1
|
Parigger T, Drothler S, Scherhäufl C, Gassner FJ, Schubert M, Steiner M, Höpner JP, Hödlmoser A, Schultheis L, Bakar AA, Neureiter D, Pleyer L, Egle A, Greil R, Geisberger R, Zaborsky N. Oncogenic MTOR Signaling Axis Compensates BTK Inhibition in a Chronic Lymphocytic Leukemia Patient with Richter Transformation: A Case Report and Review of the Literature. Acta Haematol 2024; 147:604-611. [PMID: 38402867 PMCID: PMC11441378 DOI: 10.1159/000537791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Targeting the B-cell receptor pathway via ibrutinib, a specific inhibitor of Bruton's tyrosine kinase, has shown marked clinical efficacy in treatment of patients with chronic lymphocytic leukemia (CLL), thus becoming a preferred first line option independent of risk factors. However, acquired resistance to ibrutinib poses a major clinical problem and requires the development of novel treatment combinations to increase efficacy and counteract resistance development and clinical relapse rates. CASE PRESENTATION In this study, we performed exome and transcriptome analyses of an ibrutinib resistant CLL patient in order to investigate genes and expression patterns associated with ibrutinib resistance. Here, we provide evidence that ibrutinib resistance can be attributed to aberrant mammalian target of rapamycin (MTOR) signaling. CONCLUSION Thus, our study proposes that combined use of MTOR inhibitors with ibrutinib could be a possible option to overcome therapy resistance in ibrutinib treated patients.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Agammaglobulinaemia Tyrosine Kinase/genetics
- TOR Serine-Threonine Kinases/metabolism
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- Adenine/analogs & derivatives
- Piperidines/therapeutic use
- Signal Transduction/drug effects
- Drug Resistance, Neoplasm
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/therapeutic use
- Male
- Pyrazoles/therapeutic use
- Pyrazoles/pharmacology
Collapse
Affiliation(s)
- Thomas Parigger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
- Department of Biosciences, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Stephan Drothler
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
- Department of Biosciences, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Christian Scherhäufl
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
- Department of Biosciences, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Franz Josef Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Maria Schubert
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Markus Steiner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Jan Philip Höpner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
- Department of Biosciences, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Alexandra Hödlmoser
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Lena Schultheis
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Aryunni Abu Bakar
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
- Department of Biosciences, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University, Salzburg, Austria
| | - Lisa Pleyer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
- Laboratory for Molecular Cytology (MZL), Salzburg, Austria
| | - Alexander Egle
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
- Laboratory for Molecular Cytology (MZL), Salzburg, Austria
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
2
|
Bauvois B, Chapiro E, Quiney C, Maloum K, Susin SA, Nguyen-Khac F. The Value of Neutrophil Gelatinase-Associated Lipocalin Receptor as a Novel Partner of CD38 in Chronic Lymphocytic Leukemia: From an Adverse Prognostic Factor to a Potential Pharmacological Target? Biomedicines 2023; 11:2335. [PMID: 37760777 PMCID: PMC10525793 DOI: 10.3390/biomedicines11092335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neoplastic B lymphocytes that escape death, and correlates with the expression of negative prognostic markers such as the CD38 antigen. Although certain new drugs approved by the US Food and Drug Administration improve the clinical outcome of CLL patients, drug resistance and disease relapse still occur. Like CD38, neutrophil gelatinase-associated lipocalin receptor (NGAL-R) is frequently overexpressed in CLL cells. Here, we evaluated the concomitant surface expression of NGAL-R and CD38 in leukemic blood cells from 52 CLL patients (37 untreated, 8 in clinical remission, and 7 relapsed). We provide evidence of a positive correlation between NGAL-R and CD38 levels both in the interpatient cohorts (p < 0.0001) and in individual patients, indicating a constitutive association of NGAL-R and CD38 at the cell level. Patients with progressing CLL showed a time-dependent increase in NGAL-R/CD38 levels. In treated CLL patients who achieved clinical remission, NGAL-R/CD38 levels were decreased, and were significantly lower than in the untreated and relapsed groups (p < 0.02). As NGAL-R and CD38 participate in CLL cell survival, envisioning their simultaneous inhibition with bispecific NGAL-R/CD38 antibodies capable of inducing leukemic cell death might provide therapeutic benefit for CLL patients.
Collapse
Affiliation(s)
- Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (E.C.); (K.M.); (S.A.S.); (F.N.-K.)
| | - Elise Chapiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (E.C.); (K.M.); (S.A.S.); (F.N.-K.)
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d’Hématologie Biologique, F-75013 Paris, France;
| | - Claire Quiney
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d’Hématologie Biologique, F-75013 Paris, France;
| | - Karim Maloum
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (E.C.); (K.M.); (S.A.S.); (F.N.-K.)
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d’Hématologie Biologique, F-75013 Paris, France;
| | - Santos A. Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (E.C.); (K.M.); (S.A.S.); (F.N.-K.)
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (E.C.); (K.M.); (S.A.S.); (F.N.-K.)
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d’Hématologie Biologique, F-75013 Paris, France;
| |
Collapse
|
3
|
Akimova E, Gassner FJ, Greil R, Zaborsky N, Geisberger R. Detecting Bacterial-Human Lateral Gene Transfer in Chronic Lymphocytic Leukemia. Int J Mol Sci 2022; 23:1094. [PMID: 35163016 PMCID: PMC8835664 DOI: 10.3390/ijms23031094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a very common and mostly incurable B-cell malignancy. Recent studies revealed high interpatient mutational heterogeneity and worsened therapy response and survival of patients with complex genomic aberrations. In line with this, a better understanding of the underlying mechanisms of specific genetic aberrations would reveal new prognostic factors and possible therapeutic targets. It is known that chromosomal rearrangements including DNA insertions often play a role during carcinogenesis. Recently it was reported that bacteria (microbiome)-human lateral gene transfer occurs in somatic cells and is enriched in cancer samples. To further investigate this mechanism in CLL, we analyzed paired-end RNA sequencing data of 45 CLL patients and 9 healthy donors, in which we particularly searched for bacterial DNA integrations into the human somatic genome. Applying the Burrows-Wheeler aligner (BWA) first on a human genome and then on bacterial genome references, we differentiated between sequencing reads mapping to the human genome, to the microbiome or to bacterial integrations into the human genome. Our results indicate that CLL samples featured bacterial DNA integrations more frequently (approx. two-fold) compared to normal samples, which corroborates the latest findings in other cancer entities. Moreover, we determined common integration sites and recurrent integrated bacterial transcripts. Finally, we investigated the contribution of bacterial integrations to oncogenesis and disease progression.
Collapse
MESH Headings
- Bacteria/genetics
- Bacteria/growth & development
- Case-Control Studies
- Chromosome Aberrations
- Gene Transfer, Horizontal
- Genome, Bacterial
- Genome, Human
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/microbiology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Microbiota
Collapse
Affiliation(s)
- Ekaterina Akimova
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria; (E.A.); (F.J.G.); (R.G.); (N.Z.)
- Department of Biosciences, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Franz Josef Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria; (E.A.); (F.J.G.); (R.G.); (N.Z.)
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria; (E.A.); (F.J.G.); (R.G.); (N.Z.)
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria; (E.A.); (F.J.G.); (R.G.); (N.Z.)
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria; (E.A.); (F.J.G.); (R.G.); (N.Z.)
| |
Collapse
|
4
|
Steiner M, Gassner FJ, Parigger T, Neureiter D, Egle A, Geisberger R, Greil R, Zaborsky N. A POLE Splice Site Deletion Detected in a Patient with Biclonal CLL and Prostate Cancer: A Case Report. Int J Mol Sci 2021; 22:9410. [PMID: 34502317 PMCID: PMC8431722 DOI: 10.3390/ijms22179410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/01/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is considered a clonal B cell malignancy. Sporadically, CLL cases with multiple productive heavy and light-chain rearrangements were detected, thus leading to a bi- or oligoclonal CLL disease with leukemic cells originating either from different B cells or otherwise descending from secondary immunoglobulin rearrangement events. This suggests a potential role of clonal hematopoiesis or germline predisposition in these cases. During the screening of 75 CLL cases for kappa and lambda light-chain rearrangements, we could detect a single case with CLL cells expressing two distinct kappa and lambda light chains paired with two separate immunoglobulin heavy-chain variable regions. Furthermore, this patient also developed a prostate carcinoma. Targeted genome sequencing of highly purified light-chain specific CLL clones from this patient and from the prostate carcinoma revealed the presence of a rare germline polymorphism in the POLE gene. Hence, our data suggest that the detected SNP may predispose for cancer, particularly for CLL.
Collapse
MESH Headings
- Alternative Splicing
- DNA Polymerase II/genetics
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/complications
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Poly-ADP-Ribose Binding Proteins/genetics
- Polymorphism, Single Nucleotide
- Prognosis
- Prostatic Neoplasms/complications
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
Collapse
Affiliation(s)
- Markus Steiner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Franz J Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Thomas Parigger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Biosciences, Paris-Lodron-University Salzburg, 5020 Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Cancer Cluster Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Alexander Egle
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
5
|
Activation of Interferon Signaling in Chronic Lymphocytic Leukemia Cells Contributes to Apoptosis Resistance via a JAK-Src/STAT3/Mcl-1 Signaling Pathway. Biomedicines 2021; 9:biomedicines9020188. [PMID: 33668421 PMCID: PMC7918075 DOI: 10.3390/biomedicines9020188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/18/2022] Open
Abstract
Besides their antiviral and immunomodulatory functions, type I (α/β) and II (γ) interferons (IFNs) exhibit either beneficial or detrimental effects on tumor progression. Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of abnormal CD5+ B lymphocytes that escape death. Drug resistance and disease relapse still occur in CLL. The triggering of IFN receptors is believed to be involved in the survival of CLL cells, but the underlying molecular mechanisms are not yet characterized. We show here that both type I and II IFNs promote the survival of primary CLL cells by counteracting the mitochondrial (intrinsic) apoptosis pathway. The survival process was associated with the upregulation of signal transducer and activator of transcription-3 (STAT3) and its target anti-apoptotic Mcl-1. Furthermore, the blockade of the STAT3/Mcl-1 pathway by pharmacological inhibitors against STAT3, TYK2 (for type I IFN) or JAK2 (for type II IFN) markedly reduced IFN-mediated CLL cell survival. Similarly, the selective Src family kinase inhibitor PP2 notably blocked IFN-mediated CLL cell survival by downregulating the protein levels of STAT3 and Mcl-1. Our work reveals a novel mechanism of resistance to apoptosis promoted by IFNs in CLL cells, whereby JAKs (TYK2, JAK2) and Src kinases activate in concert a STAT3/Mcl-1 signaling pathway. In view of current clinical developments of potent STAT3 and Mcl-1 inhibitors, a combination of conventional treatments with these inhibitors might thus constitute a new therapeutic strategy in CLL.
Collapse
|
6
|
Antiproliferative Effects of St. John's Wort, Its Derivatives, and Other Hypericum Species in Hematologic Malignancies. Int J Mol Sci 2020; 22:ijms22010146. [PMID: 33375664 PMCID: PMC7795730 DOI: 10.3390/ijms22010146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/03/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Hypericum is a widely present plant, and extracts of its leaves, flowers, and aerial elements have been employed for many years as therapeutic cures for depression, skin wounds, and respiratory and inflammatory disorders. Hypericum also displays an ample variety of other biological actions, such as hypotensive, analgesic, anti-infective, anti-oxidant, and spasmolytic abilities. However, recent investigations highlighted that this species could be advantageous for the cure of other pathological situations, such as trigeminal neuralgia, as well as in the treatment of cancer. This review focuses on the in vitro and in vivo antitumor effects of St. John’s Wort (Hypericum perforatum), its derivatives, and other Hypericum species in hematologic malignancies. Hypericum induces apoptosis in both myeloid and lymphoid cells. Other Hypericum targets include matrix metalloproteinase-2, vascular endothelial growth factor, and matrix metalloproteinase-9, which are mediators of cell migration and angiogenesis. Hypericum also downregulates the expression of proteins that are involved in the resistance of leukemia cells to chemotherapeutic agents. Finally, Hypericum and its derivatives appear to have photodynamic effects and are candidates for applications in tumor photodynamic therapy. Although the in vitro studies appear promising, controlled in vivo studies are necessary before we can hypothesize the introduction of Hypericum and its derivatives into clinical practice for the treatment of hematologic malignancies.
Collapse
|
7
|
Relation of Neutrophil Gelatinase-Associated Lipocalin Overexpression to the Resistance to Apoptosis of Tumor B Cells in Chronic Lymphocytic Leukemia. Cancers (Basel) 2020; 12:cancers12082124. [PMID: 32751884 PMCID: PMC7465759 DOI: 10.3390/cancers12082124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
The resistance to apoptosis of chronic lymphocytic leukemia (CLL) cells partly results from the deregulated production of survival signals from leukemic cells. Despite the development of new therapies in CLL, drug resistance and disease relapse still occur. Recently, neutrophil gelatinase-associated lipocalin (NGAL), a secreted glycoprotein, has been suggested to have a critical role in the biology of tumors. Thus, we investigated the relevance of NGAL in CLL pathogenesis, analyzed the expression of its cellular receptor (NGAL-R) on malignant B cells and tested whether CLL cells are resistant to apoptosis through an autocrine process involving NGAL and NGAL-R. We observed that NGAL concentrations were elevated in the serum of CLL patients at diagnosis. After treatment (and regardless of the therapeutic regimen), serum NGAL levels normalized in CLL patients in remission but not in relapsed patients. In parallel, NGAL and NGAL-R were upregulated in leukemic cells from untreated CLL patients when compared to normal peripheral blood mononuclear cells (PBMCs), and returned to basal levels in PBMCs from patients in remission. Cultured CLL cells released endogenous NGAL. Anti-NGAL-R antibodies enhanced NGAL-R+ leukemia cell death. Conversely, recombinant NGAL protected NGAL-R+ CLL cells against apoptosis by activating a STAT3/Mcl-1 signaling pathway. Our results suggest that NGAL and NGAL-R, overexpressed in untreated CLL, participate in the deregulation of the apoptotic machinery in CLL cells, and may be potential therapeutic clues for CLL treatment.
Collapse
|
8
|
RNA editing contributes to epitranscriptome diversity in chronic lymphocytic leukemia. Leukemia 2020; 35:1053-1063. [PMID: 32728184 PMCID: PMC8024191 DOI: 10.1038/s41375-020-0995-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022]
Abstract
RNA editing-primarily conversion of adenosine to inosine (A > I)-is a widespread posttranscriptional mechanism, mediated by Adenosine Deaminases acting on RNA (ADAR) enzymes to alter the RNA sequence of primary transcripts. Hence, in addition to somatic mutations and alternative RNA splicing, RNA editing can be a further source for recoding events. Although RNA editing has been detected in many solid cancers and normal tissue, RNA editing in chronic lymphocytic leukemia (CLL) has not been addressed so far. We determined global RNA editing and recurrent, recoding RNA editing events from matched RNA-sequencing and whole exome sequencing data in CLL samples from 45 untreated patients. RNA editing was verified in a validation cohort of 98 CLL patients and revealed substantially altered RNA editing profiles in CLL compared with normal B cells. We further found that RNA editing patterns were prognostically relevant. Finally, we showed that ADAR knockout decreased steady state viability of MEC1 cells and made them more susceptible to treatment with fludarabine and ibrutinib in vitro. We propose that RNA editing contributes to the pathophysiology of CLL and targeting the RNA editing machinery could be a future strategy to maximize treatment efficacy.
Collapse
|
9
|
Abo Elwafa R, Abd Elrahman A, Ghallab O. Long intergenic non-coding RNA-p21 is associated with poor prognosis in chronic lymphocytic leukemia. Clin Transl Oncol 2020; 23:92-99. [PMID: 32468342 DOI: 10.1007/s12094-020-02398-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/12/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) are RNA transcripts longer than 200 nucleotides. They are new players in transcriptional regulation and cancer research. LincRNA-p21 is a p53-regulated lncRNA involved in the p53 transcriptional network. It has an important role in regulating cellular proliferation and apoptosis. Chronic lymphocytic leukemia is derived by a typical defect in apoptosis and characterized by clonal proliferation and accumulation of mature B cells. The aim of the present study was to assess the expression pattern of the lincRNA-p21 and investigate its potential role as a new prognostic marker in CLL. METHODS The study was conducted on 80 newly diagnosed CLL patients and 80 age- and sex-matched controls. The analysis of LincRNA-p21 and the p53 downstream proapoptotic target genes (MDM2, PUMA, BAX, and NOXA) was performed by real-time PCR. The cytogenetic abrasions and expression of ZAP70 and CD38 were detected by FISH and Flow cytometry, respectively. RESULTS LincRNA-p21 was significantly downregulated in CLL patients compared to controls. The downstream proapoptotic targets were significantly downregulated in CLL patients and positively correlated with lincRNA-p21. Low expression of lincRNA-p21 was associated with poor prognostic markers (advanced stages of CLL, del 17p13, ZAP70, and CD38 expression), failure of complete remission, shorter progression free survival, and overall survival. Low lincRNA-p21 expression was independently prognostic for shorter time to treatment. CONCLUSION Low expression of lincRNA-p21 demarcates a more aggressive form of CLL with poor prognosis. Therefore, it could be considered as a new prognostic marker to predict disease outcome in CLL.
Collapse
Affiliation(s)
- R Abo Elwafa
- Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - A Abd Elrahman
- Internal Medicine Department (Hematology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - O Ghallab
- Internal Medicine Department (Hematology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Gassner FJ, Zaborsky N, Feldbacher D, Greil R, Geisberger R. RNA Editing Alters miRNA Function in Chronic Lymphocytic Leukemia. Cancers (Basel) 2020; 12:cancers12051159. [PMID: 32380696 PMCID: PMC7280959 DOI: 10.3390/cancers12051159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a high incidence B cell leukemia with a highly variable clinical course, leading to survival times ranging from months to several decades. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression levels of genes by binding to the untranslated regions of transcripts. Although miRNAs have been previously shown to play a crucial role in CLL development, progression and treatment resistance, their further processing and diversification by RNA editing (specifically adenosine to inosine or cytosine to uracil deamination) has not been addressed so far. In this study, we analyzed next generation sequencing data to provide a detailed map of adenosine to inosine and cytosine to uracil changes in miRNAs from CLL and normal B cells. Our results reveal that in addition to a CLL-specific expression pattern, there is also specific RNA editing of many miRNAs, particularly miR-3157 and miR-6503, in CLL. Our data draw further light on how miRNAs and miRNA editing might be implicated in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Franz J. Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
| | - Daniel Feldbacher
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
- Department of Biosciences, University of Salzburg, Hellbrunner Strasse, 34, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
- Correspondence: ; Tel.: +43-57255-25847; Fax: +43-57255-25998
| |
Collapse
|
11
|
Frustaci AM, Tedeschi A, Deodato M, Zamprogna G, Cairoli R, Montillo M. Duvelisib for the treatment of chronic lymphocytic leukemia. Expert Opin Pharmacother 2020; 21:1299-1309. [PMID: 32292084 DOI: 10.1080/14656566.2020.1751123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Duvelisib, a first in class, oral, dual PI3 k-delta/gamma inhibitor recently received FDA approval for previously treated CLL (chronic lymphocytic leukemia)/SLL (small lymphocytic lymphoma) and follicular lymphoma. Data coming from the phase III 'DUO' trial, in fact, showed a superior progression-free survival (PFS) in CLL patients treated with duvelisib compared to ofatumumab. AREAS COVERED This review provides analysis of the mechanism of action of duvelisib and includes the rationale for the use of double inhibition. The authors also give their clinical experience with duvelisib. Overall, despite the high efficacy of the drug, some concern remains on duvelisib-related adverse events leading to treatment interruption in a significant proportion of patients. EXPERT OPINION Considering the unmet need of salvage therapies in patients failing BTK and/or Bcl2 inhibitors, treatment with duvelisib represents a new valid option in the CLL therapeutic armamentarium. Therefore, the correct management of adverse events with early treatment suspension, dose reductions and prompt supportive treatment could help to manage treatment, thus improving patient outcome. Finally, the association of duvelisib with other targeted therapies, such as ibrutinib or venetoclax, could allow clinicians to capitalize on the synergistic activity of these agents.
Collapse
Affiliation(s)
- Anna Maria Frustaci
- Dept of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3 , Milano, Italy
| | - Alessandra Tedeschi
- Dept of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3 , Milano, Italy
| | - Marina Deodato
- Dept of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3 , Milano, Italy
| | - Giulia Zamprogna
- Dept of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3 , Milano, Italy
| | - Roberto Cairoli
- Dept of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3 , Milano, Italy
| | - Marco Montillo
- Dept of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3 , Milano, Italy
| |
Collapse
|
12
|
B-cell-specific IRF4 deletion accelerates chronic lymphocytic leukemia development by enhanced tumor immune evasion. Blood 2020; 134:1717-1729. [PMID: 31537531 DOI: 10.1182/blood.2019000973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogenous disease that is highly dependent on a cross talk of CLL cells with the microenvironment, in particular with T cells. T cells derived from CLL patients or murine CLL models are skewed to an antigen-experienced T-cell subset, indicating a certain degree of antitumor recognition, but they are also exhausted, preventing an effective antitumor immune response. Here we describe a novel mechanism of CLL tumor immune evasion that is independent of T-cell exhaustion, using B-cell-specific deletion of the transcription factor IRF4 (interferon regulatory factor 4) in Tcl-1 transgenic mice developing a murine CLL highly similar to the human disease. We show enhanced CLL disease progression in IRF4-deficient Tcl-1 tg mice, associated with a severe downregulation of genes involved in T-cell activation, including genes involved in antigen processing/presentation and T-cell costimulation, which massively reduced T-cell subset skewing and exhaustion. We found a strong analogy in the human disease, with inferior prognosis of CLL patients with low IRF4 expression in independent CLL patient cohorts, failed T-cell skewing to antigen-experienced subsets, decreased costimulation capacity, and downregulation of genes involved in T-cell activation. These results have therapeutic relevance because our findings on molecular mechanisms of immune privilege may be responsible for the failure of immune-therapeutic strategies in CLL and may lead to improved targeting in the future.
Collapse
|
13
|
Javandoost E, Firoozi-Majd E, Rostamian H, Khakpoor-Koosheh M, Mirzaei HR. Role of microRNAs in Chronic Lymphocytic Leukemia Pathogenesis. Curr Med Chem 2020; 27:282-297. [PMID: 31544709 DOI: 10.2174/0929867326666190911114842] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a group of small endogenous non-coding RNAs involved in many cancers and various cellular processes such as cellular growth, DNA methylation, apoptosis, and differentiation. 13q14.3 chromosomal region contains miR-15 and miR-16 and deletion of this region is a commonly reported aberration in Chronic Lymphoblastic Leukemia (CLL), suggesting miRNAs involvement in CLL pathogenesis. MicroRNAs are known as oncogenes and tumor suppressors in CLL which may also serve as markers of onset and progression of the disease. The most prevalent form of leukemia diagnosed in adults in the western world, chronic lymphocytic leukemia, accounts for one-third of all leukemias. CLL is characterized by the presence of B Cell Malignant Clones in secondary lymphoid tissues, peripheral blood and bone marrow. The precise etiology of CLL is remained to be known, however, a number of Chromosomal Abnormalities such as deletions of 13q14.3, 11q and 17p and trisomy 12 have been detected. In this review, we offer our prospect on how miRNAs are involved in the CLL pathogenesis and disease progression. Further understanding of the underlying mechanisms and regulation of CLL pathogenesis has underscored the need for further research regarding their role in this disease.
Collapse
Affiliation(s)
- Ehsan Javandoost
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Firoozi-Majd
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Rostamian
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Khakpoor-Koosheh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Parigger T, Greil R, Zaborsky N. Mouse models to decipher anti-tumor immunity. Oncotarget 2019; 10:5005-5006. [PMID: 31489109 PMCID: PMC6707950 DOI: 10.18632/oncotarget.27111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- Thomas Parigger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria; Cancer Cluster Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria; Cancer Cluster Salzburg, Austria
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria; Cancer Cluster Salzburg, Austria
| |
Collapse
|
15
|
Frustaci AM, Tedeschi A, Deodato M, Zamprogna G, Cairoli R, Montillo M. Duvelisib: a new phosphoinositide-3-kinase inhibitor in chronic lymphocytic leukemia. Future Oncol 2019; 15:2227-2239. [DOI: 10.2217/fon-2018-0881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
P110-γ and -δ act in lymphocytes chemotaxis, presenting distinct, nonredundant roles in B- and T-cell migration and adhesion to stromal cells. Moreover, phosphoinositide-3-kinase-γ inhibition contributes to regulate macrophage polarization inhibiting cancer growth. Duvelisib (IPI-145) is an oral first-in-class, dual phosphoinositide-3-kinase inhibitor targeting p110-δ/γ exerting its activity in preclinical studies across different prognostic groups. In a large Phase III study, duvelisib showed superior progression-free survival and overall response rate compared with ofatumumab, thus leading to its approval for relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma. Immune-related effects are the main reason for treatment suspension, thus affecting survival benefit. Nevertheless, the correct management of adverse events, eventually including dose modification, allows patients to remain on treatment. In conclusion, duvelisib represents a promising treatment in chronic lymphocytic leukemia and a salvage therapy after ibrutinib.
Collapse
Affiliation(s)
- Anna M Frustaci
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Alessandra Tedeschi
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Marina Deodato
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Giulia Zamprogna
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Roberto Cairoli
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Marco Montillo
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milano, Italy
| |
Collapse
|
16
|
BIRC3 Expression Predicts CLL Progression and Defines Treatment Sensitivity via Enhanced NF-κB Nuclear Translocation. Clin Cancer Res 2018; 25:1901-1912. [DOI: 10.1158/1078-0432.ccr-18-1548] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/24/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022]
|
17
|
Chen Y, Peubez C, Smith V, Xiong S, Kocsis-Fodor G, Kennedy B, Wagner S, Balotis C, Jayne S, Dyer MJS, Macip S. CUDC-907 blocks multiple pro-survival signals and abrogates microenvironment protection in CLL. J Cell Mol Med 2018; 23:340-348. [PMID: 30353642 PMCID: PMC6307843 DOI: 10.1111/jcmm.13935] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/08/2018] [Accepted: 09/03/2018] [Indexed: 12/27/2022] Open
Abstract
CUDC‐907, a dual PI3K/HDAC inhibitor, has been proposed to have therapeutic potential in hematopoietic malignancies. However, the molecular mechanisms of its effects in chronic lymphocytic leukaemia (CLL) remain elusive. We show that CLL cells are sensitive to CUDC‐907, even under conditions similar to the protective microenvironment of proliferation centres. CUDC‐907 inhibited PI3K/AKT and HDAC activity, as expected, but also suppressed RAF/MEK/ERK and STAT3 signalling and reduced the expression of anti‐apoptotic BCL‐2 family proteins BCL‐2, BCL‐xL, and MCL‐1. Moreover, CUDC‐907 downregulated cytokines BAFF and APRIL and their receptors BAFFR, TACI, and BCMA, thus blocking BAFF‐induced NF‐κB signalling. T cell chemokines CCL3/4/17/22 and phosphorylation of CXCR4 were also reduced by CUDC‐907. These data indicated that CUDC‐907 abrogates different protective signals and suggested that it might sensitize CLL cells to other drugs. Indeed, combinations of low concentrations of CUDC‐907 with inhibitors of BCL2, BTK, or the NF‐κB pathway showed a potent synergistic effect. Our data indicate that, apart from its known functions, CUDC‐907 blocks multiple pro‐survival pathways to overcome microenvironment protection in CLL cells. This provides a rationale to evaluate the clinical relevance of CUDC‐907 in combination therapies with other targeted inhibitors.
Collapse
Affiliation(s)
- Yixiang Chen
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK.,Medical College, Henan University of Science and Technology, Luoyang, China
| | - Chloé Peubez
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK
| | - Victoria Smith
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK
| | - Shiqiu Xiong
- Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK.,Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Gabriella Kocsis-Fodor
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK
| | - Ben Kennedy
- Department of Haematology, University Hospitals of Leicester, Leicester, UK
| | - Simon Wagner
- Department of Haematology, University Hospitals of Leicester, Leicester, UK
| | | | - Sandrine Jayne
- Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK.,Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Martin J S Dyer
- Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK.,Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Salvador Macip
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK
| |
Collapse
|
18
|
Bauvois B, Susin SA. Revisiting Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Cancer: Saint or Sinner? Cancers (Basel) 2018; 10:cancers10090336. [PMID: 30231474 PMCID: PMC6162539 DOI: 10.3390/cancers10090336] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 12/13/2022] Open
Abstract
Human neutrophil gelatinase-associated lipocalin (NGAL) is a glycoprotein present in a wide variety of tissues and cell types. NGAL exists as a 25 kDa monomer, a 46 kDa homodimer (the most abundant form in healthy subjects) and a 130 kDa disulfide-linked heterodimer bound to latent matrix metalloproteinase-9. Dysregulated expression of NGAL in human malignancies suggests its value as a clinical marker. A growing body of evidence is highlighting NGAL’s paradoxical (i.e., both beneficial and detrimental) effects on cellular processes associated with tumor development (proliferation, survival, migration, invasion, and multidrug resistance). At least two distinct cell surface receptors are identified for NGAL. This review (i) summarizes our current knowledge of NGAL’s expression profiles in solid tumors and leukemias, and (ii) critically evaluates the beneficial and detrimental activities of NGAL having been documented in a diverse range of cancer-derived cell lines. A better understanding of the causal relationships between NGAL dysregulation and tumor development will require a fine analysis of the molecular aspects and biological role(s) of NGAL both in primary tumors and at different stages of disease. Having an accurate picture of NGAL’s contribution to tumor progression is a prerequisite for attempting to modulate this protein as a putative therapeutic target.
Collapse
Affiliation(s)
- Brigitte Bauvois
- INSERM UMRS 1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, 75006 Paris, France.
- Sorbonne Universités Paris Cité, F-75006 Paris, France.
- Université Paris Descartes, F-75005 Paris, France.
| | - Santos A Susin
- INSERM UMRS 1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, 75006 Paris, France.
- Sorbonne Universités Paris Cité, F-75006 Paris, France.
- Université Paris Descartes, F-75005 Paris, France.
| |
Collapse
|
19
|
Fludarabine and rituximab with escalating doses of lenalidomide followed by lenalidomide/rituximab maintenance in previously untreated chronic lymphocytic leukaemia (CLL): the REVLIRIT CLL-5 AGMT phase I/II study. Ann Hematol 2018; 97:1825-1839. [PMID: 29862437 PMCID: PMC6097797 DOI: 10.1007/s00277-018-3380-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022]
Abstract
Despite recent advances, chemoimmunotherapy remains a standard for fit previously untreated chronic lymphocytic leukaemia patients. Lenalidomide had activity in early monotherapy trials, but tumour lysis and flare proved major obstacles in its development. We combined lenalidomide in increasing doses with six cycles of fludarabine and rituximab (FR), followed by lenalidomide/rituximab maintenance. In 45 chemo-naive patients, included in this trial, individual tolerability of the combination was highly divergent and no systematic toxicity determining a maximum tolerated dose was found. Grade 3/4 neutropenia (71%) was high, but only 7% experienced grade 3 infections. No tumour lysis or flare > grade 2 was observed, but skin toxicity proved dose-limiting in nine patients (20%). Overall and complete response rates after induction were 89 and 44% by intention-to-treat, respectively. At a median follow-up of 78.7 months, median progression-free survival (PFS) was 60.3 months. Minimal residual disease and immunoglobulin variable region heavy chain mutation state predicted PFS and TP53 mutation most strongly predicted OS. Baseline clinical factors did not predict tolerance to the immunomodulatory drug lenalidomide, but pretreatment immunophenotypes of T cells showed exhausted memory CD4 cells to predict early dose-limiting non-haematologic events. Overall, combining lenalidomide with FR was feasible and effective, but individual changes in the immune system seemed associated with limiting side effects. clinicaltrials.gov (NCT00738829) and EU Clinical Trials Register (www.clinicaltrialsregister.eu, 2008-001430-27)
Collapse
|
20
|
Russo M, Milito A, Spagnuolo C, Carbone V, Rosén A, Minasi P, Lauria F, Russo GL. CK2 and PI3K are direct molecular targets of quercetin in chronic lymphocytic leukaemia. Oncotarget 2018; 8:42571-42587. [PMID: 28489572 PMCID: PMC5522089 DOI: 10.18632/oncotarget.17246] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/05/2017] [Indexed: 11/25/2022] Open
Abstract
Despite the encouraging results of the innovative therapeutic treatments, complete remission is uncommon in patients affected by chronic lymphocytic leukaemia, which remains an essentially incurable disease. Recently, clinical trials based on BH3-mimetic drugs showed positive outcomes in subjects with poor prognostic features. However, resistance to treatments occurs in a significant number of patients. We previously reported that the multi-kinase inhibitor quercetin, a natural flavonol, restores sensitivity to ABT-737, a BH3-mimetic compound, in both leukemic cell lines and B-cells isolated from patients. To identify the molecular target of quercetin, we employed a new cell line, HG3, obtained by immortalization of B-cells from a chronic lymphocytic leukaemia patient at the later stage of disease. We confirmed that quercetin in association with ABT-737 synergistically enhances apoptosis in HG3 (combination index < 1 for all fractions affected). We also reported that the cellular uptake of quercetin is extremely rapid, with an intracellular concentration of about 38.5 ng/106 cells, after treatment with 25 μM for 5 min. We demonstrated that the activity of protein kinase CK2, which positively triggers PI3K/Akt pathway by inactivating PTEN phosphatase, is inhibited by quercetin immediately after its addition to HG3 cells (0–2 min). PI3K activity was also inhibited by quercetin within 60 min from the treatment. The combined inhibition of CK2 and PI3K kinase activities by quercetin restored ABT-737 sensitivity and increased lethality in human leukemia cells.
Collapse
Affiliation(s)
- Maria Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Alfonsina Milito
- Institute of Food Sciences, National Research Council, Avellino, Italy.,Current address: Stazione Zoologica "Anton Dohrn", Villa Comunale, Napoli, Italy
| | - Carmela Spagnuolo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Virginia Carbone
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Anders Rosén
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Paola Minasi
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Fabio Lauria
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| |
Collapse
|
21
|
Zaborsky N, Gassner FJ, Asslaber D, Reinthaler P, Denk U, Flenady S, Hofbauer JP, Danner B, Rebhandl S, Harrer A, Geisberger R, Greil R, Egle A. CD1d expression on chronic lymphocytic leukemia B cells affects disease progression and induces T cell skewing in CD8 positive and CD4CD8 double negative T cells. Oncotarget 2018; 7:49459-49469. [PMID: 27385215 PMCID: PMC5226521 DOI: 10.18632/oncotarget.10372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 06/16/2016] [Indexed: 11/25/2022] Open
Abstract
Chronic lymphocytic leukemia develops within a complex network driven by genetic mutations and microenvironmental interactions. Among the latter a complex interplay with the immune system is established by the clone. Next to a proposed recruitment of support from T and myeloid cells, potential anti-CLL immune reactions need to be subverted. By using TCL1 mice as a CLL model, we show that TCR-Vβ7+ NK1.1+ T cells are overrepresented in this disease model and constitute a main subset of peripheral CD3+ cells with biased TCR usage, showing that these cells account for a major part for T cell skewing in TCL1 mice. Moreover, we show that overrepresentation is dependent on CD1d expression in TCL1 mice, implicating that these cells belong to a NKT-like cell fraction which are restricted to antigen presented by the MHC-like surface marker CD1d. Accordingly, we observed a high fraction of CD161+ cells within overrepresented T cells in CLL patients and we found downregulation of CD1d on the surface of CLL cells, both in TCL1 mice and patients. Finally, we show that in TCL1 mice, CD1d deficiency resulted in shortened overall survival. Our results point to an interaction between CLL and CD161+ T cells that may represent a novel therapeutic target for immune modulation.
Collapse
Affiliation(s)
- Nadja Zaborsky
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Franz Josef Gassner
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Daniela Asslaber
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Petra Reinthaler
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Ursula Denk
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Sabine Flenady
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Josefina Piñón Hofbauer
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Barbara Danner
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Stefan Rebhandl
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Andrea Harrer
- Department of Neurology, Paracelsus Medical University, Salzburg, Austria
| | - Roland Geisberger
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Richard Greil
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Alexander Egle
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| |
Collapse
|
22
|
Amigo-Jiménez I, Bailón E, Aguilera-Montilla N, García-Marco JA, García-Pardo A. Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9. Oncotarget 2018; 7:83359-83377. [PMID: 27829220 PMCID: PMC5347775 DOI: 10.18632/oncotarget.13091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022] Open
Abstract
CLL remains an incurable disease in spite of the many new compounds being tested. Arsenic trioxide (ATO) induces apoptosis in all CLL cell types and could constitute an efficient therapy. To further explore this, we have studied the gene expression profile induced by ATO in CLL cells. ATO modulated many genes, largely involved in oxidative stress, being HMOX1 the most upregulated gene, also induced at the protein level. ATO also increased MMP-9, as we previously observed, both at the mRNA and protein level. Using specific inhibitors, qPCR analyses, and gene silencing approaches we demonstrate that upregulation of MMP-9 by ATO involved activation of the p38 MAPK/AP-1 signaling pathway. Moreover, gene silencing HMOX1 or inhibiting HMOX1 activity enhanced p38 MAPK phosphorylation and c-jun expression/activation, resulting in transcriptional upregulation of MMP-9. Overexpression of HMOX1 or enhancement of its activity, had the opposite effect. Cell viability analyses upon modulation of HMOX1 expression or activity demonstrated that HMOX1 had a pro-apoptotic role and enhanced the cytotoxic effect of ATO in CLL cells. We have therefore identified a new mechanism in which HMOX1 plays a central role in the response of CLL cells to ATO and in the regulation of the anti-apoptotic protein MMP-9. Thus, HMOX1 arises as a new therapeutic target in CLL and the combination of HMOX1 modulators with ATO may constitute an efficient therapeutic strategy in CLL.
Collapse
Affiliation(s)
- Irene Amigo-Jiménez
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Elvira Bailón
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Noemí Aguilera-Montilla
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José A García-Marco
- Molecular Cytogenetics Unit, Hematology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Angeles García-Pardo
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
23
|
Protein kinase D-dependent CXCR4 down-regulation upon BCR triggering is linked to lymphadenopathy in chronic lymphocytic leukaemia. Oncotarget 2018; 7:41031-41046. [PMID: 27127886 PMCID: PMC5173040 DOI: 10.18632/oncotarget.9031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/16/2016] [Indexed: 02/07/2023] Open
Abstract
In Chronic Lymphocytic Leukemia (CLL), infiltration of lymph nodes by leukemic cells is observed in patients with progressive disease and adverse outcome. We have previously demonstrated that B-cell receptor (BCR) engagement resulted in CXCR4 down-regulation in CLL cells, correlating with a shorter progression-free survival in patients. In this study, we show a simultaneous down-regulation of CXCR4, CXCR5 and CD62L upon BCR triggering. While concomitant CXCR4 and CXCR5 down-regulation involves PKDs, CD62L release relies on PKC activation. BCR engagement induces PI3K-δ-dependent phosphorylation of PKD2 and 3, which in turn phosphorylate CXCR4 Ser324/325. Moreover, upon BCR triggering, PKD phosphorylation levels correlate with the extent of membrane CXCR4 decrease. Inhibition of PKD activity restores membrane expression of CXCR4 and migration towards CXCL12 in BCR-responsive cells in vitro. In terms of pathophysiology, BCR-dependent CXCR4 down-regulation is observed in leukemic cells from patients with enlarged lymph nodes, irrespective of their IGHV mutational status. Taken together, our results demonstrate that PKD-mediated CXCR4 internalization induced by BCR engagement in B-CLL is associated with lymph node enlargement and suggest PKD as a potential druggable target for CLL therapeutics.
Collapse
|
24
|
Frustaci AM, Tedeschi A, Deodato M, Mazzucchelli M, Cairoli R, Montillo M. Ibrutinib and its use in the treatment of chronic lymphocytic leukemia. Future Oncol 2017; 14:681-697. [PMID: 29243946 DOI: 10.2217/fon-2017-0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ibrutinib represents a revolution in chronic lymphocytic leukemia treatment scenario providing results never seen before and offering an effective therapy even in high-risk patients with really poor outcome after chemoimmunotherapy. Thanks to longer updates, on one hand, ibrutinib has confirmed its efficacy continuing to show clinical benefits over time; on the other hand, resistance mechanisms are slowly emerging. Moreover, clinicians should be aware of ibrutinib-related side effects, paying attention to screen patients that could benefit more from the drug and try to prevent adverse events. While ibrutinib approval indication is expanding, high treatment costs will shortly require a selection of those who can really draw advantage from Bruton's tyrosine kinase inhibition and those who could continue to be treated with chemoimmunotherapy.
Collapse
Affiliation(s)
- Anna Maria Frustaci
- Dept of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Alessandra Tedeschi
- Dept of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Marina Deodato
- Dept of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Maddalena Mazzucchelli
- Dept of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Roberto Cairoli
- Dept of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Marco Montillo
- Dept of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano, Piazza Ospedale Maggiore 3, Milano, Italy
| |
Collapse
|
25
|
Gassner FJ, Schubert M, Rebhandl S, Spandl K, Zaborsky N, Catakovic K, Blaimer S, Hebenstreit D, Greil R, Geisberger R. Imprecision and DNA Break Repair Biased towards Incompatible End Joining in Leukemia. Mol Cancer Res 2017; 16:428-438. [PMID: 29222170 DOI: 10.1158/1541-7786.mcr-17-0373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/28/2017] [Accepted: 11/09/2017] [Indexed: 01/14/2023]
Abstract
Cancer is a genetic disease caused by mutations and chromosomal abnormalities that contribute to uncontrolled cell growth. In addition, cancer cells can rapidly respond to conventional and targeted therapies by accumulating novel and often specific genetic lesions leading to acquired drug resistance and relapsing disease. In chronic lymphocytic leukemia (CLL), however, diverse chromosomal aberrations often occur. In many cases, improper repair of DNA double-strand breaks (DSB) is a major source for genomic abnormalities. Therefore, this study examined the repair of DNA DSBs by nonhomologous end joining (NHEJ) in CLL by performing plasmid-based repair assays in primary CLL cells and normal B cells, isolated from patients, as well as TALEN/Cas9-induced chromosomal deletions in the CLL cell line Mec1. It is demonstrated that DNA repair is aberrant in CLL cells, featuring perturbed DNA break structure preference with efficient joining of noncohesive ends and more deletions at repair junctions. In addition, increased microhomology-mediated end joining (MMEJ) of DNA substrates was observed in CLL together with increased expression of MMEJ-specific repair factors. In summary, these data identify major differences in DNA repair efficiency between CLL cells and normal B cells isolated from patients.Implications: This study suggests inherently aberrant DNA DSB repair in the acquisition of subclonal genomic structural variations important for clonal evolution and treatment resistance in CLL. Mol Cancer Res; 16(3); 428-38. ©2017 AACR.
Collapse
Affiliation(s)
- Franz Josef Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Maria Schubert
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Stefan Rebhandl
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Karina Spandl
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Kemal Catakovic
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Stephanie Blaimer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Daniel Hebenstreit
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria. .,Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
26
|
Mature lymphoid malignancies: origin, stem cells, and chronicity. Blood Adv 2017; 1:2444-2455. [PMID: 29296894 DOI: 10.1182/bloodadvances.2017008854] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022] Open
Abstract
The chronic behavior of mature lymphoid malignancies, with relapses occurring years apart in many patients, has until recently been unexplained. Patterns of relapse also differ vastly between disease entities, with some being highly curable by chemotherapy whereas others are destined to reemerge after treatment. Lately, the use of next-generation sequencing techniques has revealed essential information on the clonal evolution of lymphoid malignancies. Also, experimental xenograft transplantation point to the possible existence of an ancestral (stem) cell. Such a malignant lymphoid stem cell population could potentially evade current therapies and be the cause of chronicity and death in lymphoma patients; however, the evidence is divergent across disease entities and between studies. In this review we present an overview of genetic studies, case reports, and experimental evidence of the source of mature lymphoid malignancy and discuss the perspectives.
Collapse
|
27
|
Catakovic K, Gassner FJ, Ratswohl C, Zaborsky N, Rebhandl S, Schubert M, Steiner M, Gutjahr JC, Pleyer L, Egle A, Hartmann TN, Greil R, Geisberger R. TIGIT expressing CD4+T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia. Oncoimmunology 2017; 7:e1371399. [PMID: 29296521 PMCID: PMC5739567 DOI: 10.1080/2162402x.2017.1371399] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 02/04/2023] Open
Abstract
While research on T cell exhaustion in context of cancer particularly focuses on CD8+ cytotoxic T cells, the role of inhibitory receptors on CD4+ T-helper cells have remained largely unexplored. TIGIT is a recently identified inhibitory receptor on T cells and natural killer (NK) cells. In this study, we examined TIGIT expression on T cell subsets from CLL patients. While we did not observe any differences in TIGIT expression in CD8+ T cells of healthy controls and CLL cells, we found an enrichment of TIGIT+ T cells in the CD4+ T cell compartment in CLL. Intriguingly, CLL patients with an advanced disease stage displayed elevated numbers of CD4+ TIGIT+ T cells compared to low risk patients. Autologous CLL-T cell co-culture assays revealed that depleting CD4+ TIGIT+ expressing T cells from co-cultures significantly decreased CLL viability. Accordingly, a supportive effect of TIGIT+CD4+ T cells on CLL cells in vitro could be recapitulated by blocking the interaction of TIGIT with its ligands using TIGIT-Fc molecules, which also impeded the T cell specific production of CLL-prosurvival cytokines. Our data reveal that TIGIT+CD4+T cells provide a supportive microenvironment for CLL cells, representing a potential therapeutic target for CLL treatment.
Collapse
Affiliation(s)
- Kemal Catakovic
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR).,Cancer Cluster Salzburg, Austria
| | - Franz Josef Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR).,Cancer Cluster Salzburg, Austria
| | - Christoph Ratswohl
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR).,Cancer Cluster Salzburg, Austria
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR).,Cancer Cluster Salzburg, Austria
| | - Stefan Rebhandl
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR).,Cancer Cluster Salzburg, Austria
| | - Maria Schubert
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR).,Cancer Cluster Salzburg, Austria
| | - Markus Steiner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR).,Cancer Cluster Salzburg, Austria
| | - Julia Christine Gutjahr
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR).,Cancer Cluster Salzburg, Austria
| | - Lisa Pleyer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR).,Cancer Cluster Salzburg, Austria.,Molecular Cytology Laboratory, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
| | - Alexander Egle
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR).,Cancer Cluster Salzburg, Austria
| | - Tanja Nicole Hartmann
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR).,Cancer Cluster Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR).,Cancer Cluster Salzburg, Austria
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR).,Cancer Cluster Salzburg, Austria
| |
Collapse
|
28
|
Egle A. Milestones in Chronic Lymphocytic Leukemia: An exciting decade of progress-10th anniversary of memo. MEMO 2017; 10:8-12. [PMID: 28367250 PMCID: PMC5357250 DOI: 10.1007/s12254-017-0318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/03/2017] [Indexed: 06/07/2023]
Abstract
The past 10 years have been an exciting ride for Chronic Lymphocytic Leukemia (CLL) aficionados. An overview of changes in management paradigms in CLL, ranging from insights into biology, via chemotherapy and chemoimmunotherapy to maintenance and novel drugs will be presented.
Collapse
Affiliation(s)
- Alexander Egle
- 3rd Medical Department, Paracelsus Private Medical University Hospital Salzburg, Muellnerhauptstrasse 48, 5020 Salzburg, Austria
| |
Collapse
|
29
|
|
30
|
Targeting the TAM Receptors in Leukemia. Cancers (Basel) 2016; 8:cancers8110101. [PMID: 27834816 PMCID: PMC5126761 DOI: 10.3390/cancers8110101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/21/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022] Open
Abstract
Targeted inhibition of members of the TAM (TYRO-3, AXL, MERTK) family of receptor tyrosine kinases has recently been investigated as a novel strategy for treatment of hematologic malignancies. The physiologic functions of the TAM receptors in innate immune control, natural killer (NK) cell differentiation, efferocytosis, clearance of apoptotic debris, and hemostasis have previously been described and more recent data implicate TAM kinases as important regulators of erythropoiesis and megakaryopoiesis. The TAM receptors are aberrantly or ectopically expressed in many hematologic malignancies including acute myeloid leukemia, B- and T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. TAM receptors contribute to leukemic phenotypes through activation of pro-survival signaling pathways and interplay with other oncogenic proteins such as FLT3, LYN, and FGFR3. The TAM receptors also contribute to resistance to both cytotoxic chemotherapeutics and targeted agents, making them attractive therapeutic targets. A number of translational strategies for TAM inhibition are in development, including small molecule inhibitors, ligand traps, and monoclonal antibodies. Emerging areas of research include modulation of TAM receptors to enhance anti-tumor immunity, potential roles for TYRO-3 in leukemogenesis, and the function of the bone marrow microenvironment in mediating resistance to TAM inhibition.
Collapse
|
31
|
Bone marrow stroma-induced resistance of chronic lymphocytic leukemia cells to arsenic trioxide involves Mcl-1 upregulation and is overcome by inhibiting the PI3Kδ or PKCβ signaling pathways. Oncotarget 2016; 6:44832-48. [PMID: 26540567 PMCID: PMC4792595 DOI: 10.18632/oncotarget.6265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/22/2015] [Indexed: 11/25/2022] Open
Abstract
CLL remains an incurable disease in spite of the many new compounds being studied. Arsenic trioxide (ATO) induces apoptosis in all CLL cell types and could constitute an efficient therapy. To further explore this, we have studied the influence of stromal cells, key components of the CLL microenvironment, on the response of CLL cells to ATO. Bone marrow stromal cells induced CLL cell resistance to 2 μM ATO and led to activation of Lyn, ERK, PI3K and PKC, as well as NF-κB and STAT3. Mcl-1, Bcl-xL, and Bfl-1 were also upregulated after the co-culture. Inhibition experiments indicated that PI3K and PKC were involved in the resistance to ATO induced by stroma. Moreover, idelalisib and sotrastaurin, specific inhibitors for PI3Kδ and PKCβ, respectively, inhibited Akt phosphorylation, NF-κB/STAT3 activation and Mcl-1 upregulation, and rendered cells sensitive to ATO. Mcl-1 was central to the mechanism of resistance to ATO, since: 1) Mcl-1 levels correlated with the CLL cell response to ATO, and 2) blocking Mcl-1 expression or function with specific siRNAs or inhibitors overcame the protecting effect of stroma. We have therefore identified the mechanism involved in the CLL cell resistance to ATO induced by bone marrow stroma and show that idelalisib or sotrastaurin block this mechanism and restore sensibility to ATO. Combination of ATO with these inhibitors may thus constitute an efficient treatment for CLL.
Collapse
|
32
|
Epigenetic silencing of tumor suppressor miR-3151 contributes to Chinese chronic lymphocytic leukemia by constitutive activation of MADD/ERK and PIK3R2/AKT signaling pathways. Oncotarget 2016; 6:44422-36. [PMID: 26517243 PMCID: PMC4792566 DOI: 10.18632/oncotarget.6251] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/14/2015] [Indexed: 01/24/2023] Open
Abstract
We hypothesize that miR-3151, localized to a GWAS-identified chronic lymphocytic leukemia (CLL) risk locus (8q22.3), is a tumor suppressor miRNA silenced by promoter DNA methylation in CLL. The promoter of miR-3151 was methylated in 5/7 (71%) CLL cell lines, 30/98 (31%) diagnostic primary samples, but not normal controls. Methylation of miR-3151 correlated inversely with expression. Treatment with 5-Aza-2′-deoxycytidine led to promoter demethylation and miR-3151 re-expression. Luciferase assay confirmed MAP-kinase activating death domain (MADD) and phosphoinositide-3-kinase, regulatory subunit 2 (PIK3R2) as direct targets of miR-3151. Moreover, restoration of miR-3151 resulted in inhibition of cellular proliferation and enhanced apoptosis, repression of MADD and PIK3R2, downregulation of MEK/ERK and PI3K/AKT signaling, and repression of MCL1. Lastly, miR-3151 methylation was significantly associated with methylation of miR-203 and miR-34b/c in primary CLL samples. Therefore, this study showed that miR-3151 is a tumor suppressive miRNA frequently hypermethylated and hence silenced in CLL. miR-3151 silencing by DNA methylation protected CLL cells from apoptosis through over-expression of its direct targets MADD and PIK3R2, hence constitutive activation of MEK/ERK and PI3K/AKT signaling respectively, and consequently over-expression of MCL1.
Collapse
|
33
|
Nguyen PH, Fedorchenko O, Rosen N, Koch M, Barthel R, Winarski T, Florin A, Wunderlich FT, Reinart N, Hallek M. LYN Kinase in the Tumor Microenvironment Is Essential for the Progression of Chronic Lymphocytic Leukemia. Cancer Cell 2016; 30:610-622. [PMID: 27728807 DOI: 10.1016/j.ccell.2016.09.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/16/2016] [Accepted: 09/15/2016] [Indexed: 01/09/2023]
Abstract
Survival of chronic lymphocytic leukemia (CLL) cells strictly depends on the support of an appropriate tumor microenvironment. Here, we demonstrate that LYN kinase is essential for CLL progression. Lyn deficiency results in a significantly reduced CLL burden in vivo. Loss of Lyn within leukemic cells reduces B cell receptor (BCR) signaling including BTK phosphorylation, but surprisingly does not affect leukemic cell expansion. Instead, syngeneic CLL transplantation of CLL cells into Lyn- or Btk-deficient recipients results in a strongly delayed leukemic progression and prolonged survival. Moreover, Lyn deficiency in macrophages hinders nursing functions for CLL cells, which is mediated by direct contact rather than secretion of soluble factors. Taken together, LYN and BTK seem essential for the formation of a microenvironment supporting leukemic growth.
Collapse
MESH Headings
- Animals
- Cell Proliferation/physiology
- Disease Progression
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Signal Transduction
- Tumor Microenvironment
- src-Family Kinases/genetics
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Phuong-Hien Nguyen
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Oleg Fedorchenko
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Natascha Rosen
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Maximilian Koch
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Romy Barthel
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Tomasz Winarski
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Alexandra Florin
- Institute of Pathology, University Hospital of Cologne, 50931 Cologne, Germany
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research; Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Nina Reinart
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
34
|
Greil R, Obrtlíková P, Smolej L, Kozák T, Steurer M, Andel J, Burgstaller S, Mikušková E, Gercheva L, Nösslinger T, Papajík T, Ladická M, Girschikofsky M, Hrubiško M, Jäger U, Fridrik M, Pecherstorfer M, Králiková E, Burcoveanu C, Spasov E, Petzer A, Mihaylov G, Raynov J, Oexle H, Zabernigg A, Flochová E, Palášthy S, Stehlíková O, Doubek M, Altenhofer P, Pleyer L, Melchardt T, Klingler A, Mayer J, Egle A. Rituximab maintenance versus observation alone in patients with chronic lymphocytic leukaemia who respond to first-line or second-line rituximab-containing chemoimmunotherapy: final results of the AGMT CLL-8a Mabtenance randomised trial. LANCET HAEMATOLOGY 2016; 3:e317-29. [PMID: 27374465 DOI: 10.1016/s2352-3026(16)30045-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND In many patients with chronic lymphocytic leukaemia requiring treatment, induction therapy with rituximab plus chemotherapy improves outcomes compared with chemotherapy alone. In this study we aimed to investigate the potential of rituximab maintenance therapy to prolong disease control in patients who respond to rituximab-containing induction regimens. METHODS In this randomised, international, multicentre, open-label, phase 3 clinical trial, we enrolled patients who had achieved a complete response (CR), CR with incomplete bone marrow recovery (CRi), or partial response (PR) to first-line or second-line rituximab-containing chemoimmunotherapy and randomly assigned them in a 1:1 ratio (central block randomisation in the electronic case report form system) to either intravenous rituximab 375 mg/m(2) every 3 months, or observation alone, for 2 years. Stratification was by country, line of treatment, type of chemotherapy added to the rituximab backbone, and degree of remission following induction. The primary endpoint was progression-free survival. Efficacy analysis was done in the intention-to-treat population. This is the final, event-triggered analysis. Final analysis was triggered by the occurrence of 92 events. This trial is registered with ClinicalTrials.gov, number NCT01118234. FINDINGS Between April 1, 2010, and Dec 23, 2013, 134 patients were randomised to rituximab and 129 to observation alone. Median observation times were 33·4 months (IQR 25·7-42·8) for the rituximab group and 34·0 months (25·4-41·9) for the observation group. Progression-free survival was significantly longer in the rituximab maintenance group (47·0 months, IQR 28·5-incalculable) than with observation alone (35·5 months, 95% CI 25·7-46·3; hazard ratio [HR] 0·50, 95% CI 0·33-0·75, p=0·00077). The incidence of grade 3-4 haematological toxicities other than neutropenia was similar in the two treatment groups. Grade 3-4 neutropenia occurred in 28 (21%) patients in the rituximab group and 14 (11%) patients in the observation group. Apart from neutropenia, the most common grade 3-4 adverse events were upper (five vs one [1%] patient in the observation group) and lower (three [2%] vs one [1%]) respiratory tract infection, pneumonia (nine [7%] vs two [2%]), thrombopenia (four [3%] vs four [3%]), neoplasms (five [4%] vs four [3%]), and eye disorders (four [3%] vs two [2%]). The overall incidence of infections of all grades was higher among rituximab recipients (88 [66%] vs 65 [50%]). INTERPRETATION Rituximab maintenance therapy prolongs progression-free survival in patients achieving at least a PR to induction with rituximab plus chemotherapy, and the treatment is well tolerated overall. Although it is associated with an increase in infections, there is no excess in infection mortality, suggesting that remission maintenance with rituximab is an effective and safe option in the management of chronic lymphocytic leukaemia in early treatment phases. FUNDING Arbeitsgemeinschaft Medikamentöse Tumortherapie gemeinnützige GmbH (AGMT), Roche.
Collapse
Affiliation(s)
- Richard Greil
- Third Medical Department at the Paracelsus Medical University Salzburg, Salzburg, Austria; Salzburg Cancer Research Institute (SCRI), Salzburg, Austria; Cancer Cluster Salzburg (CCS), Salzburg, Austria.
| | - Petra Obrtlíková
- First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Lukáš Smolej
- Fourth Department of Internal Medicine-Hematology, University Hospital and Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
| | - Tomáš Kozák
- Department of Internal Medicine-Hematology, Univ Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Michael Steurer
- Department of Internal Medicine V, Medical University Innsbruck, Austria
| | - Johannes Andel
- Abteilung für Innere Medizin III, Landeskrankenhaus Steyr, Austria
| | - Sonja Burgstaller
- Abteilung für Innere Medizin IV, Klinikum Wels-Grieskirchen GmbH, Austria
| | - Eva Mikušková
- Department of Hematooncology 2, National Cancer Institute, Bratislava, Slovakia
| | - Liana Gercheva
- Clinic of Hematology, University Hospital St Marina, Varna, Bulgaria
| | - Thomas Nösslinger
- Third Medical Department for Hematology and Oncology, Hanusch Krankenhaus der Wiener Gebietskrankenkasse, Vienna, Austria
| | - Tomáš Papajík
- Department of Hemato-oncology, University Hospital, Olomouc, Czech Republic
| | - Miriam Ladická
- Department of Clinical Oncology 1, National Cancer Institute, Bratislava, Slovakia
| | | | - Mikuláš Hrubiško
- Clinic of Hematology and Transfusiology, Slovak Medical University, University Hospital Bratislava, Slovakia
| | - Ulrich Jäger
- Department of Medicine I, Division of Hematology and Hemostaeology, Medical University Vienna, Austria
| | - Michael Fridrik
- Department of Internal Medicine 3, Kepler Universitätsklinikum GmbH, Med Campus III, Linz, Austria
| | - Martin Pecherstorfer
- University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Department of Internal Medicine 2, Krems, Austria
| | - Eva Králiková
- Department of Hematology, FNsP F D Roosevelta, Banská Bystrica, Slovakia
| | | | - Emil Spasov
- Clinic of Hematology, UMHAT St George and Medical University, Plovdiv, Bulgaria
| | - Andreas Petzer
- Innere Medizin I, Krankenhaus der Barmherzigen Schwestern Linz, Linz, Austria
| | | | - Julian Raynov
- Clinic of Medical Hematology, Military Medical Academy, Sofia, Bulgaria
| | - Horst Oexle
- Innere Medizin, Landeskrankenhaus Hall, Austria
| | | | - Emília Flochová
- Department of Hematology and Transfusion, University Hospital Martin, Martin, Slovakia
| | | | - Olga Stehlíková
- University Hospital, Faculty of Medicine and CEITEC, Brno, Czech Republic
| | - Michael Doubek
- University Hospital, Faculty of Medicine and CEITEC, Brno, Czech Republic
| | - Petra Altenhofer
- Salzburg Cancer Research Institute (SCRI), Salzburg, Austria; Cancer Cluster Salzburg (CCS), Salzburg, Austria
| | - Lisa Pleyer
- Third Medical Department at the Paracelsus Medical University Salzburg, Salzburg, Austria; Salzburg Cancer Research Institute (SCRI), Salzburg, Austria; Cancer Cluster Salzburg (CCS), Salzburg, Austria
| | - Thomas Melchardt
- Third Medical Department at the Paracelsus Medical University Salzburg, Salzburg, Austria; Salzburg Cancer Research Institute (SCRI), Salzburg, Austria; Cancer Cluster Salzburg (CCS), Salzburg, Austria
| | - Anton Klingler
- Assign Data Management and Biostatistics GmbH, Innsbruck, Austria
| | - Jiří Mayer
- University Hospital, Faculty of Medicine and CEITEC, Brno, Czech Republic
| | - Alexander Egle
- Third Medical Department at the Paracelsus Medical University Salzburg, Salzburg, Austria; Salzburg Cancer Research Institute (SCRI), Salzburg, Austria; Cancer Cluster Salzburg (CCS), Salzburg, Austria
| |
Collapse
|
35
|
Frustaci AM, Montillo M, Picardi P, Mazzucchelli M, Cairoli R, Tedeschi A. Paving the way for new agents; is standard chemotherapy part of the treatment paradigm for chronic lymphocytic leukemia in the future? Expert Rev Hematol 2016; 9:679-93. [DOI: 10.1080/17474086.2016.1191943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Maria Frustaci
- Department of Hematology, Niguarda Cancer Center, Niguarda Hospital, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Marco Montillo
- Department of Hematology, Niguarda Cancer Center, Niguarda Hospital, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Paola Picardi
- Department of Hematology, Niguarda Cancer Center, Niguarda Hospital, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Maddalena Mazzucchelli
- Department of Hematology, Niguarda Cancer Center, Niguarda Hospital, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Roberto Cairoli
- Department of Hematology, Niguarda Cancer Center, Niguarda Hospital, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Alessandra Tedeschi
- Department of Hematology, Niguarda Cancer Center, Niguarda Hospital, Piazza Ospedale Maggiore 3, Milano, Italy
| |
Collapse
|
36
|
Frenzel LP, Reinhardt HC, Pallasch CP. Concepts of Chronic Lymphocytic Leukemia Pathogenesis: DNA Damage Response and Tumor Microenvironment. Oncol Res Treat 2016; 39:9-16. [PMID: 26889681 DOI: 10.1159/000443820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/07/2016] [Indexed: 11/19/2022]
Abstract
Pathogenesis of chronic lymphocytic leukemia (CLL) is characterized by specific genetic aberrations and alterations of cellular signaling pathways. In particular, a disturbed DNA damage response (DDR) and an activated B-cell receptor signaling pathway play a major role in promoting CLL cell survival. External stimuli are similarly essential for CLL cell survival and lead to activation of the PI3K/AKT and MAPK pathways. Activation of nuclear factor-kappa B (NFkB) influences the disturbed anti-apoptotic balance of CLL cells. Losses or disabling mutations in TP53 and ATM are frequent events in chemotherapy-naïve patients and are further enriched in chemotherapy-resistant patients. As these lesions define key regulatory elements of the DDR pathway, they also determine treatment response to genotoxic therapy. Novel therapeutic strategies therefore try to circumvent defective DDR signaling and to suppress the pro-survival stimuli received from the tumor microenvironment. With increasing knowledge on specific genetic alterations of CLL, we may be able to target CLL cells more efficiently even in the situation of mutated DDR pathways or protection by microenvironmental stimuli.
Collapse
Affiliation(s)
- Lukas P Frenzel
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | | | | |
Collapse
|
37
|
Novel Therapies for Chronic Lymphocytic Leukemia: A Canadian Perspective. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15:627-634.e5. [DOI: 10.1016/j.clml.2015.07.649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/09/2015] [Accepted: 07/28/2015] [Indexed: 11/17/2022]
|
38
|
Besbes S, Mirshahi M, Pocard M, Billard C. Strategies targeting apoptosis proteins to improve therapy of chronic lymphocytic leukemia. Blood Rev 2015; 29:345-50. [PMID: 25887155 DOI: 10.1016/j.blre.2015.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/02/2015] [Accepted: 03/26/2015] [Indexed: 12/21/2022]
|
39
|
Gassner FJ, Zaborsky N, Catakovic K, Rebhandl S, Huemer M, Egle A, Hartmann TN, Greil R, Geisberger R. Chronic lymphocytic leukaemia induces an exhausted T cell phenotype in the TCL1 transgenic mouse model. Br J Haematol 2015; 170:515-22. [PMID: 25940792 PMCID: PMC4687418 DOI: 10.1111/bjh.13467] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/15/2015] [Indexed: 12/31/2022]
Abstract
Although chronic lymphocytic leukaemia (CLL) is a B cell malignancy, earlier studies have indicated a role of T cells in tumour growth and disease progression. In particular, the functional silencing of antigen-experienced T cells, called T cell exhaustion, has become implicated in immune evasion in CLL. In this study, we tested whether T cell exhaustion is recapitulated in the TCL1(tg) mouse model for CLL. We show that T cells express high levels of the inhibitory exhaustion markers programmed cell death 1 (PDCD1, also termed PD-1) and lymphocyte-activation gene 3 (LAG3), whereas CLL cells express high levels of CD274 (also termed PD-ligand 1). In addition, the fraction of exhausted T cells increases with CLL progression. Finally, we demonstrate that exhausted T cells are reinvigorated towards CLL cytotoxicity by inhibition of PDCD1/CD274 interaction in vivo. These results suggest that T cell exhaustion contributes to CLL pathogenesis and that interference with PDCD1/CD274 signalling holds high potential for therapeutic approaches.
Collapse
MESH Headings
- Animals
- Gene Expression Regulation, Leukemic/genetics
- Gene Expression Regulation, Leukemic/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Mice, Transgenic
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Franz J Gassner
- Laboratory for Immunological and Molecular Cancer Research, 3 Medical Department with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
- Salzburg Cancer Research InstituteSalzburg, Austria
| | - Nadja Zaborsky
- Laboratory for Immunological and Molecular Cancer Research, 3 Medical Department with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
- Salzburg Cancer Research InstituteSalzburg, Austria
| | - Kemal Catakovic
- Laboratory for Immunological and Molecular Cancer Research, 3 Medical Department with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
- Salzburg Cancer Research InstituteSalzburg, Austria
| | - Stefan Rebhandl
- Laboratory for Immunological and Molecular Cancer Research, 3 Medical Department with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
- Salzburg Cancer Research InstituteSalzburg, Austria
| | - Michael Huemer
- Laboratory for Immunological and Molecular Cancer Research, 3 Medical Department with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
- Salzburg Cancer Research InstituteSalzburg, Austria
| | - Alexander Egle
- Laboratory for Immunological and Molecular Cancer Research, 3 Medical Department with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
- Salzburg Cancer Research InstituteSalzburg, Austria
| | - Tanja N Hartmann
- Laboratory for Immunological and Molecular Cancer Research, 3 Medical Department with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
- Salzburg Cancer Research InstituteSalzburg, Austria
| | - Richard Greil
- Laboratory for Immunological and Molecular Cancer Research, 3 Medical Department with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
- Salzburg Cancer Research InstituteSalzburg, Austria
| | - Roland Geisberger
- Laboratory for Immunological and Molecular Cancer Research, 3 Medical Department with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
- Salzburg Cancer Research InstituteSalzburg, Austria
| |
Collapse
|
40
|
Morabito F, Gentile M, Seymour JF, Polliack A. Ibrutinib, idelalisib and obinutuzumab for the treatment of patients with chronic lymphocytic leukemia: three new arrows aiming at the target. Leuk Lymphoma 2015; 56:3250-6. [DOI: 10.3109/10428194.2015.1061193] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
The PI3K/mTOR inhibitor PF-04691502 induces apoptosis and inhibits microenvironmental signaling in CLL and the Eµ-TCL1 mouse model. Blood 2015; 125:4032-41. [DOI: 10.1182/blood-2014-11-610329] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/02/2015] [Indexed: 01/17/2023] Open
Abstract
Key Points
PF-04691502 induces potent apoptosis in CLL cells and suppresses prosurvival anti–immunoglobulin M signaling and CXCL12-induced migration. PF-04691502 displays powerful antitumor effects in vivo in the Eμ-TCL1 mouse model.
Collapse
|
42
|
Messmer D, Lorrain K, Stebbins K, Bravo Y, Stock N, Cabrera G, Correa L, Chen A, Jacintho J, Chiorazzi N, Yan XJ, Spaner D, Prasit P, Lorrain D. A Selective Novel Peroxisome Proliferator-Activated Receptor (PPAR)-α Antagonist Induces Apoptosis and Inhibits Proliferation of CLL Cells In Vitro and In Vivo. Mol Med 2015; 21:410-9. [PMID: 26070013 DOI: 10.2119/molmed.2015.00139] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/04/2015] [Indexed: 01/10/2023] Open
Abstract
Tumor-specific metabolic changes can reveal new therapeutic targets. Our findings implicate a supporting role for fatty acid metabolism in chronic lymphocytic leukemia (CLL) cell survival. Peroxisome proliferator-activated receptor (PPAR)-α, a major transcriptional regulator of fatty acid oxidation, was recently shown to be upregulated in CLL. To evaluate PPARα as a potential therapeutic target, we developed a highly selective, potent small molecule antagonist of PPARα, NXT629. NXT629 inhibited agonist-induced transcription of PPARα-regulated genes, demonstrating target engagement in CLL cells. Furthermore, NXT629 induced apoptosis of CLL cells even in the presence of a protective microenvironment. To mimic the proliferative lymphoid compartment of CLL, we examined the activity of NXT629 on CLL cells that were stimulated to proliferate in vitro. NXT629 reduced the number of leukemia cells undergoing cell division. In addition, in two xenograft mouse models of CLL (one a model for nondividing and one for dividing CLL), NXT629 reduced the number of viable CLL cells in vivo. Overall, these results suggest that fatty acid metabolism promotes survival and proliferation of primary CLL cells and that inhibiting PPARα gene regulation could be a new therapeutic approach to treating CLL.
Collapse
Affiliation(s)
- Davorka Messmer
- Inception Sciences, San Diego, California, United States of America
| | - Kymmy Lorrain
- Inception Sciences, San Diego, California, United States of America
| | - Karin Stebbins
- Inception Sciences, San Diego, California, United States of America
| | - Yalda Bravo
- Inception Sciences, San Diego, California, United States of America
| | - Nicholas Stock
- Inception Sciences, San Diego, California, United States of America
| | | | - Lucia Correa
- Inception Sciences, San Diego, California, United States of America
| | - Austin Chen
- Inception Sciences, San Diego, California, United States of America
| | - Jason Jacintho
- Inception Sciences, San Diego, California, United States of America
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York, United States of America
| | - Xiao Jie Yan
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York, United States of America
| | - David Spaner
- Division of Molecular and Cellular Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Peppi Prasit
- Inception Sciences, San Diego, California, United States of America
| | - Daniel Lorrain
- Inception Sciences, San Diego, California, United States of America
| |
Collapse
|
43
|
Prinz C, Vasyutina E, Lohmann G, Schrader A, Romanski S, Hirschhäuser C, Mayer P, Frias C, Herling CD, Hallek M, Schmalz HG, Prokop A, Mougiakakos D, Herling M. Organometallic nucleosides induce non-classical leukemic cell death that is mitochondrial-ROS dependent and facilitated by TCL1-oncogene burden. Mol Cancer 2015; 14:114. [PMID: 26041471 PMCID: PMC4453051 DOI: 10.1186/s12943-015-0378-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 05/05/2015] [Indexed: 02/06/2023] Open
Abstract
Background Redox stress is a hallmark of the rewired metabolic phenotype of cancer. The underlying dysregulation of reactive oxygen species (ROS) is interconnected with abnormal mitochondrial biogenesis and function. In chronic lymphocytic leukemia (CLL), elevated ROS are implicated in clonal outgrowth and drug resistance. The pro-survival oncogene T-cell leukemia 1 (TCL1) is causally linked to the high threshold towards classical apoptosis in CLL. We investigated how aberrant redox characteristics and bioenergetics of CLL are impacted by TCL1 and if this is therapeutically exploitable. Methods Bio-organometallic chemistry provided compounds containing a cytosine nucleobase, a metal core (ferrocene, ruthenocene, Fe(CO)3), and a 5’-CH2O-TDS substituent. Four of these metal-containing nucleoside analogues (MCNA) were tested for their efficacy and mode of action in CLL patient samples, gene-targeted cell lines, and murine TCL1-transgenic splenocytes. Results The MCNA showed a marked and selective cytotoxicity towards CLL cells. MCNA activity was equally observed in high-risk disease groups, including those of del11q/del17p cytogenetics and of clinical fludarabine resistance. They overcame protective stromal cell interactions. MCNA-evoked PARP-mediated cell death was non-autophagic and non-necrotic as well as caspase- and P53-independent. This unconventional apoptosis involved early increases of ROS, which proved indispensible based on mitigation of MCNA-triggered death by various scavengers. MCNA exposure reduced mitochondrial respiration (oxygen consumption rate; OCR) and induced a rapid membrane depolarization (∆ΨM). These characteristics distinguished the MCNA from the alkylator bendamustine and from fludarabine. Higher cellular ROS and increased MCNA sensitivity were linked to TCL1 expression. The presence of TCL1 promoted a mitochondrial release of in part caspase-independent apoptotic factors (AIF, Smac, Cytochrome-c) in response to MCNA. Although basal mitochondrial respiration (OCR) and maximal respiratory capacity were not affected by TCL1 overexpression, it mediated a reduced aerobic glycolysis (lactate production) and a higher fraction of oxygen consumption coupled to ATP-synthesis. Conclusions Redox-active substances such as organometallic nucleosides can confer specific cytotoxicity to ROS-stressed cancer cells. Their P53- and caspase-independent induction of non-classical apoptosis implicates that redox-based strategies can overcome resistance to conventional apoptotic triggers. The high TCL1-oncogenic burden of aggressive CLL cells instructs their particular dependence on mitochondrial energetic flux and renders them more susceptible towards agents interfering in mitochondrial homeostasis. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0378-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Prinz
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| | - Elena Vasyutina
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| | - Gregor Lohmann
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| | - Alexandra Schrader
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| | - Steffen Romanski
- Division of Organic Chemistry, University of Cologne, Cologne, Germany.
| | | | - Petra Mayer
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| | - Corazon Frias
- Department of Pediatric Hematology/Oncology, Children's Hospital Cologne, Cologne, Germany.
| | - Carmen D Herling
- Department I of Internal Medicine, CIO Köln-Bonn, and CECAD, University of Cologne, Cologne, Germany.
| | - Michael Hallek
- Department I of Internal Medicine, CIO Köln-Bonn, and CECAD, University of Cologne, Cologne, Germany.
| | | | - Aram Prokop
- Department of Pediatric Hematology/Oncology, Children's Hospital Cologne, Cologne, Germany.
| | | | - Marco Herling
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
44
|
Lozano-Santos C, Amigo-Jiménez I, Nova-Gurumeta S, Pérez-Sanz N, García-Pardo A, García-Marco JA. Arsenic trioxide synergistically potentiates the cytotoxic effect of fludarabine in chronic lymphocytic leukemia cells by further inactivating the Akt and ERK signaling pathways. Biochem Biophys Res Commun 2015; 461:243-8. [PMID: 25869069 DOI: 10.1016/j.bbrc.2015.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 04/02/2015] [Indexed: 11/25/2022]
Abstract
CLL remains an incurable disease, making it crucial to continue searching for new therapies efficient in all CLL cases. We have studied the effect of combining arsenic trioxide (ATO) with fludarabine, a frontline drug in CLL. We have found a synergistic interaction between 1 μM ATO and 5 μM fludarabine that significantly enhanced the cytotoxic effect of the individual drugs. Importantly, ATO sensitized fludarabine-resistant cells to the action of this drug. The mechanism behind this effect included the downregulation of phospho-Akt, phospho-ERK, and the Mcl-1/Bim and Bcl-2/Bax ratios. The combination of ATO and fludarabine partially overcame the survival effect induced by co-culturing CLL cells with stromal cells. Therefore, low concentrations of ATO combined with fludarabine may be an efficient therapeutic strategy in CLL patients.
Collapse
Affiliation(s)
- Carol Lozano-Santos
- Molecular Cytogenetics Unit, Hematology Department, Hospital Universitario Puerta de Hierro-Majadahonda and IDIPHIM, Madrid, Spain
| | - Irene Amigo-Jiménez
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sara Nova-Gurumeta
- Molecular Cytogenetics Unit, Hematology Department, Hospital Universitario Puerta de Hierro-Majadahonda and IDIPHIM, Madrid, Spain
| | - Nuria Pérez-Sanz
- Molecular Cytogenetics Unit, Hematology Department, Hospital Universitario Puerta de Hierro-Majadahonda and IDIPHIM, Madrid, Spain
| | - Angeles García-Pardo
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - José A García-Marco
- Molecular Cytogenetics Unit, Hematology Department, Hospital Universitario Puerta de Hierro-Majadahonda and IDIPHIM, Madrid, Spain.
| |
Collapse
|
45
|
Wang LQ, Chim CS. DNA methylation of tumor-suppressor miRNA genes in chronic lymphocytic leukemia. Epigenomics 2015; 7:461-73. [PMID: 25650645 DOI: 10.2217/epi.15.6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is one of the most important epigenetic modifications of the genome involved in the regulation of numerous cellular processes through gene silencing without altering DNA sequences. miRNAs, a class of single-stranded noncoding RNAs of 19-25 nucleotides in length, function as post-transcriptional regulators of gene expression leading to mRNA cleavage or translational repression of their corresponding target protein-coding genes. Recently, dysregulation of tumor suppressor miRNAs mediated by promoter DNA hypermethylation is implicated in human cancers, including B-cell chronic lymphocytic leukemia (CLL). Moreover, it appears that methylated miRNA genes could be potential biomarkers for CLL diagnosis or therapy. This review will highlight the role of aberrant methylation of miRNA genes in the pathogenesis of CLL.
Collapse
Affiliation(s)
- Lu Qian Wang
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| |
Collapse
|
46
|
Hedgehog/GLI and PI3K signaling in the initiation and maintenance of chronic lymphocytic leukemia. Oncogene 2015; 34:5341-51. [PMID: 25639866 PMCID: PMC4430320 DOI: 10.1038/onc.2014.450] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/18/2014] [Accepted: 12/12/2014] [Indexed: 02/07/2023]
Abstract
The initiation and maintenance of a malignant phenotype requires complex and synergistic interactions of multiple oncogenic signals. The Hedgehog (HH)/GLI pathway has been implicated in a variety of cancer entities and targeted pathway inhibition is of therapeutic relevance. Signal cross-talk with other cancer pathways including PI3K/AKT modulates HH/GLI signal strength and its oncogenicity. In this study, we addressed the role of HH/GLI and its putative interaction with the PI3K/AKT cascade in the initiation and maintenance of chronic lymphocytic leukemia (CLL). Using transgenic mouse models, we show that B-cell-specific constitutive activation of HH/GLI signaling either at the level of the HH effector and drug target Smoothened or at the level of the GLI transcription factors does not suffice to initiate a CLL-like phenotype characterized by the accumulation of CD5+ B cells in the lymphatic system and peripheral blood. Furthermore, Hh/Gli activation in Pten-deficient B cells with activated Pi3K/Akt signaling failed to enhance the expansion of leukemic CD5+ B cells, suggesting that genetic or epigenetic alterations leading to aberrant HH/GLI signaling in B cells do not suffice to elicit a CLL-like phenotype in mice. By contrast, we identify a critical role of GLI and PI3K signaling for the survival of human primary CLL cells. We show that combined targeting of GLI and PI3K/AKT/mTOR signaling can have a synergistic therapeutic effect in cells from a subgroup of CLL patients, thereby providing a basis for the evaluation of future combination therapies targeting HH/GLI and PI3K signaling in this common hematopoietic malignancy.
Collapse
|
47
|
Alinari L, Quinion C, Blum KA. Bruton's tyrosine kinase inhibitors in B-cell non-Hodgkin's lymphomas. Clin Pharmacol Ther 2015; 97:469-77. [PMID: 25670208 DOI: 10.1002/cpt.65] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023]
Abstract
The B-cell receptor pathway (BCR) is aberrantly activated in select B-cell malignancies. This knowledge has allowed for the development of inhibitors of different crucial steps of this pathway. Bruton's tyrosine kinase (BTK) is a key component of BCR signaling and functions as an important regulator of multiple cell functions including differentiation, proliferation, and survival in various B-cell malignancies. Ibrutinib is a potent, selective BTK inhibitor that has shown significant activity in specific subtypes of B-cell non-Hodgkin's lymphomas (NHLs). Given the high response rates, tolerability, and acceptable toxicities, ibrutinib was recently approved by the US Food and Drug Administration (FDA) for the treatment of patients with relapsed mantle cell lymphoma and chronic lymphocytic leukemia. It is also currently being evaluated in combination with chemotherapy and as frontline therapy in B-cell NHL. This review summarizes the preclinical and clinical development of ibrutinib in the treatment of B-cell NHL.
Collapse
Affiliation(s)
- L Alinari
- Department of Hematology, Arthur G James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | | | |
Collapse
|
48
|
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by a typical defect in apoptosis and is still an incurable disease. Numerous apoptosis inducers have been described. These synthetic compounds and natural products (mainly derived from plants) display antileukemic properties in vitro and in vivo and some have even been tested in the clinic in CLL. They act through several different mechanisms. Most of them involve proteins of the Bcl-2 family, which are the key regulators in triggering the mitochondrial pathway of caspase-dependent apoptosis. Thus, the Mcl-1/Noxa axis appeared as a target. Here I overview natural and synthetic apoptosis inducers and their mechanisms of action in CLL cells. Opportunities for developing novel, apoptosis-based therapeutics are presented.
Collapse
Affiliation(s)
- Christian Billard
- INSERM U 872, Centre de Recherche des Cordeliers, Equipe 18, Paris, France
| |
Collapse
|
49
|
Maffei G, Mirone G, Perna S, Stefano CD. The Effects of Pyrrolo[1,2-b][1,2,5]Benzothiadiazepines in MEC1 Cells. J Cell Biochem 2014; 116:339-49. [DOI: 10.1002/jcb.24977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/05/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Gabriella Maffei
- Department of Biochemistry and Biophysics; Second University of Naples; via De Crecchio 7 Naples 80138 Italy
| | - Giovanna Mirone
- Department of Medical Oncology B; Regina Elena National Cancer Institute; via Elio Chianesi 53 Rome 00144 Italy
| | - Stefania Perna
- Department of Biochemistry and Biophysics; Second University of Naples; via De Crecchio 7 Naples 80138 Italy
| | - Carla Di Stefano
- Department of Hematology; “Tor Vergata” University; Viale Oxford 81 Rome 00133 Italy
| |
Collapse
|
50
|
Chung C, Lee R. Ibrutinib, Obinutuzumab, Idelalisib, and Beyond: Review of Novel and Evolving Therapies for Chronic Lymphocytic Leukemia. Pharmacotherapy 2014; 34:1298-316. [DOI: 10.1002/phar.1509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Clement Chung
- Lyndon B. Johnson General Hospital; Harris Health System; Houston Texas
| | - Rosetta Lee
- Smith Clinic; Harris Health System; Houston Texas
| |
Collapse
|