1
|
La Marca JE, Kelly GL, Strasser A, Diepstraten ST. Don't fear the reaper: The role of regulated cell death in tumorigenesis and BH3-mimetics for cancer therapy. Dev Cell 2024; 59:2532-2548. [PMID: 39378839 DOI: 10.1016/j.devcel.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 10/10/2024]
Abstract
From its earliest characterization, it has been recognized that there is a role for regulated (programmed) cell death in cancer. As our understanding of the different types of programmed cell death processes and their molecular control has advanced, so have the technologies that allow us to manipulate these processes to, for example, fight against cancer. In this review, we describe the roles of the different forms of regulated cell death in the development of cancer as well as their potential therapeutic exploitation. In that vein, we explore the development and use of BH3-mimetics, a unique class of drugs that can directly activate the apoptotic cell death machinery to treat cancer. Finally, we address key challenges that face the field to improve the use of these therapeutics and the efforts that are being undertaken to do so.
Collapse
Affiliation(s)
- John E La Marca
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Menendez JA, Cuyàs E, Encinar JA, Vander Steen T, Verdura S, Llop‐Hernández À, López J, Serrano‐Hervás E, Osuna S, Martin‐Castillo B, Lupu R. Fatty acid synthase (FASN) signalome: A molecular guide for precision oncology. Mol Oncol 2024; 18:479-516. [PMID: 38158755 PMCID: PMC10920094 DOI: 10.1002/1878-0261.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The initial excitement generated more than two decades ago by the discovery of drugs targeting fatty acid synthase (FASN)-catalyzed de novo lipogenesis for cancer therapy was short-lived. However, the advent of the first clinical-grade FASN inhibitor (TVB-2640; denifanstat), which is currently being studied in various phase II trials, and the exciting advances in understanding the FASN signalome are fueling a renewed interest in FASN-targeted strategies for the treatment and prevention of cancer. Here, we provide a detailed overview of how FASN can drive phenotypic plasticity and cell fate decisions, mitochondrial regulation of cell death, immune escape and organ-specific metastatic potential. We then present a variety of FASN-targeted therapeutic approaches that address the major challenges facing FASN therapy. These include limitations of current FASN inhibitors and the lack of precision tools to maximize the therapeutic potential of FASN inhibitors in the clinic. Rethinking the role of FASN as a signal transducer in cancer pathogenesis may provide molecularly driven strategies to optimize FASN as a long-awaited target for cancer therapeutics.
Collapse
Affiliation(s)
- Javier A. Menendez
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Jose Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC)Miguel Hernández University (UMH)ElcheSpain
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| | - Sara Verdura
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Àngela Llop‐Hernández
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Júlia López
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Eila Serrano‐Hervás
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
- ICREABarcelonaSpain
| | - Begoña Martin‐Castillo
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- Unit of Clinical ResearchCatalan Institute of OncologyGironaSpain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| |
Collapse
|
3
|
Naseem Y, Zhang C, Zhou X, Dong J, Xie J, Zhang H, Agboyibor C, Bi Y, Liu H. Inhibitors Targeting the F-BOX Proteins. Cell Biochem Biophys 2023; 81:577-597. [PMID: 37624574 DOI: 10.1007/s12013-023-01160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
F-box proteins are involved in multiple cellular processes through ubiquitylation and consequent degradation of targeted substrates. Any significant mutation in F-box protein-mediated proteolysis can cause human malformations. The various cellular processes F-box proteins involved include cell proliferation, apoptosis, invasion, angiogenesis, and metastasis. To target F-box proteins and their associated signaling pathways for cancer treatment, researchers have developed thousands of F-box inhibitors. The most advanced inhibitor of FBW7, NVD-BK M120, is a powerful P13 kinase inhibitor that has been proven to bring about apoptosis in cancerous human lung cells by disrupting levels of the protein known as MCL1. Moreover, F-box Inhibitors have demonstrated their efficacy for treating certain cancers through targeting particular mutated proteins. This paper explores the key studies on how F-box proteins act and their contribution to malignancy development, which fabricates an in-depth perception of inhibitors targeting the F-box proteins and their signaling pathways that eventually isolate the most promising approach to anti-cancer treatments.
Collapse
Affiliation(s)
- Yalnaz Naseem
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Chaofeng Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinyi Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianshu Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, China.
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jiachong Xie
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Huimin Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - YueFeng Bi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, China.
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hongmin Liu
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, China.
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Liu Y, Shen Z, Wei X, Gu L, Zheng M, Zhang Y, Cheng X, Fu Y, Lu W. CircSLC39A8 attenuates paclitaxel resistance in ovarian cancer by regulating the miR‑185‑5p/BMF axis. Transl Oncol 2023; 36:101746. [PMID: 37499410 PMCID: PMC10413200 DOI: 10.1016/j.tranon.2023.101746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Chemoresistance to paclitaxel (PTX) is one of the main reasons for treatment failure and poor prognosis in patients with advanced ovarian cancer. Therefore, it is imperative to explore the mechanisms related to chemotherapy resistance in ovarian cancer to find potential therapeutic targets. Circular RNAs (circRNAs) play important roles in cancer development and progression. However, their biological functions and clinical significance in ovarian cancer have not been fully elucidated. Therefore, in this study, we aimed to investigate the function and underlying mechanism of hsa_circ_0002782 (circSLC39A8), identified by circRNA sequencing, in regulating PTX resistance. The effects of circSLC39A8 on PTX resistance was assessed by cell viability, colony formation, flow cytometry assays and an in vivo subcutaneous xenografted tumor mouse model. RNA immunoprecipitation and dual-luciferase reporter assays were performed to verify the interaction between circSLC39A8 and the miR-185-5p/BMF signal axis. We found that circSLC39A8 was downregulated in PTX-resistant ovarian cancer cells and tissues, and its low expression was associated with poor prognosis. Biologically, circSLC39A8 knockdown promoted PTX resistance in vitro and in vivo, while circSLC39A8 overexpression showed the opposite effect. Mechanistically, circSLC39A8, acting as an endogenous sponge for miR-185-5p, could relieve the inhibition of miR-185-5p on the expression of its downstream target, BMF; thus enhancing the sensitivity of ovarian cancer to PTX. Our findings demonstrate that circSLC39A8 can promote PTX sensitivity by regulating the miR-185-5p/BMF axis. This may be a valuable prognostic biomarker and a promising therapeutic target for patients with ovarian cancer.
Collapse
Affiliation(s)
- Yuwan Liu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Zhangjin Shen
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Xinyi Wei
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Lingkai Gu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Mengxia Zheng
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Yanan Zhang
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunfeng Fu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China.
| | - Weiguo Lu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Zhejiang Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Hangzhou, Zhejiang 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
5
|
Yao J, Tang S, Shi C, Lin Y, Ge L, Chen Q, Ou B, Liu D, Miao Y, Xie Q, Tang X, Fei J, Yang G, Tian J, Zeng X. Isoginkgetin, a potential CDK6 inhibitor, suppresses SLC2A1/GLUT1 enhancer activity to induce AMPK-ULK1-mediated cytotoxic autophagy in hepatocellular carcinoma. Autophagy 2023; 19:1221-1238. [PMID: 36048765 PMCID: PMC10012924 DOI: 10.1080/15548627.2022.2119353] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022] Open
Abstract
Isoginkgetin (ISO), a natural biflavonoid, exhibited cytotoxic activity against several types of cancer cells. However, its effects on hepatocellular carcinoma (HCC) cells and mechanism remain unclear. Here, we revealed that ISO effectively inhibited HCC cell proliferation and migration in vitro. LC3-II expression and autophagosomes were increased under ISO treatment. In addition, ISO-induced cell death was attenuated by treatment with chloroquine or knockdown of autophagy-related genes (ATG5 or ULK1). ISO significantly suppressed SLC2A1/GLUT1 (solute carrier family 2 member 1) expression and glucose uptake, leading to activation of the AMPK-ULK1 axis in HepG2 cells. Overexpression of SLC2A1/GLUT1 abrogated ISO-induced autophagy. Combining molecular docking with thermal shift analysis, we confirmed that ISO directly bound to the N terminus of CDK6 (cyclin-dependent kinase 6) and promoted its degradation. Overexpression of CDK6 abrogated ISO-induced inhibition of SLC2A1/GLUT1 transcription and induction of autophagy. Furthermore, ISO treatment significantly decreased the H3K27ac, H4K8ac and H3K4me1 levels on the SLC2A1/GLUT1 enhancer in HepG2 cells. Finally, ISO suppressed the hepatocarcinogenesis in the HepG2 xenograft mice and the diethylnitrosamine+carbon tetrachloride (DEN+CCl4)-induced primary HCC mice and we confirmed SLC2A1/GLUT1 and CDK6 as promising oncogenes in HCC by analysis of TCGA data and human HCC tissues. Our results provide a new molecular mechanism by which ISO treatment or CDK6 deletion promotes autophagy; that is, ISO targeting the N terminus of CDK6 for degradation inhibits the expression of SLC2A1/GLUT1 by decreasing the enhancer activity of SLC2A1/GLUT1, resulting in decreased glucose levels and inducing the AMPK-ULK1 pathway.
Collapse
Affiliation(s)
- Jie Yao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, Guangdong, China
| | - Shuming Tang
- Department of Clinical Laboratory, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chenyan Shi
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yunzhi Lin
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Lanlan Ge
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of pathology(Longhua Branch), Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Qinghua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, China
| | - Baoru Ou
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Dongyu Liu
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yuyang Miao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Qiujie Xie
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xudong Tang
- Key Lab for New Drug Research of TCM and Guangdong Innovative Chinese Medicine and Natural Medicine Engineering Technology Research Center, Research Institute of Tsinghua University, Shenzhen, Guangdong, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, Guangdong, China
| | - Guangyi Yang
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, China
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Clinical Laboratory, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 2023; 28:20-38. [PMID: 36342579 PMCID: PMC9950219 DOI: 10.1007/s10495-022-01780-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Acquired resistance to cell death is a hallmark of cancer. The BCL-2 protein family members play important roles in controlling apoptotic cell death. Abnormal over-expression of pro-survival BCL-2 family members or abnormal reduction of pro-apoptotic BCL-2 family proteins, both resulting in the inhibition of apoptosis, are frequently detected in diverse malignancies. The critical role of the pro-survival and pro-apoptotic BCL-2 family proteins in the regulation of apoptosis makes them attractive targets for the development of agents for the treatment of cancer. This review describes the roles of the various pro-survival and pro-apoptotic members of the BCL-2 protein family in normal development and organismal function and how defects in the control of apoptosis promote the development and therapy resistance of cancer. Finally, we discuss the development of inhibitors of pro-survival BCL-2 proteins, termed BH3-mimetic drugs, as novel agents for cancer therapy.
Collapse
Affiliation(s)
- Deeksha Kaloni
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Sarah T Diepstraten
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Andreas Strasser
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Gemma L Kelly
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Targeting TRAIL Death Receptors in Triple-Negative Breast Cancers: Challenges and Strategies for Cancer Therapy. Cells 2022; 11:cells11233717. [PMID: 36496977 PMCID: PMC9739296 DOI: 10.3390/cells11233717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor necrosis factor (TNF) superfamily member TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells via death receptor (DR) activation with little toxicity to normal cells or tissues. The selectivity for activating apoptosis in cancer cells confers an ideal therapeutic characteristic to TRAIL, which has led to the development and clinical testing of many DR agonists. However, TRAIL/DR targeting therapies have been widely ineffective in clinical trials of various malignancies for reasons that remain poorly understood. Triple negative breast cancer (TNBC) has the worst prognosis among breast cancers. Targeting the TRAIL DR pathway has shown notable efficacy in a subset of TNBC in preclinical models but again has not shown appreciable activity in clinical trials. In this review, we will discuss the signaling components and mechanisms governing TRAIL pathway activation and clinical trial findings discussed with a focus on TNBC. Challenges and potential solutions for using DR agonists in the clinic are also discussed, including consideration of the pharmacokinetic and pharmacodynamic properties of DR agonists, patient selection by predictive biomarkers, and potential combination therapies. Moreover, recent findings on the impact of TRAIL treatment on the immune response, as well as novel strategies to address those challenges, are discussed.
Collapse
|
8
|
McNamara MC, Hosios AM, Torrence ME, Zhao T, Fraser C, Wilkinson M, Kwiatkowski DJ, Henske EP, Wu CL, Sarosiek KA, Valvezan AJ, Manning BD. Reciprocal effects of mTOR inhibitors on pro-survival proteins dictate therapeutic responses in tuberous sclerosis complex. iScience 2022; 25:105458. [PMID: 36388985 PMCID: PMC9663903 DOI: 10.1016/j.isci.2022.105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/30/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022] Open
Abstract
mTORC1 is aberrantly activated in cancer and in the genetic tumor syndrome tuberous sclerosis complex (TSC), which is caused by loss-of-function mutations in the TSC complex, a negative regulator of mTORC1. Clinically approved mTORC1 inhibitors, such as rapamycin, elicit a cytostatic effect that fails to eliminate tumors and is rapidly reversible. We sought to determine the effects of mTORC1 on the core regulators of intrinsic apoptosis. In TSC2-deficient cells and tumors, we find that mTORC1 inhibitors shift cellular dependence from MCL-1 to BCL-2 and BCL-XL for survival, thereby altering susceptibility to BH3 mimetics that target specific pro-survival BCL-2 proteins. The BCL-2/BCL-XL inhibitor ABT-263 synergizes with rapamycin to induce apoptosis in TSC-deficient cells and in a mouse tumor model of TSC, resulting in a more complete and durable response. These data expose a therapeutic vulnerability in regulation of the apoptotic machinery downstream of mTORC1 that promotes a cytotoxic response to rapamycin.
Collapse
Affiliation(s)
- Molly C. McNamara
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Aaron M. Hosios
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Margaret E. Torrence
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
| | - Ting Zhao
- Department of Urology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Cameron Fraser
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - Meghan Wilkinson
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - David J. Kwiatkowski
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth P. Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Kristopher A. Sarosiek
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - Alexander J. Valvezan
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
| | - Brendan D. Manning
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Noxa and Mcl-1 expression influence the sensitivity to BH3-mimetics that target Bcl-xL in patient-derived glioma stem cells. Sci Rep 2022; 12:17729. [PMID: 36273072 PMCID: PMC9587994 DOI: 10.1038/s41598-022-20910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/20/2022] [Indexed: 01/18/2023] Open
Abstract
The recurrence of Glioblastoma is partly attributed to the highly resistant subpopulation of glioma stem cells. A novel therapeutic approach focuses on restoring apoptotic programs in these cancer stem cells, as they are often deregulated. BH3-mimetics, targeting anti-apoptotic Bcl-2 family members, are emerging as promising compounds to sensitize cancer cells to antineoplastic treatments. Herein, we determined that the most abundantly expressed anti-apoptotic Bcl-2 family members, Bcl-xL and Mcl-1, are the most relevant in regulating patient-derived glioma stem cell survival. We exposed these cells to routinely used chemotherapeutic drugs and BH3-mimetics (ABT-263, WEHI-539, and S63845). We observed that the combination of BH3-mimetics targeting Bcl-xL with chemotherapeutic agents caused a marked increase in cell death and that this sensitivity to Bcl-xL inhibition correlated with Noxa expression levels. Interestingly, whereas co-targeting Bcl-xL and Mcl-1 led to massive cell death in all tested cell lines, down-regulation of Noxa promoted cell survival only in cell lines expressing higher levels of this BH3-only. Therefore, in glioma stem cells, the efficacy of Bcl-xL inhibition is closely associated with Mcl-1 activity and Noxa expression. Hence, a potentially effective strategy would consist of combining Bcl-xL inhibitors with chemotherapeutic agents capable of inducing Noxa, taking advantage of this pro-apoptotic factor.
Collapse
|
10
|
Removal of BFL-1 sensitises some melanoma cells to killing by BH3 mimetic drugs. Cell Death Dis 2022; 13:301. [PMID: 35379799 PMCID: PMC8980089 DOI: 10.1038/s41419-022-04776-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 12/23/2022]
|
11
|
Winkler M, Friedrich J, Boedicker C, Dolgikh N. Co-targeting MCL-1 and ERK1/2 kinase induces mitochondrial apoptosis in rhabdomyosarcoma cells. Transl Oncol 2022; 16:101313. [PMID: 34906889 PMCID: PMC8681038 DOI: 10.1016/j.tranon.2021.101313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/17/2023] Open
Abstract
The RAS/MEK/ERK genetic axis is commonly altered in rhabdomyosarcoma (RMS), indicating high activity of downstream effector ERK1/2 kinase. Previously, we have demonstrated that inhibition of the RAS/MEK/ERK signaling pathway in RMS is insufficient to induce cell death due to residual pro-survival MCL-1 activity. Here, we show that the combination of ERK1/2 inhibitor Ulixertinib and MCL-1 inhibitor S63845 is highly synergistic and induces apoptotic cell death in RMS in vitro and in vivo. Importantly, Ulixertinib/S63845 co-treatment suppresses long-term survival of RMS cells, induces rapid caspase activation and caspase-dependent apoptosis. Mechanistically, Ulixertinib-mediated upregulation of BIM and BMF in combination with MCL-1 inhibition by S63845 shifts the balance of BCL-2 proteins towards a pro-apoptotic state resulting in apoptosis induction. A genetic silencing approach reveals that BIM, BMF, BAK and BAX are all required for Ulixertinib/S63845-induced apoptosis. Overexpression of BCL-2 rescues cell death triggered by Ulixertinib/S63845 co-treatment, confirming that combined inhibition of ERK1/2 and MCL-1 effectively induces cell death of RMS cells via the intrinsic mitochondrial apoptotic pathway. Thus, this study is the first to demonstrate the cytotoxic potency of co-inhibition of ERK1/2 and MCL-1 for RMS treatment.
Collapse
Affiliation(s)
- Marius Winkler
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528 Frankfurt, Germany
| | - Juliane Friedrich
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528 Frankfurt, Germany
| | - Cathinka Boedicker
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528 Frankfurt, Germany
| | - Nadezda Dolgikh
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528 Frankfurt, Germany.
| |
Collapse
|
12
|
Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer 2022; 22:45-64. [PMID: 34663943 DOI: 10.1038/s41568-021-00407-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Apoptosis is a form of programmed cell death that is regulated by the balance between prosurvival and proapoptotic BCL-2 protein family members. Evasion of apoptosis is a hallmark of cancer that arises when this balance is tipped in favour of survival. One form of anticancer therapeutic, termed 'BH3-mimetic drugs', has been developed to directly activate the apoptosis machinery in malignant cells. These drugs bind to and inhibit specific prosurvival BCL-2 family proteins, thereby mimicking their interaction with the BH3 domains of proapoptotic BCL-2 family proteins. The BCL-2-specific inhibitor venetoclax is approved by the US Food and Drug Administration and many regulatory authorities worldwide for the treatment of chronic lymphocytic leukaemia and acute myeloid leukaemia. BH3-mimetic drugs targeting other BCL-2 prosurvival proteins have been tested in preclinical models of cancer, and drugs targeting MCL-1 or BCL-XL have advanced into phase I clinical trials for certain cancers. As with all therapeutics, efficacy and tolerability need to be carefully balanced to achieve a therapeutic window whereby there is significant anticancer activity with an acceptable safety profile. In this Review, we outline the current state of BH3-mimetic drugs targeting various prosurvival BCL-2 family proteins and discuss emerging data regarding primary and acquired resistance to these agents and approaches that may overcome this. We highlight issues that need to be addressed to further advance the clinical application of BH3-mimetic drugs, both alone and in combination with additional anticancer agents (for example, standard chemotherapeutic drugs or inhibitors of oncogenic kinases), for improved responses in patients with cancer.
Collapse
Affiliation(s)
- Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Mary Ann Anderson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
13
|
Daniels VW, Zoeller JJ, van Gastel N, McQueeney KE, Parvin S, Potter DS, Fell GG, Ferreira VG, Yilma B, Gupta R, Spetz J, Bhola PD, Endress JE, Harris IS, Carrilho E, Sarosiek KA, Scadden DT, Brugge JS, Letai A. Metabolic perturbations sensitize triple-negative breast cancers to apoptosis induced by BH3 mimetics. Sci Signal 2021; 14:14/686/eabc7405. [PMID: 34103421 DOI: 10.1126/scisignal.abc7405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer cells have differential metabolic dependencies compared to their nonmalignant counterparts. However, few metabolism-targeting compounds have been successful in clinical trials. Here, we investigated the metabolic vulnerabilities of triple-negative breast cancer (TNBC), particularly those metabolic perturbations that increased mitochondrial apoptotic priming and sensitivity to BH3 mimetics (drugs that antagonize antiapoptotic proteins). We used high-throughput dynamic BH3 profiling (HT-DBP) to screen a library of metabolism-perturbing small molecules, which revealed inhibitors of the enzyme nicotinamide phosphoribosyltransferase (NAMPT) as top candidates. In some TNBC cells but not in nonmalignant cells, NAMPT inhibitors increased overall apoptotic priming and induced dependencies on specific antiapoptotic BCL-2 family members. Treatment of TNBC cells with NAMPT inhibitors sensitized them to subsequent treatment with BH3 mimetics. The combination of a NAMPT inhibitor (FK866) and an MCL-1 antagonist (S63845) reduced tumor growth in a TNBC patient-derived xenograft model in vivo. We found that NAMPT inhibition reduced NAD+ concentrations below a critical threshold that resulted in depletion of adenine, which was the metabolic trigger that primed TNBC cells for apoptosis. These findings demonstrate a close interaction between metabolic and mitochondrial apoptotic signaling pathways and reveal that exploitation of a tumor-specific metabolic vulnerability can sensitize some TNBC to BH3 mimetics.
Collapse
Affiliation(s)
- Veerle W Daniels
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Ludwig Center at Harvard, Boston, MA 02215, USA
| | - Jason J Zoeller
- Ludwig Center at Harvard, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Nick van Gastel
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kelley E McQueeney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Salma Parvin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Danielle S Potter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Geoffrey G Fell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Vinícius G Ferreira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13568-250, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP 13083-970, Brazil
| | - Binyam Yilma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rajat Gupta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Johan Spetz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - Patrick D Bhola
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jennifer E Endress
- Ludwig Center at Harvard, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Isaac S Harris
- Ludwig Center at Harvard, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA.,Department of Biomedical Genetics and Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13568-250, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP 13083-970, Brazil
| | - Kristopher A Sarosiek
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joan S Brugge
- Ludwig Center at Harvard, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. .,Ludwig Center at Harvard, Boston, MA 02215, USA
| |
Collapse
|
14
|
Kist M, Vucic D. Cell death pathways: intricate connections and disease implications. EMBO J 2021; 40:e106700. [PMID: 33439509 PMCID: PMC7917554 DOI: 10.15252/embj.2020106700] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways-apoptosis, necroptosis, and pyroptosis-other forms of regulated cell death including autophagy-dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)-mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs.
Collapse
Affiliation(s)
- Matthias Kist
- Department of Early Discovery BiochemistryGenentechSouth San FranciscoUSA
| | - Domagoj Vucic
- Department of Early Discovery BiochemistryGenentechSouth San FranciscoUSA
| |
Collapse
|
15
|
It's time to die: BH3 mimetics in solid tumors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118987. [PMID: 33600840 DOI: 10.1016/j.bbamcr.2021.118987] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/31/2022]
Abstract
The removal of cells by apoptosis is an essential process regulating tissue homeostasis. Cancer cells acquire the ability to circumvent apoptosis and survive in an unphysiological tissue context. Thereby, the Bcl-2 protein family plays a key role in the initiation of apoptosis, and overexpression of the anti-apoptotic Bcl-2 proteins is one of the molecular mechanisms protecting cancer cells from apoptosis. Recently, small molecules targeting the anti-apoptotic Bcl-2 family proteins have been identified, and with venetoclax the first of these BH3 mimetics has been approved for the treatment of leukemia. In solid tumors the anti-apoptotic Bcl-2 family proteins Mcl-1 and Bcl-xL are frequently overexpressed or genetically amplified. In this review, we summarize the role of Mcl-1 and Bcl-xL in solid tumors and compare the different BH3 mimetics targeting Mcl-1 or Bcl-xL.
Collapse
|
16
|
Design and optimisation of dendrimer-conjugated Bcl-2/x L inhibitor, AZD0466, with improved therapeutic index for cancer therapy. Commun Biol 2021; 4:112. [PMID: 33495510 PMCID: PMC7835349 DOI: 10.1038/s42003-020-01631-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
Dual Bcl-2/Bcl-xL inhibitors are expected to deliver therapeutic benefit in many haematological and solid malignancies, however, their use is limited by tolerability issues. AZD4320, a potent dual Bcl-2/Bcl-xL inhibitor, has shown good efficacy however had dose limiting cardiovascular toxicity in preclinical species, coupled with challenging physicochemical properties, which prevented its clinical development. Here, we describe the design and development of AZD0466, a drug-dendrimer conjugate, where AZD4320 is chemically conjugated to a PEGylated poly-lysine dendrimer. Mathematical modelling was employed to determine the optimal release rate of the drug from the dendrimer for maximal therapeutic index in terms of preclinical anti-tumour efficacy and cardiovascular tolerability. The optimised candidate is shown to be efficacious and better tolerated in preclinical models compared with AZD4320 alone. The AZD4320-dendrimer conjugate (AZD0466) identified, through mathematical modelling, has resulted in an improved therapeutic index and thus enabled progression of this promising dual Bcl-2/Bcl-xL inhibitor into clinical development. Claire Patterson et al. present the design and development of AZD0466, a drug-dendrimer conjugate, and use preclinical and mathematical models to determine the optimal release rate of the drug from the dendrimer carrier for maximal therapeutic index in terms of anti-tumour efficacy and cardiovascular tolerability. This study identifies this promising dual Bcl-2/Bcl-xL inhibitor for progression to clinical development.
Collapse
|
17
|
Ding H, Vincelette ND, McGehee CD, Kohorst MA, Koh BD, Venkatachalam A, Meng XW, Schneider PA, Flatten KS, Peterson KL, Correia C, Lee SH, Patnaik M, Webster JA, Ghiaur G, Smith BD, Karp JE, Pratz KW, Li H, Karnitz LM, Kaufmann SH. CDK2-Mediated Upregulation of TNFα as a Mechanism of Selective Cytotoxicity in Acute Leukemia. Cancer Res 2021; 81:2666-2678. [PMID: 33414171 DOI: 10.1158/0008-5472.can-20-1504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/21/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Although inhibitors of the kinases CHK1, ATR, and WEE1 are undergoing clinical testing, it remains unclear how these three classes of agents kill susceptible cells and whether they utilize the same cytotoxic mechanism. Here we observed that CHK1 inhibition induces apoptosis in a subset of acute leukemia cell lines in vitro, including TP53-null acute myeloid leukemia (AML) and BCR/ABL-positive acute lymphoid leukemia (ALL), and inhibits leukemic colony formation in clinical AML samples ex vivo. In further studies, downregulation or inhibition of CHK1 triggered signaling in sensitive human acute leukemia cell lines that involved CDK2 activation followed by AP1-dependent TNF transactivation, TNFα production, and engagement of a TNFR1- and BID-dependent apoptotic pathway. AML lines that were intrinsically resistant to CHK1 inhibition exhibited high CHK1 expression and were sensitized by CHK1 downregulation. Signaling through this same CDK2-AP1-TNF cytotoxic pathway was also initiated by ATR or WEE1 inhibitors in vitro and during CHK1 inhibitor treatment of AML xenografts in vivo. Collectively, these observations not only identify new contributors to the antileukemic cell action of CHK1, ATR, and WEE1 inhibitors, but also delineate a previously undescribed pathway leading from aberrant CDK2 activation to death ligand-induced killing that can potentially be exploited for acute leukemia treatment. SIGNIFICANCE: This study demonstrates that replication checkpoint inhibitors can kill AML cells through a pathway involving AP1-mediated TNF gene activation and subsequent TP53-independent, TNFα-induced apoptosis, which can potentially be exploited clinically.
Collapse
Affiliation(s)
- Husheng Ding
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota. .,Division of Oncology Research, Mayo Clinic, Rochester, Minnesota
| | - Nicole D Vincelette
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Cordelia D McGehee
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Mira A Kohorst
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Brian D Koh
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota
| | - Annapoorna Venkatachalam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - X Wei Meng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,Division of Oncology Research, Mayo Clinic, Rochester, Minnesota
| | | | - Karen S Flatten
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota
| | - Kevin L Peterson
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota
| | - Cristina Correia
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota
| | - Sun-Hee Lee
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota
| | - Mrinal Patnaik
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | | | - Gabriel Ghiaur
- Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - B Douglas Smith
- Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Judith E Karp
- Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Keith W Pratz
- Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Larry M Karnitz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,Division of Oncology Research, Mayo Clinic, Rochester, Minnesota
| | - Scott H Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota. .,Division of Oncology Research, Mayo Clinic, Rochester, Minnesota.,Division of Hematology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
18
|
Buschner G, Feuerecker B, Spinner S, Seidl C, Essler M. Differentiation of acute myeloid leukemia (AML) cells with ATRA reduces 18F-FDG uptake and increases sensitivity towards ABT-737-induced apoptosis. Leuk Lymphoma 2020; 62:630-639. [PMID: 33140666 DOI: 10.1080/10428194.2020.1839648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Acute myeloid leukemia (AML) is a malignant disease of the bone marrow, comprising various subtypes. We have investigated seven different AML cell lines that showed different sensitivities toward the inducer of apoptosis ABT-737, with IC50 concentrations ranging from 9.9 nM to 1.8 µM. Besides, the AML cell lines revealed distinct differences in 18F-FDG uptake ranging from 4.1 to 11.0%. Moreover, the Pearson coefficient (0.363) suggests a moderate correlation between 18F-FDG uptake and the IC50 values of ABT-737. Differentiation of the AML cell lines NB-4 and AML-193 with all-trans-retinoic-acid (ATRA) induced a significant increase in sensitivity towards ABT-737 along with a reduced uptake of 18F-FDG. Therefore, 18F-FDG uptake could be predictive on sensitivity to treatment with ABT-737. Furthermore, because differentiation treatment of AML cells using ATRA reduced 18F-FDG uptake and increased sensitivity towards ABT-737, a combined treatment regimen with ATRA and ABT-737 might be a promising therapeutic option in the future.
Collapse
Affiliation(s)
- Gabriel Buschner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Benedikt Feuerecker
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sabine Spinner
- Department of Hematology and Oncology, Internal Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christof Seidl
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Markus Essler
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Nuclear Medicine, Universitätsklinikum Bonn, Bonn, Germany
| |
Collapse
|
19
|
Balakrishnan I, Danis E, Pierce A, Madhavan K, Wang D, Dahl N, Sanford B, Birks DK, Davidson N, Metselaar DS, Meel MH, Lemma R, Donson A, Vijmasi T, Katagi H, Sola I, Fosmire S, Alimova I, Steiner J, Gilani A, Hulleman E, Serkova NJ, Hashizume R, Hawkins C, Carcaboso AM, Gupta N, Monje M, Jabado N, Jones K, Foreman N, Green A, Vibhakar R, Venkataraman S. Senescence Induced by BMI1 Inhibition Is a Therapeutic Vulnerability in H3K27M-Mutant DIPG. Cell Rep 2020; 33:108286. [PMID: 33086074 PMCID: PMC7574900 DOI: 10.1016/j.celrep.2020.108286] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/05/2020] [Accepted: 09/25/2020] [Indexed: 01/19/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an incurable brain tumor of childhood characterized by histone mutations at lysine 27, which results in epigenomic dysregulation. There has been a failure to develop effective treatment for this tumor. Using a combined RNAi and chemical screen targeting epigenomic regulators, we identify the polycomb repressive complex 1 (PRC1) component BMI1 as a critical factor for DIPG tumor maintenance in vivo. BMI1 chromatin occupancy is enriched at genes associated with differentiation and tumor suppressors in DIPG cells. Inhibition of BMI1 decreases cell self-renewal and attenuates tumor growth due to induction of senescence. Prolonged BMI1 inhibition induces a senescence-associated secretory phenotype, which promotes tumor recurrence. Clearance of senescent cells using BH3 protein mimetics co-operates with BMI1 inhibition to enhance tumor cell killing in vivo.
Collapse
Affiliation(s)
- Ilango Balakrishnan
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Etienne Danis
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Angela Pierce
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Krishna Madhavan
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Dong Wang
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nathan Dahl
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Bridget Sanford
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Diane K Birks
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nate Davidson
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Dennis S Metselaar
- Princess Máxima Center for Pediatric Oncology, Utrecht and Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Michaël Hananja Meel
- Princess Máxima Center for Pediatric Oncology, Utrecht and Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Rakeb Lemma
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Donson
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Trinka Vijmasi
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Hiroaki Katagi
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ismail Sola
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Susan Fosmire
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Irina Alimova
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jenna Steiner
- Departments of Radiology, Radiation Oncology, and Anesthesiology, Colorado Animal Imaging Shared Resource (AISR), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ahmed Gilani
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht and Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Natalie J Serkova
- Departments of Radiology, Radiation Oncology, and Anesthesiology, Colorado Animal Imaging Shared Resource (AISR), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rintaro Hashizume
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angel M Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Michelle Monje
- Departments of Neurology, Neurosurgery, Pediatrics, and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Kenneth Jones
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas Foreman
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Adam Green
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Rajeev Vibhakar
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA.
| | - Sujatha Venkataraman
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
20
|
Salvaris R, Opat S. An update of venetoclax and obinutuzumab in chronic lymphocytic leukemia. Future Oncol 2020; 17:371-387. [PMID: 33064021 DOI: 10.2217/fon-2020-0640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the last decade, the treatment of chronic lymphocytic leukemia (CLL) has shifted away from chemoimmunotherapy toward targeted novel agents such as small molecule inhibitors and antibodies. Here, we give an overview of the pharmacology of venetoclax and obinutuzumab and the evidence from early phase to Phase III trials that have shaped how they are used in the treatment of CLL. Venetoclax, an oral anti-apoptotic BCL-2 inhibitor, in combination with a CD20 antibody has shown superiority to chemoimmunotherapy in treatment-naive and relapsed/refractory CLL. Obinutuzumab is a novel anti-CD20 monoclonal antibody that has been safely combined with novel agents including venetoclax and Bruton tyrosine kinase inhibitors and has shown superiority over rituximab when combined with chlorambucil.
Collapse
Affiliation(s)
- Ross Salvaris
- Department of Haematology, Monash Health, 246 Clayton Rd, Clayton, Victoria 3168, Australia; School of Clinical Sciences at Monash Health, Monash University, Wellington Rd, Clayton, Victoria 3800, Australia
| | - Stephen Opat
- Department of Haematology, Monash Health, 246 Clayton Rd, Clayton, Victoria 3168, Australia; School of Clinical Sciences at Monash Health, Monash University, Wellington Rd, Clayton, Victoria 3800, Australia
| |
Collapse
|
21
|
Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol 2020; 21:678-695. [PMID: 32873928 DOI: 10.1038/s41580-020-0270-8] [Citation(s) in RCA: 487] [Impact Index Per Article: 121.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
Abstract
The removal of functionally dispensable, infected or potentially neoplastic cells is driven by programmed cell death (PCD) pathways, highlighting their important roles in homeostasis, host defence against pathogens, cancer and a range of other pathologies. Several types of PCD pathways have been described, including apoptosis, necroptosis and pyroptosis; they employ distinct molecular and cellular processes and differ in their outcomes, such as the capacity to trigger inflammatory responses. Recent genetic and biochemical studies have revealed remarkable flexibility in the use of these PCD pathways and indicate a considerable degree of plasticity in their molecular regulation; for example, despite having a primary role in inducing pyroptosis, inflammatory caspases can also induce apoptosis, and conversely, apoptotic stimuli can trigger pyroptosis. Intriguingly, this flexibility is most pronounced in cellular responses to infection, while apoptosis is the dominant cell death process through which organisms prevent the development of cancer. In this Review, we summarize the mechanisms of the different types of PCD and describe the physiological and pathological processes that engage crosstalk between these pathways, focusing on infections and cancer. We discuss the intriguing notion that the different types of PCD could be seen as a single, coordinated cell death system, in which the individual pathways are highly interconnected and can flexibly compensate for one another.
Collapse
|
22
|
Kelly GL, Strasser A. Toward Targeting Antiapoptotic MCL-1 for Cancer Therapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020. [DOI: 10.1146/annurev-cancerbio-030419-033510] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apoptosis is critical for embryonic development, tissue homeostasis, and the removal of infected or otherwise dangerous cells. It is controlled by three subgroups of the BCL-2 protein family—the BH3-only proteins that initiate cell death; the effectors of cell killing, BAX and BAK; and the antiapoptotic guardians, including MCL-1 and BCL-2. Defects in apoptosis can promote tumorigenesis and render malignant cells refractory to anticancer therapeutics. Activation of cell death by inhibiting antiapoptotic BCL-2 family members has emerged as an attractive strategy for cancer therapy, with the BCL-2 inhibitor venetoclax leading the way. Large-scale cancer genome analyses have revealed frequent amplification of the locus encoding antiapoptotic MCL-1 in human cancers, and functional studies have shown that MCL-1 is essential for the sustained survival and expansion of many types of tumor cells. Structural analysis and medicinal chemistry have led to the development of three distinct small-molecule inhibitors of MCL-1 that are currently undergoing clinical testing.
Collapse
Affiliation(s)
- Gemma L. Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia;,
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia;,
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
23
|
Zoeller JJ, Vagodny A, Taneja K, Tan BY, O'Brien N, Slamon DJ, Sampath D, Leverson JD, Bronson RT, Dillon DA, Brugge JS. Neutralization of BCL-2/X L Enhances the Cytotoxicity of T-DM1 In Vivo. Mol Cancer Ther 2019; 18:1115-1126. [PMID: 30962322 PMCID: PMC6758547 DOI: 10.1158/1535-7163.mct-18-0743] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/08/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
One of the most recent advances in the treatment of HER2+ breast cancer is the development of the antibody-drug conjugate, T-DM1. T-DM1 has proven clinical benefits for patients with advanced and/or metastatic breast cancer who have progressed on prior HER2-targeted therapies. However, T-DM1 resistance ultimately occurs and represents a major obstacle in the effective treatment of this disease. Because anti-apoptotic BCL-2 family proteins can affect the threshold for induction of apoptosis and thus limit the effectiveness of the chemotherapeutic payload, we examined whether inhibition of BCL-2/XL would enhance the efficacy of T-DM1 in five HER2-expressing patient-derived breast cancer xenograft models. Inhibition of BCL-2/XL via navitoclax/ABT-263 significantly enhanced the cytotoxicity of T-DM1 in two of three models derived from advanced and treatment-exposed metastatic breast tumors. No additive effects of combined treatment were observed in the third metastatic tumor model, which was highly sensitive to T-DM1, as well as a primary treatment-exposed tumor, which was refractory to T-DM1. A fifth model, derived from a treatment naïve primary breast tumor, was sensitive to T-DM1 but markedly benefited from combination treatment. Notably, both PDXs that were highly responsive to the combination therapy expressed low HER2 protein levels and lacked ERBB2 amplification, suggesting that BCL-2/XL inhibition can enhance sensitivity of tumors with low HER2 expression. Toxicities associated with combined treatments were significantly ameliorated with intermittent ABT-263 dosing. Taken together, these studies provide evidence that T-DM1 cytotoxicity could be significantly enhanced via BCL-2/XL blockade and support clinical investigation of this combination beyond ERBB2-amplified and/or HER2-overexpressed tumors.
Collapse
Affiliation(s)
- Jason J Zoeller
- Department of Cell Biology and Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| | - Aleksandr Vagodny
- Department of Cell Biology and Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| | - Krishan Taneja
- Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts
| | - Benjamin Y Tan
- Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts
| | - Neil O'Brien
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Dennis J Slamon
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Deepak Sampath
- Translational Oncology, Genentech, San Francisco, California
| | | | | | - Deborah A Dillon
- Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts
| | - Joan S Brugge
- Department of Cell Biology and Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
24
|
Alexandrou S, George SM, Ormandy CJ, Lim E, Oakes SR, Caldon CE. The Proliferative and Apoptotic Landscape of Basal-like Breast Cancer. Int J Mol Sci 2019; 20:ijms20030667. [PMID: 30720718 PMCID: PMC6387372 DOI: 10.3390/ijms20030667] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Basal-like breast cancer (BLBC) is an aggressive molecular subtype that represents up to 15% of breast cancers. It occurs in younger patients, and typically shows rapid development of locoregional and distant metastasis, resulting in a relatively high mortality rate. Its defining features are that it is positive for basal cytokeratins and, epidermal growth factor receptor and/or c-Kit. Problematically, it is typically negative for the estrogen receptor and human epidermal growth factor receptor 2 (HER2), which means that it is unsuitable for either hormone therapy or targeted HER2 therapy. As a result, there are few therapeutic options for BLBC, and a major priority is to define molecular subgroups of BLBC that could be targeted therapeutically. In this review, we focus on the highly proliferative and anti-apoptotic phenotype of BLBC with the goal of defining potential therapeutic avenues, which could take advantage of these aspects of tumor development.
Collapse
Affiliation(s)
- Sarah Alexandrou
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney, Australia.
| | - Sandra Marie George
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney, Australia.
| | - Christopher John Ormandy
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, 2052 Sydney, Australia.
| | - Elgene Lim
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, 2052 Sydney, Australia.
| | - Samantha Richelle Oakes
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, 2052 Sydney, Australia.
| | - C Elizabeth Caldon
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, 2052 Sydney, Australia.
| |
Collapse
|
25
|
Hui KKW, Dojo Soeandy C, Chang S, Vizeacoumar FS, Sun T, Datti A, Henderson JT. Cell-based high-throughput screen for small molecule inhibitors of Bax translocation. J Cell Mol Med 2018; 23:1784-1797. [PMID: 30548903 PMCID: PMC6378228 DOI: 10.1111/jcmm.14076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022] Open
Abstract
Aberrant regulation of programmed cell death (PCD) has been tied to an array of human pathologies ranging from cancers to autoimmune disorders to diverse forms of neurodegeneration. Pharmacologic modulation of PCD signalling is therefore of central interest to a number of clinical and biomedical applications. A key component of PCD signalling involves the modulation of pro‐ and anti‐apoptotic Bcl‐2 family members. Among these, Bax translocation represents a critical regulatory phase in PCD. In the present study, we have employed a high‐content high‐throughput screen to identify small molecules which inhibit the cellular process of Bax re‐distribution to the mitochondria following commitment of the cell to die. Screening of 6246 Generally Recognized As Safe compounds from four chemical libraries post‐induction of cisplatin‐mediated PCD resulted in the identification of 18 compounds which significantly reduced levels of Bax translocation. Further examination revealed protective effects via reduction of executioner caspase activity and enhanced mitochondrial function. Consistent with their effects on Bax translocation, these compounds exhibited significant rescue against in vitro and in vivo cisplatin‐induced apoptosis. Altogether, our findings identify a new set of clinically useful small molecules PCD inhibitors and highlight the role which cAMP plays in regulating Bax‐mediated PCD.
Collapse
Affiliation(s)
- Kelvin Kai-Wan Hui
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,RIKEN Center for Brain Science, Wako, Japan
| | - Chesarahmia Dojo Soeandy
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Stephano Chang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, Royal University Hospital, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Thomas Sun
- Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Alessandro Datti
- SMART Laboratory for High-Throughput Screening Programs, Mount Sinai Hospital, Network Biology Collaborative Centre, Toronto, ON, Canada.,Department of Agriculture, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Jeffrey T Henderson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Merino D, Kelly GL, Lessene G, Wei AH, Roberts AW, Strasser A. BH3-Mimetic Drugs: Blazing the Trail for New Cancer Medicines. Cancer Cell 2018; 34:879-891. [PMID: 30537511 DOI: 10.1016/j.ccell.2018.11.004] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 12/26/2022]
Abstract
Defects in apoptotic cell death can promote cancer and impair responses of malignant cells to anti-cancer therapy. Pro-survival BCL-2 proteins prevent apoptosis by keeping the cell death effectors, BAX and BAK, in check. The BH3-only proteins initiate apoptosis by neutralizing the pro-survival BCL-2 proteins. Structural analysis and medicinal chemistry led to the development of small-molecule drugs that mimic the function of the BH3-only proteins to kill cancer cells. The BCL-2 inhibitor venetoclax has been approved for treatment of refractory chronic lymphocytic leukemia and this drug and inhibitors of pro-survival MCL-1 and BCL-XL are being tested in diverse malignancies.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Biomimetic Materials/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/pharmacology
- bcl-X Protein/antagonists & inhibitors
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Delphine Merino
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew H Wei
- Department of Haematology, Alfred Hospital and Monash University Melbourne, Melbourne, VIC 3004, Australia
| | - Andrew W Roberts
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
27
|
Hwang E, Hwang SH, Kim J, Park JH, Oh S, Kim YA, Hwang KT. ABT-737 ameliorates docetaxel resistance in triple negative breast cancer cell line. Ann Surg Treat Res 2018; 95:240-248. [PMID: 30402442 PMCID: PMC6204323 DOI: 10.4174/astr.2018.95.5.240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
Purpose This study aimed to validate the synergistic effect of ABT-737 on docetaxel using MDA-MB-231, a triple negative breast cancer (TNBC) cell line overexpressing B-cell lymphoma-2 (Bcl-2). Methods Western blot analysis was performed to assess expression levels of Bcl-2 family proteins and caspase-related molecules. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle distribution was determined by flow cytometry analysis. Benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (z-VAD-fmk) was used for pretreatment to assess the role of caspases. Results Cell viability of MDA-MB-231 after combination treatment with ABT-737 and docetaxel was significantly lower than that after docetaxel or ABT-737 monotherapy based on MTT assay (both P < 0.001), with a combination index of 0.41. The proportion of sub-G1 population after combination treatment was significantly higher than that after docetaxel or ABT-737 monotherapy (P = 0.001, P = 0.003, respectively). Pretreatment with z-VAD-fmk completely restored cell viability of MDA-MB-231 from apoptotic cell death induced by combination therapy (P = 0.001). Although pro-caspase-8 or Bid did not show significant change in expression level, pro-casepase-9 showed significantly decreased expression after combination treatment. Cleaved caspase-3 showed increased expression while poly (ADP-ribose) polymerase cleavage was induced after combination treatment. However, hypoxia-inducible factor 1-alpha and aldehyde dehydrogenase 1 totally lost their expression after combination treatment. Conclusion Combination of ABT-737 with docetaxel elicits synergistic therapeutic effect on MDA-MB-231, a TNBC cell line overexpressing Bcl-2, mainly by activating the intrinsic pathway of apoptosis. Therefore, adjunct of ABT-737 to docetaxel might be a new therapeutic option to overcome docetaxel resistance of TNBCs overexpressing Bcl-2.
Collapse
Affiliation(s)
- Eunjoo Hwang
- Department of Surgery, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul, Korea
| | - Seong-Hye Hwang
- Department of Surgery, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul, Korea
| | - Jongjin Kim
- Department of Surgery, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul, Korea
| | - Jin Hyun Park
- Department of Internal Medicine, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul, Korea
| | - Sohee Oh
- Department of Biostatistics, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul, Korea
| | - Young A Kim
- Department of Pathology, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul, Korea
| | - Ki-Tae Hwang
- Department of Surgery, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul, Korea
| |
Collapse
|
28
|
Nangia V, Siddiqui FM, Caenepeel S, Timonina D, Bilton SJ, Phan N, Gomez-Caraballo M, Archibald HL, Li C, Fraser C, Rigas D, Vajda K, Ferris LA, Lanuti M, Wright CD, Raskin KA, Cahill DP, Shin JH, Keyes C, Sequist LV, Piotrowska Z, Farago AF, Azzoli CG, Gainor JF, Sarosiek KA, Brown SP, Coxon A, Benes CH, Hughes PE, Hata AN. Exploiting MCL1 Dependency with Combination MEK + MCL1 Inhibitors Leads to Induction of Apoptosis and Tumor Regression in KRAS-Mutant Non-Small Cell Lung Cancer. Cancer Discov 2018; 8:1598-1613. [PMID: 30254092 DOI: 10.1158/2159-8290.cd-18-0277] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/30/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
BH3 mimetic drugs, which inhibit prosurvival BCL2 family proteins, have limited single-agent activity in solid tumor models. The potential of BH3 mimetics for these cancers may depend on their ability to potentiate the apoptotic response to chemotherapy and targeted therapies. Using a novel class of potent and selective MCL1 inhibitors, we demonstrate that concurrent MEK + MCL1 inhibition induces apoptosis and tumor regression in KRAS-mutant non-small cell lung cancer (NSCLC) models, which respond poorly to MEK inhibition alone. Susceptibility to BH3 mimetics that target either MCL1 or BCL-xL was determined by the differential binding of proapoptotic BCL2 proteins to MCL1 or BCL-xL, respectively. The efficacy of dual MEK + MCL1 blockade was augmented by prior transient exposure to BCL-xL inhibitors, which promotes the binding of proapoptotic BCL2 proteins to MCL1. This suggests a novel strategy for integrating BH3 mimetics that target different BCL2 family proteins for KRAS-mutant NSCLC. SIGNIFICANCE: Defining the molecular basis for MCL1 versus BCL-xL dependency will be essential for effective prioritization of BH3 mimetic combination therapies in the clinic. We discover a novel strategy for integrating BCL-xL and MCL1 inhibitors to drive and subsequently exploit apoptotic dependencies of KRAS-mutant NSCLCs treated with MEK inhibitors.See related commentary by Leber et al., p. 1511.This article is highlighted in the In This Issue feature, p. 1494.
Collapse
Affiliation(s)
- Varuna Nangia
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Faria M Siddiqui
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Sean Caenepeel
- Department of Oncology Research, Amgen, Thousand Oaks, California
| | - Daria Timonina
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Samantha J Bilton
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Nicole Phan
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | | | - Hannah L Archibald
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Chendi Li
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Cameron Fraser
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Diamanda Rigas
- Department of Oncology Research, Amgen, Thousand Oaks, California
| | - Kristof Vajda
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Lorin A Ferris
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Michael Lanuti
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Cameron D Wright
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Kevin A Raskin
- Department of Orthopaedics, Massachusetts General Hospital, Boston, Massachusetts
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - John H Shin
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Colleen Keyes
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lecia V Sequist
- Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Zofia Piotrowska
- Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Anna F Farago
- Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Christopher G Azzoli
- Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Justin F Gainor
- Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kristopher A Sarosiek
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Sean P Brown
- Department of Medicinal Chemistry, Amgen, Thousand Oaks, California
| | - Angela Coxon
- Department of Oncology Research, Amgen, Thousand Oaks, California
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Paul E Hughes
- Department of Oncology Research, Amgen, Thousand Oaks, California
| | - Aaron N Hata
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts. .,Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Narla G, Sangodkar J, Ryder CB. The impact of phosphatases on proliferative and survival signaling in cancer. Cell Mol Life Sci 2018; 75:2695-2718. [PMID: 29725697 PMCID: PMC6023766 DOI: 10.1007/s00018-018-2826-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/24/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
The dynamic and stringent coordination of kinase and phosphatase activity controls a myriad of physiologic processes. Aberrations that disrupt the balance of this interplay represent the basis of numerous diseases. For a variety of reasons, early work in this area portrayed kinases as the dominant actors in these signaling events with phosphatases playing a secondary role. In oncology, these efforts led to breakthroughs that have dramatically altered the course of certain diseases and directed vast resources toward the development of additional kinase-targeted therapies. Yet, more recent scientific efforts have demonstrated a prominent and sometimes driving role for phosphatases across numerous malignancies. This maturation of the phosphatase field has brought with it the promise of further therapeutic advances in the field of oncology. In this review, we discuss the role of phosphatases in the regulation of cellular proliferation and survival signaling using the examples of the MAPK and PI3K/AKT pathways, c-Myc and the apoptosis machinery. Emphasis is placed on instances where these signaling networks are perturbed by dysregulation of specific phosphatases to favor growth and persistence of human cancer.
Collapse
Affiliation(s)
| | - Jaya Sangodkar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
30
|
Chen Q, Kang J, Fu C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct Target Ther 2018; 3:18. [PMID: 29967689 PMCID: PMC6026494 DOI: 10.1038/s41392-018-0018-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Cell death is an essential biological process for physiological growth and development. Three classical forms of cell death-apoptosis, autophagy, and necrosis-display distinct morphological features by activating specific signaling pathways. With recent research advances, we have started to appreciate that these cell death processes can cross-talk through interconnecting, even overlapping, signaling pathways, and the final cell fate is the result of the interplay of different cell death programs. This review provides an insight into the independence of and associations among these three types of cell death and explores the significance of cell death under the specific conditions of human diseases, particularly neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Qi Chen
- 1College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 China
| | - Jian Kang
- 3Cancer Signalling Laboratory, Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, 305 Grattan street, Melbourne, VIC 3000 Australia
| | - Caiyun Fu
- 1College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 China.,4Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, CA 94158 USA.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, 310014 China
| |
Collapse
|
31
|
Thiagarajan PS, Wu X, Zhang W, Shi I, Bagai R, Leahy P, Feng Y, Veigl M, Lindner D, Danielpour D, Yin L, Rosell R, Bivona TG, Zhang Z, Ma PC. Transcriptomic-metabolomic reprogramming in EGFR-mutant NSCLC early adaptive drug escape linking TGFβ2-bioenergetics-mitochondrial priming. Oncotarget 2018; 7:82013-82027. [PMID: 27852038 PMCID: PMC5347670 DOI: 10.18632/oncotarget.13307] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/28/2016] [Indexed: 11/25/2022] Open
Abstract
The impact of EGFR-mutant NSCLC precision therapy is limited by acquired resistance despite initial excellent response. Classic studies of EGFR-mutant clinical resistance to precision therapy were based on tumor rebiopsies late during clinical tumor progression on therapy. Here, we characterized a novel non-mutational early adaptive drug-escape in EGFR-mutant lung tumor cells only days after therapy initiation, that is MET-independent. The drug-escape cell states were analyzed by integrated transcriptomic and metabolomics profiling uncovering a central role for autocrine TGFβ2 in mediating cellular plasticity through profound cellular adaptive Omics reprogramming, with common mechanistic link to prosurvival mitochondrial priming. Cells undergoing early adaptive drug escape are in proliferative-metabolic quiescent, with enhanced EMT-ness and stem cell signaling, exhibiting global bioenergetics suppression including reverse Warburg, and are susceptible to glutamine deprivation and TGFβ2 inhibition. Our study further supports a preemptive therapeutic targeting of bioenergetics and mitochondrial priming to impact early drug-escape emergence using EGFR precision inhibitor combined with broad BH3-mimetic to interrupt BCL-2/BCL-xL together, but not BCL-2 alone.
Collapse
Affiliation(s)
- Praveena S Thiagarajan
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaoliang Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Sara Crile Allen and James Frederick Allen Comprehensive Lung Cancer Program, Eminent Scholar in Lung Cancer Research, WVU Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Wei Zhang
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Sara Crile Allen and James Frederick Allen Comprehensive Lung Cancer Program, Eminent Scholar in Lung Cancer Research, WVU Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Ivy Shi
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rakesh Bagai
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Patrick Leahy
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Yan Feng
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Martina Veigl
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Daniel Lindner
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - David Danielpour
- Case Comprehensive Cancer Center, Cleveland, OH, USA.,Department of Pharmacology, and Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Lihong Yin
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rafael Rosell
- Catalan Institute of Oncology, Badalona, Spain.,Spanish Lung Cancer Group, Badalona, Spain
| | - Trever G Bivona
- Department of Medicine, Division of Hematology/ Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Zhenfeng Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Patrick C Ma
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Sara Crile Allen and James Frederick Allen Comprehensive Lung Cancer Program, Eminent Scholar in Lung Cancer Research, WVU Cancer Institute, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
32
|
Shang G, Ma X, Lv G. Cell division cycle 20 promotes cell proliferation and invasion and inhibits apoptosis in osteosarcoma cells. Cell Cycle 2017; 17:43-52. [PMID: 28980876 DOI: 10.1080/15384101.2017.1387700] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Cdc20 (cell division cycle 20 homologue) has been reported to exhibit an oncogenic role in human tumorigenesis. However, the function of Cdc20 in osteosarcoma (OS) has not been investigated. In the current study, we aim to explore the role of Cdc20 in human OS cells. Multiple approaches were used to measure cell growth, apoptosis, cell cycle, migration and invasion in OS cells after depletion of Cdc20 or overexpression of Cdc20. We found that down-regulation of Cdc20 inhibited cell growth, induced apoptosis and triggered cell cycle arrest in OS cells. Moreover, Cdc20 down-regulation let to inhibition of cell migration and invasion in OS cells. Consistently, overexpression of Cdc20 in OS cells promoted cell growth, inhibited apoptosis, enhanced cell migration and invasion. Mechanistically, our Western blotting results showed that overexpression of Cdc20 reduced the expression of Bim and p21, whereas depletion of Cdc20 upregulated Bim and p21 levels in OS cells. Altogether, our findings demonstrated that Cdc20 exerts its oncogenic role partly due to regulation of Bim and p21 in OS cells, suggesting that targeting Cdc20 could be useful for the treatment of OS.
Collapse
Affiliation(s)
- Guanning Shang
- a Department of Orthopaedics , The First Affiliated Hospital , China Medical University , Shenyang , Liaoning Province , PR China
| | - Xu Ma
- a Department of Orthopaedics , The First Affiliated Hospital , China Medical University , Shenyang , Liaoning Province , PR China
| | - Gang Lv
- a Department of Orthopaedics , The First Affiliated Hospital , China Medical University , Shenyang , Liaoning Province , PR China
| |
Collapse
|
33
|
The combination of reduced MCL-1 and standard chemotherapeutics is tolerable in mice. Cell Death Differ 2017; 24:2032-2043. [PMID: 28800129 DOI: 10.1038/cdd.2017.125] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/14/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
A common therapeutic strategy to combat human cancer is the use of combinations of drugs, each targeting different cellular processes or vulnerabilities. Recent studies suggest that addition of an MCL-1 inhibitor to such anticancer drug treatments could be an attractive therapeutic strategy. Thus, it is of great interest to understand whether combinations of conventional anticancer drugs with an MCL-1 inhibitor will be tolerable and efficacious. In order to mimic the combination of MCL-1 inhibition with other cancer therapeutics, we treated Mcl-1+/- heterozygous mice, which have a ~50% reduction in MCL-1 protein in their cells, with a broad range of chemotherapeutic drugs. Careful monitoring of treated mice revealed that a wide range of chemotherapeutic drugs had no significant effect on the general well-being of Mcl-1+/- mice with no overt damage to a broad range of tissues, including the haematopoietic compartment, heart, liver and kidney. These results indicate that MCL-1 inhibition may represent a tolerable strategy in cancer therapy, even when combined with select cytotoxic drugs.
Collapse
|
34
|
Li X, Li B, Ni Z, Zhou P, Wang B, He J, Xiong H, Yang F, Wu Y, Lyu X, Zhang Y, Zeng Y, Lian J, He F. Metformin Synergizes with BCL-XL/BCL-2 Inhibitor ABT-263 to Induce Apoptosis Specifically in p53-Defective Cancer Cells. Mol Cancer Ther 2017; 16:1806-1818. [DOI: 10.1158/1535-7163.mct-16-0763] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/30/2017] [Accepted: 05/15/2017] [Indexed: 11/16/2022]
|
35
|
Tanyildiz HG, Kaygusuz G, Unal E, Tacyildiz N, Dincaslan H, Yavuz G. The prognostic importance of TGF-β, TGF-β receptor, and fascin in childhood solid tumors. Pediatr Hematol Oncol 2017; 34:238-253. [PMID: 29065267 DOI: 10.1080/08880018.2017.1363838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fascin plays a role in tumor metastasis under the influence of TGF-β, each potentiating the effect of the other. We retrospectively investigated whether there was a prognostic relationship between TGF-β and fascin, and disease stage, local recurrence, metastasis tendency, and response to treatment. Twelve neuroblastomas, 17 osteosarcomas, 14 Ewing's sarcomas, 15 rhabdomyosarcoma cases, and 8 rare solid tumors were included. Serum TGF-β levels were high at the time of diagnosis in all groups (p = .015) and decreased significantly during remission (p = .008). Serum TGF-β values in the relapse period rarely reached high levels at the time of diagnosis and even stayed under the control group values (p = .017). When TGF-β receptor expression in tumor tissues was evaluated, the association of TGF-β receptor positivity with metastatic disease and advanced stage was striking. We found that 88% of rhabdomyosarcoma cases with alveolar histopathology expressed the TGF-β receptor, and the association between TGF-β receptor positivity and alveolar histopathology seemed to be a negative prognostic marker. When fascin levels were evaluated in childhood solid tumor tissue, the risk of relapse increased when the fascin total score at diagnosis was >4. This is one of the few studies including prognostic markers such as serum TGF-β, tissue TGF-β, TGF-β receptor, and fascin in pediatric solid tumors. Considering the poor prognosis of advanced stage pediatric solid tumors and the need for biomarkers to predict which patient might need more intensive therapy or warrant closer follow-up afterward, we think that TGF-β, TGF-β receptor, and fascin expression have an important prognostic role.
Collapse
Affiliation(s)
| | - Gulsah Kaygusuz
- b Department of Pathology , Ankara University School of Medicine , Ankara , Turkey
| | - Emel Unal
- a Department of Pediatric Oncology , Ankara University School of Medicine , Ankara , Turkey
| | - Nurdan Tacyildiz
- a Department of Pediatric Oncology , Ankara University School of Medicine , Ankara , Turkey
| | - Handan Dincaslan
- a Department of Pediatric Oncology , Ankara University School of Medicine , Ankara , Turkey
| | - Gulsan Yavuz
- a Department of Pediatric Oncology , Ankara University School of Medicine , Ankara , Turkey
| |
Collapse
|
36
|
Schenk RL, Strasser A, Dewson G. BCL-2: Long and winding path from discovery to therapeutic target. Biochem Biophys Res Commun 2017; 482:459-469. [PMID: 28212732 DOI: 10.1016/j.bbrc.2016.10.100] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 02/09/2023]
Abstract
In 1988, the BCL-2 protein was found to promote cancer by limiting cell death rather than enhancing proliferation. This discovery set the wheels in motion for an almost 30 year journey involving many international research teams that has recently culminated in the approval for a drug, ABT-199/venetoclax/Venclexta that targets this protein in the treatment of cancer. This review will describe the long and winding path from the discovery of this protein and understanding the fundamental process of apoptosis that BCL-2 and its numerous homologues control, through to its exploitation as a drug target that is set to have significant benefit for cancer patients.
Collapse
Affiliation(s)
- Robyn L Schenk
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
37
|
The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 2016; 538:477-482. [DOI: 10.1038/nature19830] [Citation(s) in RCA: 671] [Impact Index Per Article: 83.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/07/2016] [Indexed: 12/15/2022]
|
38
|
de Jong Y, van Maldegem AM, Marino-Enriquez A, de Jong D, Suijker J, Briaire-de Bruijn IH, Kruisselbrink AB, Cleton-Jansen AM, Szuhai K, Gelderblom H, Fletcher JA, Bovée JVMG. Inhibition of Bcl-2 family members sensitizes mesenchymal chondrosarcoma to conventional chemotherapy: report on a novel mesenchymal chondrosarcoma cell line. J Transl Med 2016; 96:1128-37. [PMID: 27617402 DOI: 10.1038/labinvest.2016.91] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/08/2016] [Indexed: 11/09/2022] Open
Abstract
Mesenchymal chondrosarcomas are rare and highly aggressive sarcomas occurring in bone and soft tissue, with poor overall survival. Bcl-2 expression was previously shown to be upregulated in mesenchymal chondrosarcomas. We here report on a newly derived mesenchymal chondrosarcoma cell line, MCS170, in which we investigated treatment with the BH3 mimetic ABT-737 alone or in combination with conventional chemotherapy as a possible new therapeutic strategy. The presence of the characteristic HEY1-NCOA2 fusion was confirmed in the MCS170 cell line using FISH, RT-PCR, and sequencing. The MCS170 cell line was treated with ABT-737 alone or in combination with doxorubicin or cisplatin. Cell viability and proliferation was determined using WST-1 viability assays and the xCELLigence system. Expression of Bcl-2 family members was studied using immunohistochemistry. Apoptosis was determined using the caspase-glo 3/7 assay and western blot for PARP cleavage. The MCS170 cell line was sensitive to doxorubicin treatment with an IC50 of 0.09 μM after 72 h, but more resistant to cisplatin treatment with an IC50 of 4.5 μM after 72 h. Cells showed little sensitivity toward ABT-737 with an IC50 of 1.8 μM after 72 h. Combination treatments demonstrated ABT-737 synergism with cisplatin as well as doxorubicin as shown by induction of apoptosis and reduction in cell proliferation. Restoration of the apoptotic machinery by inhibition of Bcl-2 family members sensitizes MCS170 mesenchymal chondrosarcoma cells to conventional chemotherapy. This indicates that combining the inhibition of Bcl-2 family members with conventional chemotherapy can be a possible therapeutic strategy for patients with mesenchymal chondrosarcoma.
Collapse
Affiliation(s)
- Yvonne de Jong
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Adrian Marino-Enriquez
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Danielle de Jong
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johnny Suijker
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
39
|
Kamath PR, Sunil D, Ajees AA, Pai K, Biswas S. N′-((2-(6-bromo-2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazide as a probable Bcl-2/Bcl-xL inhibitor with apoptotic and anti-metastatic potential. Eur J Med Chem 2016; 120:134-47. [PMID: 27187865 DOI: 10.1016/j.ejmech.2016.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/26/2016] [Accepted: 05/05/2016] [Indexed: 01/09/2023]
Abstract
A wide number of marketed drugs and drug candidates in cancer clinical development contain halogen substituents. The aim of the present study was to synthesize a series of halogen incorporated indole-coumarin hybrid schiff bases - N'-((2-(2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazides and to investigate their apoptotic and anti-migratory potential in human breast adenocarcinoma cells as well as to examine their Bcl-2 and Bcl-xL protein binding ability via in silico docking. Hybrid 5g with a bromine atom in position-7 of coumarin ring displayed significant dose dependent cytotoxic activity with high selectivity to MCF-7 cells in MTT assay. Cell cycle progression analysis of 5g treated cells using flow cytometer exhibited a cell cycle arrest in the S phase and accumulation of cells in the subG1 phase. The apoptotic mode of cell death induced by 5g was further confirmed by Annexin-V staining assay. The wound healing assay revealed a profound impairment in the migration of MCF-7 cells presumably due to down-regulation of Bcl-2 and Bcl-xL proteins induced by 5g as observed in immunoblotting analysis. SAR studies of these hybrid molecules based on cell viability and docking were also probed. The most active pharmacophore 5g was found to bind favourably to Bcl-2 and Bcl-xL in docking simulation analysis suggesting it to be a probable small molecule Bcl-2/Bcl-xL inhibitor and a potential lead for breast cancer chemotherapy with apoptotic and anti-metastatic properties.
Collapse
|
40
|
Sun Q, Chen X, Zhou Q, Burstein E, Yang S, Jia D. Inhibiting cancer cell hallmark features through nuclear export inhibition. Signal Transduct Target Ther 2016; 1:16010. [PMID: 29263896 PMCID: PMC5661660 DOI: 10.1038/sigtrans.2016.10] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/28/2016] [Accepted: 05/31/2016] [Indexed: 02/05/2023] Open
Abstract
Treating cancer through inhibition of nuclear export is one of the best examples of basic research translation into clinical application. Nuclear export factor chromosomal region maintenance 1 (CRM1; Xpo1 and exportin-1) controls cellular localization and function of numerous proteins that are critical for the development of many cancer hallmarks. The diverse actions of CRM1 are likely to explain the broad ranging anti-cancer potency of CRM1 inhibitors observed in pre-clinical studies and/or clinical trials (phase I–III) on both advanced-stage solid and hematological tumors. In this review, we compare and contrast the mechanisms of action of different CRM1 inhibitors, and discuss the potential benefit of unexplored non-covalent CRM1 inhibitors. This emerging field has uncovered that nuclear export inhibition is well poised as an attractive target towards low-toxicity broad-spectrum potent anti-cancer therapy.
Collapse
Affiliation(s)
- Qingxiang Sun
- State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueqin Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Zhou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ezra Burstein
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Da Jia
- State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,West China 2nd University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
A phase II trial of the BCL-2 homolog domain 3 mimetic AT-101 in combination with docetaxel for recurrent, locally advanced, or metastatic head and neck cancer. Invest New Drugs 2016; 34:481-9. [PMID: 27225873 DOI: 10.1007/s10637-016-0364-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/19/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND AT-101 is a BCL-2 Homolog domain 3 mimetic previously demonstrated to have tumoricidal effects in advanced solid organ malignancies. Given the evidence of activity in xenograft models, treatment with AT-101 in combination with docetaxel is a therapeutic doublet of interest in metastatic head and neck squamous cell carcinoma. PATIENTS AND METHODS Patients included in this trial had unresectable, recurrent, or distantly metastatic head and neck squamous cell carcinoma (R/M HNSCC) not amenable to curative radiation or surgery. This was an open label randomized, phase II trial in which patients were administered AT-101 in addition to docetaxel. The three treatment arms were docetaxel, docetaxel plus pulse dose AT-101, and docetaxel plus metronomic dose AT-101. The primary endpoint of this trial was overall response rate. RESULTS Thirty-five patients were registered and 32 were evaluable for treatment response. Doublet therapy with AT-101 and docetaxel was well tolerated with only 2 patients discontinuing therapy due to treatment related toxicities. The overall response rate was 11 % (4 partial responses) with a clinical benefit rate of 74 %. Median progression free survival was 4.3 months (range: 0.7-13.7) and overall survival was 5.5 months (range: 0.4-24). No significant differences were noted between dosing strategies. CONCLUSION Although met with a favorable toxicity profile, the addition of AT-101 to docetaxel in R/M HNSCC does not appear to demonstrate evidence of efficacy.
Collapse
|
42
|
Broecker-Preuss M, Becher-Boveleth N, Müller S, Mann K. The BH3 mimetic drug ABT-737 induces apoptosis and acts synergistically with chemotherapeutic drugs in thyroid carcinoma cells. Cancer Cell Int 2016; 16:27. [PMID: 27042160 PMCID: PMC4818940 DOI: 10.1186/s12935-016-0303-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/24/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients with dedifferentiated and anaplastic thyroid carcinomas that do not take up radioiodine are resistant to chemotherapeutic treatment and external irradiation and thus are difficult to treat. Direct induction of apoptosis is a promising approach in these apoptosis-resistant tumor cells. The BH3 mimetic ABT-737 belongs to a new class of drugs that target anti-apoptotic proteins of the BCL-2 family and facilitate cell death. The purpose of this study was to investigate the effect of ABT-737 alone or in combination with chemotherapeutic drugs on thyroid carcinoma cell lines. METHODS A total of 16 cell lines derived from follicular, papillary, and anaplastic thyroid carcinomas were treated with ABT-737. Cell viability was measured with MTT assay. Cell death was determined by cell cycle phase distribution and subG1 peak analyses, determination of caspase 3/7 activity and caspase cleavage products, lactate dehydrogenase (LDH) liberation assays and LC3 analysis by western blot. RESULTS The number of viable cells was decreased in all cell lines examined after ABT-737 treatment, with IC50 values ranging from 0.73 to 15.6 μM. Biochemical markers of apoptosis like caspase activities, caspase cleavage products and DNA fragmentation determined as SubG1 peak were elevated after ABT-737 treatment, but no LC3 cleavage was induced by ABT-737 indicating no autophagic processes. In combination with doxorubicin and gemcitabine, ABT-737 showed synergistic effects on cell viability. CONCLUSIONS With these experiments we demonstrated the efficacy of the BH3 mimetic drug ABT-737 against dedifferentiated thyroid carcinoma cells of various histological origins and showed synergistic effects with chemotherapeutic drugs. ABT-737-treated cells underwent an apoptotic cell death. ABT-737 and related BH3 mimetic drugs, alone or in combination, may thus be of value as a new therapeutic option for dedifferentiated thyroid carcinomas.
Collapse
Affiliation(s)
- Martina Broecker-Preuss
- Department of Endocrinology and Metabolism, Division of Laboratory Research, University Hospital Essen, Hufelandstr. 55, 45122 Essen, Germany ; Department of Clinical Chemistry, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Nina Becher-Boveleth
- Department of Endocrinology and Metabolism, Division of Laboratory Research, University Hospital Essen, Hufelandstr. 55, 45122 Essen, Germany ; Clinic of Nuclear Medicine, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Stefan Müller
- Department of Nuclear Medicine, University Hospital Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Klaus Mann
- Department of Endocrinology and Metabolism, Division of Laboratory Research, University Hospital Essen, Hufelandstr. 55, 45122 Essen, Germany ; Center of Endocrinology Alter Hof München, Dienerstr. 12, Munich, Germany
| |
Collapse
|
43
|
Matsumoto M, Nakajima W, Seike M, Gemma A, Tanaka N. Cisplatin-induced apoptosis in non-small-cell lung cancer cells is dependent on Bax- and Bak-induction pathway and synergistically activated by BH3-mimetic ABT-263 in p53 wild-type and mutant cells. Biochem Biophys Res Commun 2016; 473:490-6. [DOI: 10.1016/j.bbrc.2016.03.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
|
44
|
Srivastava AK, Jaganathan S, Stephen L, Hollingshead MG, Layhee A, Damour E, Govindharajulu JP, Donohue J, Esposito D, Mapes JP, Kinders RJ, Takebe N, Tomaszewski JE, Kummar S, Doroshow JH, Parchment RE. Effect of a Smac Mimetic (TL32711, Birinapant) on the Apoptotic Program and Apoptosis Biomarkers Examined with Validated Multiplex Immunoassays Fit for Clinical Use. Clin Cancer Res 2016; 22:1000-10. [PMID: 26446940 PMCID: PMC4755826 DOI: 10.1158/1078-0432.ccr-14-3156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 09/04/2015] [Indexed: 01/10/2023]
Abstract
PURPOSE To support clinical pharmacodynamic evaluation of the Smac mimetic TL32711 (birinapant) and other apoptosis-targeting drugs, we describe the development, validation, and application of novel immunoassays for 15 cytosolic and membrane-associated proteins indicative of the induction, onset, and commitment to apoptosis in human tumors. EXPERIMENTAL DESIGN The multiplex immunoassays were constructed on the Luminex platform with apoptosis biomarkers grouped into three panels. Panel 1 contains Bak, Bax, total caspase-3, total lamin-B (intact and 45 kDa fragment), and Smac; panel 2 contains Bad, Bax-Bcl-2 heterodimer, Bcl-xL, Bim, and Mcl1; and panel 3 contains active (cleaved) caspase-3, Bcl-xL-Bak heterodimer, Mcl1-Bak heterodimer, pS99-Bad, and survivin. Antibody specificity was confirmed by immunoprecipitation and Western blot analysis. RESULTS Two laboratories analytically validated the multiplex immunoassays for application with core-needle biopsy samples processed to control preanalytical variables; the biologic variability for each biomarker was estimated from xenograft measurements. Studies of TL32711 in xenograft models confirmed a dose-dependent increase in activated caspase-3 6 hours after dosing and provided assay fit-for-purpose confirmation. Coincident changes in cytosolic lamin-B and subsequent changes in Bcl-xL provided correlative evidence of caspase-3 activation. The validated assay is suitable for use with clinical specimens; 14 of 15 biomarkers were quantifiable in patient core-needle biopsies. CONCLUSIONS The validated multiplex immunoassays developed for this study provided proof of mechanism data for TL32711 and are suitable for quantifying apoptotic biomarkers in clinical trials.
Collapse
Affiliation(s)
- Apurva K Srivastava
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| | - Soumya Jaganathan
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Melinda G Hollingshead
- Biological Testing Branch, Developmental Therapeutics Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | | | - Jeevan Prasaad Govindharajulu
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Dominic Esposito
- Protein Expression Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Robert J Kinders
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Naoko Takebe
- Investigational Drug Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Joseph E Tomaszewski
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Shivaani Kummar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Ralph E Parchment
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| |
Collapse
|
45
|
Delbridge ARD, Grabow S, Strasser A, Vaux DL. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer 2016; 16:99-109. [PMID: 26822577 DOI: 10.1038/nrc.2015.17] [Citation(s) in RCA: 545] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The 'hallmarks of cancer' are generally accepted as a set of genetic and epigenetic alterations that a normal cell must accrue to transform into a fully malignant cancer. It follows that therapies designed to counter these alterations might be effective as anti-cancer strategies. Over the past 30 years, research on the BCL-2-regulated apoptotic pathway has led to the development of small-molecule compounds, known as 'BH3-mimetics', that bind to pro-survival BCL-2 proteins to directly activate apoptosis of malignant cells. This Timeline article focuses on the discovery and study of BCL-2, the wider BCL-2 protein family and, specifically, its roles in cancer development and therapy.
Collapse
Affiliation(s)
- Alex R D Delbridge
- Walter and Eliza Hall Institute of Medical Research and the Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Stephanie Grabow
- Walter and Eliza Hall Institute of Medical Research and the Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research and the Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - David L Vaux
- Walter and Eliza Hall Institute of Medical Research and the Department of Medical Biology, University of Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun 2016; 7:10384. [PMID: 26785948 PMCID: PMC4735924 DOI: 10.1038/ncomms10384] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 12/04/2015] [Indexed: 12/19/2022] Open
Abstract
Bcl-xL suppresses mitochondria-mediated apoptosis and is frequently overexpressed in cancer to promote cancer cell survival. Bcl-xL also promotes metastasis. However, it is unclear whether this metastatic function is dependent on its anti-apoptotic activity in the mitochondria. Here we demonstrate that Bcl-xL promotes metastasis independent of its anti-apoptotic activity. We show that apoptosis-defective Bcl-xL mutants and an engineered Bcl-xL targeted to the nucleus promote epithelial–mesenchymal transition, migration, invasion and stemness in pancreatic neuroendocrine tumour (panNET) and breast cancer cell lines. However, Bcl-xL proteins targeted to the mitochondria or outside of the nucleus do not have these functions. We confirm our findings in spontaneous and xenograft mouse models. Furthermore, Bcl-xL exerts metastatic function through epigenetic modification of the TGFβ promoter to increase TGFβ signalling. Consistent with these findings, we detect nuclear Bcl-xL in human metastatic panNETs. Taken together, the metastatic function of Bcl-xL is independent of its anti-apoptotic activity and its residence in the mitochondria. Bcl-xL is an anti-apoptotic protein that has also been implicated in metastasis. In this study, the authors show that nuclear Bcl-xL promotes metastasis by regulating TGFβ signaling, which is independent of the anti-apoptotic activity of Bcl-xL.
Collapse
|
47
|
Lee HY, Kim IK, Lee HI, Mo JY, Yeo CD, Kang HH, Moon HS, Lee SH. The apoptotic effect of simvastatin via the upregulation of BIM in nonsmall cell lung cancer cells. Exp Lung Res 2016; 42:14-23. [DOI: 10.3109/01902148.2015.1125970] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Liu XC, Gao JM, Liu S, Liu L, Wang JR, Qu XJ, Cai B, Wang SL. Targeting apoptosis is the major battle field for killing cancers. World J Transl Med 2015; 4:69-77. [DOI: 10.5528/wjtm.v4.i3.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/27/2015] [Accepted: 08/31/2015] [Indexed: 02/05/2023] Open
Abstract
Targeting apoptosis is one of the major strategies for cancer therapy. Essentially, most of the conventional cancer therapeutic drugs that are in the clinical use induce apoptosis and in part necrosis of malignant cells and therefore prevent cancer progression and metastasis. Although these cytotoxic anticancer drugs are important weapons for killing cancers, their toxic side effects limited their application. The molecularly targeted therapeutics that are based on the deeper understanding of the defects in the apoptotic signaling in cancers are emerging and have shown promising anticancer activity in selectively killing cancers but not normal cells. The examples of molecular targets that are under exploration for cancer therapy include the cell surface receptors such as TNFR family death receptors, the intrinsic Bcl-2 family members and some other intracellular molecules like p53, MDM2, IAP, and Smac. The advance in the high-throughput bio-technologies has greatly accelerated the progress of cancer drug discovery.
Collapse
|
49
|
Anisuzzaman ASM, Haque A, Rahman MA, Wang D, Fuchs JR, Hurwitz S, Liu Y, Sica G, Khuri FR, Chen ZG, Shin DM, Amin ARMR. Preclinical In Vitro, In Vivo, and Pharmacokinetic Evaluations of FLLL12 for the Prevention and Treatment of Head and Neck Cancers. Cancer Prev Res (Phila) 2015; 9:63-73. [PMID: 26511491 DOI: 10.1158/1940-6207.capr-15-0240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/14/2015] [Indexed: 12/28/2022]
Abstract
Despite its high promise for cancer prevention and therapy, the potential utility of curcumin in cancer is compromised by its low bioavailability and weak potency. The purpose of the current study was to assess the in vitro and in vivo efficacy and pharmacokinetic parameters of the potent curcumin analogue FLLL12 in SCCHN and identify the mechanisms of its antitumor effect. IC50 values against a panel of one premalignant and eight malignant head and neck cancer cell lines as well as apoptosis assay results suggested that FLLL12 is 10- to 24-fold more potent than natural curcumin depending on the cell line and induces mitochondria-mediated apoptosis. In vivo efficacy (xenograft) and pharmacokinetic studies also suggested that FLLL12 is significantly more potent and has more favorable pharmacokinetic properties than curcumin. FLLL12 strongly inhibited the expression of p-EGFR, EGFR, p-AKT, AKT, Bcl-2, and Bid and increased the expression of Bim. Overexpression of constitutively active AKT or Bcl-2 or ablation of Bim or Bid significantly inhibited FLLL12-induced apoptosis. Further mechanistic studies revealed that FLLL12 regulated EGFR and AKT at transcriptional levels, whereas Bcl-2 was regulated at the translational level. Finally, FLLL12 strongly inhibited the AKT downstream targets mTOR and FOXO1a and 3a. Taken together, our results strongly suggest that FLLL12 is a potent curcumin analogue with more favorable pharmacokinetic properties that induces apoptosis of head and neck cancer cell lines by inhibition of survival proteins including EGFR, AKT, and Bcl-2 and increasing of the proapoptotic protein Bim.
Collapse
Affiliation(s)
- Abu Syed Md Anisuzzaman
- Department of Hematology and Medical Oncology and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Abedul Haque
- Department of Hematology and Medical Oncology and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Mohammad Aminur Rahman
- Department of Hematology and Medical Oncology and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - James R Fuchs
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio
| | - Selwyn Hurwitz
- Department of Pediatrics and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Yuan Liu
- Biostatistics & Bioinformatics Shared Resource at Winship Cancer Institute, Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Atlanta, Georgia
| | - Gabriel Sica
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Zhuo Georgia Chen
- Department of Hematology and Medical Oncology and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Dong M Shin
- Department of Hematology and Medical Oncology and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - A R M Ruhul Amin
- Department of Hematology and Medical Oncology and Winship Cancer Institute of Emory University, Atlanta, Georgia.
| |
Collapse
|
50
|
The SF3B1 inhibitor spliceostatin A (SSA) elicits apoptosis in chronic lymphocytic leukaemia cells through downregulation of Mcl-1. Leukemia 2015; 30:351-60. [PMID: 26488112 DOI: 10.1038/leu.2015.286] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/03/2015] [Accepted: 10/07/2015] [Indexed: 12/14/2022]
Abstract
The pro-survival Bcl-2 family member Mcl-1 is expressed in chronic lymphocytic leukaemia (CLL), with high expression correlated with progressive disease. The spliceosome inhibitor spliceostatin A (SSA) is known to regulate Mcl-1 and so here we assessed the ability of SSA to elicit apoptosis in CLL. SSA induced apoptosis of CLL cells at low nanomolar concentrations in a dose- and time-dependent manner, but independently of SF3B1 mutational status, IGHV status and CD38 or ZAP70 expression. However, normal B and T cells were less sensitive than CLL cells (P=0.006 and P<0.001, respectively). SSA altered the splicing of anti-apoptotic MCL-1(L) to MCL-1(s) in CLL cells coincident with induction of apoptosis. Overexpression studies in Ramos cells suggested that Mcl-1 was important for SSA-induced killing since its expression inversely correlated with apoptosis (P=0.001). IL4 and CD40L, present in patient lymph nodes, are known to protect tumour cells from apoptosis and significantly inhibited SSA, ABT-263 and ABT-199 induced killing following administration to CLL cells (P=0.008). However, by combining SSA with the Bcl-2/Bcl-x(L) antagonists ABT-263 or ABT-199, we were able to overcome this pro-survival effect. We conclude that SSA combined with Bcl-2/Bcl-x(L) antagonists may have therapeutic utility for CLL.
Collapse
|