1
|
Guo K, Wang G, Zhang L, Feng Z, Xia X, Sun X, Yan Z, Jiao Z, Feng D. Hemorrhage induced by antithrombotic agents: new insights from a real-world pharmacovigilance study. Expert Opin Drug Saf 2024; 23:487-495. [PMID: 38497691 DOI: 10.1080/14740338.2024.2327502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/15/2023] [Indexed: 03/19/2024]
Abstract
BACKGROUND Hemorrhage represents the most common and serious side effect of antithrombotic agents. Many studies have compared the risk of bleeding between different antithrombotic agents, but analysis of time-to-onset for hemorrhage induced by these drugs is yet sparse. METHODS We conducted a retrospective study based on the adverse drug reaction reports on antithrombotic agents collected by the Henan Adverse Drug Reaction Monitoring Center. We assessed the reporting odds ratio to determine the disproportionate reporting signals for bleeding and the Weibull shape parameter was used to evaluate the time-to-onset data. RESULTS In the signal detection, crude low molecular weight heparin-hemorrhage was found as a positive signal. The hemorrhage for most antithrombotic agents was random failure profiles. In particular, the hazard of hemorrhage decreased over time for warfarin and clopidogrel and increased for alteplase, nadroparin, and dipyridamole. CONCLUSION We found that the risk of bleeding in patients taking Crude low molecular weight heparins was significantly higher compared to other antithrombotic agents, but with a small magnificence, which may be attributed to the severely irrational use of this medication under improper management. Statistics in days, results showed that the risk of bleeding decreased over time for warfarin and clopidogrel and increased for alteplase, nadroparin, and dipyridamole.
Collapse
Affiliation(s)
- Kangyuan Guo
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ganyi Wang
- College of Public Administration, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanchun Feng
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xudong Xia
- Center for Drug Reevaluation of Henan, Zhengzhou, China
| | - Xiaobo Sun
- School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, China
| | - Ziqi Yan
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiming Jiao
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Da Feng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Li Y, Wang J, Xie J. Biomimetic nanoparticles targeting atherosclerosis for diagnosis and therapy. SMART MEDICINE 2023; 2:e20230015. [PMID: 39188346 PMCID: PMC11236035 DOI: 10.1002/smmd.20230015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/28/2023] [Indexed: 08/28/2024]
Abstract
Atherosclerosis is a typical chronic inflammatory vascular disease that seriously endangers human health. At present, oral lipid-lowering or anti-inflammatory drugs are clinically used to inhibit the development of atherosclerosis. However, traditional oral drug treatments have problems such as low utilization, slow response, and serious side effects. Traditional nanodrug delivery systems are difficult to interactively recognize by normal biological organisms, and it is difficult to target the delivery of drugs to target lesions. Therefore, building a biomimetic nanodrug delivery system with targeted drug delivery based on the pathological characteristics of atherosclerosis is the key to achieving efficient and safe treatment of atherosclerosis. In this review, various nanodrug delivery systems that can target atherosclerosis are summarized and discussed. In addition, the future prospects and challenges of its clinical translation are also discussed.
Collapse
Affiliation(s)
- Yuyu Li
- Department of CardiologyNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Key Laboratory of Remodeling‐Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical UniversityBeijingChina
- Beijing Institute of Heart, Lung, and Blood Vessel DiseasesBeijing Anzhen Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Jifang Wang
- Department of CardiologyNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Department of CardiologyDrum Tower HospitalMedical School of Nanjing UniversityNanjingChina
| | - Jun Xie
- Department of CardiologyNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
3
|
Zhang T, Wu S, Qin H, Wu H, Liu X, Li B, Zheng X. An Optically Controlled Virtual Microsensor for Biomarker Detection In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205760. [PMID: 36074977 DOI: 10.1002/adma.202205760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Current technologies for the real-time analysis of biomarkers in vivo, such as needle-type microelectrodes and molecular imaging methods based on exogenous contrast agents, are still facing great challenges in either invasive detection or lack of active control of the imaging probes. In this study, by combining the design concepts of needle-type microelectrodes and the fluorescence imaging method, a new technique is developed for detecting biomarkers in vivo, named as "optically controlled virtual microsensor" (OCViM). OCViM is established by the organic integration of a specially shaped laser beam and fluorescent nanoprobe, which serve as the virtual handle and sensor tip, respectively. The laser beam can trap and manipulate the nanoprobe in a programmable manner, and meanwhile excite it to generate fluorescence emission for biosensing. On this basis, fully active control of the nanoprobe is achieved noninvasively in vivo, and multipoint detection can be realized at sub-micrometer resolution by shifting a nanoprobe among multiple positions. By using OCViM, the overexpression and heterogenous distribution of biomarkers in the thrombus is studied in living zebrafish, which is further utilized for the evaluation of antithrombotic drugs. OCViM may provide a powerful tool for the mechanism study of thrombus progression and the evaluation of antithrombotic drugs.
Collapse
Affiliation(s)
- Tiange Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Shuai Wu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Haifeng Qin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Huaying Wu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xiaoshuai Liu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xianchuang Zheng
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
4
|
Scalia L, Calderone D, Capodanno D. Antiplatelet therapy after acute ischemic stroke or transient ischemic attack. Expert Rev Clin Pharmacol 2022; 15:1027-1038. [DOI: 10.1080/17512433.2022.2118713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lorenzo Scalia
- Division of Cardiology, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, University of Catania, Catania, Italy
| | - Dario Calderone
- Division of Cardiology, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, University of Catania, Catania, Italy
| | - Davide Capodanno
- Division of Cardiology, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, University of Catania, Catania, Italy
| |
Collapse
|
5
|
Tsaban G, Alnsasra H, El Nasasra A, Abu-Salman A, Abu-Dogosh A, Weissberg I, Golan YBB, Barrett O, Westreich R, Aboalhasan E, Azuri J, Hammerman A, Arbel R. Aspirin with Low-Dose Ticagrelor or with Low-Dose Rivaroxaban for Secondary Prevention: A Cost per Outcome Analysis. Am J Cardiovasc Drugs 2022; 22:677-683. [DOI: 10.1007/s40256-022-00543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/01/2022]
|
6
|
Xiao Q, Hou R, Li H, Zhang S, Zhang F, Zhu X, Pan X. Circulating Exosomal circRNAs Contribute to Potential Diagnostic Value of Large Artery Atherosclerotic Stroke. Front Immunol 2022; 12:830018. [PMID: 35095932 PMCID: PMC8792990 DOI: 10.3389/fimmu.2021.830018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/24/2021] [Indexed: 01/08/2023] Open
Abstract
Large artery atherosclerotic (LAA) stroke is closely associated with atherosclerosis, characterized by the accumulation of immune cells. Early recognition of LAA stroke is crucial. Circulating exosomal circRNAs profiling represents a promising, noninvasive approach for the detection of LAA stroke. Exosomal circRNA sequencing was used to identify differentially expressed circRNAs between LAA stroke and normal controls. From a further validation stage, the results were validated using RT-qPCR. We then built logistic regression models of exosomal circRNAs based on a large replication stage, and receiver operating characteristic (ROC) curves were constructed to assess the diagnostic efficacy. Using exosomal circRNA sequencing, large sample validation, and diagnostic model construction revealed that exosomal circ_0043837 and circ_ 0001801were independent predictive factors for LAA stroke, and had better diagnostic efficacy than plasma circRNAs. In the atherosclerotic group (AS), we developed a nomogram for clinical use that integrated the two-circRNA-based risk factors to predict which patients might have the risk of plaque rupture. Circulating exosomal circRNAs profiling identifies novel predictive biomarkers for the LAA stroke and plaque rupture, with superior diagnostic value than plasma circRNAs. It might facilitate the prevention and better management of this disease.
Collapse
Affiliation(s)
- Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rongyao Hou
- Department of Neurology, The Affiliated Hiser Hospital of Qingdao University, Qingdao, China
| | - Hong Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fuzhi Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Capodanno D, Angiolillo DJ. Oral antithrombotic therapy for the prevention of recurrent cerebrovascular events. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2021; 8:383-391. [PMID: 34374741 DOI: 10.1093/ehjcvp/pvab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022]
Abstract
Stroke is frequently a disabling and even life-threatening condition that has an ischemic cause in most cases. Transient ischemic attack (TIA) is a lower-risk condition that still exposes to the risk of future major cardiovascular events. The causes of stroke can be classified as cardioembolic disease, large vessel disease, small vessel disease, undetermined, or others. Cardioembolic disease and atherothrombosis of large arteries are the most common underlying processes of ischemic stroke and TIA. Therefore, antithrombotic therapy is a central strategy in the pharmacological management of these patients. However, because antithrombotic therapy provides ischemic protection at the price of increased bleeding, defining the fine balance between efficacy and safety is a clinical challenge. Numerous trials have recently defined the current indications to the use of anticoagulant and antiplatelet therapy in patients with various subtypes of ischemic stroke or TIA. In this review, we provide an updated appraisal of the currently available evidence on the use of various oral antithrombotic agents for prevention of recurrent events after an ischemic stroke or TIA.
Collapse
Affiliation(s)
- Davide Capodanno
- Division of Cardiology, Azienda Ospedaliero Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania, Italy
| | - Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, Florida, United States
| |
Collapse
|
8
|
Ajjan RA, Kietsiriroje N, Badimon L, Vilahur G, Gorog DA, Angiolillo DJ, Russell DA, Rocca B, Storey RF. Antithrombotic therapy in diabetes: which, when, and for how long? Eur Heart J 2021; 42:2235-2259. [PMID: 33764414 PMCID: PMC8203081 DOI: 10.1093/eurheartj/ehab128] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/26/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease remains the main cause of mortality in individuals with diabetes mellitus (DM) and also results in significant morbidity. Premature and more aggressive atherosclerotic disease, coupled with an enhanced thrombotic environment, contributes to the high vascular risk in individuals with DM. This prothrombotic milieu is due to increased platelet activity together with impaired fibrinolysis secondary to quantitative and qualitative changes in coagulation factors. However, management strategies to reduce thrombosis risk remain largely similar in individuals with and without DM. The current review covers the latest in the field of antithrombotic management in DM. The role of primary vascular prevention is discussed together with options for secondary prevention following an ischaemic event in different clinical scenarios including coronary, cerebrovascular, and peripheral artery diseases. Antiplatelet therapy combinations as well as combination of antiplatelet and anticoagulant agents are examined in both the acute phase and long term, including management of individuals with sinus rhythm and those with atrial fibrillation. The difficulties in tailoring therapy according to the variable atherothrombotic risk in different individuals are emphasized, in addition to the varying risk within an individual secondary to DM duration, presence of complications and predisposition to bleeding events. This review provides the reader with an up-to-date guide for antithrombotic management of individuals with DM and highlights gaps in knowledge that represent areas for future research, aiming to improve clinical outcome in this high-risk population.
Collapse
Affiliation(s)
- Ramzi A Ajjan
- The LIGHT Laboratories, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 7JT, UK
| | - Noppadol Kietsiriroje
- The LIGHT Laboratories, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 7JT, UK.,Endocrinology and Metabolism Unit, Internal Medicine Department, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Lina Badimon
- Cardiovascular Program ICCC, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Sant Antoni M. Claret 167, 08025 Barcelona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Sant Antoni M. Claret 167, 08025 Barcelona, Spain.,Cardiovascular Research Chair, Universidad Autónoma Barcelona (UAB), Sant Antoni M. Claret 167, 08025 Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Sant Antoni M. Claret 167, 08025 Barcelona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Sant Antoni M. Claret 167, 08025 Barcelona, Spain
| | - Diana A Gorog
- University of Hertfordshire, College Lane Campus Hatfield, Hertfordshire AL10 9AB, UK.,National Heart and Lung Institute, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine - Jacksonville, 655 West, 8th Street, Jacksonville, FL 32209, USA
| | - David A Russell
- The LIGHT Laboratories, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 7JT, UK.,Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | - Bianca Rocca
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy
| | - Robert F Storey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
9
|
Xiao Q, Yin R, Wang Y, Yang S, Ma A, Pan X, Zhu X. Comprehensive Analysis of Peripheral Exosomal circRNAs in Large Artery Atherosclerotic Stroke. Front Cell Dev Biol 2021; 9:685741. [PMID: 34239876 PMCID: PMC8257506 DOI: 10.3389/fcell.2021.685741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes are crucial vehicles in intercellular communication. Circular RNAs (circRNAs), novel endogenous noncoding RNAs, play diverse roles in ischemic stroke. Recently, the abundance and stability of circRNAs in exosomes have been identified. However, a comprehensive analysis of exosomal circRNAs in large artery atherosclerotic (LAA) stroke has not yet been reported. We performed RNA sequencing (RNA-Seq) to comprehensively identify differentially expressed (DE) exosomal circRNAs in five paired LAA and normal controls. Further, quantitative real-time PCR (qRT-PCR) was used to verify the RNA-Seq results in a cohort of stroke patients (32 versus 32). RNA-Seq identified a total of 462 circRNAs in peripheral exosomes; there were 25 DE circRNAs among them. Additionally, circRNA competing endogenous RNA (ceRNA) network and translatable analysis revealed the potential functions of the exosomal circRNAs in LAA progression. Two ceRNA pathways involving 5 circRNAs, 2 miRNAs, and 3 mRNAs were confirmed by qRT-PCR. In the validation cohort, receiver operating characteristic (ROC) curve analysis identified two circRNAs as possible novel biomarkers, and a logistic model combining two and four circRNAs increased the area under the curve compared with the individual circRNAs. Here, we show for the first time the comprehensive expression of exosomal circRNAs, which displayed the potential diagnostic and biological function in LAA stroke.
Collapse
Affiliation(s)
- Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruihua Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaonan Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aijun Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Li S, Hu W, Deng F, Chen S, Zhu P, Wang M, Chen X, Wang Y, Hu X, Zhao B, Zhong W, Ma G, Li Y. Identification of Circular RNA hsa_circ_0001599 as a Novel Biomarker for Large-Artery Atherosclerotic Stroke. DNA Cell Biol 2021; 40:457-468. [PMID: 33493415 DOI: 10.1089/dna.2020.5662] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a recently discovered noncoding RNA isoform capable of regulating neurological disease incidence. The present study was designed to characterize the circRNA expression profiles present in large-artery atherosclerosis (LAA)-type acute ischemic stroke patients and to detect biomarkers suitable for LAA-stroke detection. Using a RNA-seq-based approach, we characterized circRNA expression profiles in five LAA-stroke patients and four controls. We confirmed the differential expression of target circRNAs through quantitative real-time polymerase chain reaction (qRT-PCR), and used Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses to explore their functional roles. The diagnostic value of specific circRNAs was evaluated through a receiver operating characteristic (ROC) curve analysis. We identified 182 upregulated and 176 downregulated circRNAs in LAA-stroke patients and confirmed the differential expression of six circRNAs through qRT-PCR. These differentially expressed circRNAs are primarily associated with chromatin modification, autophagy, platelet activation, and neural precursor cell proliferation. The hsa_circRNA_0001599 expression levels were positively correlated with the National Institutes of Health Stroke Scale scores and infarct volumes, with an ROC analysis of hsa_circRNA_0001599 in LAA-stroke, yielding an area under the curve of 0.805 (95% confidence interval: 0.748-0.862; p < 0.001), consistent with sensitivity and specificity values of 64.41% and 89.93%, respectively, for the diagnosis of LAA-stroke. A transcriptome-wide survey of differential circRNA expression in LAA-stroke patients revealed hsa_circRNA_0001599 as a putative circRNA biomarker of LAA-stroke diagnosis.
Collapse
Affiliation(s)
- Shengnan Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weidong Hu
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fu Deng
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shaofeng Chen
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Peiyi Zhu
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mengxu Wang
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xinglan Chen
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ying Wang
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xingjuan Hu
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wangtao Zhong
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guoda Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Maternal and Children's Health Research Institute, Guangdong Medical University, Shunde Maternal and Children's Hospital, Shunde, China
| | - You Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
11
|
Méndez D, Donoso-Bustamante V, Pablo Millas-Vargas J, Pessoa-Mahana H, Araya-Maturana R, Fuentes E. Synthesis and pharmacological evaluation of acylhydroquinone derivatives as potent antiplatelet agents. Biochem Pharmacol 2020; 183:114341. [PMID: 33197432 DOI: 10.1016/j.bcp.2020.114341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
Platelets are the smallest blood cells, and their activation (platelet cohesion or aggregation) at sites of vascular injury is essential for thrombus formation. Since the use of antiplatelet therapy is an unsolved problem, there are now focused and innovative efforts to develop novel antiplatelet compounds. In this context, we assessed the antiplatelet effect of an acylhydroquinone series, synthesized by Fries rearrangement under microwave irradiation, evaluating the effect of diverse acyl chain lengths, their chlorinated derivatives, and their dimethylated derivatives both in the aromatic ring and also the effect of the introduction of a bromine atom at the terminus of the acyl chain. Findings from a primary screening of cytotoxic activity on platelets by lactate dehydrogenase assay identified 19 non-toxic compounds from the 27 acylhydroquinones evaluated. A large number of them showed IC50 values less than 10 µM acting against specific pathways of platelet aggregation. The highest activity was obtained with compound 38, it exhibited sub-micromolar IC50 of 0.98 ± 0.40, 1.10 ± 0.26, 3.98 ± 0.46, 6.79 ± 3.02 and 42.01 ± 3.48 µM against convulxin-, collagen-, TRAP-6-, PMA- and arachidonic acid-induced platelet aggregation, respectively. It also inhibited P-selectin and granulophysin expression. We demonstrated that the antiplatelet mechanism of compound 38 was through a decrease in a central target in human platelet activation as in mitochondrial function, and this could modulate a lower response of platelets to activating agonists. The results of this study show that the chemical space around ortho-carbonyl hydroquinone moiety is a rich source of biologically active compounds, signaling that the acylhydroquinone scaffold has a promising role in antiplatelet drug research.
Collapse
Affiliation(s)
- Diego Méndez
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | | | | | - Hernán Pessoa-Mahana
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile
| | | | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
12
|
Chiarito M, Condorelli G, Stefanini GG. Low-Dose Colchicine after Myocardial Infarction. N Engl J Med 2020; 382:1667-1668. [PMID: 32320580 DOI: 10.1056/nejmc2001194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Fan M, Han M, Xia Y, Zhang Y, Chu Y, Bai G, Li W, Li J, Zhao L, He Y, Ma X, Duan Z. Design and synthesis of potent PAR-1 antagonists based on vorapaxar. Bioorg Med Chem Lett 2020; 30:127046. [PMID: 32122739 DOI: 10.1016/j.bmcl.2020.127046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 01/23/2023]
Abstract
A series of novel vorapaxar analogues with different amino substitutes at the C-7, C-9a and aromatic substitutes at the C-4 position were designed, synthesized, and evaluated for their inhibitory activity to PAR-1. Several compounds showed good potency in antagonist activity based on the intracellular calcium mobilization assay and excellent pharmacokinetics profile in rats. Among these analogues, 3d exhibited excellent PAR-1 inhibitory activity (IC50 = 0.18 μM) and the lower ability to cross the blood-brain barrier compared with vorapaxar (IC50 = 0.25 μM). Compound 3d has the potential to be developed as a new generation of PAR-1 antagonists with a better therapeutic window.
Collapse
Affiliation(s)
- Mengna Fan
- Hebei University of Technology, Tianjin 300100, China; Tianjin Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Min Han
- Tianjin Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Yan Xia
- Tianjin Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Yingbin Zhang
- Hebei University of Technology, Tianjin 300100, China; Tianjin Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Yang Chu
- Tianjin Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Guirong Bai
- Tianjin Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Wei Li
- Tianjin Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Ju Li
- Tianjin Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Lihui Zhao
- Tianjin Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Yi He
- Tianjin Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Xiaohui Ma
- Tianjin Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Zhongyu Duan
- Hebei University of Technology, Tianjin 300100, China.
| |
Collapse
|
14
|
Gaudino M, Angiolillo DJ, Di Franco A, Capodanno D, Bakaeen F, Farkouh ME, Fremes SE, Holmes D, Girardi LN, Nakamura S, Head SJ, Park S, Mack M, Serruys PW, Ruel M, Stone GW, Tam DY, Vallely M, Taggart DP. Stroke After Coronary Artery Bypass Grafting and Percutaneous Coronary Intervention: Incidence, Pathogenesis, and Outcomes. J Am Heart Assoc 2019; 8:e013032. [PMID: 31242821 PMCID: PMC6662343 DOI: 10.1161/jaha.119.013032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mario Gaudino
- Department of Cardiothoracic SurgeryWeill Cornell MedicineNew YorkNY
| | | | | | - Davide Capodanno
- Division of CardiologyC.A.S.T., P.O. “Rodolico”Azienda Ospedaliero‐Universitaria “Policlinico‐Vittorio Emanuele”University of CataniaItaly
| | | | - Michael E. Farkouh
- Peter Munk Cardiac Centre and the Heart and Stroke Richard Lewar CentreUniversity of TorontoOntarioCanada
| | - Stephen E. Fremes
- Schulich Heart CentreSunnybrook Health ScienceUniversity of TorontoCanada
| | | | | | | | - Stuart J. Head
- Department of Cardiothoracic SurgeryErasmus University Medical CentreRotterdamThe Netherlands
| | - Seung‐Jung Park
- Department of CardiologyHeart InstituteUniversity of Ulsan College of MedicineAsian Medical CenterSeoulKorea
| | | | | | - Marc Ruel
- Division of Cardiac SurgeryUniversity of Ottawa Heart InstituteOttawaOntarioCanada
| | | | - Derrick Y. Tam
- Schulich Heart CentreSunnybrook Health ScienceUniversity of TorontoCanada
| | - Michael Vallely
- Sydney Medical SchoolThe University of SydneyNew South WalesAustralia
| | | |
Collapse
|
15
|
Xue Y, Wu Y, Wang Q, Xue L, Su Z, Zhang C. Cellular Vehicles Based on Neutrophils Enable Targeting of Atherosclerosis. Mol Pharm 2019; 16:3109-3120. [PMID: 31082253 DOI: 10.1021/acs.molpharmaceut.9b00342] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Given the multiple interactions between neutrophils (NEs) and atherosclerosis (AS), in this study, we exploited NEs as cellular vehicles loaded with cationic liposomes for actively targeting atherosclerotic sites. The cellular vehicles based on NEs possess efficient internalization of cationic liposomes and sensitive response to the chemotaxis of atherosclerotic inflammatory cells, which ultimately realize the targeted delivery of the cargos into the target cells in vitro. Moreover, these effects also translated to significant enhancement of the accumulation of NEs' cargos into the atherosclerotic plaque in vivo after administering NE vehicles to the AS animal model. Consequently, cellular vehicles based on NEs could be a novel strategy for targeted delivery of payloads into atherosclerotic plaque, which would facilitate theranostics for AS and the development of anti-AS drugs to manage the disease.
Collapse
Affiliation(s)
- Yanan Xue
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Yue Wu
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Qianqian Wang
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Zhigui Su
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Can Zhang
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| |
Collapse
|
16
|
Lariccia V, Macrì ML, Matteucci A, Maiolino M, Amoroso S, Magi S. Effects of ticagrelor on the sodium/calcium exchanger 1 (NCX1) in cardiac derived H9c2 cells. Eur J Pharmacol 2019; 850:158-166. [PMID: 30721704 DOI: 10.1016/j.ejphar.2019.01.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/08/2019] [Accepted: 01/17/2019] [Indexed: 12/15/2022]
Abstract
Ticagrelor is a direct acting and reversibly binding P2Y12 antagonist approved for the prevention of thromboembolic events. Clinical effects of ticagrelor cannot be simply accounted for by pure platelet inhibition, and off-target mechanisms can potentially play a role. In particular, recent evidence suggests that ticagrelor may also influence heart function and improve the evolution of myocardial ischemic injury by more direct effects on myocytes. The cardiac sodium/calcium exchanger 1 (NCX1) is a critical player in the generation and control of calcium (Ca2+) signals, which orchestrate multiple myocyte activities in health and disease. Altered expression and/or activity of NCX1 can have profound consequences for the function and fate of myocytes. Whether ticagrelor affects cardiac NCX1 has not been investigated yet. To explore this hypothesis, we analyzed the expression, localization and activity of NCX1 in the heart derived H9c2-NCX1 cells following ticagrelor exposure. We found that ticagrelor concentration- and time-dependently reduced the activity of the cardiac NCX1 in H9c2 cells. In particular, the inhibitory effect of ticagrelor on the Ca2+-influx mode of NCX1 was evident within 1 h and further developed after 24 h, when NCX1 activity was suppressed by about 55% in cells treated with 1 μM ticagrelor. Ticagrelor-induced inhibition of exchanger activity was reached at clinically relevant concentrations, without affecting the expression levels and subcellular distribution of NCX1. Collectively, these findings suggest that cardiac NCX1 is a new downstream target of ticagrelor, which may contribute to the therapeutic profile of ticagrelor in clinical practice.
Collapse
Affiliation(s)
- Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Maria Loredana Macrì
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy
| | - Alessandra Matteucci
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy
| | - Marta Maiolino
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy
| |
Collapse
|
17
|
Patti G, Cavallari I, Andreotti F, Calabrò P, Cirillo P, Denas G, Galli M, Golia E, Maddaloni E, Marcucci R, Parato VM, Pengo V, Prisco D, Ricottini E, Renda G, Santilli F, Simeone P, De Caterina R. Prevention of atherothrombotic events in patients with diabetes mellitus: from antithrombotic therapies to new-generation glucose-lowering drugs. Nat Rev Cardiol 2019; 16:113-130. [PMID: 30250166 PMCID: PMC7136162 DOI: 10.1038/s41569-018-0080-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus is an important risk factor for a first cardiovascular event and for worse outcomes after a cardiovascular event has occurred. This situation might be caused, at least in part, by the prothrombotic status observed in patients with diabetes. Therefore, contemporary antithrombotic strategies, including more potent agents or drug combinations, might provide greater clinical benefit in patients with diabetes than in those without diabetes. In this Consensus Statement, our Working Group explores the mechanisms of platelet and coagulation activity, the current debate on antiplatelet therapy in primary cardiovascular disease prevention, and the benefit of various antithrombotic approaches in secondary prevention of cardiovascular disease in patients with diabetes. While acknowledging that current data are often derived from underpowered, observational studies or subgroup analyses of larger trials, we propose antithrombotic strategies for patients with diabetes in various cardiovascular settings (primary prevention, stable coronary artery disease, acute coronary syndromes, ischaemic stroke and transient ischaemic attack, peripheral artery disease, atrial fibrillation, and venous thromboembolism). Finally, we summarize the improvements in cardiovascular outcomes observed with the latest glucose-lowering drugs, and on the basis of the available evidence, we expand and integrate current guideline recommendations on antithrombotic strategies in patients with diabetes for both primary and secondary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Giuseppe Patti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Ilaria Cavallari
- Unit of Cardiovascular Science, Campus Bio-Medico University, Rome, Italy
| | - Felicita Andreotti
- Cardiovascular and Thoracic Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paolo Calabrò
- Department of Cardio-thoracic and Respiratory Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Plinio Cirillo
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Gentian Denas
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Mattia Galli
- Cardiovascular and Thoracic Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enrica Golia
- Department of Cardio-thoracic and Respiratory Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ernesto Maddaloni
- Department of Medicine, Unit of Endocrinology and Diabetes, Campus Bio-Medico University, Rome, Italy
| | - Rossella Marcucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Vito Maurizio Parato
- Cardiology Unit, Madonna del Soccorso Hospital, San Benedetto del Tronto, Italy
- Politecnica Delle Marche University, San Benedetto del Tronto, Italy
| | - Vittorio Pengo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Giulia Renda
- Institute of Cardiology, G. d'Annunzio University, Chieti, Italy
| | - Francesca Santilli
- Department of Medicine and Aging, G. d'Annunzio University, Chieti, Italy
| | - Paola Simeone
- Department of Medicine and Aging, G. d'Annunzio University, Chieti, Italy
| | - Raffaele De Caterina
- Institute of Cardiology, G. d'Annunzio University, Chieti, Italy.
- Fondazione G. Monasterio, Pisa, Italy.
| |
Collapse
|
18
|
|
19
|
Capodanno D, Mehran R, Valgimigli M, Baber U, Windecker S, Vranckx P, Dangas G, Rollini F, Kimura T, Collet JP, Gibson CM, Steg PG, Lopes RD, Gwon HC, Storey RF, Franchi F, Bhatt DL, Serruys PW, Angiolillo DJ. Aspirin-free strategies in cardiovascular disease and cardioembolic stroke prevention. Nat Rev Cardiol 2018; 15:480-496. [DOI: 10.1038/s41569-018-0049-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Moon JY, Franchi F, Rollini F, Angiolillo DJ. The quest for safer antithrombotic treatment regimens in patients with coronary artery disease: new strategies and paradigm shifts. Expert Rev Hematol 2017; 11:5-12. [DOI: 10.1080/17474086.2018.1400378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jae Youn Moon
- Division of Cardiology, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Francesco Franchi
- Division of Cardiology, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Fabiana Rollini
- Division of Cardiology, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Dominick J. Angiolillo
- Division of Cardiology, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, USA
| |
Collapse
|
21
|
Moon JY, Franchi F, Rollini F, Angiolillo DJ. Role for Thrombin Receptor Antagonism With Vorapaxar in Secondary Prevention of Atherothrombotic Events: From Bench to Bedside. J Cardiovasc Pharmacol Ther 2017; 23:23-37. [PMID: 28565918 DOI: 10.1177/1074248417708617] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In spite of treatment with the current standard of care antiplatelet regimens including dual antiplatelet therapy, recurrence rates of ischemic events remain elevated for high-risk patients with atherosclerotic disease. This may be in part attributed to the fact that other key platelet activation pathways remain uninhibited and can thus continue to trigger platelet activation and lead to thrombotic complications. Thrombin is a powerful inducer of platelet activation and mediates its effects directly on platelets through protease activator receptors (PARs), particularly the PAR-1 subtype, making PAR-1 inhibition an attractive approach for reducing atherothrombotic events. These observations have led to the development of several PAR-1 antagonists. Vorapaxar is a direct inhibitor of PAR-1 and the only agent of this class approved for the prevention of recurrent ischemic events in patients with prior myocardial infarction or peripheral artery disease. In the present manuscript, we present a review of the pathophysiologic role of thrombin on thrombotic complications, the impact of vorapaxar on outcomes, including the most recent updates deriving from clinical trials, as well as future perspectives in the field.
Collapse
Affiliation(s)
- Jae Youn Moon
- 1 Division of Cardiology, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Francesco Franchi
- 1 Division of Cardiology, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Fabiana Rollini
- 1 Division of Cardiology, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Dominick J Angiolillo
- 1 Division of Cardiology, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, USA
| |
Collapse
|
22
|
Musialek P, Hopf-Jensen S. Commentary: Carotid Artery Revascularization for Stroke Prevention: A New Era. J Endovasc Ther 2016; 24:138-148. [PMID: 27733691 DOI: 10.1177/1526602816671263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Piotr Musialek
- 1 Jagiellonian University Department of Cardiac & Vascular Diseases, John Paul II Hospital, Krakow, Poland
| | - Silke Hopf-Jensen
- 2 Department of Diagnostic and Interventional Radiology and Neuroradiology, Diakonissenhospital Flensburg, Germany
| |
Collapse
|