1
|
Phoon CK, Aristizábal O, Farhoud M, Turnbull DH, Wadghiri YZ. Mouse Cardiovascular Imaging. Curr Protoc 2024; 4:e1116. [PMID: 39222027 PMCID: PMC11371386 DOI: 10.1002/cpz1.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging, with brief overviews of other imaging modalities. In this update, we also emphasize the importance of rigor and reproducibility in imaging approaches, experimental design, and documentation. Finally, we briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Colin K.L. Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY
| | - Orlando Aristizábal
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| | | | - Daniel H. Turnbull
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Youssef Z. Wadghiri
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
2
|
Diastole/Body Mass Index Ratio Can Predict Post-Thoracoscopic Surgery Metastasis in Stage I Lung Adenocarcinoma. J Pers Med 2023; 13:jpm13030497. [PMID: 36983679 PMCID: PMC10054715 DOI: 10.3390/jpm13030497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Background: According to recent animal models for lung adenocarcinoma metastasis, cardiac function may be related to the clinical outcome. The aim of this study is to identify a predictable index for postoperative metastasis (POM) that is associated with cardiac function. Methods. Two hundred and seven consecutive patients who underwent thoracoscopic resection for stage I lung adenocarcinoma were included. Disease-free survival (DFS), overall survival (OS), and patients’ clinical and pathological characteristics were analyzed. Results. Among the 207 patients, 17 cases demonstrated metastasis, 110 cases received a preoperative echocardiogram, and six cases had POM. Mitral valve peak A velocity, which is one of the left ventricular diastolic function parameters affected by BMI (MVPABMI), was associated with a negative factor for POM (hazard ratio (HR): 2.139, p = 0.019) and a poor 5-year DFS in the above median (100% vs. 87%, p = 0.014). The predictable rate increased from 30.7% to 75% when the MVPABMI was above the median = 3.15 in the solid subtype). Conclusions. MVPABMI is a novel index for POM prediction in early-stage lung adenocarcinoma. This is a pilot study and the first attempt at research to verify that the diastole and the BMI may be associated with POM in early-stage lung adenocarcinoma.
Collapse
|
3
|
Manohar A, Colvert GM, Ortuño JE, Chen Z, Yang J, Colvert BT, Bandettini WP, Chen MY, Ledesma-Carbayo MJ, McVeigh ER. Regional left ventricular endocardial strains estimated from low-dose 4DCT: Comparison with cardiac magnetic resonance feature tracking. Med Phys 2022; 49:5841-5854. [PMID: 35751864 PMCID: PMC9474637 DOI: 10.1002/mp.15818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Estimates of regional left ventricular (LV) strains provide additional information to global function parameters such as ejection fraction (EF) and global longitudinal strain (GLS) and are more sensitive in detecting abnormal regional cardiac function. The accurate and reproducible assessment of regional cardiac function has implications in the management of various cardiac diseases such as heart failure, myocardial ischemia, and dyssynchrony. PURPOSE To develop a method that yields highly reproducible, high-resolution estimates of regional endocardial strains from 4DCT images. METHODS A method for estimating regional LV endocardial circumferential( ε c c ) $( {{\epsilon }_{cc}} )$ and longitudinal (ε l l ${\epsilon }_{ll}$ ) strains from 4DCT was developed. Point clouds representing the LV endocardial surface were extracted for each time frame of the cardiac cycle from 4DCT images. 3D deformation fields across the cardiac cycle were obtained by registering the end diastolic point cloud to each subsequent point cloud in time across the cardiac cycle using a 3D point-set registration technique. From these deformation fields,ε c c and ε l l ${\epsilon }_{cc}\ {\rm{and\ }}{\epsilon }_{ll}$ were estimated over the entire LV endocardial surface by fitting an affine transformation with maximum likelihood estimation. The 4DCT-derived strains were compared with strains estimated in the same subjects by cardiac magnetic resonance (CMR); twenty-four subjects had CMR scans followed by 4DCT scans acquired within a few hours. Regional LV circumferential and longitudinal strains were estimated from the CMR images using a commercially available feature tracking software (cvi42). Global circumferential strain (GCS) and global longitudinal strain (GLS) were calculated as the mean of the regional strains across the entire LV for both modalities. Pearson correlation coefficients and Bland-Altman analyses were used for comparisons. Intraclass correlation coefficients (ICC) were used to assess the inter- and intraobserver reproducibility of the 4DCT-derived strains. RESULTS The 4DCT-derived regional strains correlated well with the CMR-derived regional strains (ε c c ${\epsilon }_{cc}$ : r = 0.76, p < 0.001;ε l l ${\epsilon }_{ll}$ : r = 0.64, p < 0.001). A very strong correlation was found between 4DCT-derived GCS and 4DCT-derived EF (r = -0.96; p < 0.001). The 4DCT-derived strains were also highly reproducible, with very low inter- and intraobserver variability (intraclass correlation coefficients in the range of [0.92, 0.99]). CONCLUSIONS We have developed a novel method to estimate high-resolution regional LV endocardial circumferential and longitudinal strains from 4DCT images. Except for the definition of the mitral valve and LV outflow tract planes, the method is completely user independent, thus yielding highly reproducible estimates of endocardial strain. The 4DCT-derived strains correlated well with those estimated using a commercial CMR feature tracking software. The promising results reported in this study highlight the potential utility of 4DCT in the precise assessment of regional cardiac function for the management of cardiac disease.
Collapse
Affiliation(s)
- Ashish Manohar
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Gabrielle M Colvert
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Juan E Ortuño
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
- Biomedical Image Technologies Laboratory, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Zhennong Chen
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - James Yang
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Brendan T Colvert
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - W Patricia Bandettini
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marcus Y Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - María J Ledesma-Carbayo
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
- Biomedical Image Technologies Laboratory, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Elliot R McVeigh
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Medicine, Cardiovascular Division, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Dehkordi P, Tavakolian K, Tadi MJ, Zakeri V, Khosrow-Khavar F. Investigating the estimation of cardiac time intervals using gyrocardiography. Physiol Meas 2020; 41:055004. [PMID: 32268315 DOI: 10.1088/1361-6579/ab87b2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Assessment of cardiac time intervals (CTIs) is essential for monitoring cardiac performance. Recently, gyrocardiography (GCG) has been introduced as a non-invasive technology for cardiac monitoring. GCG measures the chest's angular precordial vibrations caused by myocardium wall motion using a gyroscope sensor attached to the sternum. In this study, we investigated the accuracy and reproducibility of estimating CTIs from the GCG recordings of 50 adults. APPROACH We proposed five fiducial points for the GCG waveforms associated with the opening and closure of aortic and mitral valves. Two annotators annotated the suggested points on each cardiac cycle. The points were compared to the corresponding opening and closing of cardiac valves delineated on Tissue Doppler imaging (TDI) recordings. The fiducial points were annotated on seismocardiography (SCG) and impedance cardiography (ICG) signals recorded simultaneously. MAIN RESULTS For estimating the timing of mitral valve closure, aortic valve opening, aortic valve closure, and mitral valve opening, 40%, 67%, 75%, and 70% of GCG annotations fell in the corresponding echocardiography ranges, respectively. The results showed moderate-to-excellent (r = 0.4-0.92; p-value < 0.01) correlation between the measured and the reference CTls. A myocardial performance index (Tei index) adapted using joint GCG and SCG resulted in a moderate correlation (r = 0.4; p-value < 0.001). SIGNIFICANCE The findings showed that the CTIs can be easily measured using GCG. Also, we found that using SCG and GCG recordings together could provide an opportunity to estimate CTIs more accurately, and make it possible to calculate the Tei index as an indicator of myocardial performance.
Collapse
Affiliation(s)
- Parastoo Dehkordi
- Electrical and Computer Engineering Department, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
5
|
Herling L, Johnson J, Ferm-Widlund K, Bergholm F, Elmstedt N, Lindgren P, Sonesson SE, Acharya G, Westgren M. Automated analysis of fetal cardiac function using color tissue Doppler imaging in second half of normal pregnancy. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2019; 53:348-357. [PMID: 29484743 DOI: 10.1002/uog.19037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/18/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVES Color tissue Doppler imaging (cTDI) is a promising tool for the assessment of fetal cardiac function. However, the analysis of myocardial velocity traces is cumbersome and time-consuming, limiting its application in clinical practice. The aim of this study was to evaluate fetal cardiac function during the second half of pregnancy and to develop reference ranges using an automated method to analyze cTDI recordings from a cardiac four-chamber view. METHODS This was a cross-sectional study including 201 normal singleton pregnancies between 18 and 42 weeks of gestation. During fetal echocardiography, a four-chamber view of the heart was visualized and cTDI was performed. Regions of interest were positioned at the level of the atrioventricular plane in the left ventricular (LV), right ventricular (RV) and septal walls of the fetal heart, to obtain myocardial velocity traces that were analyzed offline using the automated algorithm. Peak myocardial velocities during atrial contraction (Am), ventricular ejection (Sm) and rapid ventricular filling, i.e. early diastole (Em), as well as the Em/Am ratio, mechanical cardiac time intervals and myocardial performance index (cMPI) were evaluated, and gestational age-specific reference ranges were constructed. RESULTS At 18 weeks of gestation, the peak myocardial velocities, presented as fitted mean with 95% CI, were: LV Am, 3.39 (3.09-3.70) cm/s; LV Sm, 1.62 (1.46-1.79) cm/s; LV Em, 1.95 (1.75-2.15) cm/s; septal Am, 3.07 (2.80-3.36) cm/s; septal Sm, 1.93 (1.81-2.06) cm/s; septal Em, 2.57 (2.32-2.84) cm/s; RV Am, 4.89 (4.59-5.20) cm/s; RV Sm, 2.31 (2.16-2.46) cm/s; and RV Em, 2.94 (2.69-3.21) cm/s. At 42 weeks of gestation, the peak myocardial velocities had increased to: LV Am, 4.25 (3.87-4.65) cm/s; LV Sm, 3.53 (3.19-3.89) cm/s; LV Em, 4.55 (4.18-4.94) cm/s; septal Am, 4.49 (4.17-4.82) cm/s; septal Sm, 3.36 (3.17-3.55) cm/s; septal Em, 3.76 (3.51-4.03) cm/s; RV Am, 6.52 (6.09-6.96) cm/s; RV Sm, 4.95 (4.59-5.32) cm/s; and RV Em, 5.42 (4.99-5.88) cm/s. The mechanical cardiac time intervals generally remained more stable throughout the second half of pregnancy, although, with increased gestational age, there was an increase in duration of septal and RV atrial contraction, LV pre-ejection and septal and RV ventricular ejection, while there was a decrease in duration of septal postejection. Regression equations used for the construction of gestational age-specific reference ranges for peak myocardial velocities, Em/Am ratios, mechanical cardiac time intervals and cMPI are presented. CONCLUSION Peak myocardial velocities increase with gestational age, while the mechanical time intervals remain more stable throughout the second half of pregnancy. Using an automated method to analyze cTDI-derived myocardial velocity traces, it was possible to construct reference ranges, which could be used in distinguishing between normal and abnormal fetal cardiac function. Copyright © 2018 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- L Herling
- Department of Clinical Science, Intervention and Technology - CLINTEC, Karolinska Institutet, Stockholm, Sweden
- Center for Fetal Medicine, Department of Obstetrics and Gynecology, Karolinska University Hospital, Stockholm, Sweden
| | - J Johnson
- Center for Fetal Medicine, Department of Obstetrics and Gynecology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - K Ferm-Widlund
- Center for Fetal Medicine, Department of Obstetrics and Gynecology, Karolinska University Hospital, Stockholm, Sweden
| | - F Bergholm
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - N Elmstedt
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - P Lindgren
- Department of Clinical Science, Intervention and Technology - CLINTEC, Karolinska Institutet, Stockholm, Sweden
- Center for Fetal Medicine, Department of Obstetrics and Gynecology, Karolinska University Hospital, Stockholm, Sweden
| | - S-E Sonesson
- Pediatric Cardiology Unit, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - G Acharya
- Department of Clinical Science, Intervention and Technology - CLINTEC, Karolinska Institutet, Stockholm, Sweden
- Center for Fetal Medicine, Department of Obstetrics and Gynecology, Karolinska University Hospital, Stockholm, Sweden
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
| | - M Westgren
- Department of Clinical Science, Intervention and Technology - CLINTEC, Karolinska Institutet, Stockholm, Sweden
- Center for Fetal Medicine, Department of Obstetrics and Gynecology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Concordancia de la motilidad segmentaria evaluada por ecocardiograma transtorácico y resonancia magnética cardíaca en pacientes con infarto agudo de miocardio. REVISTA COLOMBIANA DE CARDIOLOGÍA 2018. [DOI: 10.1016/j.rccar.2018.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Abstract
The circulating concentration of N-terminal pro-brain natriuretic peptide (NT-proBNP) has been shown to be a diagnostic tool for the detection of heart failure. Several factors influence NT-proBNP levels including age, sex, and body mass index (BMI). Therefore, the diagnostic sensitivity of NT-proBNP level for heart failure is relatively higher, but its specificity is low. This study aims to improve the diagnostic accuracy rate of this test by including multiple variables in the diagnostic test.The suspected chronic heart failure outpatients were divided into heart failure with reduced ejection fraction, heart failure with mid-range ejection fraction, heart failure with preserved ejection fraction, and normal heart function groups. Area under the receiver-operating characteristic (ROC) curve, cut-off value, and logistic regression analysis were used to select the model variables, sensitivity and specificity.In all, 436 subjects enrolled into this study were divided in 2 groups: model establishment (n = 300) and model validation (n = 136). In the model establishment group, the area under the curve (AUC) and cut-off value of NT-proBNP was 0.926 and 257.4 pg/mL, respectively. When age, glomerular filtration rate, BMI, atrial fibrillation, and sex were entered into the diagnosis model, AUC, sensitivity, and specificity further increased to 0.955 (95% confidence interval [CI] 0.934, 0.976), 94.2% (from 93.0%), and 86.7% (from 74.2%). The ROC curve of corrected NT-proBNP diagnostic formula for heart failure was also significantly higher (P = .037).The corrected NT-proBNP diagnostic formula was found to improve the diagnostic accuracy of chronic heart failure.
Collapse
Affiliation(s)
- Yesheng Pan
- Department of Cardiology, Shanghai East Hospital
| | - Dongjiu Li
- Department of Cardiology, Shanghai Sixth People's Hospital
| | - Jian Ma
- Department of Cardiology, Shanghai Sixth People's Hospital
| | - Li Shan
- School of Public Health, Fudan University, Shanghai, China
| | - Meng Wei
- Department of Cardiology, Shanghai Sixth People's Hospital
| |
Collapse
|
8
|
Abstract
Modern advanced imaging techniques have allowed increasingly more rigorous assessment of the cardiac structure and function of several types of cardiomyopathies. In contemporary cardiology practice, echocardiography and cardiac magnetic resonance imaging are widely used to provide a basic framework in the evaluation and management of cardiomyopathies. Echocardiography is the quintessential imaging technique owing to its unique ability to provide real-time images of the beating heart with good temporal resolution, combined with its noninvasive nature, cost-effectiveness, availability, and portability. Cardiac magnetic resonance imaging provides data that are both complementary and uniquely distinct, thus allowing for insights into the disease process that until recently were not possible. The new catchphrase in the evaluation of cardiomyopathies is multimodality imaging, which is purported to be the efficient integration of various methods of cardiovascular imaging to improve the ability to diagnose, guide therapy, or predict outcomes. It usually involves an integrated approach to the use of echocardiography and cardiac magnetic resonance imaging for the assessment of cardiomyopathies, and, on occasion, single-photon emission computed tomography and such specialized techniques as pyrophosphate scanning.
Collapse
Affiliation(s)
- M Fuad Jan
- From Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, WI
| | - A Jamil Tajik
- From Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, WI.
| |
Collapse
|
9
|
Qin X, Riegler J, Tiburcy M, Zhao X, Chour T, Ndoye B, Nguyen M, Adams J, Ameen M, Denney TS, Yang PC, Nguyen P, Zimmermann WH, Wu JC. Magnetic Resonance Imaging of Cardiac Strain Pattern Following Transplantation of Human Tissue Engineered Heart Muscles. Circ Cardiovasc Imaging 2017; 9:CIRCIMAGING.116.004731. [PMID: 27903535 DOI: 10.1161/circimaging.116.004731] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND The use of tissue engineering approaches in combination with exogenously produced cardiomyocytes offers the potential to restore contractile function after myocardial injury. However, current techniques assessing changes in global cardiac performance after such treatments are plagued by relatively low detection ability. Since the treatment is locally performed, this detection could be improved by myocardial strain imaging that measures regional contractility. METHODS AND RESULTS Tissue engineered heart muscles (EHMs) were generated by casting human embryonic stem cell-derived cardiomyocytes with collagen in preformed molds. EHMs were transplanted (n=12) to cover infarct and border zones of recipient rat hearts 1 month after ischemia reperfusion injury. A control group (n=10) received only sham placement of sutures without EHMs. To assess the efficacy of EHMs, magnetic resonance imaging and ultrasound-based strain imaging were performed before and 4 weeks after transplantation. In addition to strain imaging, global cardiac performance was estimated from cardiac magnetic resonance imaging. Although no significant differences were found for global changes in left ventricular ejection fraction (control -9.6±1.3% versus EHM -6.2±1.9%; P=0.17), regional myocardial strain from tagged magnetic resonance imaging was able to detect preserved systolic function in EHM-treated animals compared with control (control 4.4±1.0% versus EHM 1.0±0.6%; P=0.04). However, ultrasound-based strain failed to detect any significant change (control 2.1±3.0% versus EHM 6.3±2.9%; P=0.46). CONCLUSIONS This study highlights the feasibility of using cardiac strain from tagged magnetic resonance imaging to assess functional changes in rat models following localized regenerative therapies, which may not be detected by conventional measures of global systolic performance.
Collapse
Affiliation(s)
- Xulei Qin
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Johannes Riegler
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Malte Tiburcy
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Xin Zhao
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Tony Chour
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Babacar Ndoye
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Michael Nguyen
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Jackson Adams
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Mohamed Ameen
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Thomas S Denney
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Phillip C Yang
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Patricia Nguyen
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Wolfram H Zimmermann
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.)
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, CA (X.Q., J.R., X.Z., T.C., B.N., M.N., J.A., M.A., P.C.Y., P.N., J.C.W.); Auburn University MRI Research Center, Department of Electrical and Computer Engineering, AL (T.S.D.); Institute of Pharmacology, Heart Research Center, University Medical Center, Georg-August-University and German Center for Cardiovascular Research, Göttingen, Germany (M.T., W.H.Z.).
| |
Collapse
|
10
|
Vejdani-Jahromi M, Freedman J, Nagle M, Kim YJ, Trahey GE, Wolf PD. Quantifying Myocardial Contractility Changes Using Ultrasound-Based Shear Wave Elastography. J Am Soc Echocardiogr 2016; 30:90-96. [PMID: 27843103 DOI: 10.1016/j.echo.2016.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Myocardial contractility, a significant determinant of cardiac function, is valuable for diagnosis and evaluation of treatment in cardiovascular disorders including heart failure. Shear wave elasticity imaging (SWEI) is a newly developed ultrasound-based elastographic technique that can directly assess the stiffness of cardiac tissue. The aim of this study was to verify the ability of this technique to quantify contractility changes in the myocardium. METHODS In 12 isolated rabbit hearts, SWEI measurements were made of systolic stiffness at five different coronary perfusion pressures from 0 to 92 mm Hg. The changes in coronary perfusion were used to induce acute stepwise reversible changes in cardiac contractility via the Gregg effect. The Gregg effect is the dependency of contractility on coronary perfusion. In four of the hearts, the measurements were repeated after delivery of gadolinium, which is known to block the Gregg effect. RESULTS Systolic stiffness measured by SWEI changed linearly with coronary perfusion pressure, with a slope of 0.27 kPa/mm Hg (mean of 95% CI, R2 = 0.73). As expected, the change in contractility due to the Gregg effect was blocked by gadolinium, with a significant reduction of the slope to 0.08 kPa/mm Hg. CONCLUSIONS SWEI measurements of systolic stiffness provide an index of contractility in the unloaded isolated rabbit heart. Although this study was done under ideal imaging conditions and with nonphysiologic loading conditions, it reinforces the concept that this ultrasound technique has the potential to provide a direct and noninvasive index of cardiac contractility.
Collapse
Affiliation(s)
| | - Jenna Freedman
- Biomedical Engineering Department, Duke University, Durham, North Carolina
| | - Matthew Nagle
- Biomedical Engineering Department, Duke University, Durham, North Carolina
| | - Young-Joong Kim
- Biomedical Engineering Department, Duke University, Durham, North Carolina
| | - Gregg E Trahey
- Biomedical Engineering Department, Duke University, Durham, North Carolina
| | - Patrick D Wolf
- Biomedical Engineering Department, Duke University, Durham, North Carolina.
| |
Collapse
|
11
|
Abstract
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging and brief overviews of other imaging modalities. We also briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking.
Collapse
Affiliation(s)
- Colin K L Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University School of Medicine, New York, New York
| | - Daniel H Turnbull
- Departments of Radiology and Pathology, New York University School of Medicine, New York, New York.,Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|