1
|
Kuracha MR, Radhakrishna U, Kuracha SV, Vegi N, Gurung JL, McVicker BL. New Horizons in Cancer Progression and Metastasis: Hippo Signaling Pathway. Biomedicines 2024; 12:2552. [PMID: 39595118 PMCID: PMC11591698 DOI: 10.3390/biomedicines12112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
The Hippo pathway is highly evolved to maintain tissue homeostasis in diverse species by regulating cell proliferation, differentiation, and apoptosis. In tumor biology, the Hippo pathway is a prime example of signaling molecules involved in cancer progression and metastasis. Hippo core elements LATS1, LATS2, MST1, YAP, and TAZ have critical roles in the maintenance of traditional tissue architecture and cell homeostasis. However, in cancer development, dysregulation of Hippo signaling results in tumor progression and the formation secondary cancers. Hippo components not only transmit biochemical signals but also act as mediators of mechanotransduction pathways during malignant neoplasm development and metastatic disease. This review confers knowledge of Hippo pathway core components and their role in cancer progression and metastasis and highlights the clinical role of Hippo pathway in cancer treatment. The Hippo signaling pathway and its unresolved mechanisms hold great promise as potential therapeutic targets in the emerging field of metastatic cancer research.
Collapse
Affiliation(s)
- Murali R. Kuracha
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Sreenaga V. Kuracha
- Comparative Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Navyasri Vegi
- Shri Vishnu College of Pharmacy, Andhra University, Bhimavaram 534202, Andhra Pradesh, India;
| | - Jhyama Lhamo Gurung
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Benita L. McVicker
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
2
|
Furutake Y, Yamaguchi K, Yamanoi K, Kitamura S, Takamatsu S, Taki M, Ukita M, Hosoe Y, Murakami R, Abiko K, Horie A, Hamanishi J, Baba T, Matsumura N, Mandai M. YAP1 Suppression by ZDHHC7 Is Associated with Ferroptosis Resistance and Poor Prognosis in Ovarian Clear Cell Carcinoma. Mol Cancer Ther 2024; 23:1652-1665. [PMID: 38958503 DOI: 10.1158/1535-7163.mct-24-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Ovarian clear cell carcinoma (OCCC), which has unique clinical characteristics, arises from benign endometriotic cysts, forming an oxidative stress environment because of excess iron accumulation, and exhibits poor prognosis, particularly in advanced stages owing to resistance to conventional therapeutics. Ferroptosis is an iron-dependent form of programmed cell death induced by lipid peroxidation and controlled by Hippo signaling. We hypothesized that overcoming ferroptosis resistance is an attractive strategy because OCCC acquires oxidative stress resistance during its development and exhibits chemoresistant features indicative of ferroptosis resistance. This study aimed to determine whether OCCC is resistant to ferroptosis and clarify the mechanism underlying resistance. Unlike ovarian high-grade serous carcinoma cells, OCCC cells were exposed to oxidative stress. However, OCCC cells remained unaffected by lipid peroxidation. Cell viability assays revealed that OCCC cells exhibited resistance to the ferroptosis inducer erastin. Moreover, Samroc analysis showed that the Hippo signaling pathway was enriched in OCCC cell lines and clinical samples. Furthermore, patients with low expression of nuclear yes-associated protein 1 (YAP1) exhibited a significantly poor prognosis of OCCC. Moreover, YAP1 activation enhanced ferroptosis in OCCC cell lines. Furthermore, suppression of zinc finger DHHC-type palmitoyltransferase 7 (ZDHHC7) enhanced ferroptosis by activating YAP1 in OCCC cell lines. Mouse xenograft models demonstrated that ZDHHC7 inhibition suppressed tumor growth via YAP1 activation by erastin treatment. In conclusion, YAP1 activation regulated by ZDHHC7 enhanced ferroptosis in OCCC. Thus, overcoming ferroptosis resistance is a potential therapeutic strategy for OCCC.
Collapse
MESH Headings
- Ferroptosis
- Humans
- Female
- Animals
- Mice
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Prognosis
- YAP-Signaling Proteins/metabolism
- Acyltransferases
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Clear Cell/drug therapy
- Adenocarcinoma, Clear Cell/genetics
- Cell Line, Tumor
- Transcription Factors/metabolism
- Xenograft Model Antitumor Assays
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Gene Expression Regulation, Neoplastic
- Mice, Nude
- Cell Proliferation
- Drug Resistance, Neoplasm
- Signal Transduction
Collapse
Affiliation(s)
- Yoko Furutake
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Sachiko Kitamura
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Shiro Takamatsu
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Masayo Ukita
- Department of Obstetrics and Gynecology, Shizuoka General Hospital, Shizuoka, Japan
| | - Yuko Hosoe
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Kaoru Abiko
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Akihito Horie
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Casella C, Ballaz SJ. Genotoxic and neurotoxic potential of intracellular nanoplastics: A review. J Appl Toxicol 2024; 44:1657-1678. [PMID: 38494651 DOI: 10.1002/jat.4598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024]
Abstract
Plastic waste comprises polymers of different chemicals that disintegrate into nanoplastic particles (NPLs) of 1-100-nm size, thereby littering the environment and posing a threat to wildlife and human health. Research on NPL contamination has up to now focused on the ecotoxicology effects of the pollution rather than the health risks. This review aimed to speculate about the possible properties of carcinogenic and neurotoxic NPL as pollutants. Given their low-dimensional size and high surface size ratio, NPLs can easily penetrate biological membranes to cause functional and structural damage in cells. Once inside the cell, NPLs can interrupt the autophagy flux of cellular debris, alter proteostasis, provoke mitochondrial dysfunctions, and induce endoplasmic reticulum stress. Harmful metabolic and biological processes induced by NPLs include oxidative stress (OS), ROS generation, and pro-inflammatory reactions. Depending on the cell cycle status, NPLs may direct DNA damage, tumorigenesis, and lately carcinogenesis in tissues with high self-renewal capabilities like epithelia. In cells able to live the longest like neurons, NPLs could trigger neurodegeneration by promoting toxic proteinaceous aggregates, OS, and chronic inflammation. NPL genotoxicity and neurotoxicity are discussed based on the gathered evidence, when available, within the context of the intracellular uptake of these newcomer nanoparticles. In summary, this review explains how the risk evaluation of NPL pollution for human health may benefit from accurately monitoring NPL toxicokinetics and toxicodynamics at the intracellular resolution level.
Collapse
Affiliation(s)
- Claudio Casella
- Department Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | | |
Collapse
|
4
|
Shiraishi A, Oh-Hara T, Takahashi Y, Uchibori K, Nishio M, Katayama R. 3D layered co-culture model enhances Trastuzumab Deruxtecan sensitivity and reveals the combined effect with G007-LK in HER2-positive non-small cell lung cancer. Biochem Biophys Res Commun 2024; 725:150255. [PMID: 38897043 DOI: 10.1016/j.bbrc.2024.150255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Human epidermal growth factor receptor 2 (HER2) aberrations are observed in various cancers. In non-small cell lung cancer, genetic alterations activating HER2, mostly exon 20 insertion mutations, occur in approximately 2-4% of cases. Trastuzumab deruxtecan (T-DXd), a HER2-targeted antibody-drug conjugate has been approved as the first HER2-targeted drug for HER2-mutant lung cancer. However, some cases are not responsive to T-DXd and the primary resistant mechanism remains unclear. In this study, we assessed sensitivity to T-DXd in JFCR-007, a patient-derived HER2-mutant lung cancer cell line. Although JFCR-007 was sensitive to HER2 tyrosine kinase inhibitors, it showed resistance to T-DXd in attachment or spheroid conditions. Accordingly, we established a three-dimensional (3D) layered co-culture model of JFCR-007, where it exhibited a lumen-like structure and became sensitive to T-DXd. In addition, an in-house inhibitor library screening revealed that G007-LK, a tankyrase inhibitor, was effective when combined with T-DXd. G007-LK increased the cytotoxicity of topoisomerase-I inhibitor, DXd, a payload of T-DXd and SN-38. This combined effect was also observed in H2170, an HER2-amplified lung cancer cell line. These results suggest that the proposed 3D co-culture system may help in evaluating the efficacy of T-DXd and may recapitulate the tumor microenvironment.
Collapse
MESH Headings
- Humans
- Trastuzumab/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Cell Line, Tumor
- Immunoconjugates/pharmacology
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/genetics
- Coculture Techniques
- Drug Resistance, Neoplasm/drug effects
- Crown Ethers/pharmacology
- Antineoplastic Agents, Immunological/pharmacology
- Camptothecin/analogs & derivatives
Collapse
Affiliation(s)
- Akari Shiraishi
- Div of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba, 277-8561, Japan
| | - Tomoko Oh-Hara
- Div of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Yuki Takahashi
- Technical Research Institute, TOPPAN Holdings Inc., Japan; Division of Clinical Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Ken Uchibori
- Div of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan; Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryohei Katayama
- Div of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba, 277-8561, Japan.
| |
Collapse
|
5
|
Porrazzo A, Cassandri M, D'Alessandro A, Morciano P, Rota R, Marampon F, Cenci G. DNA repair in tumor radioresistance: insights from fruit flies genetics. Cell Oncol (Dordr) 2024; 47:717-732. [PMID: 38095764 DOI: 10.1007/s13402-023-00906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Radiation therapy (RT) is a key anti-cancer treatment that involves using ionizing radiation to kill tumor cells. However, this therapy can lead to short- and long-term adverse effects due to radiation exposure of surrounding normal tissue. The type of DNA damage inflicted by radiation therapy determines its effectiveness. High levels of genotoxic damage can lead to cell cycle arrest, senescence, and cell death, but many tumors can cope with this damage by activating protective mechanisms. Intrinsic and acquired radioresistance are major causes of tumor recurrence, and understanding these mechanisms is crucial for cancer therapy. The mechanisms behind radioresistance involve processes like hypoxia response, cell proliferation, DNA repair, apoptosis inhibition, and autophagy. CONCLUSION Here we briefly review the role of genetic and epigenetic factors involved in the modulation of DNA repair and DNA damage response that promote radioresistance. In addition, leveraging our recent results on the effects of low dose rate (LDR) of ionizing radiation on Drosophila melanogaster we discuss how this model organism can be instrumental in the identification of conserved factors involved in the tumor resistance to RT.
Collapse
Affiliation(s)
- Antonella Porrazzo
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Andrea D'Alessandro
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy
| | - Patrizia Morciano
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università Degli Studi dell'Aquila, 67100, L'Aquila, Italy
- Laboratori Nazionali del Gran Sasso (LNGS), INFN, Assergi, 67100, L'Aquila, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy.
| |
Collapse
|
6
|
Xiao Y, Hu J, Chen R, Xu Y, Pan B, Gao Y, Deng Y, Li W, Kan H, Chen S. Impact of fine particulate matter on liver injury: evidence from human, mice and cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133958. [PMID: 38479138 DOI: 10.1016/j.jhazmat.2024.133958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND A recently discovered risk factor for chronic liver disease is ambient fine particulate matter (PM2.5). Our research aims to elucidate the effects of PM2.5 on liver injury and the potential molecular mechanisms. METHODS AND RESULTS A population-based longitudinal study involving 102,918 participants from 15 Chinese cities, using linear mixed-effect models, found that abnormal alterations in liver function were significantly associated with long-term exposure to PM2.5. The serum levels of alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, direct bilirubin, and triglyceride increased by 2.05%, 2.04%, 0.58%, 2.99%, and 1.46% with each 10 µg/m3 increase in PM2.5. In contrast, the serum levels of total protein, albumin, and prealbumin decreased by 0.27%, 0.48%, and 2.42%, respectively. Mice underwent chronic inhalation exposure to PM2.5 experienced hepatic inflammation, steatosis and fibrosis. In vitro experiments found that hepatocytes experienced an inflammatory response and lipid metabolic dysregulation due to PM2.5, which also activated hepatic stellate cells. The down-regulation and mis-localization of polarity protein Par3 mediated PM2.5-induced liver injury. CONCLUSIONS PM2.5 exposure induced liver injury, mainly characterized by steatosis and fibrosis. The down-regulation and mis-localization of Par3 were important mechanisms of liver injury induced by PM2.5.
Collapse
Affiliation(s)
- Yalan Xiao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Bin Pan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yiran Deng
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenshu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; National Center for Children's Health, Children's Hospital of Fudan University, Shanghai 201102, China.
| | - She Chen
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
Papadakos SP, Chatzikalil E, Arvanitakis K, Vakadaris G, Stergiou IE, Koutsompina ML, Argyrou A, Lekakis V, Konstantinidis I, Germanidis G, Theocharis S. Understanding the Role of Connexins in Hepatocellular Carcinoma: Molecular and Prognostic Implications. Cancers (Basel) 2024; 16:1533. [PMID: 38672615 PMCID: PMC11048329 DOI: 10.3390/cancers16081533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Connexins, a family of tetraspan membrane proteins forming intercellular channels localized in gap junctions, play a pivotal role at the different stages of tumor progression presenting both pro- and anti-tumorigenic effects. Considering the potential role of connexins as tumor suppressors through multiple channel-independent mechanisms, their loss of expression may be associated with tumorigenic activity, while it is hypothesized that connexins favor the clonal expansion of tumor cells and promote cell migration, invasion, and proliferation, affecting metastasis and chemoresistance in some cases. Hepatocellular carcinoma (HCC), characterized by unfavorable prognosis and limited responsiveness to current therapeutic strategies, has been linked to gap junction proteins as tumorigenic factors with prognostic value. Notably, several members of connexins have emerged as promising markers for assessing the progression and aggressiveness of HCC, as well as the chemosensitivity and radiosensitivity of hepatocellular tumor cells. Our review sheds light on the multifaceted role of connexins in HCC pathogenesis, offering valuable insights on recent advances in determining their prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Elena Chatzikalil
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Vakadaris
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
| | - Ioanna E. Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (M.-L.K.)
| | - Maria-Loukia Koutsompina
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (M.-L.K.)
| | - Alexandra Argyrou
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | - Vasileios Lekakis
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | | | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| |
Collapse
|
8
|
Runser S, Vetter R, Iber D. SimuCell3D: three-dimensional simulation of tissue mechanics with cell polarization. NATURE COMPUTATIONAL SCIENCE 2024; 4:299-309. [PMID: 38594592 PMCID: PMC11052725 DOI: 10.1038/s43588-024-00620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
The three-dimensional (3D) organization of cells determines tissue function and integrity, and changes markedly in development and disease. Cell-based simulations have long been used to define the underlying mechanical principles. However, high computational costs have so far limited simulations to either simplified cell geometries or small tissue patches. Here, we present SimuCell3D, an efficient open-source program to simulate large tissues in three dimensions with subcellular resolution, growth, proliferation, extracellular matrix, fluid cavities, nuclei and non-uniform mechanical properties, as found in polarized epithelia. Spheroids, vesicles, sheets, tubes and other tissue geometries can readily be imported from microscopy images and simulated to infer biomechanical parameters. Doing so, we show that 3D cell shapes in layered and pseudostratified epithelia are largely governed by a competition between surface tension and intercellular adhesion. SimuCell3D enables the large-scale in silico study of 3D tissue organization in development and disease at a great level of detail.
Collapse
Affiliation(s)
- Steve Runser
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Roman Vetter
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland.
| |
Collapse
|
9
|
Yuan Y, Li P, Li J, Zhao Q, Chang Y, He X. Protein lipidation in health and disease: molecular basis, physiological function and pathological implication. Signal Transduct Target Ther 2024; 9:60. [PMID: 38485938 PMCID: PMC10940682 DOI: 10.1038/s41392-024-01759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 03/18/2024] Open
Abstract
Posttranslational modifications increase the complexity and functional diversity of proteins in response to complex external stimuli and internal changes. Among these, protein lipidations which refer to lipid attachment to proteins are prominent, which primarily encompassing five types including S-palmitoylation, N-myristoylation, S-prenylation, glycosylphosphatidylinositol (GPI) anchor and cholesterylation. Lipid attachment to proteins plays an essential role in the regulation of protein trafficking, localisation, stability, conformation, interactions and signal transduction by enhancing hydrophobicity. Accumulating evidence from genetic, structural, and biomedical studies has consistently shown that protein lipidation is pivotal in the regulation of broad physiological functions and is inextricably linked to a variety of diseases. Decades of dedicated research have driven the development of a wide range of drugs targeting protein lipidation, and several agents have been developed and tested in preclinical and clinical studies, some of which, such as asciminib and lonafarnib are FDA-approved for therapeutic use, indicating that targeting protein lipidations represents a promising therapeutic strategy. Here, we comprehensively review the known regulatory enzymes and catalytic mechanisms of various protein lipidation types, outline the impact of protein lipidations on physiology and disease, and highlight potential therapeutic targets and clinical research progress, aiming to provide a comprehensive reference for future protein lipidation research.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyuan Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghui Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Xingxing He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
10
|
Kim YJ, Lee DB, Jeong E, Jeon JY, Kim HD, Kang H, Kim YK. Magnetically Stimulated Integrin Binding Alters Cell Polarity and Affects Epithelial-Mesenchymal Plasticity in Metastatic Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8365-8377. [PMID: 38319067 DOI: 10.1021/acsami.3c16720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Inorganic nanoparticles (NPs) have been widely recognized for their stability and biocompatibility, leading to their widespread use in biomedical applications. Our study introduces a novel approach that harnesses inorganic magnetic nanoparticles (MNPs) to stimulate apical-basal polarity and induce epithelial traits in cancer cells, targeting the hybrid epithelial/mesenchymal (E/M) state often linked to metastasis. We employed mesocrystalline iron oxide MNPs to apply an external magnetic field, disrupting normal cell polarity and simulating an artificial cellular environment. These led to noticeable changes in the cell shape and function, signaling a shift toward the hybrid E/M state. Our research suggests that apical-basal stimulation in cells through MNPs can effectively modulate key cellular markers associated with both epithelial and mesenchymal states without compromising the structural properties typical of mesenchymal cells. These insights advance our understanding of how cells respond to physical cues and pave the way for novel cancer treatment strategies. We anticipate that further research and validation will be instrumental in exploring the full potential of these findings in clinical applications, ensuring their safety and efficacy.
Collapse
Affiliation(s)
- Yu Jin Kim
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
| | - Dae Beom Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
| | - Eunjin Jeong
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
| | - Joo Yeong Jeon
- Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Hee-Dae Kim
- Department of Basic Medical Sciences, University of Arizona College of Medicine─Phoenix, Phoenix, Arizona 85004, United States
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
| | - Young Keun Kim
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
| |
Collapse
|
11
|
Wibbe N, Ebnet K. Cell Adhesion at the Tight Junctions: New Aspects and New Functions. Cells 2023; 12:2701. [PMID: 38067129 PMCID: PMC10706136 DOI: 10.3390/cells12232701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Tight junctions (TJ) are cell-cell adhesive structures that define the permeability of barrier-forming epithelia and endothelia. In contrast to this seemingly static function, TJs display a surprisingly high molecular complexity and unexpected dynamic regulation, which allows the TJs to maintain a barrier in the presence of physiological forces and in response to perturbations. Cell-cell adhesion receptors play key roles during the dynamic regulation of TJs. They connect individual cells within cellular sheets and link sites of cell-cell contacts to the underlying actin cytoskeleton. Recent findings support the roles of adhesion receptors in transmitting mechanical forces and promoting phase separation. In this review, we discuss the newly discovered functions of cell adhesion receptors localized at the TJs and their role in the regulation of the barrier function.
Collapse
Affiliation(s)
- Nicolina Wibbe
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, D-48419 Münster, Germany
| |
Collapse
|
12
|
Yamada Y, Venkadakrishnan VB, Mizuno K, Bakht M, Ku SY, Garcia MM, Beltran H. Targeting DNA methylation and B7-H3 in RB1-deficient and neuroendocrine prostate cancer. Sci Transl Med 2023; 15:eadf6732. [PMID: 37967200 PMCID: PMC10954288 DOI: 10.1126/scitranslmed.adf6732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
Aberrant DNA methylation has been implicated as a key driver of prostate cancer lineage plasticity and histologic transformation to neuroendocrine prostate cancer (NEPC). DNA methyltransferases (DNMTs) are highly expressed, and global DNA methylation is dysregulated in NEPC. We identified that deletion of DNMT genes decreases expression of neuroendocrine lineage markers and substantially reduced NEPC tumor development and metastasis in vivo. Decitabine, a pan-DNMT inhibitor, attenuated tumor growth in NEPC patient-derived xenograft models, as well as retinoblastoma gene (RB1)-deficient castration-resistant prostate adenocarcinoma (CRPC) models compared with RB1-proficient CRPC. We further found that DNMT inhibition increased expression of B7 homolog 3 (B7-H3), an emerging druggable target, via demethylation of B7-H3. We tested DS-7300a (i-DXd), an antibody-drug conjugate targeting B7-H3, alone and in combination with decitabine in models of advanced prostate cancer. There was potent single-agent antitumor activity of DS-7300a in both CRPC and NEPC bearing high expression of B7-H3. In B7-H3-low models, combination therapy of decitabine plus DS-7300a resulted in enhanced response. DNMT inhibition may therefore be a promising therapeutic target for NEPC and RB1-deficient CRPC and may sensitize B7-H3-low prostate cancer to DS-7300a through increasing target expression. NEPC and RB1-deficient CRPC represent prostate cancer subgroups with poor prognosis, and the development of biomarker-driven therapeutic strategies for these populations may ultimately help improve patient outcomes.
Collapse
Affiliation(s)
- Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Varadha Balaji Venkadakrishnan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Kei Mizuno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Martin Bakht
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Maria Mica Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
13
|
Nagahata Y, Kawamoto H. Evolutionary reversion in tumorigenesis. Front Oncol 2023; 13:1282417. [PMID: 38023242 PMCID: PMC10662060 DOI: 10.3389/fonc.2023.1282417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Cells forming malignant tumors are distinguished from those forming normal tissues based on several features: accelerated/dysregulated cell division, disruption of physiologic apoptosis, maturation/differentiation arrest, loss of polarity, and invasive potential. Among them, accelerated cell division and differentiation arrest make tumor cells similar to stem/progenitor cells, and this is why tumorigenesis is often regarded as developmental reversion. Here, in addition to developmental reversion, we propose another insight into tumorigenesis from a phylogeny viewpoint. Based on the finding that tumor cells also share some features with unicellular organisms, we propose that tumorigenesis can be regarded as "evolutionary reversion". Recent advances in sequencing technologies and the ability to identify gene homologous have made it possible to perform comprehensive cross-species transcriptome comparisons and, in our recent study, we found that leukemic cells resulting from a polycomb dysfunction transcriptionally resemble unicellular organisms. Analyzing tumorigenesis from the viewpoint of phylogeny should reveal new aspects of tumorigenesis in the near future, and contribute to overcoming malignant tumors by developing new therapies.
Collapse
Affiliation(s)
- Yosuke Nagahata
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Kawamoto
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Wang K, Kong F, Qiu Y, Chen T, Fu J, Jin X, Su Y, Gu Y, Hu Z, Li J. Autophagy regulation and protein kinase activity of PIK3C3 controls sertoli cell polarity through its negative regulation on SCIN (scinderin). Autophagy 2023; 19:2934-2957. [PMID: 37450577 PMCID: PMC10549198 DOI: 10.1080/15548627.2023.2235195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Sertoli cells are highly polarized testicular cells that provide a nurturing environment for germ cell development and maturation during spermatogenesis. The class III phosphatidylinositol 3-kinase (PtdIns3K) plays core roles in macroautophagy in various cell types; however, its role in Sertoli cells remains unclear. Here, we generated a mouse line in which the gene encoding the catalytic subunit, Pik3c3, was specifically deleted in Sertoli cells (cKO) and found that after one round of normal spermatogenesis, the cKO mice quickly became infertile and showed disruption of Sertoli cell polarity and impaired spermiogenesis. Subsequent proteomics and phosphoproteomics analyses enriched the F-actin cytoskeleton network involved in the disorganized Sertoli-cell structure in cKO testis which we identified a significant increase of the F-actin negative regulator SCIN (scinderin) and the reduced phosphorylation of HDAC6, an α-tubulin deacetylase. Our results further demonstrated that the accumulation of SCIN in cKO Sertoli cells caused the disorder and disassembly of the F-actin cytoskeleton, which was related to the failure of SCIN degradation through the autophagy-lysosome pathway. Additionally, we found that the phosphorylation of HDAC6 at site S59 by PIK3C3 was essential for its degradation through the ubiquitin-proteasome pathway. As a result, the HDAC6 that accumulated in cKO Sertoli cells deacetylated SCIN at site K189 and led to a disorganized F-actin cytoskeleton. Taken together, our findings elucidate a new mechanism for PIK3C3 in maintaining the polarity of Sertoli cells, in which both its autophagy regulation or protein kinase activities are required for the stabilization of the actin cytoskeleton.Abbreviations: ACTB: actin, beta; AR: androgen receptor; ATG14: autophagy related 14; BafA1: bafilomycin A1; BECN1: beclin 1, autophagy related; BTB: blood-testis barrier; CASP3: caspase 3; CDC42: cell division cycle 42; CDH2: cadherin 2; CHX: cycloheximide; CTNNA1: catenin (cadherin associated protein), alpha 1; CYP11A1: cytochrome P450, family 11, subfamily A, polypeptide 1; EBSS: Earle's balanced salt solution; ES: ectoplasmic specialization; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCNA: germ cell nuclear acidic protein; GJA1: gap junction protein, alpha 1; H2AX: H2A.X variant histone; HDAC6: histone deacetylase 6; KIT: KIT proto-oncogene, receptor tyrosine kinase; LAMP1: lysosomal associated membrane protein 1; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; OCLN: occludin; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PNA: arachis hypogaea lectin; RAC1: Rac family small GTPase 1; SCIN: scinderin; SQSTM1/p62: sequestosome 1; SSC: spermatogonia stem cell; STK11: serine/threonine kinase 11; TJP1: tight junction protein 1; TubA: tubastatin A; TUBB3: tubulin beta 3 class III; TUNEL: TdT-mediated dUTP nick-end labeling; UB: ubiquitin; UVRAG: UV radiation resistance associated gene; VIM: vimentin; WT1: WT1 transcription factor; ZBTB16: zinc finger and BTB domain containing 16.
Collapse
Affiliation(s)
- Kehan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifei Kong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiayi Fu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Jin
- Department of Center of Reproductive Medicine, Wuxi Maternity and Child Health Care Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Youqiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Wang H, Liu J, Zhu X, Yang B, He Z, Yao X. AZGP1P2/UBA1/RBM15 Cascade Mediates the Fate Determinations of Prostate Cancer Stem Cells and Promotes Therapeutic Effect of Docetaxel in Castration-Resistant Prostate Cancer via TPM1 m6A Modification. RESEARCH (WASHINGTON, D.C.) 2023; 6:0252. [PMID: 37854295 PMCID: PMC10581371 DOI: 10.34133/research.0252] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
Prostate cancer (PCa) is a common malignant tumor with high morbidity and mortality worldwide. The prostate cancer stem cell (PCSC) model provides novel insights into the pathogenesis of PCa and its therapeutic response. However, the roles and molecular mechanisms of specific genes in mediating fate decisions of PCSCs and carcinogenesis of PCa remain to be elusive. In this study, we have explored the expression, function, and mechanism of AZGP1P2, a pseudogene of AZGP1, in regulating the stemness and apoptosis of PCSCs and treatment resistance of docetaxel in castration-resistant prostate cancer (CRPC). We revealed that AZGP1P2 was downregulated in CRPC cell lines and PCSCs, while it was positively associated with progression-free interval. Upregulation of the AZGP1P2 enhanced the sensitivity of docetaxel treatment in CRPCs via inhibiting their stemness. RNA pull-down associated with mass spectrometry analysis, co-immunoprecipitation assay, and RNA immunoprecipitation assay demonstrated that AZGP1P2 could bind to UBA1 and RBM15 as a "writer" of methyltransferase to form a compound. UBA1, an E1 ubiquitin-activating enzyme, contributed to RBM15 protein degradation via ubiquitination modification. Methylated RNA immunoprecipitation assay displayed that RBM15 controlled the mRNA decay of TPM1 in m6A methylation. Furthermore, a xenograft mouse model and patient-derived organoids showed that the therapeutic effect of docetaxel in CRPC was increased by AZGP1P2 in vivo. Collectively, these results imply that AZGP1P2 mediates the stemness and apoptosis of PCSCs and promotes docetaxel therapeutic effect by suppressing tumor growth and metastasis via UBA1/RBM15-mediated TPM1 mRNA decay in CRPC.
Collapse
Affiliation(s)
- Hong Wang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine,
Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine,
Tongji University, Shanghai, China
| | - Ji Liu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine,
Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine,
Tongji University, Shanghai, China
| | - Xiaojun Zhu
- Department of Urology Surgery,
The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Bin Yang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine,
Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine,
Tongji University, Shanghai, China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine,
Hunan Normal University, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
- Shanghai Key Laboratory of Reproductive Medicine,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine,
Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine,
Tongji University, Shanghai, China
| |
Collapse
|
16
|
Wang B, Liang Z, Tan T, Zhang M, Jiang Y, Shang Y, Gao X, Song S, Wang R, Chen H, Liu J, Li J, Ren Y, Liu P. CRB3 navigates Rab11 trafficking vesicles to promote γTuRC assembly during ciliogenesis. eLife 2023; 12:RP86689. [PMID: 37737843 PMCID: PMC10516600 DOI: 10.7554/elife.86689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
The primary cilium plays important roles in regulating cell differentiation, signal transduction, and tissue organization. Dysfunction of the primary cilium can lead to ciliopathies and cancer. The formation and organization of the primary cilium are highly associated with cell polarity proteins, such as the apical polarity protein CRB3. However, the molecular mechanisms by which CRB3 regulates ciliogenesis and the location of CRB3 remain unknown. Here, we show that CRB3, as a navigator, regulates vesicle trafficking in γ-tubulin ring complex (γTuRC) assembly during ciliogenesis and cilium-related Hh and Wnt signaling pathways in tumorigenesis. Crb3 knockout mice display severe defects of the primary cilium in the mammary ductal lumen and renal tubule, while mammary epithelial-specific Crb3 knockout mice exhibit the promotion of ductal epithelial hyperplasia and tumorigenesis. CRB3 is essential for lumen formation and ciliary assembly in the mammary epithelium. We demonstrate that CRB3 localizes to the basal body and that CRB3 trafficking is mediated by Rab11-positive endosomes. Significantly, CRB3 interacts with Rab11 to navigate GCP6/Rab11 trafficking vesicles to CEP290, resulting in intact γTuRC assembly. In addition, CRB3-depleted cells are unresponsive to the activation of the Hh signaling pathway, while CRB3 regulates the Wnt signaling pathway. Therefore, our studies reveal the molecular mechanisms by which CRB3 recognizes Rab11-positive endosomes to facilitate ciliogenesis and regulates cilium-related signaling pathways in tumorigenesis.
Collapse
Affiliation(s)
- Bo Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Zheyong Liang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Tan Tan
- Center for Precision Medicine, Affiliated to the First People’s Hospital of Chenzhou, University of South ChinaChenzhouChina
| | - Miao Zhang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Yina Jiang
- Department of Pathology, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Yangyang Shang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Xiaoqian Gao
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Shaoran Song
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Ruiqi Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - He Chen
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Jie Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Juan Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Yu Ren
- Department of Breast Surgery, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Peijun Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| |
Collapse
|
17
|
Marongiu F, Cheri S, Laconi E. Clones of aging: When better fitness can be dangerous. Eur J Cell Biol 2023; 102:151340. [PMID: 37423036 DOI: 10.1016/j.ejcb.2023.151340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023] Open
Abstract
The biological and clinical significance of aberrant clonal expansions in aged tissues is being intensely discussed. Evidence is accruing that these clones often result from the normal dynamics of cell turnover in our tissues. The aged tissue microenvironment is prone to favour the emergence of specific clones with higher fitness partly because of an overall decline in cell intrinsic regenerative potential of surrounding counterparts. Thus, expanding clones in aged tissues need not to be mechanistically associated with the development of cancer, albeit this is a possibility. We suggest that growth pattern is a critical phenotypic attribute that impacts on the fate of such clonal proliferations. The acquisition of a better proliferative fitness, coupled with a defect in tissue pattern formation, could represent a dangerous mix setting the stage for their evolution towards neoplasia.
Collapse
Affiliation(s)
- Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Samuele Cheri
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, Italy.
| |
Collapse
|
18
|
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, Salimimoghadam S, Mirzaei S, Entezari M, Samarghandian S. Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal 2023; 17:423-443. [PMID: 36367667 PMCID: PMC10409967 DOI: 10.1007/s12079-022-00702-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urological cancers have obtained much attention in recent years due to their mortality and morbidity. The most common and malignant tumor of urological cancers is prostate cancer that imposes high socioeconomic costs on public life and androgen-deprivation therapy, surgery, and combination of chemotherapy and radiotherapy are employed in its treatment. PI3K/Akt signaling is an oncogenic pathway responsible for migration, proliferation and drug resistance in various cancers. In the present review, the role of PI3K/Akt signaling in prostate cancer progression is highlighted. The activation of PI3K/Akt signaling occurs in prostate cancer, while PTEN as inhibitor of PI3K/Akt shows down-regulation. Stimulation of PI3K/Akt signaling promotes survival of prostate tumor cells and prevents apoptosis. The cell cycle progression and proliferation rate of prostate tumor cells increase by PI3K/Akt signaling induction. PI3K/Akt signaling stimulates EMT and enhances metastasis of prostate tumor cells. Silencing PI3K/Akt signaling impairs growth and metastasis of prostate tumor cells. Activation of PI3K/Akt signaling mediates drug resistance and reduces radio-sensitivity of prostate tumor cells. Anti-tumor compounds suppress PI3K/Akt signaling in impairing prostate tumor progression. Furthermore, upstream regulators such as miRNAs, lncRNAs and circRNAs regulate PI3K/Akt signaling and it has clinical implications for prostate cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- League of European Research Universities, European University Association, University of Milan, Milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
19
|
Mokhtari RB, Ashayeri N, Baghaie L, Sambi M, Satari K, Baluch N, Bosykh DA, Szewczuk MR, Chakraborty S. The Hippo Pathway Effectors YAP/TAZ-TEAD Oncoproteins as Emerging Therapeutic Targets in the Tumor Microenvironment. Cancers (Basel) 2023; 15:3468. [PMID: 37444578 DOI: 10.3390/cancers15133468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Various cancer cell-associated intrinsic and extrinsic inputs act on YAP/TAZ proteins to mediate the hyperactivation of the TEAD transcription factor-based transcriptome. This YAP/TAZ-TEAD activity can override the growth-limiting Hippo tumor-suppressor pathway that maintains normal tissue homeostasis. Herein, we provide an integrated summary of the contrasting roles of YAP/TAZ during normal tissue homeostasis versus tumor initiation and progression. In addition to upstream factors that regulate YAP/TAZ in the TME, critical insights on the emerging functions of YAP/TAZ in immune suppression and abnormal vasculature development during tumorigenesis are illustrated. Lastly, we discuss the current methods that intervene with the YAP/TAZ-TEAD oncogenic signaling pathway and the emerging applications of combination therapies, gut microbiota, and epigenetic plasticity that could potentiate the efficacy of chemo/immunotherapy as improved cancer therapeutic strategies.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Neda Ashayeri
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Leili Baghaie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kosar Satari
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Dmitriy A Bosykh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sayan Chakraborty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
20
|
Holmes J, Gaber M, Jenks MZ, Wilson A, Loy T, Lepetit C, Vitolins MZ, Herbert BS, Cook KL, Vidi PA. Reversion of breast epithelial polarity alterations caused by obesity. NPJ Breast Cancer 2023; 9:35. [PMID: 37160903 PMCID: PMC10170133 DOI: 10.1038/s41523-023-00539-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
Molecular links between breast cancer risk factors and pro-oncogenic tissue alterations are poorly understood. The goal of this study was to characterize the impact of overweight and obesity on tissue markers of risk, using normal breast biopsies, a mouse model of diet-induced obesity, and cultured breast acini. Proliferation and alteration of epithelial polarity, both necessary for tumor initiation, were quantified by immunostaining. High BMI (>30) and elevated leptin were associated with compromised epithelial polarity whereas overweight was associated with a modest increase in proliferation in human and mice mammary glands. Human serum with unfavorable adipokine levels altered epithelial polarization of cultured acini, recapitulating the effect of leptin. Weight loss in mice led to metabolic improvements and restored epithelial polarity. In acini cultures, alteration of epithelial polarity was prevented by antioxidants and could be reverted by normalizing culture conditions. This study shows that obesity and/or dietary factors modulate tissue markers of risk. It provides a framework to set target values for metabolic improvements and to assess the efficacy of interventional studies aimed at reducing breast cancer risk.
Collapse
Affiliation(s)
- Julia Holmes
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mohamed Gaber
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mónica Z Jenks
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Adam Wilson
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Tucker Loy
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | | | - Mara Z Vitolins
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Brittney-Shea Herbert
- Department of Medical & Molecular Genetics, IU School of Medicine, Indianapolis, IN, 46202, USA
| | - Katherine L Cook
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Pierre-Alexandre Vidi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Institut de Cancérologie de l'Ouest, Angers, 49055, France.
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
| |
Collapse
|
21
|
Thüring EM, Hartmann C, Schwietzer YA, Ebnet K. TMIGD1: Emerging functions of a tumor supressor and adhesion receptor. Oncogene 2023:10.1038/s41388-023-02696-5. [PMID: 37087524 DOI: 10.1038/s41388-023-02696-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
The development of multicellular organisms depends on cell adhesion molecules (CAMs) that connect cells to build tissues. The immunoglobulin superfamily (IgSF) constitutes one of the largest families of CAMs. Members of this family regulate such diverse processes like synapse formation, spermatogenesis, leukocyte-endothelial interactions, or epithelial cell-cell adhesion. Through their extracellular domains, they undergo homophilic and heterophilic interactions in cis and trans. Their cytoplasmic domains frequently bind scaffolding proteins to assemble signaling complexes. Transmembrane and immunoglobulin domain-containing protein 1 (TMIGD1) is a IgSF member with two Ig-like domains and a short cytoplasmic tail that contains a PDZ domain-binding motif. Recent observations indicate that TMIGD1 has pleiotropic functions in epithelial cells and has a critical role in suppressing malignant cell behavior. Here, we review the molecular characteristics of TMIGD1, its interaction with cytoplasmic scaffolding proteins, the regulation of its expression, and its downregulation in colorectal and renal cancers.
Collapse
Affiliation(s)
- Eva-Maria Thüring
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Christian Hartmann
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Ysabel A Schwietzer
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany.
| |
Collapse
|
22
|
Dawney NS, Cammarota C, Jia Q, Shipley A, Glichowski JA, Vasandani M, Finegan TM, Bergstralh DT. A novel tool for the unbiased characterization of epithelial monolayer development in culture. Mol Biol Cell 2023; 34:ar25. [PMID: 36696175 PMCID: PMC10092640 DOI: 10.1091/mbc.e22-04-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
The function of an epithelial tissue is intertwined with its architecture. Epithelial tissues are often described as pseudo-two-dimensional, but this view may be partly attributed to experimental bias: many model epithelia, including cultured cell lines, are easiest to image from the "top-down." We measured the three-dimensional architecture of epithelial cells in culture and found that it varies dramatically across cultured regions, presenting a challenge for reproducibility and cross-study comparisons. We therefore developed a novel tool (Automated Layer Analysis, "ALAn") to characterize architecture in an unbiased manner. Using ALAn, we find that cultured epithelial cells can organize into four distinct architectures and that architecture correlates with cell density. Cells exhibit distinct biological properties in each architecture. Organization in the apical-basal axis is determined early in monolayer development by substrate availability, while disorganization in the apical-basal axis arises from an inability to form substrate connections. Our work highlights the need to carefully control for three-dimensional architecture when using cell culture as a model system for epithelial cell biology and introduces a novel tool, built on a set of rules that can be widely applied to epithelial cell culture.
Collapse
Affiliation(s)
- Nicole S. Dawney
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Christian Cammarota
- Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627
| | - Qingyuan Jia
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Alicia Shipley
- Department of Biology, University of Rochester, Rochester, NY 14627
| | | | | | - Tara M. Finegan
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Dan T. Bergstralh
- Department of Biology, University of Rochester, Rochester, NY 14627
- Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14627
| |
Collapse
|
23
|
Charnley M, Allam AH, Newton LM, Humbert PO, Russell SM. E-cadherin in developing murine T cells controls spindle alignment and progression through β-selection. SCIENCE ADVANCES 2023; 9:eade5348. [PMID: 36652509 DOI: 10.1126/sciadv.ade5348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
A critical stage of T cell development is β-selection; at this stage, the T cell receptor β (TCRβ) chain is generated, and the developing T cell starts to acquire antigenic specificity. Progression through β-selection is assisted by low-affinity interactions between the nascent TCRβ chain and peptide presented on stromal major histocompatibility complex and cues provided by the niche. In this study, we identify a cue within the developing T cell niche that is critical for T cell development. E-cadherin mediates cell-cell interactions and influences cell fate in many developmental systems. In developing T cells, E-cadherin contributed to the formation of an immunological synapse and the alignment of the mitotic spindle with the polarity axis during division, which facilitated subsequent T cell development. Collectively, these data suggest that E-cadherin facilitates interactions with the thymic niche to coordinate the β-selection stage of T cell development.
Collapse
Affiliation(s)
- Mirren Charnley
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Amr H Allam
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Lucas M Newton
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sarah M Russell
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
24
|
Wessler S, Posselt G. Bacterial Proteases in Helicobacter pylori Infections and Gastric Disease. Curr Top Microbiol Immunol 2023; 444:259-277. [PMID: 38231222 DOI: 10.1007/978-3-031-47331-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori (H. pylori) proteases have become a major focus of research in recent years, because they not only have an important function in bacterial physiology, but also directly alter host cell functions. In this review, we summarize recent findings on extracellular H. pylori proteases that target host-derived substrates to facilitate bacterial pathogenesis. In particular, the secreted H. pylori collagenase (Hp0169), the metalloprotease Hp1012, or the serine protease High temperature requirement A (HtrA) are of great interest. Specifically, various host cell-derived substrates were identified for HtrA that directly interfere with the gastric epithelial barrier allowing full pathogenesis. In light of increasing antibiotic resistance, the development of inhibitory compounds for extracellular proteases as potential targets is an innovative field that offers alternatives to existing therapies.
Collapse
Affiliation(s)
- Silja Wessler
- Department of Biosciences and Medical Biology, Laboratory for Microbial Infection and Cancer, Paris-Lodron University of Salzburg, Salzburg, Austria.
- Cancer Cluster Salzburg and Allergy-Cancer-BioNano Research Centre, Salzburg, Austria.
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, Laboratory for Microbial Infection and Cancer, Paris-Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg and Allergy-Cancer-BioNano Research Centre, Salzburg, Austria
| |
Collapse
|
25
|
Park JA, Youm Y, Lee HR, Lee Y, Barron SL, Kwak T, Park GT, Song YC, Owens RM, Kim JH, Jung S. Transfer-Tattoo-Like Cell-Sheet Delivery Induced by Interfacial Cell Migration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204390. [PMID: 36066995 DOI: 10.1002/adma.202204390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/30/2022] [Indexed: 06/15/2023]
Abstract
A direct transfer of a cell sheet from a culture surface to a target tissue is introduced. Commercially available, flexible parylene is used as the culture surface, and it is proposed that the UV-treated parylene offers adequate and intermediate levels of cell adhesiveness for both the stable cell attachment during culture and for the efficient cell transfer to a target surface. The versatility of this cell-transfer process is demonstrated with various cell types, including MRC-5, HDFn, HULEC-5a, MC3T3-E1, A549, C2C12 cells, and MDCK-II cells. The novel cell-sheet engineering is based on a mechanism of interfacial cell migration between two surfaces with different adhesion preferences. Monitoring of cytoskeletal dynamics and drug treatments during the cell-transfer process reveals that the interfacial cell migration occurs by utilizing the existing transmembrane proteins on the cell surface to bind to the targeted surface. The re-establishment and reversal of cell polarity after the transfer process are also identified. Its unique capabilities of 3D multilayer stacking, freeform design, and curved surface application are demonstrated. Finally, the therapeutic potential of the cell-sheet delivery system is demonstrated by applying it to cutaneous wound healing and skin-tissue regeneration in mice models.
Collapse
Affiliation(s)
- Ju An Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Yejin Youm
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hwa-Rim Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yongwoo Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sarah L Barron
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Taejeong Kwak
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Gyu Tae Park
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Young-Cheol Song
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Sungjune Jung
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
26
|
Zhao X, Si L, Niu L, Wei M, Wang F, Liu X, Chen Z, Qiao Y, Cheng L, Yang S. Effects of RFRP‑3 on an ovariectomized estrogen‑primed rat model and HEC‑1A human endometrial carcinoma cells. Exp Ther Med 2022; 25:76. [PMID: 36684658 PMCID: PMC9842939 DOI: 10.3892/etm.2022.11775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The hypothalamic peptide gonadotropin inhibitory hormone (GnIH) is a relatively novel hypothalamic neuropeptide, identified in 2000. It can influence the hypothalamic-pituitary-gonadal axis and reproductive function through various neuroendocrine systems. The present study aimed to explore the effects and potential underlying molecular mechanism of RFamide-related peptide-3 (RFRP-3) injection on the uterine fluid protein profile of ovariectomized estrogen-primed (OEP) rats using proteomics. In addition, the possible effects of RFRP-3 on the viability and apoptosis of the human endometrial cancer cell line HEC-1A and associated molecular mechanism were investigated. The OEP rat model was established through injection with GnIH/RFRP-3 through the lateral ventricle. At 6 h after injection, the protein components of uterine fluid of rats in the experimental and control groups were analyzed using liquid chromatography (LC)-tandem mass spectrometry (MS/MS). Differentially expressed proteins (DEPs) were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Protein-protein interactions (PPI) were investigated using the STRING database. PPI networks were then established before hub proteins were selected using OmicsBean software. The expression of one of the hub proteins, Kras, was then detected using western blot analysis. Cell Counting Kit-8, Annexin V-FITC/PI, reverse transcription-quantitative PCR and western blotting were also performed to analyze cell viability and apoptosis. In total, 417 DEPs were obtained using LC-MS/MS, including 279 upregulated and 138 downregulated proteins. GO analysis revealed that the majority of the DEPs were secretory proteins. According to KEGG enrichment analysis, the DEPs found were generally involved in tumor-associated pathways. In particular, five hub proteins, namely G protein subunit α (Gna)13, Gnaq, Gnai3, Kras and MMP9, were obtained following PPI network analysis. Western blot analysis showed that expression of the hub protein Kras was downregulated following treatment with 10,000 ng/ml RFRP-3. RFRP-3 treatment (10,000 ng/ml) also suppressed HEC-1A cell viability, induced apoptosis, downregulated Bcl-2 and upregulated Bax protein expression, compared with those in the control group. In addition, compared with those in the control group, RFRP-3 significantly reduced the mRNA expression levels of PI3K, AKT and mTOR, while upregulating those of LC3-II. Compared with those in the control group, RFRP-3 significantly decreased the protein expression levels of PI3K, AKT, mTOR and p62, in addition to decreasing AKT phosphorylation. By contrast, RFRP-3 significantly increased the LC3-II/I ratio and G protein-coupled receptor 147 (GPR147) protein expression. In conclusion, the present data suggest that RFRP-3 can alter the protein expression profile of the uterine fluid of OEP rats by upregulating MMP9 expression whilst downregulating that of key hub proteins Gna13, GnaQ, Gnai3 and Kras. Furthermore, RFRP-3 can inhibit HEC-1A cell viability while promoting apoptosis. The underlying molecular mechanism may involve activation of GPR147 receptor by the direct binding of RFRP-3, which further downregulates the hub protein Kras to switch on the PI3K/AKT/mTOR pathway. This subsequently reduces the Bcl-2 expression and promotes Bax expression to induce autophagy.
Collapse
Affiliation(s)
- Xueying Zhao
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lina Si
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lin Niu
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Meng Wei
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Fengxia Wang
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiaochao Liu
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Zhihong Chen
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yuebing Qiao
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Luyang Cheng
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China,Correspondence to: Mrs. Luyang Cheng, Department of Immunology, Chengde Medical University, Anyuan Road, Shuangqiao, Chengde, Hebei 067000, P.R. China
| | - Songhe Yang
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China,Correspondence to: Mrs. Luyang Cheng, Department of Immunology, Chengde Medical University, Anyuan Road, Shuangqiao, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
27
|
Basu A, Paul MK, Weiss S. The actin cytoskeleton: Morphological changes in pre- and fully developed lung cancer. BIOPHYSICS REVIEWS 2022; 3:041304. [PMID: 38505516 PMCID: PMC10903407 DOI: 10.1063/5.0096188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/09/2022] [Indexed: 03/21/2024]
Abstract
Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK, and Wnt pathways. Recently, with the advent of "field cancerization," pre-malignant cells have also been demonstrated to possess stress fibers and related cytoskeletal features. Analytical methods ranging from western blot and RNA-sequencing to cryo-EM and fluorescent imaging have been employed to understand the structure and dynamics of actin and related proteins including polymerization/depolymerization. More recent methods involve quantifying properties of the actin cytoskeleton from fluorescent images and utilizing them to study biological processes, such as EMT. These image analysis approaches exploit the fact that filaments have a unique structure (curvilinear) compared to the noise or other artifacts to separate them. Line segments are extracted from these filament images that have assigned lengths and orientations. Coupling such methods with statistical analysis has resulted in development of a new reporter for EMT in lung cancer cells as well as their drug responses.
Collapse
Affiliation(s)
| | | | - Shimon Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
28
|
Enomoto M, Igaki T. Cell-cell interactions that drive tumorigenesis in Drosophila. Fly (Austin) 2022; 16:367-381. [PMID: 36413374 PMCID: PMC9683056 DOI: 10.1080/19336934.2022.2148828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cell-cell interactions within tumour microenvironment play crucial roles in tumorigenesis. Genetic mosaic techniques available in Drosophila have provided a powerful platform to study the basic principles of tumour growth and progression via cell-cell communications. This led to the identification of oncogenic cell-cell interactions triggered by endocytic dysregulation, mitochondrial dysfunction, cell polarity defects, or Src activation in Drosophila imaginal epithelia. Such oncogenic cooperations can be caused by interactions among epithelial cells, mesenchymal cells, and immune cells. Moreover, microenvironmental factors such as nutrients, local tissue structures, and endogenous growth signalling activities critically affect tumorigenesis. Dissecting various types of oncogenic cell-cell interactions at the single-cell level in Drosophila will greatly increase our understanding of how tumours progress in living animals.
Collapse
Affiliation(s)
- Masato Enomoto
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Kyoto, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Kyoto, Japan,CONTACT Tatsushi Igaki
| |
Collapse
|
29
|
Cao L, Zhao H, Qian M, Shao C, Zhang Y, Yang J. Construction of polysaccharide scaffold-based perfusion bioreactor supporting liver cell aggregates for drug screening. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2249-2269. [PMID: 35848470 DOI: 10.1080/09205063.2022.2102715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rebuilding a suitable microenvironment of liver cells is the key challenge to enhancing the expression of hepatic functions for drug screening in vitro. To improve the microenvironment by providing the specific adhesive ligands for hepatocytes in the three-dimensional dynamic culture, a perfusion bioreactor with a pectin/alginate blend porous scaffold was constructed in this study. The galactosyl component in the main chain of pectin was able to be specifically recognized by the asialoglycoprotein receptor on the surface of hepatocytes, and subsequently promoted the adhesion and aggregation of hepatocytes co-cultured with hepatic non-parenchymal cells. The bioreactor was optimized for 4 h of dynamic inoculation followed by perfusion at a flow rate of 2 mL/min, which provided adequate oxygen supply and good mass transfer to the liver cells. During dynamic cultured in the bioreactor for 14 days, more multicellular aggregates were formed and were evenly distributed in the pectin/alginate blend scaffolds. The expressions of intercellular interaction and hepatic functions of the hepatocytes in aggregates were significantly enhanced in the three-dimensional dynamic group. Furthermore, the bioreactor not only markedly upregulated the cell polarity markers expression of hepatocytes but also enhanced their metabolic capacity to acetaminophen, isoniazid, and tolbutamide, which exhibited a significant concentration-dependent manner. Therefore, the pectin/alginate blend scaffold-based perfusion bioreactor appeared to be a promising candidate in the field of drug development and liver regeneration research.
Collapse
Affiliation(s)
- Lei Cao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China.,Biological Sample Resource Sharing Center, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Huicun Zhao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Mengyuan Qian
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Chuxiao Shao
- Department of Hepatopancreatobiliary Surgery, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Yan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| |
Collapse
|
30
|
Cartón-García F, Brotons B, Anguita E, Dopeso H, Tarragona J, Nieto R, García-Vidal E, Macaya I, Zagyva Z, Dalmau M, Sánchez-Martín M, van Ijzendoorn SCD, Landolfi S, Hernandez-Losa J, Schwartz Jr S, Matias-Guiu X, Ramón y Cajal S, Martínez-Barriocanal Á, Arango D. Myosin Vb as a tumor suppressor gene in intestinal cancer. Oncogene 2022; 41:5279-5288. [DOI: 10.1038/s41388-022-02508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
|
31
|
Wang X, Gou Z, Lv JJ, Zuo Y. A novel coumarin-TPA based fluorescent probe for turn-on hypochlorite detection and lipid-droplet-polarity bioimaging in cancer cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121481. [PMID: 35691171 DOI: 10.1016/j.saa.2022.121481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
A novel fluorescent compound, named C-TPA, based on coumarin (acceptor) and triphenylamine (donor) was facilely designed and fabricated through a one-step Suzuki coupling reaction. As a donor group, triphenylamine can efficiently enhance the fluorescence intensity and photostability of coumarin, and thus improve the detection efficiency. C-TPA-S was obtained from C-TPA treated with Lawesson's reagent and C-TPA-S can be used for the turn-on detection of hypochlorite through oxidative desulfurization with a low detection limit of 0.12 μM. Moreover, the intramolecular charge transfer process between the donor and acceptor group endows C-TPA with solvatochromism property and makes C-TPA a good candidate for polarity detection. The C-TPA with bright green fluorescence was highly efficient for imaging the microenvironment of polarity both in living cells and tissues with high selectivity and photostability, which can be applied in the diagnosis for the cancer cells.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Zhiming Gou
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Jing-Jing Lv
- Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang 325035, PR China
| | - Yujing Zuo
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| |
Collapse
|
32
|
Gómez-Marín E, Posavec-Marjanović M, Zarzuela L, Basurto-Cayuela L, Guerrero-Martínez J, Arribas G, Yerbes R, Ceballos-Chávez M, Rodríguez-Paredes M, Tomé M, Durán R, Buschbeck M, Reyes J. The high mobility group protein HMG20A cooperates with the histone reader PHF14 to modulate TGFβ and Hippo pathways. Nucleic Acids Res 2022; 50:9838-9857. [PMID: 36124662 PMCID: PMC9508832 DOI: 10.1093/nar/gkac766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/01/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022] Open
Abstract
High mobility group (HMG) proteins are chromatin regulators with essential functions in development, cell differentiation and cell proliferation. The protein HMG20A is predicted by the AlphaFold2 software to contain three distinct structural elements, which we have functionally characterized: i) an amino-terminal, intrinsically disordered domain with transactivation activity; ii) an HMG box with higher binding affinity for double-stranded, four-way-junction DNA than for linear DNA; and iii) a long coiled-coil domain. Our proteomic study followed by a deletion analysis and structural modeling demonstrates that HMG20A forms a complex with the histone reader PHF14, via the establishment of a two-stranded alpha-helical coiled-coil structure. siRNA-mediated knockdown of either PHF14 or HMG20A in MDA-MB-231 cells causes similar defects in cell migration, invasion and homotypic cell-cell adhesion ability, but neither affects proliferation. Transcriptomic analyses demonstrate that PHF14 and HMG20A share a large subset of targets. We show that the PHF14-HMG20A complex modulates the Hippo pathway through a direct interaction with the TEAD1 transcription factor. PHF14 or HMG20A deficiency increases epithelial markers, including E-cadherin and the epithelial master regulator TP63 and impaired normal TGFβ-trigged epithelial-to-mesenchymal transition. Taken together, these data indicate that PHF14 and HMG20A cooperate in regulating several pathways involved in epithelial-mesenchymal plasticity.
Collapse
Affiliation(s)
- Elena Gómez-Marín
- Genome Biology Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Melanija Posavec-Marjanović
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain
| | - Laura Zarzuela
- Cell Dynamics and Signaling Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Laura Basurto-Cayuela
- Genome Biology Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - José A Guerrero-Martínez
- Genome Biology Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Gonzalo Arribas
- Genome Biology Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Rosario Yerbes
- Cell Dynamics and Signaling Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - María Ceballos-Chávez
- Genome Biology Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Manuel Rodríguez-Paredes
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Mercedes Tomé
- Cell Dynamics and Signaling Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Raúl V Durán
- Cell Dynamics and Signaling Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Marcus Buschbeck
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - José C Reyes
- Genome Biology Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| |
Collapse
|
33
|
Cessna H, Baritaki S, Zaravinos A, Bonavida B. The Role of RKIP in the Regulation of EMT in the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14194596. [PMID: 36230521 PMCID: PMC9559516 DOI: 10.3390/cancers14194596] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Raf kinase inhibitor protein (RKIP) expression in cancer cells is significantly reduced and promoting cancer cells growth and invasiveness. Overexpresssion of RKIP has been reported to mediate pleiotropic anti-cancer activities including the inhibition of survival signaling pathways, sensitization to cell death by cytotoxic drugs, inhibition of invasion, EMT and metastasis. The molecular mechanism by which RKIP inhibits EMT is not clear. In this review, we have examined how RKIP inhibits the selected EMT gene products (Snail, vimentin, N-cadherin, laminin alpha) and found that it involves signaling cross-talks between RKIP and each of the EMT gene products. These findings were validated by bioinformatic analyses demonstrating in various human cancers a negative correlation between the expression of RKIP and the expression of the EMT gene products. These findings suggest that targeting RKIP induction in cancer cells will result in multiple hits by inhibiting tumor growth, metastasis and reversal of chemo-immuno resistance. Abstract The Raf Kinase Inhibitor Protein (RKIP) is a unique gene product that directly inhibits the Raf/Mek/Erk and NF-kB pathways in cancer cells and resulting in the inhibition of cell proliferation, viability, EMT, and metastasis. Additionally, RKIP is involved in the regulation of cancer cell resistance to both chemotherapy and immunotherapy. The low expression of RKIP expression in many cancer types is responsible, in part, for the pathogenesis of cancer and its multiple properties. The inhibition of EMT and metastasis by RKIP led to its classification as a tumor suppressor. However, the mechanism by which RKIP mediates its inhibitory effects on EMT and metastases was not clear. We have proposed that one mechanism involves the negative regulation by RKIP of the expression of various gene products that mediate the mesenchymal phenotype as well as the positive regulation of gene products that mediate the epithelial phenotype via signaling cross talks between RKIP and each gene product. We examined several EMT mesenchymal gene products such as Snail, vimentin, N-cadherin, laminin and EPCAM and epithelial gene products such as E-cadherin and laminin. We have found that indeed these negative and positive correlations were detected in the signaling cross-talks. In addition, we have also examined bioinformatic data sets on different human cancers and the findings corroborated, in large part, the findings observed in the signaling cross-talks with few exceptions in some cancer types. The overall findings support the underlying mechanism by which the tumor suppressor RKIP regulates the expression of gene products involved in EMT and metastasis. Hence, the development of agent that can selectively induce RKIP expression in cancers with low expressions should result in the activation of the pleiotropic anti-cancer activities of RKIP and resulting in multiple effects including inhibition of tumor cell proliferation, EMT, metastasis and sensitization of resistant tumor cells to respond to both chemotherapeutics and immunotherapeutics.
Collapse
Affiliation(s)
- Hannah Cessna
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Laboratory, Nicosia 1516, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
34
|
Machida K. HCV and tumor-initiating stem-like cells. Front Physiol 2022; 13:903302. [PMID: 36187761 PMCID: PMC9520593 DOI: 10.3389/fphys.2022.903302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Neoplasms contain tumor-initiating stem-like cells (TICs) that are characterized by increased drug resistance. The incidence of many cancer types have trended downward except for few cancer types, including hepatocellular carcinoma (HCC). Therefore mechanism of HCC development and therapy resistance needs to be understood. These multiple hits by hepatitis C virus (HCV) eventually promotes transformation and TIC genesis, leading to HCC development. This review article describes links between HCV-associated HCC and TICs. This review discusses 1) how HCV promotes genesis of TICs and HCC development; 2) how this process avails itself as a novel therapeutic target for HCC treatment; and 3) ten hall marks of TIC oncogenesis and HCC development as targets for novel therapeutic modalities.
Collapse
|
35
|
Nakashima Y, Yoshida S, Tsukahara M. Semi-3D cultures using Laminin 221 as a coating material for human induced pluripotent stem cells. Regen Biomater 2022; 9:rbac060. [PMID: 36176714 PMCID: PMC9514851 DOI: 10.1093/rb/rbac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/09/2022] [Accepted: 08/21/2022] [Indexed: 11/19/2022] Open
Abstract
It was previously believed that human induced pluripotent stem cells (hiPSCs) did not show adhesion to the coating material Laminin 221, which is known to have specific affinity for cardiomyocytes. In this study, we report that human mononuclear cell-derived hiPSCs, established with Sendai virus vector, form peninsular-like colonies rather than embryonic stem cell-like colonies; these peninsular-like colonies can be passaged more than 10 times after establishment. Additionally, initialization-deficient cells with residual Sendai virus vector adhered to the coating material Laminin 511 but not to Laminin 221. Therefore, the expression of undifferentiated markers tended to be higher in hiPSCs established on Laminin 221 than on Laminin 511. On Laminin 221, hiPSCs15M66 showed a semi-floating colony morphology. The expression of various markers of cell polarity was significantly lower in hiPSCs cultured on Laminin 221 than in hiPSCs cultured on Laminin 511. Furthermore, 201B7 and 15M66 hiPSCs showed 3D cardiomyocyte differentiation on Laminin 221. Thus, the coating material Laminin 221 provides semi-floating culture conditions for the establishment, culture and induced differentiation of hiPSCs.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Facility for iPS Cell Therapy (FiT), Kyoto 606-8397, Japan
| | - Shinsuke Yoshida
- Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Facility for iPS Cell Therapy (FiT), Kyoto 606-8397, Japan
| | - Masayoshi Tsukahara
- Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Facility for iPS Cell Therapy (FiT), Kyoto 606-8397, Japan
| |
Collapse
|
36
|
Tang Y, Song S, Peng J, Zhang Q, Lin W. An ultrasensitive lipid droplet-targeted NIR emission fluorescent probe for polarity detection and its application in liver disease diagnosis. J Mater Chem B 2022; 10:6974-6982. [PMID: 36000501 DOI: 10.1039/d2tb01145j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compared to normal cells, cancer cells require more energy supply during proliferation and metabolism. In living cells, in addition to mitochondria, lipid droplets are also an important organelle for providing energy. Studies have shown that the number and distribution of lipid droplets change significantly during the production of lesions in cells. At this stage, the predisposing factors for the development of cellular lesions are not clear, thus leading to limitations in the early diagnosis and treatment of diseases such as liver injury, fatty liver, and hepatitis. To meet the urgent challenge, we used a near-infrared emission fluorescent probe SSR-LDs based on the intramolecular charge transfer effect (ICT) to detect polarity changes within intracellular lipid droplets. The probe SSR-LDs has ultra-sensitive polarity sensitivity, excellent chemical stability and photo-stability. In addition, by comparing normal and cancer cells through cell imaging experiments, we found that the robust probe has the ability to sensitively monitor the changes in lipid droplet polarity in the living cells. More importantly, using the constructed fluorescent probe, we have achieved an in vitro fluorescence detection of liver injury and fatty liver, and the detection of hepatitis at the in vivo level. The unique fluorescent probe SSR-LDs is expected to serve as a powerful tool for the medical diagnosis of diseases related to lipid droplet polarity.
Collapse
Affiliation(s)
- Yonghe Tang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
| | - Sirui Song
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
| | - Juanjuan Peng
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
| | - Qian Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
37
|
Di Meglio I, Trushko A, Guillamat P, Blanch-Mercader C, Abuhattum S, Roux A. Pressure and curvature control of the cell cycle in epithelia growing under spherical confinement. Cell Rep 2022; 40:111227. [PMID: 36001958 PMCID: PMC9433880 DOI: 10.1016/j.celrep.2022.111227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 05/03/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Morphogenesis requires spatiotemporal regulation of proliferation, both by biochemical and mechanical cues. In epithelia, this regulation is called contact inhibition of proliferation, but disentangling biochemical from mechanical cues remains challenging. Here, we show that epithelia growing under confinement accumulate pressure that inhibits proliferation above a threshold value. During growth, epithelia spontaneously buckle, and cell proliferation is transiently reactivated within the fold. Reactivation of proliferation within folds correlated with the local reactivation of the mechano-sensing YAP/TAZ pathway. At late time points, when the pressure is highest, β-catenin activity increases. The threshold pressure increases when β-catenin is overactivated and decreases when β-catenin is inhibited. Altogether, our results suggest that different mechanical cues resulting from pressure inhibition of proliferation are at play through different mechano-sensing pathways: the β-catenin pathway sustains cell division under high pressure, and the YAP pathway senses local curvature. Encapsulation of MDCK cells enables quantification of growth-induced pressure Confined epithelia reach a threshold pressure that inhibits cell-cycle progression Overactivation of β-catenin activity sustains cell division under high pressure
Collapse
Affiliation(s)
- Ilaria Di Meglio
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Anastasiya Trushko
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Pau Guillamat
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Carles Blanch-Mercader
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; Department of Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland
| | - Shada Abuhattum
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; National Center of Competence in Research Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
38
|
Kim KH, Hong GL, Kim YJ, Lee HJ, Jung JY. Silencing of LLGL2 Suppresses the Estradiol-Induced BPH-1 Cell Proliferation through the Regulation of Autophagy. Biomedicines 2022; 10:biomedicines10081981. [PMID: 36009528 PMCID: PMC9406103 DOI: 10.3390/biomedicines10081981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lethal giant larvae (Lgl) is an apical-basal polarity gene first identified in Drosophila. LLGL2 is one of the mammalian homologs of Lgl. However, little is known about its function in the prostate. In this study, to explore the new role of LLGL2 in the prostate, we examined the proliferative activity of a BPH-1 cell line, a well-established model for the human prostate biology of benign prostatic hyperplasia (BPH). The expression of LLGL2 was dose-dependently increased in BPH-1 cells after treatment with 17β-estradiol (E2). Additionally, E2 treatment increased the proliferation of the BPH-1 cells. However, the knockdown of LLGL2 with siRNA significantly suppressed the proliferation of the E2-treated BPH-1 cells. Moreover, si-llgl2 treatment up-regulated the expression of LC-3B, ATG7, and p-beclin, which are known to play a pivotal role in autophagosome formation in E2-treated BPH-1 cells. Overexpression of LLGL2 was able to further prove these findings by showing the opposite results from the knockdown of LLGL2 in E2-treated BPH-1 cells. Collectively, our results suggest that LLGL2 is closely involved in the proliferation of prostate cells by regulating autophagosome formation. These results provide a better understanding of the mechanism involved in the effect of LLGL2 on prostate cell proliferation. LLGL2 might serve as a potential target in the diagnosis and/or treatment of human BPH.
Collapse
Affiliation(s)
| | | | | | | | - Ju-Young Jung
- Correspondence: ; Tel.: +82-42-821-8899; Fax: +82-42-821-7926
| |
Collapse
|
39
|
Shi X, Liu X, Silver K, Zhu KY, Zhang J. Lethal giant larvae gene is required for normal nymphal development and midgut morphogenesis in Locusta migratoria. INSECT SCIENCE 2022; 29:1017-1029. [PMID: 34978756 DOI: 10.1111/1744-7917.12996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/18/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Disruption of morphogenesis, an essential process in organismal development, can lead to disruption of biological processes, reduction in fitness, or even death of an organism. The roles of lethal giant larvae (Lgl) protein in maintaining tissue organization have been studied extensively in mammals, but little is known about this gene's roles in promoting correct tissue morphogenesis in insects. In this study, we identified an Lgl ortholog in Locusta migratoria. RT-qPCR results revealed that LmLgl was constitutively expressed during third, fourth, and fifth instar nymphs. Furthermore, LmLgl showed highest expression in the ovary followed by wing pads, midgut, hindgut, Malpighian tubules, and foregut of the third-instar nymphs. To examine the role of LmLgl in L. migratoria development, RNA interference was performed during nymphal stages. Silencing of LmLgl increased body size but decreased bodyweight by 9.0%. Histological sections of the midgut revealed abnormal large masses of disordered epithelial cells in dsLmLgl-injected nymphs. In addition, downregulation of LmLgl transcript levels significantly altered the morphological structure in midgut, resulting in the formation of tumor-like structures. Our results indicated that LmLgl may act as a tumor-suppressor gene, which plays an essential role in maintaining a normal morphological structure in the midgut of L. migratoria. Our results also suggest that LmLgl may be explored as a potential target for developing dsRNA-based biological pesticides for managing insect pests.
Collapse
Affiliation(s)
- Xuekai Shi
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Xiaojian Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
40
|
Dang H, Martin‐Villalba A, Schiebel E. Centrosome linker protein C-Nap1 maintains stem cells in mouse testes. EMBO Rep 2022; 23:e53805. [PMID: 35599622 PMCID: PMC9253759 DOI: 10.15252/embr.202153805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022] Open
Abstract
The centrosome linker component C-Nap1 (encoded by CEP250) anchors filaments to centrioles that provide centrosome cohesion by connecting the two centrosomes of an interphase cell into a single microtubule organizing unit. The role of the centrosome linker during development of an animal remains enigmatic. Here, we show that male CEP250-/- mice are sterile because sperm production is abolished. Premature centrosome separation means that germ stem cells in CEP250-/- mice fail to establish an E-cadherin polarity mark and are unable to maintain the older mother centrosome on the basal site of the seminiferous tubules. This failure prompts premature stem cell differentiation in expense of germ stem cell expansion. The concomitant induction of apoptosis triggers the complete depletion of germ stem cells and consequently infertility. Our study reveals a role for centrosome cohesion in asymmetric cell division, stem cell maintenance, and fertility.
Collapse
Affiliation(s)
- Hairuo Dang
- Zentrum für Molekulare Biologie der Universität HeidelbergDeutsches Krebsforschungszentrum‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
- Heidelberg Biosciences International Graduate School (HBIGS)Universität HeidelbergHeidelbergGermany
| | - Ana Martin‐Villalba
- Deutsches Krebsforschungszentrum‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität HeidelbergDeutsches Krebsforschungszentrum‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
| |
Collapse
|
41
|
Individual and Co-Expression Patterns of FAM83H and SCRIB at Diagnosis Are Associated with the Survival of Colorectal Carcinoma Patients. Diagnostics (Basel) 2022; 12:diagnostics12071579. [PMID: 35885485 PMCID: PMC9318331 DOI: 10.3390/diagnostics12071579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background: FAM83H is important in teeth development; however, an increasing number of reports have indicated a role for it in human cancers. FAM83H is involved in cancer progression in association with various oncogenic molecules, including SCRIB. In the analysis of the public database, there was a significant association between FAM83H and SCRIB in colorectal carcinomas. However, studies evaluating the association of FAM83H and SCRIB in colorectal carcinoma have been limited. Methods: The clinicopathological significance of the immunohistochemical expression of FAM83H and SCRIB was evaluated in 222 colorectal carcinomas. Results: The expressions of FAM83H and SCRIB were significantly associated in colorectal carcinoma tissue. In univariate analysis, the nuclear expressions of FAM83H and SCRIB and the cytoplasmic expression of SCRIB were significantly associated with shorter survival of colorectal carcinomas. The nuclear expressions of FAM83H and SCRIB and the cytoplasmic expression of SCRIB were independent indicators of shorter cancer-specific survival in multivariate analysis. A co-expression pattern of nuclear FAM83H and cytoplasmic SCRIB predicted shorter cancer-specific survival (p < 0.001) and relapse-free survival (p = 0.032) in multivariate analysis. Conclusions: This study suggests that FAM83H and SCRIB might be used as prognostic markers of colorectal carcinomas and as potential therapeutic targets for colorectal carcinomas.
Collapse
|
42
|
Spuldaro TR, Wagner VP, Nör F, Gaio EJ, Squarize CH, Carrard VC, Rösing CK, Castilho RM. Periodontal disease affects oral cancer progression in a surrogate animal model for tobacco exposure. Int J Oncol 2022; 60:77. [PMID: 35514311 PMCID: PMC9097773 DOI: 10.3892/ijo.2022.5367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 11/11/2022] Open
Abstract
For decades, the link between poor oral hygiene and the increased prevalence of oral cancer has been suggested. Most recently, emerging evidence has suggested that chronic inflammatory diseases from the oral cavity (e.g., periodontal disease), to some extent, play a role in the development of oral squamous cell carcinoma (OSCC). The present study aimed to explore the direct impact of biofilm‑induced periodontitis in the carcinogenesis process using a tobacco surrogate animal model for oral cancer. A total of 42 Wistar rats were distributed into four experimental groups: Control group, periodontitis (Perio) group, 4‑nitroquinoline 1‑oxide (4‑NQO) group and 4NQO/Perio group. Periodontitis was stimulated by placing a ligature subgingivally, while oral carcinogenesis was induced by systemic administration of 4NQO in the drinking water for 20 weeks. It was observed that the Perio, 4NQO and 4NQO/Perio groups presented with significantly higher alveolar bone loss compared with that in the control group. Furthermore, all groups receiving 4NQO developed lesions on the dorsal surface of the tongue; however, the 4NQO/Perio group presented larger lesions compared with the 4NQO group. There was also a modest overall increase in the number of epithelial dysplasia and OSCC lesions in the 4NQO/Perio group. Notably, abnormal focal activation of cellular differentiation (cytokeratin 10‑positive cells) that extended near the basal cell layer of the mucosa was observed in rats receiving 4NQO alone, but was absent in rats receiving 4NQO and presenting with periodontal disease. Altogether, the presence of periodontitis combined with 4NQO administration augmented tumor size in the current rat model and tampered with the protective mechanisms of the cellular differentiation of epithelial cells.
Collapse
Affiliation(s)
- Tobias R. Spuldaro
- Department of Periodontology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
| | - Vivian P. Wagner
- Department of Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield S10 2TN, UK
| | - Felipe Nör
- Department of Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Eduardo J. Gaio
- Department of Periodontology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
| | - Cristiane H. Squarize
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-0944, USA
| | - Vinicius C. Carrard
- Department of Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
- Department of Oral Medicine, Otorhinolaryngology Service, Porto Alegre General Hospital, Port Alegre, RS 90035-903, Brazil
| | - Cassiano K. Rösing
- Department of Periodontology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
| | - Rogerio M. Castilho
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-0944, USA
| |
Collapse
|
43
|
Kedashiro S, Kameyama T, Mizutani K, Takai Y. Stimulatory role of nectin-4 and p95-ErbB2 in multilayered T47D cell proliferation. Genes Cells 2022; 27:451-464. [PMID: 35430770 DOI: 10.1111/gtc.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
Multilayered proliferation in an adherent culture as well as proliferation in a suspension culture is a characteristic feature of cancer cells. We previously showed using T47D human mammary cancer cells that nectin-4, upregulated in many cancer cells, cis-interacts with ErbB2 and its trastuzumab-resistant splice variants, p95-ErbB2 and ErbB2ΔEx16, and enhances DNA synthesis mainly through the PI3K-AKT pathway in an adherent culture. We showed here that only the combination of nectin-4 and p95-ErbB2, but not that of nectin-4 and ErbB2 or that of nectin-4 and ErbB2ΔEx16, cooperatively enhanced multilayered T47D cell proliferation through the Hippo pathway-mediated SOX2 gene expression in an adherent culture. T47D cells expressed the components of the apical junctional complex (AJC) consisting of adherens junctions (AJs) and tight junctions and cell polarity molecules, but not the AJ component afadin. The AJC and apicobasal polarity were disorganized in T47D cells in a monolayer and T47D cells stably expressing both nectin-4 and p95-ErbB2 in multilayers. These results indicate that nectin-4 and p95-ErbB2 play a stimulatory role in multilayered proliferation in an adherent culture.
Collapse
Affiliation(s)
- Shin Kedashiro
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takeshi Kameyama
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kiyohito Mizutani
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yoshimi Takai
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
44
|
Machida K, Tahara SM. Immunotherapy and Microbiota for Targeting of Liver Tumor-Initiating Stem-like Cells. Cancers (Basel) 2022; 14:2381. [PMID: 35625986 PMCID: PMC9139909 DOI: 10.3390/cancers14102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer contains tumor-initiating stem-like cells (TICs) that are resistant to therapies. Hepatocellular carcinoma (HCC) incidence has increased twice over the past few decades, while the incidence of other cancer types has trended downward globally. Therefore, an understanding of HCC development and therapy resistance mechanisms is needed for this incurable malignancy. This review article describes links between immunotherapies and microbiota in tumor-initiating stem-like cells (TICs), which have stem cell characteristics with self-renewal ability and express pluripotency transcription factors such as NANOG, SOX2, and OCT4. This review discusses (1) how immunotherapies fail and (2) how gut dysbiosis inhibits immunotherapy efficacy. Gut dysbiosis promotes resistance to immunotherapies by breaking gut immune tolerance and activating suppressor immune cells. Unfortunately, this leads to incurable recurrence/metastasis development. Personalized medicine approaches targeting these mechanisms of TIC/metastasis-initiating cells are emerging targets for HCC immunotherapy and microbiota modulation therapy.
Collapse
Affiliation(s)
- Keigo Machida
- Southern California Research Center for ALPD and Cirrhosis, Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., 503C-HMR, Los Angeles, CA 90033, USA;
| | | |
Collapse
|
45
|
Dreyer CA, VanderVorst K, Carraway KL. Vangl as a Master Scaffold for Wnt/Planar Cell Polarity Signaling in Development and Disease. Front Cell Dev Biol 2022; 10:887100. [PMID: 35646914 PMCID: PMC9130715 DOI: 10.3389/fcell.2022.887100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
The establishment of polarity within tissues and dynamic cellular morphogenetic events are features common to both developing and adult tissues, and breakdown of these programs is associated with diverse human diseases. Wnt/Planar cell polarity (Wnt/PCP) signaling, a branch of non-canonical Wnt signaling, is critical to the establishment and maintenance of polarity in epithelial tissues as well as cell motility events critical to proper embryonic development. In epithelial tissues, Wnt/PCP-mediated planar polarity relies upon the asymmetric distribution of core proteins to establish polarity, but the requirement for this distribution in Wnt/PCP-mediated cell motility remains unclear. However, in both polarized tissues and migratory cells, the Wnt/PCP-specific transmembrane protein Vangl is required and appears to serve as a scaffold upon which the core pathway components as well as positive and negative regulators of Wnt/PCP signaling assemble. The current literature suggests that the multiple interaction domains of Vangl allow for the binding of diverse signaling partners for the establishment of context- and tissue-specific complexes. In this review we discuss the role of Vangl as a master scaffold for Wnt/PCP signaling in epithelial tissue polarity and cellular motility events in developing and adult tissues, and address how these programs are dysregulated in human disease.
Collapse
Affiliation(s)
| | | | - Kermit L. Carraway
- Department of Biochemistry and Molecular Medicine and the UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
46
|
Vanslembrouck B, Chen JH, Larabell C, van Hengel J. Microscopic Visualization of Cell-Cell Adhesion Complexes at Micro and Nanoscale. Front Cell Dev Biol 2022; 10:819534. [PMID: 35517500 PMCID: PMC9065677 DOI: 10.3389/fcell.2022.819534] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
Considerable progress has been made in our knowledge of the morphological and functional varieties of anchoring junctions. Cell-cell adhesion contacts consist of discrete junctional structures responsible for the mechanical coupling of cytoskeletons and allow the transmission of mechanical signals across the cell collective. The three main adhesion complexes are adherens junctions, tight junctions, and desmosomes. Microscopy has played a fundamental role in understanding these adhesion complexes on different levels in both physiological and pathological conditions. In this review, we discuss the main light and electron microscopy techniques used to unravel the structure and composition of the three cell-cell contacts in epithelial and endothelial cells. It functions as a guide to pick the appropriate imaging technique(s) for the adhesion complexes of interest. We also point out the latest techniques that have emerged. At the end, we discuss the problems investigators encounter during their cell-cell adhesion research using microscopic techniques.
Collapse
Affiliation(s)
- Bieke Vanslembrouck
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
- *Correspondence: Bieke Vanslembrouck, ; Jolanda van Hengel,
| | - Jian-hua Chen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
| | - Jolanda van Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- *Correspondence: Bieke Vanslembrouck, ; Jolanda van Hengel,
| |
Collapse
|
47
|
Abbott J, Mukherjee A, Wu W, Ye T, Jung HS, Cheung KM, Gertner RS, Basan M, Ham D, Park H. Multi-parametric functional imaging of cell cultures and tissues with a CMOS microelectrode array. LAB ON A CHIP 2022; 22:1286-1296. [PMID: 35266462 PMCID: PMC8963257 DOI: 10.1039/d1lc00878a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/11/2022] [Indexed: 06/01/2023]
Abstract
Electrode-based impedance and electrochemical measurements can provide cell-biology information that is difficult to obtain using optical-microscopy techniques. Such electrical methods are non-invasive, label-free, and continuous, eliminating the need for fluorescence reporters and overcoming optical imaging's throughput/temporal resolution limitations. Nonetheless, electrode-based techniques have not been heavily employed because devices typically contain few electrodes per well, resulting in noisy aggregate readouts. Complementary metal-oxide-semiconductor (CMOS) microelectrode arrays (MEAs) have sometimes been used for electrophysiological measurements with thousands of electrodes per well at sub-cellular pitches, but only basic impedance mappings of cell attachment have been performed outside of electrophysiology. Here, we report on new field-based impedance mapping and electrochemical mapping/patterning techniques to expand CMOS-MEA cell-biology applications. The methods enable accurate measurement of cell attachment, growth/wound healing, cell-cell adhesion, metabolic state, and redox properties with single-cell spatial resolution (20 μm electrode pitch). These measurements allow the quantification of adhesion and metabolic differences of cells expressing oncogenes versus wild-type controls. The multi-parametric, cell-population statistics captured by the chip-scale integrated device opens up new avenues for fully electronic high-throughput live-cell assays for phenotypic screening and drug discovery applications.
Collapse
Affiliation(s)
- Jeffrey Abbott
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA.
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | - Avik Mukherjee
- Department of System Biology, Harvard Medical School, Boston, Massachusetts, USA.
| | - Wenxuan Wu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | - Tianyang Ye
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA.
| | - Han Sae Jung
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | - Kevin M Cheung
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA.
| | - Rona S Gertner
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA.
| | - Markus Basan
- Department of System Biology, Harvard Medical School, Boston, Massachusetts, USA.
| | - Donhee Ham
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | - Hongkun Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA.
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
48
|
Agnetti J, Desterke C, Gassama-Diagne A. Impact of HCV Infection on Hepatocyte Polarity and Plasticity. Pathogens 2022; 11:pathogens11030337. [PMID: 35335661 PMCID: PMC8955246 DOI: 10.3390/pathogens11030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
The hepatitis C virus (HCV) is an oncogenic virus that alters the cell polarization machinery in order to enter the hepatocyte and replicate. While these alterations are relatively well defined, their consequences in the evolution of the disease remain poorly documented. Since 2012, HCV infection can be effectively cured with the advent of direct acting antivirals (DAA). Nevertheless, patients cured of their HCV infection still have a high risk of developing hepatocellular carcinoma (HCC). Importantly, it has been shown that some of the deregulations induced by HCV are maintained despite a sustained virologic response (SVR), including the down-regulation of some hepatocyte functions such as bile acid metabolism, exemplifying cell dedifferentiation, and the up-regulation of the epithelial–mesenchymal transition (EMT). EMT is a process by which epithelial cells lose their differentiation and their specific polarity to acquire mesenchymal cell properties, including migration and extracellular matrix remodeling capabilities. Of note, epithelial cell polarity acts as a gatekeeper against EMT. Thus, it remains important to elucidate the mechanisms by which HCV alters polarity and promotes EMT that could participate in viral-induced hepatic carcinogenesis. In this review, we define the main steps involved in the polarization process of epithelial cells and recall the essential cellular actors involved. We also highlight the particularities of hepatocyte polarity, responsible for their unique morphology. We then focus on the alterations by HCV of epithelial cell polarity and the consequences of the transformation of hepatocytes involved in the carcinogenesis process.
Collapse
Affiliation(s)
- Jean Agnetti
- INSERM, UMR-S 1193, Université Paris-Sud, F-94800 Villejuif, France;
| | | | - Ama Gassama-Diagne
- INSERM, UMR-S 1193, Université Paris-Sud, F-94800 Villejuif, France;
- Correspondence:
| |
Collapse
|
49
|
Pavic K, Chippalkatti R, Abankwa D. Drug targeting opportunities en route to Ras nanoclusters. Adv Cancer Res 2022; 153:63-99. [PMID: 35101236 DOI: 10.1016/bs.acr.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Disruption of the native membrane organization of Ras by the farnesyltransferase inhibitor tipifarnib in the late 1990s constituted the first indirect approach to drug target Ras. Since then, our understanding of how dynamically Ras shuttles between subcellular locations has changed significantly. Ras proteins have to arrive at the plasma membrane for efficient MAPK-signal propagation. On the plasma membrane Ras proteins are organized into isoform specific proteo-lipid assemblies called nanocluster. Recent evidence suggests that Ras nanocluster have a specific lipid composition, which supports the recruitment of effectors such as Raf. Conversely, effectors possess lipid-recognition motifs, which appear to serve as co-incidence detectors for the lipid domain of a given Ras isoform. Evidence suggests that dimeric Raf proteins then co-assemble dimeric Ras in an immobile complex, thus forming the minimal unit of an active nanocluster. Here we review established and novel trafficking chaperones and trafficking factors of Ras, along with the set of lipid and protein modulators of Ras nanoclustering. We highlight drug targeting approaches and opportunities against these determinants of functional Ras membrane organization. Finally, we reflect on implications for Ras signaling in polarized cells, such as epithelia, which are a common origin of tumorigenesis.
Collapse
Affiliation(s)
- Karolina Pavic
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rohan Chippalkatti
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Daniel Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
50
|
Alsafadi DB, Abdullah MS, Bawadi R, Ahram M. The Association of RGS2 and Slug in the Androgen-induced Acquisition of Mesenchymal Features of Breast MDA-MB-453 Cancer Cells. Endocr Res 2022; 47:64-79. [PMID: 35168462 DOI: 10.1080/07435800.2022.2036752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) of tumor cells is a prerequisite to cancer cell invasion and metastasis. This process involves a network of molecular alterations. Androgen receptor (AR) plays an important role in the biology of breast cancers, particularly those dependent on AR expression like luminal AR (LAR) breast cancer subtype. We have recently reported that the AR agonist, dihydrotestosterone (DHT), induces a mesenchymal transition of MDA-MB-453 cells, concomitant with transcriptional up-regulation of Slug and regulator of G protein signaling 2 (RGS2). OBJECTIVE The role of Slug and RGS2 in mediating the DHT-induced effects in these cells was investigated. METHODS MDA-MB-453 cells were used as a model system of LAR breast cancer. Immunofluorescence was used to examine cell morphology and protein localization. Protein expression was analyzed by immunoblotting. Protein localization was confirmed by cell fractionation followed by immunoblotting. Protein-protein interaction was confirmed by co-immunoprecipitation followed by immunoblotting. Transwell membranes were used to assess cell migration. Transfection of cells with siRNA molecules that target Slug and RGS2 mRNA was utilized to delineate the modes of action of these two molecules. RESULTS Treatment of MDA-MB-453 cells with DHT induced the expression of both proteins. In addition, AR-Slug, AR-RGS2, and Slug-RGS2 interactions were observed shortly after AR activation. Knocking down Slug abrogated the basal, but not the DHT-induced, cell migration and blocked DHT-induced mesenchymal transition. On the other hand, RGS2 knocked-down cells had an increased level of Slug protein and assumed mesenchymal cell morphology with induced migration, and the addition of DHT further elongated cell morphology and stimulated their migration. Inhibition of AR or β-catenin reverted the RGS2 knocked-down cells to the epithelial phenotype, but only inhibition of AR blocked their DHT-induced migration. CONCLUSIONS These results suggest the involvement of RGS2 and Slug in a complex molecular network regulating the DHT-induced mesenchymal features in MDA-MB-453 cells. The study may offer a better understanding of the biological role of AR in breast cancer toward devising AR-based therapeutic strategies.
Collapse
Affiliation(s)
- Dana B Alsafadi
- Department of Microbiology, Pathology, and Forensic Medicine, School of Medicine, the University of Jordan, Amman, Jordan
| | - Mohammad S Abdullah
- Department of Microbiology, Pathology, and Forensic Medicine, School of Medicine, the University of Jordan, Amman, Jordan
| | - Randa Bawadi
- Department of Physiology and Biochemistry, School of Medicine, the University of Jordan, Amman, Jordan
| | - Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, the University of Jordan, Amman, Jordan
| |
Collapse
|