
Bellini C, Vergara E, Bencs F, Fodor K, Bősze S, Krivić D, Bacsa B, Surguta SE, Tóvári J, Reljic R, Horváti K. Design and Characterization of a Multistage Peptide-Based Vaccine Platform to Target Mycobacterium tuberculosis Infection. Bioconjug Chem 2023; 34:1738-1753. [PMID: 37606258 PMCID: PMC10587871 DOI: 10.1021/acs.bioconjchem.3c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Indexed: 08/23/2023]
Abstract
The complex immunopathology ofMycobacterium tuberculosis(Mtb) is one of the main challenges in developing a novel vaccine against this pathogen, particularly regarding eliciting protection against both active and latent stages. Multistage vaccines, which contain antigens expressed in both phases, represent a promising strategy for addressing this issue, as testified by the tuberculosis vaccine clinical pipeline. Given this approach, we designed and characterized a multistage peptide-based vaccine platform containing CD4+ and CD8+ T cell epitopes previously validated for inducing a relevant T cell response against Mtb. After preliminary screening, CFP10 (32-39), GlfT2 (4-12), HBHA (185-194), and PPE15 (1-15) were selected as promising candidates, and we proved that the PM1 pool of these peptides triggered a T cell response in Mtb-sensitized human peripheral blood mononuclear cells (PBMCs). Taking advantage of the use of thiol-maleimide chemoselective ligation, we synthesized a multiepitope conjugate (Ac-CGHP). Our results showed a structure-activity relationship between the conjugation and a higher tendency to fold and assume an ordered secondary structure. Moreover, the palmitoylated conjugate (Pal-CGHP) comprising the same peptide antigens was associated with an enhanced cellular uptake in human and murine antigen-presenting cells and a better immunogenicity profile. Immunization study, conducted in BALB/c mice, showed that Pal-CGHP induced a significantly higher T cell proliferation and production of IFNγ and TNFα over PM1 formulated in the Sigma Adjuvant System.
Collapse
Affiliation(s)
- Chiara Bellini
- MTA-TTK
Lendület “Momentum” Peptide-Based Vaccines Research
Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest 1117, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Budapest 1117, Hungary
| | - Emil Vergara
- Institute
for Infection and Immunity, St. George’s,
University of London, London SW17 0RE, U.K.
| | - Fruzsina Bencs
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Budapest 1117, Hungary
- Laboratory
of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Kinga Fodor
- Department
of Laboratory Animal Science and Animal Protection, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Szilvia Bősze
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network (ELKH), Eötvös
Loránd University, Budapest 1117, Hungary
| | - Denis Krivić
- Division
of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Bernadett Bacsa
- Division
of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Sára Eszter Surguta
- Department
of Experimental Pharmacology and National Tumor Biology Laboratory, National Institute of Oncology, Budapest 1122, Hungary
| | - József Tóvári
- Department
of Experimental Pharmacology and National Tumor Biology Laboratory, National Institute of Oncology, Budapest 1122, Hungary
| | - Rajko Reljic
- Institute
for Infection and Immunity, St. George’s,
University of London, London SW17 0RE, U.K.
| | - Kata Horváti
- MTA-TTK
Lendület “Momentum” Peptide-Based Vaccines Research
Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest 1117, Hungary
| |
Collapse
|
23
|
Malfanti A, Bausart M, Vanvarenberg K, Ucakar B, Préat V. Hyaluronic acid-antigens conjugates trigger potent immune response in both prophylactic and therapeutic immunization in a melanoma model. Drug Deliv Transl Res 2023; 13:2550-2567. [PMID: 37040031 DOI: 10.1007/s13346-023-01337-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Immunotherapy of advanced melanoma has encountered significant hurdles in terms of clinical efficacy. Here, we designed a clinically translatable hyaluronic acid (HA)-based vaccine delivering a combination of major histocompatibility complex (MHC) class I- and class II-restricted melanoma antigens (TRP2 and Gp100, respectively) conjugated to HA. HA-nanovaccine (HA-TRP2-Gp100 conjugate) exhibited tropism in the lymph nodes and promoted stimulation of the immune response (2.3-fold higher than the HA+TRP2+Gp100). HA-nanovaccine significantly delayed the growth of B16F10 melanoma and extended survival in both the prophylactic and therapeutic settings (median survival of 22 and 27, respectively, vs 17 days of the untreated group). Moreover, mice prophylactically treated with the HA-nanovaccine displayed significantly higher CD8+ and CD4+ T-cell/Treg ratios in both the spleen and tumor at day 16, suggesting that the HA-nanovaccine overcame the immunosuppressive tumor microenvironment. Superior infiltration of active CD4+ and CD8+ T cells was observed at the endpoint. This study supports the conclusion that HA potentiates the effect of a combination of MHC I and MHC II antigens via a potent immune response against melanoma.
Collapse
Affiliation(s)
- Alessio Malfanti
- Advanced Drug Delivery and Biomaterials, UCLouvain, Louvain Drug Research Institute, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium.
| | - Mathilde Bausart
- Advanced Drug Delivery and Biomaterials, UCLouvain, Louvain Drug Research Institute, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Kevin Vanvarenberg
- Advanced Drug Delivery and Biomaterials, UCLouvain, Louvain Drug Research Institute, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Bernard Ucakar
- Advanced Drug Delivery and Biomaterials, UCLouvain, Louvain Drug Research Institute, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, UCLouvain, Louvain Drug Research Institute, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium.
| |
Collapse
|
24
|
Zahedipour F, Jamialahmadi K, Zamani P, Reza Jaafari M. Improving the efficacy of peptide vaccines in cancer immunotherapy. Int Immunopharmacol 2023; 123:110721. [PMID: 37543011 DOI: 10.1016/j.intimp.2023.110721] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
Peptide vaccines have shown great potential in cancer immunotherapy by targeting tumor antigens and activating the patient's immune system to mount a specific response against cancer cells. However, the efficacy of peptide vaccines in inducing a sustained immune response and achieving clinical benefit remains a major challenge. In this review, we discuss the current status of peptide vaccines in cancer immunotherapy and strategies to improve their efficacy. We summarize the recent advancements in the development of peptide vaccines in pre-clinical and clinical settings, including the use of novel adjuvants, neoantigens, nano-delivery systems, and combination therapies. We also highlight the importance of personalized cancer vaccines, which consider the unique genetic and immunological profiles of individual patients. We also discuss the strategies to enhance the immunogenicity of peptide vaccines such as multivalent peptides, conjugated peptides, fusion proteins, and self-assembled peptides. Although, peptide vaccines alone are weak immunogens, combining peptide vaccines with other immunotherapeutic approaches and developing novel approaches such as personalized vaccines can be promising methods to significantly enhance their efficacy and improve the clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Zeng T, Zang W, Xiao H, Jiang Y, Lin S, Wang M, Li S, Li L, Li C, Lu C, Yang H. Carrier-Free Nanovaccine: An Innovative Strategy for Ultrahigh Melanoma Neoantigen Loading. ACS NANO 2023; 17:18114-18127. [PMID: 37695697 DOI: 10.1021/acsnano.3c04887] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
In personalized cancer immunotherapy, developing an effective neoantigen nanovaccine with high immunogenicity is a significant challenge. Traditional nanovaccine delivery systems often require nanocarriers, which can hinder the delivery of the neoantigen and cause significant toxicity. In this study, we present an innovative strategy of carrier-free nanovaccine achieved through direct self-assembly of 2'-fluorinated CpG (2'F-CpG) with melanoma neoantigen peptide (Obsl1). Molecular dynamics simulations demonstrated that the introduction of a fluorine atom into CpG increases the noncovalent interaction between 2'F-CpG and Obsl1, which enhanced the loading of Obsl1 on 2'F-CpG, resulting in the spontaneous formation of a hybrid 2'F-CpG/Obsl1 nanovaccine. This nanovaccine without extra nanocarriers showed ultrahigh Obsl1 loading up to 83.19 wt %, increasing the neoantigen peptide uptake by antigen-presenting cells (APCs). In C57BL/6 mice models, we demonstrated the long-term preventive and therapeutic effects of the prepared 2'F-CpG/Obsl1 nanovaccine against B16F10 melanoma. Immunocellular analysis revealed that the nanovaccine activated innate and adaptive immune responses to cancer cells. Hence, this study established a simple, safe, and effective preparation strategy for a carrier-free neoantigen nanovaccine, which could be adapted for the future design of personalized cancer vaccines in clinical settings.
Collapse
Affiliation(s)
- Tao Zeng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Weijie Zang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Han Xiao
- State Key Laboratory of Structure of Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yifan Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Sang Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Min Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shiqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Liannishang Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Chunsen Li
- State Key Laboratory of Structure of Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
26
|
Dolina JS, Lee J, Brightman SE, McArdle S, Hall SM, Thota RR, Zavala KS, Lanka M, Ramamoorthy Premlal AL, Greenbaum JA, Cohen EEW, Peters B, Schoenberger SP. Linked CD4+/CD8+ T cell neoantigen vaccination overcomes immune checkpoint blockade resistance and enables tumor regression. J Clin Invest 2023; 133:e164258. [PMID: 37655661 PMCID: PMC10471175 DOI: 10.1172/jci164258] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 07/11/2023] [Indexed: 09/02/2023] Open
Abstract
Therapeutic benefit to immune checkpoint blockade (ICB) is currently limited to the subset of cancers thought to possess a sufficient tumor mutational burden (TMB) to allow for the spontaneous recognition of neoantigens (NeoAg) by autologous T cells. We explored whether the response to ICB of an aggressive low-TMB squamous cell tumor could be improved through combination immunotherapy using functionally defined NeoAg as targets for endogenous CD4+ and CD8+ T cells. We found that, whereas vaccination with CD4+ or CD8+ NeoAg alone did not offer prophylactic or therapeutic immunity, vaccines containing NeoAg recognized by both subsets overcame ICB resistance and led to the eradication of large established tumors that contained a subset of PD-L1+ tumor-initiating cancer stem cells (tCSC), provided the relevant epitopes were physically linked. Therapeutic CD4+/CD8+ T cell NeoAg vaccination produced a modified tumor microenvironment (TME) with increased numbers of NeoAg-specific CD8+ T cells existing in progenitor and intermediate exhausted states enabled by combination ICB-mediated intermolecular epitope spreading. We believe that the concepts explored herein should be exploited for the development of more potent personalized cancer vaccines that can expand the range of tumors treatable with ICB.
Collapse
Affiliation(s)
- Joseph S. Dolina
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
- Cancer Immunology Discovery, Pfizer, San Diego, California, USA
| | - Joey Lee
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Spencer E. Brightman
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Samantha M. Hall
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Rukman R. Thota
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Karla S. Zavala
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Manasa Lanka
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Jason A. Greenbaum
- Bioinformatics Core, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Ezra E. W. Cohen
- Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, La Jolla, California, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Stephen P. Schoenberger
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, La Jolla, California, USA
| |
Collapse
|
27
|
Stegmann T, Wiekmeijer AS, Kwappenberg K, van Duikeren S, Bhoelan F, Bemelman D, Beenakker TJM, Krebber WJ, Arens R, Melief CJM. Enhanced HPV16 E6/E7 + tumor eradication via induction of tumor-specific T cells by therapeutic vaccination with virosomes presenting synthetic long peptides. Cancer Immunol Immunother 2023; 72:2851-2864. [PMID: 37222770 PMCID: PMC10361876 DOI: 10.1007/s00262-023-03462-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023]
Abstract
Therapeutic cancer vaccines trigger CD4 + and CD8 + T cell responses capable of established tumor eradication. Current platforms include DNA, mRNA and synthetic long peptide (SLP) vaccines, all aiming at robust T cell responses. SLPs linked to the Amplivant® adjuvant (Amplivant-SLP) have shown effective delivery to dendritic cells, resulting in improved immunogenicity in mice. We have now tested virosomes as a delivery vehicle for SLPs. Virosomes are nanoparticles made from influenza virus membranes and have been used as vaccines for a variety of antigens. Amplivant-SLP virosomes induced the expansion of more antigen-specific CD8 + T memory cells in ex vivo experiments with human PBMCs than Amplivant-SLP conjugates alone. The immune response could be further improved by including the adjuvants QS-21 and 3D-PHAD in the virosomal membrane. In these experiments, the SLPs were anchored in the membrane through the hydrophobic Amplivant adjuvant. In a therapeutic mouse model of HPV16 E6/E7+ cancer, mice were vaccinated with virosomes loaded with either Amplivant-conjugated SLPs or lipid-coupled SLPs. Vaccination with both types of virosomes significantly improved the control of tumor outgrowth, leading to elimination of the tumors in about half the animals for the best combinations of adjuvants and to their survival beyond 100 days.
Collapse
Affiliation(s)
- Toon Stegmann
- Mymetics BV, J.H, Oortweg 21, 2333 CH, Leiden, The Netherlands.
| | | | - Kitty Kwappenberg
- ISA Pharmaceuticals BV, De Limes 7, 2342 DH, Oegstgeest, The Netherlands
| | - Suzanne van Duikeren
- Immunology department, Leiden Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Farien Bhoelan
- Mymetics BV, J.H, Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - Denzel Bemelman
- Mymetics BV, J.H, Oortweg 21, 2333 CH, Leiden, The Netherlands
| | | | - Willem-Jan Krebber
- ISA Pharmaceuticals BV, De Limes 7, 2342 DH, Oegstgeest, The Netherlands
| | - Ramon Arens
- Immunology department, Leiden Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | |
Collapse
|
28
|
Teplensky MH, Evangelopoulos M, Dittmar JW, Forsyth CM, Sinegra AJ, Wang S, Mirkin CA. Multi-antigen spherical nucleic acid cancer vaccines. Nat Biomed Eng 2023; 7:911-927. [PMID: 36717738 PMCID: PMC10424220 DOI: 10.1038/s41551-022-01000-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/19/2022] [Indexed: 02/01/2023]
Abstract
Cancer vaccines must activate multiple immune cell types to be effective against aggressive tumours. Here we report the impact of the structural presentation of two antigenic peptides on immune responses at the transcriptomic, cellular and organismal levels. We used spherical nucleic acid (SNA) nanoparticles to investigate how the spatial distribution and placement of two antigen classes affect antigen processing, cytokine production and the induction of memory. Compared with single-antigen SNAs, a single dual-antigen SNA elicited a 30% increase in antigen-specific T cell activation and a two-fold increase in T cell proliferation. Antigen placement within dual-antigen SNAs altered the gene expression of T cells and tumour growth. Specifically, dual-antigen SNAs encapsulating antigens targeting helper T cells and with externally conjugated antigens targeting cytotoxic T cells elevated antitumour genetic pathways, stalling lymphoma tumours in mice. Additionally, when combined with the checkpoint inhibitor anti-programmed-cell-death protein-1 in a mouse model of melanoma, a specific antigen arrangement within dual-antigen SNAs suppressed tumour growth and increased the levels of circulating memory T cells. The structural design of multi-antigen vaccines substantially impacts their efficacy.
Collapse
Affiliation(s)
- Michelle H Teplensky
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | | | - Jasper W Dittmar
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Connor M Forsyth
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Andrew J Sinegra
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Shuya Wang
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
29
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
30
|
Dolina JS, Lee J, Brightman SE, McArdle S, Hall SM, Thota RR, Lanka M, Premlal ALR, Greenbaum JA, Cohen EEW, Peters B, Schoenberger SP. Linked CD4 + /CD8 + T cell neoantigen vaccination overcomes immune checkpoint blockade resistance and enables tumor regression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539290. [PMID: 37205330 PMCID: PMC10187312 DOI: 10.1101/2023.05.06.539290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Therapeutic benefit to immune checkpoint blockade (ICB) is currently limited to the subset of cancers thought to possess a sufficient tumor mutational burden (TMB) to allow for the spontaneous recognition of neoantigens (NeoAg) by autologous T cells. We explored whether the response of an aggressive low TMB squamous cell tumor to ICB could be improved through combination immunotherapy using functionally defined NeoAg as targets for endogenous CD4 + and CD8 + T cells. We found that, whereas vaccination with CD4 + or CD8 + NeoAg alone did not offer prophylactic or therapeutic immunity, vaccines containing NeoAg recognized by both subsets overcame ICB resistance and led to the eradication of large established tumors that contained a subset of PD-L1 + tumor-initiating cancer stem cells (tCSC), provided the relevant epitopes were physically linked. Therapeutic CD4 + /CD8 + T cell NeoAg vaccination produced a modified tumor microenvironment (TME) with increased numbers of NeoAg-specific CD8 + T cells existing in progenitor and intermediate exhausted states enabled by combination ICB-mediated intermolecular epitope spreading. The concepts explored herein should be exploited for the development of more potent personalized cancer vaccines that can expand the range of tumors treatable with ICB.
Collapse
|
31
|
Yang SF, Weng MT, Liang JD, Chiou LL, Hsu YC, Lee YT, Liu SY, Wu MC, Chou HC, Wang LF, Yu SH, Lee HS, Sheu JC. Neoantigen vaccination augments antitumor effects of anti-PD-1 on mouse hepatocellular carcinoma. Cancer Lett 2023; 563:216192. [PMID: 37088327 DOI: 10.1016/j.canlet.2023.216192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/15/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Immune checkpoint inhibitors are groundbreaking resources for cancer therapy. However, only a few patients with hepatocellular carcinoma (HCC) have shown positive responses to anti-PD-1 therapy. Neoantigens are sequence-altered proteins resulting from somatic mutations in cancer. This study identified the neoantigens of Hep-55.1C and Dt81 Hepa1-6 HCCs by comparing their whole exome sequences with those of a normal C57BL/6 mouse liver. Immunogenic long peptides were pooled as peptide vaccines. The vaccination elicited tumor-reactive immune responses in C57BL/6 mice, as demonstrated by IFN-γ ELISPOT and an in vitro killing assay of splenocytes. In the treatment of three mouse HCC models, combined neoantigen vaccination and anti-PD-1 resulted in more significant tumor regression than monotherapies. Flow cytometry of the tumor-infiltrating lymphocytes showed decreased Treg cells and monocytic myeloid-derived suppressor cells, increased CD8+ T cells, enhanced granzyme B expression, and reduced exhaustion-related markers PD-1 and Lag-3 on CD8+ T cells in the combination group. These findings provide a strong rationale for conducting clinical studies of using neoantigen vaccination in combination with anti-PD-1 to treat patients with HCC.
Collapse
Affiliation(s)
- Shih-Feng Yang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.
| | - Meng-Tzu Weng
- Department of Medical Research, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ja-Der Liang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ling-Ling Chiou
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Yu-Chen Hsu
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Ying-Te Lee
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Shin-Yun Liu
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Meng-Chuan Wu
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Huei-Chi Chou
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Li-Fang Wang
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.
| | - Hsuan-Shu Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Jin-Chuan Sheu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| |
Collapse
|
32
|
Mørk SK, Kongsted P, Westergaard MCW, Albieri B, Granhøj JS, Donia M, Martinenaite E, Holmström MO, Madsen K, Kverneland AH, Kjeldsen JW, Holmstroem RB, Lorentzen CL, Nørgaard N, Andreasen LV, Wood GK, Christensen D, Klausen MS, Hadrup SR, thor Straten P, Andersen MH, Svane IM. First in man study: Bcl-Xl_42-CAF®09b vaccines in patients with locally advanced prostate cancer. Front Immunol 2023; 14:1122977. [PMID: 36999039 PMCID: PMC10043415 DOI: 10.3389/fimmu.2023.1122977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
BackgroundThe B-cell lymphoma-extra-large (Bcl-XL) protein plays an important role in cancer cells’ resistance to apoptosis. Pre-clinical studies have shown that vaccination with Bcl-XL-derived peptides can induce tumor-specific T cell responses that may lead to the elimination of cancer cells. Furthermore, pre-clinical studies of the novel adjuvant CAF®09b have shown that intraperitoneal (IP) injections of this adjuvant can improve the activation of the immune system. In this study, patients with hormone-sensitive prostate cancer (PC) received a vaccine consisting of Bcl-XL-peptide with CAF®09b as an adjuvant. The primary aim was to evaluate the tolerability and safety of IP and intramuscular (IM) administration, determine the optimal route of administration, and characterize vaccine immunogenicity.Patients and methodsTwenty patients were included. A total of six vaccinations were scheduled: in Group A (IM to IP injections), ten patients received three vaccines IM biweekly; after a three-week pause, patients then received three vaccines IP biweekly. In Group B (IP to IM injections), ten patients received IP vaccines first, followed by IM under a similar vaccination schedule. Safety was assessed by logging and evaluating adverse events (AE) according to Common Terminology Criteria for Adverse Events (CTCAE v. 4.0). Vaccines-induced immune responses were analyzed by Enzyme-Linked Immunospot and flow cytometry.ResultsNo serious AEs were reported. Although an increase in T cell response against the Bcl-XL-peptide was found in all patients, a larger proportion of patients in group B demonstrated earlier and stronger immune responses to the vaccine compared to patients in group A. Further, we demonstrated vaccine-induced immunity towards patient-specific CD4, and CD8 T cell epitopes embedded in Bcl-XL-peptide and an increase in CD4 and CD8 T cell activation markers CD107a and CD137 following vaccination. At a median follow-up of 21 months, no patients had experienced clinically significant disease progression.ConclusionThe Bcl-XL-peptide-CAF®09b vaccination was feasible and safe in patients with l hormone-sensitive PC. In addition, the vaccine was immunogenic and able to elicit CD4 and CD8 T cell responses with initial IP administration eliciting early and high levels of vaccine-specific responses in a higher number og patients.Clinical trial registrationhttps://clinicaltrials.gov, identifier NCT03412786.
Collapse
Affiliation(s)
- Sofie Kirial Mørk
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - Per Kongsted
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | | | - Benedetta Albieri
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - Joachim Stoltenborg Granhøj
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - Evelina Martinenaite
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
- IO Biotech Aps, Copenhagen, Denmark
| | - Morten Orebo Holmström
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Madsen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - Anders H. Kverneland
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - Julie Westerlin Kjeldsen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - Rikke Boedker Holmstroem
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - Cathrine Lund Lorentzen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - Nis Nørgaard
- Department of Urology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Grith Krøyer Wood
- Statens Serum Institut, Center for Vaccine Research, Copenhagen, Denmark
| | - Dennis Christensen
- Statens Serum Institut, Center for Vaccine Research, Copenhagen, Denmark
| | | | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark (DTU), HEALTH TECH, Kongens Lyngby, Denmark
| | - Per thor Straten
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Hald Andersen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Inge Marie Svane
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
- *Correspondence: Inge Marie Svane,
| |
Collapse
|
33
|
Survivin (BIRC5) Peptide Vaccine in the 4T1 Murine Mammary Tumor Model: A Potential Neoadjuvant T Cell Immunotherapy for Triple Negative Breast Cancer: A Preliminary Study. Vaccines (Basel) 2023; 11:vaccines11030644. [PMID: 36992227 DOI: 10.3390/vaccines11030644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
A triple negative breast cancer model using the murine 4T1 tumor cell line was used to explore the efficacy of an adjuvanted survivin peptide microparticle vaccine using tumor growth as the outcome metric. We first performed tumor cell dose titration studies to determine a tumor cell dose that resulted in sufficient tumor takes but allowed multiple serial measurements of tumor volumes, yet with minimal morbidity/mortality within the study period. Later, in a second cohort of mice, the survivin peptide microparticle vaccine was administered via intraperitoneal injection at the study start with a second dose given 14 days later. An orthotopic injection of 4T1 cells into the mammary tissue was performed on the same day as the administration of the second vaccine dose. The mice were followed for up to 41 days with subcutaneous measurements of tumor volume made every 3–4 days. Vaccination with survivin peptides was associated with a peptide antigen-specific gamma interferon enzyme-linked immunosorbent spot response in the murine splenocyte population but was absent from the control microparticle group. At the end of the study, we found that vaccination with adjuvanted survivin peptide microparticles resulted in statistically significant slower primary tumor growth rates in BALB/c mice challenged with 4T1 cells relative to the control peptideless vaccination group. These studies suggest that T cell immunotherapy specifically targeting survivin might be an applicable neoadjuvant immunotherapy therapy for triple negative breast cancer. More preclinical studies and clinical trials are needed to explore this concept further.
Collapse
|
34
|
Dasyam N, Sharples KJ, Barrow C, Huang Y, Bauer E, Mester B, Wood CE, Authier-Hall A, Dzhelali M, Ostapowicz T, Kumar R, Lowe J, Maxwell A, Burn OK, Williams GM, Carley SE, Caygill G, Jones J, Chan STS, Hinder VA, Macapagal J, McCusker M, Weinkove R, Brimble MA, Painter GF, Findlay MP, Dunbar PR, Gasser O, Hermans IF. A randomised controlled trial of long NY-ESO-1 peptide-pulsed autologous dendritic cells with or without alpha-galactosylceramide in high-risk melanoma. Cancer Immunol Immunother 2023:10.1007/s00262-023-03400-y. [PMID: 36881133 DOI: 10.1007/s00262-023-03400-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023]
Abstract
AIM We have previously reported that polyfunctional T cell responses can be induced to the cancer testis antigen NY-ESO-1 in melanoma patients injected with mature autologous monocyte-derived dendritic cells (DCs) loaded with long NY-ESO-1-derived peptides together with α-galactosylceramide (α-GalCer), an agonist for type 1 Natural Killer T (NKT) cells. OBJECTIVE To assess whether inclusion of α-GalCer in autologous NY-ESO-1 long peptide-pulsed DC vaccines (DCV + α-GalCer) improves T cell responses when compared to peptide-pulsed DC vaccines without α-GalCer (DCV). DESIGN, SETTING AND PARTICIPANTS Single-centre blinded randomised controlled trial in patients ≥ 18 years old with histologically confirmed, fully resected stage II-IV malignant cutaneous melanoma, conducted between July 2015 and June 2018 at the Wellington Blood and Cancer Centre of the Capital and Coast District Health Board. INTERVENTIONS Stage I. Patients were randomised to two cycles of DCV or DCV + α-GalCer (intravenous dose of 10 × 106 cells, interval of 28 days). Stage II. Patients assigned to DCV + α-GalCer were randomised to two further cycles of DCV + α-GalCer or observation, while patients initially assigned to DCV crossed over to two cycles of DCV + α-GalCer. OUTCOME MEASURES Primary: Area under the curve (AUC) of mean NY-ESO-1-specific T cell count detected by ex vivo IFN-γ ELISpot in pre- and post-treatment blood samples, compared between treatment arms at Stage I. Secondary: Proportion of responders in each arm at Stage I; NKT cell count in each arm at Stage I; serum cytokine levels at Stage I; adverse events Stage I; T cell count for DCV + α-GalCer versus observation at Stage II, T cell count before versus after cross-over. RESULTS Thirty-eight patients gave written informed consent; 5 were excluded before randomisation due to progressive disease or incomplete leukapheresis, 17 were assigned to DCV, and 16 to DCV + α-GalCer. The vaccines were well tolerated and associated with increases in mean total T cell count, predominantly CD4+ T cells, but the difference between the treatment arms was not statistically significant (difference - 6.85, 95% confidence interval, - 21.65 to 7.92; P = 0.36). No significant improvements in T cell response were associated with DCV + α-GalCer with increased dosing, or in the cross-over. However, the NKT cell response to α-GalCer-loaded vaccines was limited compared to previous studies, with mean circulating NKT cell levels not significantly increased in the DCV + α-GalCer arm and no significant differences in cytokine response between the treatment arms. CONCLUSIONS A high population coverage of NY-ESO-1-specific T cell responses was achieved with a good safety profile, but we failed to demonstrate that loading with α-GalCer provided an additional advantage to the T cell response with this cellular vaccine design. CLINICAL TRIAL REGISTRATION ACTRN12612001101875. Funded by the Health Research Council of New Zealand.
Collapse
Affiliation(s)
- Nathaniel Dasyam
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Katrina J Sharples
- Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.,Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Catherine Barrow
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Ying Huang
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Evelyn Bauer
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Brigitta Mester
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Catherine E Wood
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.,Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Astrid Authier-Hall
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Marina Dzhelali
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Tess Ostapowicz
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Rajiv Kumar
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Jessica Lowe
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.,Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Alice Maxwell
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.,Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Olivia K Burn
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Geoffrey M Williams
- School of Chemical Sciences, University of Auckland, PO Box 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| | - Sarah E Carley
- School of Chemical Sciences, University of Auckland, PO Box 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| | | | - Jeremy Jones
- GlycoSyn, PO Box 31 310, Lower Hutt, 5040, New Zealand
| | - Susanna T S Chan
- The Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Lower Hutt, 5046, New Zealand
| | - Victoria A Hinder
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jerome Macapagal
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Monica McCusker
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Robert Weinkove
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.,Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, PO Box 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Lower Hutt, 5046, New Zealand
| | - Michael P Findlay
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - P Rod Dunbar
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand.,School of Biological Sciences, University of Auckland, PO Box 92019, Auckland, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
35
|
Cerni F, Oliveira I, Cordeiro F, Bordon K, Ferreira I, Monteiro W, Arantes E, Cunha T, Pucca M. The nociceptive response induced by different classes of Tityus serrulatus neurotoxins: The important role of Ts5 in venom-induced nociception. PLoS Negl Trop Dis 2023; 17:e0011057. [PMID: 36716327 PMCID: PMC9886245 DOI: 10.1371/journal.pntd.0011057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/23/2022] [Indexed: 02/01/2023] Open
Abstract
Scorpion sting envenomations (SSE) are feared by the intense pain that they produce in victims. Pain from SSE is triggered mainly by the presence of neurotoxins in the scorpion venom that modulates voltage-gated ion channels. In Brazil, SSE is mostly caused by Tityus serrulatus, popularly known as yellow scorpion. Here, we evaluated experimental spontaneous nociception induced by T. serrulatus venom as well as its isolated neurotoxins Ts1, Ts5, Ts6, Ts8, and Ts19 frag II, evidencing different degrees of pain behavior in mice. In addition, we developed a mice-derived polyclonal antibody targeting Ts5 able to neutralize the effect of this neurotoxin, showing that Ts5 presents epitopes capable of activating the immune response, which decreased considerably the nociception produced by the whole venom. This is the pioneer study to explore nociception using different classes of T. serrulatus neurotoxins on nociception (α-NaTx, β-NaTx, α-KTx, and β-KTx), targeting potassium and sodium voltage-gated channels, besides demonstrating that Ts5 plays an important role in the scorpion sting induced-pain.
Collapse
Affiliation(s)
- Felipe Cerni
- Health and Sciences Postgraduate Program, Federal University of Roraima, Boa Vista, Roraima, Brazil
| | - Isadora Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francielle Cordeiro
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karla Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Isabela Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wuelton Monteiro
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Amazonas, Brazil,Department of Medicine and Nursing, School of Health Sciences, Amazonas State University, Manaus, Amazonas, Brazil
| | - Eliane Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thiago Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Manuela Pucca
- Health and Sciences Postgraduate Program, Federal University of Roraima, Boa Vista, Roraima, Brazil,Medical School, Federal University of Roraima, Boa Vista, Roraima, Brazil,* E-mail:
| |
Collapse
|
36
|
Cancer Vaccines for Triple-Negative Breast Cancer: A Systematic Review. Vaccines (Basel) 2023; 11:vaccines11010146. [PMID: 36679991 PMCID: PMC9866612 DOI: 10.3390/vaccines11010146] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the subtype of breast cancer with the poorest outcomes, and is associated with a high risk of relapse and metastasis. The treatment choices for this malignancy have been confined to conventional chemotherapeutic agents, due to a lack of expression of the canonical molecular targets. Immunotherapy has been recently changing the treatment paradigm for many types of tumors, and the approach of evoking active immune responses in the milieu of breast tumors through cancer vaccines has been introduced as one of the most novel immunotherapeutic approaches. Accordingly, a number of vaccines for the treatment or prevention of recurrence have been developed and are currently being studied in TNBC patients, while none have yet received any approvals. To elucidate the efficacy and safety of these vaccines, we performed a systematic review of the available literature on the topic. After searching the PubMed, Scopus, Web of Science, Embase, Cochrane CENTRAL, and Google Scholar databases, a total of 5701 results were obtained, from which 42 clinical studies were eventually included based on the predefined criteria. The overall quality of the included studies was acceptable. However, due to a lack of reporting outcomes of survival or progression in some studies (which were presented as conference abstracts) as well as the heterogeneity of the reported outcomes and study designs, we were not able to carry out a meta-analysis. A total of 32 different vaccines have so far been evaluated in TNBC patients, with the majority belonging to the peptide-based vaccine type. The other vaccines were in the cell or nucleic acid (RNA/DNA)-based categories. Most vaccines proved to be safe with low-grade, local adverse events and could efficiently evoke cellular immune responses; however, most trials were not able to demonstrate significant improvements in clinical indices of efficacy. This is in part due to the limited number of randomized studies, as well as the limited TNBC population of each trial. However, due to the encouraging results of the currently published trials, we anticipate that this strategy could show its potential through larger, phase III randomized studies in the near future.
Collapse
|
37
|
Wang J, Weiss T, Neidert MC, Toussaint NC, Naghavian R, Sellés Moreno C, Foege M, Tomas Ojer P, Medici G, Jelcic I, Schulz D, Rushing E, Dettwiler S, Schrörs B, Shin JH, McKay R, Wu CJ, Lutterotti A, Sospedra M, Moch H, Greiner EF, Bodenmiller B, Regli L, Weller M, Roth P, Martin R. Vaccination with Designed Neopeptides Induces Intratumoral, Cross-reactive CD4+ T-cell Responses in Glioblastoma. Clin Cancer Res 2022; 28:5368-5382. [PMID: 36228153 PMCID: PMC9751771 DOI: 10.1158/1078-0432.ccr-22-1741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE The low mutational load of some cancers is considered one reason for the difficulty to develop effective tumor vaccines. To overcome this problem, we developed a strategy to design neopeptides through single amino acid mutations to enhance their immunogenicity. EXPERIMENTAL DESIGN Exome and RNA sequencing as well as in silico HLA-binding predictions to autologous HLA molecules were used to identify candidate neopeptides. Subsequently, in silico HLA-anchor placements were used to deduce putative T-cell receptor (TCR) contacts of peptides. Single amino acids of TCR contacting residues were then mutated by amino acid replacements. Overall, 175 peptides were synthesized and sets of 25 each containing both peptides designed to bind to HLA class I and II molecules applied in the vaccination. Upon development of a tumor recurrence, the tumor-infiltrating lymphocytes (TIL) were characterized in detail both at the bulk and clonal level. RESULTS The immune response of peripheral blood T cells to vaccine peptides, including natural peptides and designed neopeptides, gradually increased with repetitive vaccination, but remained low. In contrast, at the time of tumor recurrence, CD8+ TILs and CD4+ TILs responded to 45% and 100%, respectively, of the vaccine peptides. Furthermore, TIL-derived CD4+ T-cell clones showed strong responses and tumor cell lysis not only against the designed neopeptide but also against the unmutated natural peptides of the tumor. CONCLUSIONS Turning tumor self-peptides into foreign antigens by introduction of designed mutations is a promising strategy to induce strong intratumoral CD4+ T-cell responses in a cold tumor like glioblastoma.
Collapse
Affiliation(s)
- Jian Wang
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Tobias Weiss
- Laboratory of Molecular Neuro-Oncology, Department of Neurology and Brain Tumor Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marian C. Neidert
- Clinical Neuroscience Center and Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Nora C. Toussaint
- NEXUS Personalized Health Technologies, ETH Zurich, Schlieren, Switzerland.,Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Reza Naghavian
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carla Sellés Moreno
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Magdalena Foege
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Paula Tomas Ojer
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gioele Medici
- Clinical Neuroscience Center and Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ivan Jelcic
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniel Schulz
- Department of Quantitative Biomedicine, University of Zürich, Zurich, Switzerland.,Institute of Molecular Life Sciences, University of Zürich, Zurich, Switzerland
| | - Elisabeth Rushing
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Susanne Dettwiler
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Barbara Schrörs
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University gGmbH, Mainz, Germany
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ron McKay
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | | | - Mireia Sospedra
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Holger Moch
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zürich, Zurich, Switzerland.,Institute of Molecular Life Sciences, University of Zürich, Zurich, Switzerland
| | - Luca Regli
- Clinical Neuroscience Center and Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology and Brain Tumor Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology and Brain Tumor Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Corresponding Author: Roland Martin, Institute for Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland. Phone: 41-44-2551125; E-mail:
| |
Collapse
|
38
|
Narita Y, Okita Y, Arakawa Y. Evaluation of the efficacy and safety of TAS0313 in adults with recurrent glioblastoma. Cancer Immunol Immunother 2022; 71:2703-2715. [PMID: 35377001 PMCID: PMC9519730 DOI: 10.1007/s00262-022-03184-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/01/2022] [Indexed: 11/02/2022]
Abstract
Abstract
Background
TAS0313 is a multi-epitope long peptide vaccine targeting several cancer-associated antigens highly expressed in multiple cancer types, including glioblastoma (GBM). This cohort of a Phase 2 part evaluated the efficacy and safety of TAS0313 in patients with GBM.
Methods
TAS0313 (27 mg) was administered subcutaneously on Days 1, 8 and 15 of Cycles 1 and 2, and Day 1 of subsequent cycles in 21-day cycles. The primary endpoint was the objective response rate (ORR). The secondary endpoints were the disease control rate, progression-free survival (PFS) and 6- and 12-month progression-free survival rates (PFR) and safety. Immunological response was assessed as an exploratory endpoint.
Results
The best overall response was partial response in 1 patient, and the ORR (95% CI) was 11.1% (0.3–48.2%) in the per-protocol set (n = 9). A further 3 patients achieved stable disease, for a disease control rate (95% CI) of 44.4% (13.7–78.8%). Median (95% CI) PFS was 1.7 (1.3–NE) months and 6- and 12-month PFRs (95% CI) were 22.2% (3.4–51.3%) each. Common (≥ 20% incidence) treatment-related adverse events (AEs) were injection site reactions (n = 8, 80.0%), followed by pyrexia (n = 7, 70.0%), and malaise, injection site erythema and injection site pruritus (n = 2, 20.0% each). There were no grade 4 or 5 treatment-related AEs. No deaths occurred during the study. In some patients, TAS0313 treatment was confirmed to increase cytotoxic T lymphocyte and immunoglobulin G levels compared with baseline.
Conclusion
TAS0313, a multi-epitope long peptide vaccine, demonstrated promising efficacy and acceptable safety in patients with recurrent GBM.
Clinical trial registration
JapicCTI-183824 (Date of registration: Jan 11, 2018)
Collapse
|
39
|
Diep YN, Kim TJ, Cho H, Lee LP. Nanomedicine for advanced cancer immunotherapy. J Control Release 2022; 351:1017-1037. [DOI: 10.1016/j.jconrel.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022]
|
40
|
Aikins ME, Qin Y, Dobson HE, Najafabadi AH, Lyu K, Xu Y, Xin Y, Schwendeman A, Wicha MS, Chang AE, Li Q, Moon JJ. Cancer stem cell antigen nanodisc cocktail elicits anti-tumor immune responses in melanoma. J Control Release 2022; 351:872-882. [PMID: 36206945 PMCID: PMC9765445 DOI: 10.1016/j.jconrel.2022.09.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/10/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2022]
Abstract
One of the major reasons for poor cancer outcomes is the existence of cancer stem cells (CSCs). CSCs are a small subpopulation of tumor cells that can self-renew, differentiate into the majority of tumor cells, and maintain tumorigenicity. As CSCs are resistant to traditional chemotherapy and radiation, they contribute to metastasis and relapse. Thus, new approaches are needed to target and eliminate CSCs. Here, we sought to target and reduce the frequency of CSCs in melanoma by therapeutic vaccination against CSC-associated transcription factors, such as Sox2 and Nanog, and aldehyde dehydrogenase (ALDH). Toward this goal, we have identified novel immunogenic peptide epitopes derived from CSC-associated Sox2 and Nanog and synthesized synthetic high-density lipoprotein (sHDL) nanodisc vaccine formulated with Sox2, Nanog, and ALDH antigen peptides together with CpG, a Toll-like receptor 9 agonist. Vaccination with nanodiscs containing six CSC antigen peptides elicited robust T cell responses against CSC-associated antigens and promoted intratumoral infiltration of CD8+ T cells, while reducing the frequency of CSCs and CD4+ regulatory T cells within melanoma tumors. Nanodisc vaccination effectively reduced tumor growth and significantly extended animal survival without toxicity toward normal stem cells. Overall, our therapeutic strategy against CSCs represents a cost-effective, safe, and versatile approach that may be applied to melanoma and other cancer types, as well as serve as a critical component in combined therapies to target and eliminate CSCs.
Collapse
Affiliation(s)
- Marisa E Aikins
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - You Qin
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hannah E Dobson
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alireza Hassani Najafabadi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, USA
| | - Kexing Lyu
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yao Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ying Xin
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Max S Wicha
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alfred E Chang
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qiao Li
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
41
|
Jiang S, Nan F, Zhang S, Zhang X, Li Z, Yu Z, Liu F, Li J, Zhou X, Niu D, Wang H, Zhang X, Liu W, Yang X, Wang Y, Wang B. CRM197-conjugated multi antigen dominant epitope for effective human cytomegalovirus vaccine development. Int J Biol Macromol 2022; 224:79-93. [DOI: 10.1016/j.ijbiomac.2022.10.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
42
|
Ghorbaninezhad F, Masoumi J, Bakhshivand M, Baghbanzadeh A, Mokhtarzadeh A, Kazemi T, Aghebati-Maleki L, Shotorbani SS, Jafarlou M, Brunetti O, Santarpia M, Baradaran B, Silvestris N. CTLA-4 silencing in dendritic cells loaded with colorectal cancer cell lysate improves autologous T cell responses in vitro. Front Immunol 2022; 13:931316. [PMID: 35979362 PMCID: PMC9376327 DOI: 10.3389/fimmu.2022.931316] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Dendritic cell (DC)-based immunotherapy has increased interest among anti-cancer immunotherapies. Nevertheless, the immunosuppressive mechanisms in the tumor milieu, e.g., inhibitory immune checkpoint molecules, have been implicated in diminishing the efficacy of DC-mediated anti-tumoral immune responses. Therefore, the main challenge is to overcome inhibitory immune checkpoint molecules and provoke efficient T-cell responses to antigens specifically expressed by cancerous cells. Among the inhibitory immune checkpoints, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) expression on DCs diminishes their maturation and antigen presentation capability. Accordingly, we hypothesized that the expression of CTLA-4 on DCs inhibits the T cell-mediated anti-tumoral responses generated following the presentation of tumor antigens by DCs to T lymphocytes. In this study, we loaded colorectal cancer (CRC) cell lysate on DCs and inhibited the expression of CTLA-4 by small interfering RNA (siRNA) in them to investigate the DCs’ functional and phenotypical features, and T-cell mediated responses following DC/T cell co-culture. Our results demonstrated that blockade of CTLA-4 could promote stimulatory properties of DCs. In addition, CTLA-4 silenced CRC cell lysate-loaded DCs compared to the DCs without CTLA-4 silencing resulted in augmented T cell proliferation and cytokine production, i.e., IFN-γ and IL-4. Taken together, our findings suggest CTLA-4 silenced CRC cell lysate-loaded DCs as a promising therapeutic approach however further studies are needed before this strategy can be used in clinical practice.
Collapse
Affiliation(s)
- Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Bakhshivand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Behzad Baradaran, ; Nicola Silvestris,
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
- *Correspondence: Behzad Baradaran, ; Nicola Silvestris,
| |
Collapse
|
43
|
Liu C, Wang Y, Li L, He D, Chi J, Li Q, Wu Y, Zhao Y, Zhang S, Wang L, Fan Z, Liao Y. Engineered extracellular vesicles and their mimetics for cancer immunotherapy. J Control Release 2022; 349:679-698. [PMID: 35878728 DOI: 10.1016/j.jconrel.2022.05.062] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are heterogeneous membranous vesicles secreted by living cells that are involved in many physiological and pathological processes as intermediaries for intercellular communication and molecular transfer. Recent studies have shown that EVs can regulate the occurrence and development of tumors by transferring proteins, lipids and nucleic acids to immune cells as signaling molecules. As a new diagnostic biomarker and drug delivery system, EVs have broad application prospects in immunotherapy. In addition, the breakthrough of nanotechnology has promoted the development and exploration of engineered EVs for immune-targeted therapy. Herein, we review the uniqueness of EVs in immune regulation and the engineering strategies used for immunotherapy and highlight the logic of their design through typical examples. The present situation and challenges of clinical transformation are discussed, and the development prospects of EVs in immunotherapy are proposed. The goal of this review is to provide new insights into the design of immune-regulatory EVs and expand their application in cancer immunotherapy.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Tai Zhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang 318000, China
| | - Longmei Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Dongyue He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Jiaxin Chi
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Qin Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Yixiao Wu
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yunxuan Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Shihui Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China.
| | - Zhijin Fan
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China; School of Medicine, South China University of Technology, Guangzhou, China.
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China.
| |
Collapse
|
44
|
Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, Zhang X, Tan C, Liang R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev 2022; 51:6126-6176. [PMID: 35792076 DOI: 10.1039/d2cs00236a] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Against the backdrop of increased public health awareness, inorganic nanomaterials have been widely explored as promising nanoagents for various kinds of biomedical applications. Layered double hydroxides (LDHs), with versatile physicochemical advantages including excellent biocompatibility, pH-sensitive biodegradability, highly tunable chemical composition and structure, and ease of composite formation with other materials, have shown great promise in biomedical applications. In this review, we comprehensively summarize the recent advances in LDH-based nanomaterials for biomedical applications. Firstly, the material categories and advantages of LDH-based nanomaterials are discussed. The preparation and surface modification of LDH-based nanomaterials, including pristine LDHs, LDH-based nanocomposites and LDH-derived nanomaterials, are then described. Thereafter, we systematically describe the great potential of LDHs in biomedical applications including drug/gene delivery, bioimaging diagnosis, cancer therapy, biosensing, tissue engineering, and anti-bacteria. Finally, on the basis of the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Margarita Strimaite
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiajia Zha
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.,School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong. .,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
45
|
Zhang L, Zhou X, Sha H, Xie L, Liu B. Recent Progress on Therapeutic Vaccines for Breast Cancer. Front Oncol 2022; 12:905832. [PMID: 35734599 PMCID: PMC9207208 DOI: 10.3389/fonc.2022.905832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer remains the most frequently diagnosed malignancy worldwide. Advanced breast cancer is still an incurable disease mainly because of its heterogeneity and limited immunogenicity. The great success of cancer immunotherapy is paving the way for a new era in cancer treatment, and therapeutic cancer vaccination is an area of interest. Vaccine targets include tumor-associated antigens and tumor-specific antigens. Immune responses differ in different vaccine delivery platforms. Next-generation sequencing technologies and computational analysis have recently made personalized vaccination possible. However, only a few cases benefiting from neoantigen-based treatment have been reported in breast cancer, and more attention has been given to overexpressed antigen-based treatment, especially human epidermal growth factor 2-derived peptide vaccines. Here, we discuss recent advancements in therapeutic vaccines for breast cancer and highlight near-term opportunities for moving forward.
Collapse
Affiliation(s)
- Lianru Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xipeng Zhou
- Department of oncology, Yizheng People's Hospital, Yangzhou, China
| | - Huizi Sha
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Li Xie
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
46
|
Jiang X, Wang J, Zheng X, Liu Z, Zhang X, Li Y, Wilhelm J, Cao J, Huang G, Zhang J, Sumer B, Lea J, Lu Z, Gao J, Luo M. Intratumoral administration of STING-activating nanovaccine enhances T cell immunotherapy. J Immunother Cancer 2022; 10:jitc-2021-003960. [PMID: 35623658 PMCID: PMC9150169 DOI: 10.1136/jitc-2021-003960] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cancer vaccines are able to achieve tumor-specific immune editing in early-phase clinical trials. However, the infiltration of cytotoxic T cells into immune-deserted tumors is still a major limiting factor. An optimized vaccine approach to induce antigen-specific T cells that can perform robust tumor infiltration is important to accelerate their clinical translation. We previously developed a STING-activating PC7A nanovaccine that produces a strong anti-tumor T cell response on subcutaneous injection. This study systematically investigated the impact of administration methods on the performance of nanovaccines. METHODS Tumor growth inhibition by intratumoral delivery and subcutaneous delivery of nanovaccine was investigated in TC-1 human papillomavirus-induced cancer model and B16-OVA melanoma model. Nanovaccine distribution in vivo was detected by clinical camera imaging, systemic T cell activation and tumor infiltration were tested by in vivo cytotoxicity killing assay and flow cytometry. For mechanism analysis, T cell recruitment was investigated by in vivo migration blocking assay, multiplex chemokine array, flow cytometry, RT-qPCR, chemotaxis assay and gene knockout mice. RESULTS Nanovaccine administration was found to alter T cell production and infiltration in tumors. Intratumoral delivery of nanovaccines displayed superior antitumor effects in multiple tumor models compared with subcutaneous delivery. Mechanistic investigation revealed that intratumoral administration of the nanovaccine significantly increased the infiltration of antigen-specific T cells in TC-1 tumors, despite the lower systemic levels of T cells compared with subcutaneous injection. The inhibition of tumor growth by nanovaccines is primarily dependent on CD8+ cytotoxic T cells. Nanovaccine accumulation in tumors upregulates CXCL9 expression in myeloid cells in a STING dependent manner, leading to increased recruitment of IFNγ-expressing CD8+ T cells from the periphery, and IFNγ reciprocally stimulates CXCL9 expression in myeloid cells, resulting in positive feedback between myeloid-CXCL9 and T cell-IFNγ to promote T cell recruitment. However, the STING agonist alone could not sustain this effect in the presence of a systemic deficiency in antigen-specific T cells. CONCLUSIONS Our results demonstrate that intratumoral administration of PC7A nanovaccine achieved stronger antitumor immunity and efficacy over subcutaneous injection. These data suggest intratumoral administration should be included in the therapeutic design in the clinical use of nanovaccine.
Collapse
Affiliation(s)
- Xiaoyi Jiang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xichen Zheng
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhida Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi, China
| | - Xinyu Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuwei Li
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jonathan Wilhelm
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jun Cao
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Gang Huang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jinlan Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Baran Sumer
- Department of Otolaryngology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jayanthi Lea
- Department of Obstetrics and Gynecology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhigang Lu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China .,The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.,Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinming Gao
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA .,Department of Otolaryngology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Min Luo
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Jiang S, Gong M, Xu XN. Editorial: Research, Development and Clinical Trials for Peptide-Based Vaccines. Front Immunol 2022; 13:894989. [PMID: 35529849 PMCID: PMC9074893 DOI: 10.3389/fimmu.2022.894989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shisong Jiang
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- *Correspondence: Shisong Jiang,
| | - Min Gong
- Department of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiao-Ning Xu
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
48
|
Feola S, Russo S, Martins B, Lopes A, Vandermeulen G, Fluhler V, De Giorgi C, Fusciello M, Pesonen S, Ylösmäki E, Antignani G, Chiaro J, Hamdan F, Feodoroff M, Grönholm M, Cerullo V. Peptides-Coated Oncolytic Vaccines for Cancer Personalized Medicine. Front Immunol 2022; 13:826164. [PMID: 35493448 PMCID: PMC9047942 DOI: 10.3389/fimmu.2022.826164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Oncolytic Viruses (OVs) work through two main mechanisms of action: the direct lysis of the virus-infected cancer cells and the release of tumor antigens as a result of the viral burst. In this sc.enario, the OVs act as in situ cancer vaccines, since the immunogenicity of the virus is combined with tumor antigens, that direct the specificity of the anti-tumor adaptive immune response. However, this mechanism in some cases fails in eliciting a strong specific T cell response. One way to overcome this problem and enhance the priming efficiency is the production of genetically modified oncolytic viruses encoding one or more tumor antigens. To avoid the long and expensive process related to the engineering of the OVs, we have exploited an approach based on coating OVs (adenovirus and vaccinia virus) with tumor antigens. In this work, oncolytic viruses encoding tumor antigens and tumor antigen decorated adenoviral platform (PeptiCRAd) have been used as cancer vaccines and evaluated both for their prophylactic and therapeutic efficacy. We have first tested the oncolytic vaccines by exploiting the OVA model, moving then to TRP2, a more clinically relevant tumor antigen. Finally, both approaches have been investigated in tumor neo-antigens settings. Interestingly, both genetically modified oncolytic adenovirus and PeptiCRAd elicited T cells-specific anti-tumor responses. However, in vitro cross-representation experiments, showed an advantage of PeptiCRAd as regards the fast presentation of the model epitope SIINFEKL from OVA in an immunogenic rather than tolerogenic fashion. Here two approaches used as cancer oncolytic vaccines have been explored and characterized for their efficacy. Although the generation of specific anti-tumor T cells was elicited in both approaches, PeptiCRAd retains the advantage of being rapidly adaptable by coating the adenovirus with a different set of tumor antigens, which is crucial in personalized cancer vaccines clinical setting.
Collapse
Affiliation(s)
- Sara Feola
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Salvatore Russo
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Beatriz Martins
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Alessandra Lopes
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Gaëlle Vandermeulen
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Vinciane Fluhler
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Camilla De Giorgi
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Manlio Fusciello
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | | | - Erkko Ylösmäki
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Gabriella Antignani
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Jacopo Chiaro
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Firas Hamdan
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Michaela Feodoroff
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Mikaela Grönholm
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Medical Biotechnology, Naples University “Federico II”, Naples, Italy
- *Correspondence: Vincenzo Cerullo,
| |
Collapse
|
49
|
A Mutated Prostatic Acid Phosphatase (PAP) Peptide-Based Vaccine Induces PAP-Specific CD8 + T Cells with Ex Vivo Cytotoxic Capacities in HHDII/DR1 Transgenic Mice. Cancers (Basel) 2022; 14:cancers14081970. [PMID: 35454873 PMCID: PMC9032647 DOI: 10.3390/cancers14081970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Current treatments for castrate (hormone)-resistant prostate cancer (CRPC) remain limited and are not curative, with a median survival from diagnosis of 23 months. The PAP-specific Sipuleucel-T vaccine, which was approved by the FDA in 2010, increases the Overall Survival (OS) by 4 months, but is extremely expensive. We have previously shown that a 15 amino accid (AA) PAP sequence-derived peptide could induce strong immune responses and delay the growth of murine TRAMP-C1 prostate tumors. We have now substituted one amino acid and elongated the sequence to include epitopes predicted to bind to several additional HLA haplotypes. Herein, we present the immunological properties of this 42mer-mutated PAP-derived sequence (MutPAP42mer). METHODS The presence of PAP-135-143 epitope-specific CD8+ T cells in the blood of patients with prostate cancer (PCa) was assessed by flow cytometry using Dextramer™ technology. HHDII/DR1 transgenic mice were immunized with mutated and non-mutated PAP-derived 42mer peptides in the presence of CAF®09 or CpG ODN1826 (TLR-9 agonist) adjuvants. Vaccine-induced immune responses were measured by assessing the proportion and functionality of splenic PAP-specific T cells in vitro. RESULTS PAP-135-143 epitope-specific CD8+ T cells were detected in the blood of patients with PCa and stimulation of PBMCs from patients with PCa with mutPAP42mer enhanced their capacity to kill human LNCaP PCa target cells expressing PAP. The MutPAP42mer peptide was significantly more immunogenic in HHDII/DR1 mice than the wild type sequence, and immunogenicity was further enhanced when combined with the CAF®09 adjuvant. The vaccine induced secretory (IFNγ and TNFα) and cytotoxic CD8+ T cells and effector memory splenic T cells. CONCLUSIONS The periphery of patients with PCa exhibits immune responsiveness to the MutPAP42mer peptide and immunization of mice induces/expands T cell-driven, wild-type PAP immunity, and therefore, has the potential to drive protective anti-tumor immunity in patients with PCa.
Collapse
|
50
|
Tseng SH, Cheng MA, Farmer E, Ferrall L, Kung YJ, Lam B, Lim L, Wu TC, Hung CF. Albumin and interferon-β fusion protein serves as an effective vaccine adjuvant to enhance antigen-specific CD8+ T cell-mediated antitumor immunity. J Immunother Cancer 2022; 10:e004342. [PMID: 35459734 PMCID: PMC9036441 DOI: 10.1136/jitc-2021-004342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Type I interferons (IFN) promote dendritic cells maturation and subsequently enhance generation of antigen-specific CD8 +T cell for the control of tumor. Using type I interferons as an adjuvant to vaccination could prove to be a potent strategy. However, type I interferons have a short half-life. Albumin linked to a protein will prolong the half-life of the linked protein. METHODS In this study, we explored the fusion of albumin to IFNβ (Alb-IFNβ) for its functional activity both in vitro and in vivo. We determined the half-life of Alb-IFNβ following treatment in the serum, tumor, and tumor draining lymph nodes in both wild type and FcRn knockout mice. We characterized the ability of Alb-IFNβ to enhance antigen-specific CD8+ T cells using ovalbumin (OVA) or human papillomavirus (HPV) E7 long peptides. Next, we evaluated the therapeutic antitumor effect of coadministration of AlbIFNβ with antigenic peptides against HPVE7 expressing tumor and the treatment's ability to generate HPVE7 antigen specific CD8+ T cells. The contribution of the antitumor effect by lymphocytes was also examined by an antibody depletion experiment. The ability of Alb-IFNβ to serve as an adjuvant was tested using clinical grade therapeutic protein-based HPV vaccine, TACIN. RESULTS Alb-IFNβ retains biological function and does not alter the biological activity of IFNβ. In addition, Alb-IFNβ extends half-life of IFNβ in serum, lymph nodes and tumor. The coadministration of Alb-IFNβ with OVA or HPVE7 antigenic peptides enhances antigen-specific CD8 +T cell immunity, and in a TC-1 tumor model results in a significant therapeutic antitumor effect. We found that CD8 +T cells and dendritic cells, but not CD4 +T cells, are important for the observed antitumor therapeutic effect mediated by Alb-IFNβ. Finally, Alb-IFNβ served as a potent adjuvant for TA-CIN for the treatment of HPV antigen expressing tumors. CONCLUSIONS Overall, Alb-IFNβ serves as a potent adjuvant for enhancement of strong antigen-specific CD8 +T cell antitumor immunity, reduction of tumor burden, and increase in overall survival. Alb-IFNβ potentially can serve as an innovative adjuvant for the development of vaccines for the control of infectious disease and cancer.
Collapse
Affiliation(s)
- Ssu-Hsueh Tseng
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Max A Cheng
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emily Farmer
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Louise Ferrall
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yu Jui Kung
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brandon Lam
- Stanford Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Ling Lim
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - T-C Wu
- Pathology, Oncology, Obstetrics and Gynecology, Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chien-Fu Hung
- Pathology, Johns Hopkins Univ, Baltimore, Maryland, USA
- Oncology, Johns Hopkins University, Baltimore, MD, USA
- Obstetrics and Gynecology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|