1
|
Gerlevik S, Seymen N, Hama S, Mumtaz W, Thompson IR, Jalili SR, Kaya DE, Iacoangeli A, Pellagatti A, Boultwood J, Napolitani G, Mufti GJ, Karimi MM. Identification of novel myelodysplastic syndromes prognostic subgroups by integration of inflammation, cell-type composition, and immune signatures in the bone marrow. eLife 2024; 13:RP97096. [PMID: 39235452 PMCID: PMC11377035 DOI: 10.7554/elife.97096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Mutational profiles of myelodysplastic syndromes (MDS) have established that a relatively small number of genetic aberrations, including SF3B1 and SRSF2 spliceosome mutations, lead to specific phenotypes and prognostic subgrouping. We performed a multi-omics factor analysis (MOFA) on two published MDS cohorts of bone marrow mononuclear cells (BMMNCs) and CD34 + cells with three data modalities (clinical, genotype, and transcriptomics). Seven different views, including immune profile, inflammation/aging, retrotransposon (RTE) expression, and cell-type composition, were derived from these modalities to identify the latent factors with significant impact on MDS prognosis. SF3B1 was the only mutation among 13 mutations in the BMMNC cohort, indicating a significant association with high inflammation. This trend was also observed to a lesser extent in the CD34 + cohort. Interestingly, the MOFA factor representing the inflammation shows a good prognosis for MDS patients with high inflammation. In contrast, SRSF2 mutant cases show a granulocyte-monocyte progenitor (GMP) pattern and high levels of senescence, immunosenescence, and malignant myeloid cells, consistent with their poor prognosis. Furthermore, MOFA identified RTE expression as a risk factor for MDS. This work elucidates the efficacy of our integrative approach to assess the MDS risk that goes beyond all the scoring systems described thus far for MDS.
Collapse
Affiliation(s)
- Sila Gerlevik
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Nogayhan Seymen
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Shan Hama
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Warisha Mumtaz
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - I Richard Thompson
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Seyed R Jalili
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Deniz E Kaya
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
- Department of Biostatistics and Health Informatics, King's College London, London, United Kingdom
- NIHR BRC SLAM NHS Foundation Trust, London, United Kingdom
- Perron Institute for Neurological and Translational Science, University of Western Australia Medical School, Perth, Australia
| | - Andrea Pellagatti
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jacqueline Boultwood
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Giorgio Napolitani
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Ghulam J Mufti
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Mohammad M Karimi
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
2
|
SHEN H, ZHANG D, LIU H. Mesenchymal stem cell conditioned medium azacytidine, panobinostat and GSK126 alleviate TGF-β-induced EMT in lung cancer. FOOD SCIENCE AND TECHNOLOGY 2022; 42. [DOI: 10.1590/fst.53021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Huihui SHEN
- The First Affiliated Hospital of Guangdong Pharmaceutical University, China
| | - Dongying ZHANG
- The First Affiliated Hospital of Guangdong Pharmaceutical University, China
| | - Hua LIU
- The First Affiliated Hospital of Guangdong Pharmaceutical University, China
| |
Collapse
|
3
|
Yuan T, Shi C, Xu W, Yang HL, Xia B, Tian C. Extracellular vesicles derived from T-cell acute lymphoblastic leukemia inhibit osteogenic differentiation of bone marrow mesenchymal stem cells via miR-34a-5p. Endocr J 2021; 68:1197-1208. [PMID: 34039781 DOI: 10.1507/endocrj.ej21-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Reduced bone formation in patients with T-cell acute lymphoblastic leukemia (T-ALL) may be related to the interaction between tumour cells and bone marrow stromal cells (BMSCs). The miRNAs in extracellular vesicles derived from leukemia cells play an essential role in regulating the function of BMSCs; however, the regulatory mechanisms remain unclear. The expression of miR-34a-5p in T-ALL patients and cells was measured by quantitative real-time PCR. BMSCs were co-cultured with extracellular vesicles isolated from T-ALL cells in mineralization medium. The osteogenic differentiation of BMSCs was evaluated by Alizarin Red S staining, alkaline phosphatase (ALP) staining, and detection of osteogenic differentiation markers. A dual-luciferase reporter assay was performed to confirm the targeting relationship between miR-34a-5p and Wnt family member 1 (WNT1). MiR-34a-5p expression was upregulated in T-ALL patients and Jurkat cells. After BMSCs were co-cultured with extracellular vesicles derived from T-ALL cells, osteogenic differentiation of BMSCs was inhibited, and bone mineralization and ALP activity were decreased compared to those of control cells. MiR-34a-5p knockdown in T-ALL cells restored osteogenic differentiation of BMSCs co-cultured with extracellular vesicles. In addition, miR-34a-5p targets and negatively regulates WNT1 expression. In conclusion, our results demonstrated that knockdown of miR-34a-5p in extracellular vesicles derived from T-ALL cells promoted osteogenic differentiation of BMSCs by regulating WNT1.
Collapse
Affiliation(s)
- Tian Yuan
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Ce Shi
- Central Laboratory of Hematology and Oncology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, P.R. China
| | - Wen Xu
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Hong-Liang Yang
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Bing Xia
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Chen Tian
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
4
|
Gynn LE, Anderson E, Robinson G, Wexler SA, Upstill-Goddard G, Cox C, May JE. Primary mesenchymal stromal cells in co-culture with leukaemic HL-60 cells are sensitised to cytarabine-induced genotoxicity, whilst leukaemic cells are protected. Mutagenesis 2021; 36:419-428. [PMID: 34505878 PMCID: PMC8633936 DOI: 10.1093/mutage/geab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
Tumour microenvironments are hallmarked in many cancer types. In haematological malignancies, bone marrow (BM) mesenchymal stromal cells (MSC) protect malignant cells from drug-induced cytotoxicity. However, less is known about malignant impact on supportive stroma. Notably, it is unknown whether these interactions alter long-term genotoxic damage in either direction. The nucleoside analogue cytarabine (ara-C), common in haematological therapies, remains the most effective agent for acute myeloid leukaemia, yet one third of patients develop resistance. This study aimed to evaluate the bidirectional effect of MSC and malignant cell co-culture on ara-C genotoxicity modulation. Primary MSC, isolated from patient BM aspirates for haematological investigations, and malignant haematopoietic cells (leukaemic HL-60) were co-cultured using trans-well inserts, prior to treatment with physiological dose ara-C. Co-culture genotoxic effects were assessed by micronucleus and alkaline comet assays. Patient BM cells from chemotherapy-treated patients had reduced ex vivo survival (P = 0.0049) and increased genotoxicity (P = 0.3172) than untreated patients. It was shown for the first time that HL-60 were protected by MSC from ara-C-induced genotoxicity, with reduced MN incidence in co-culture as compared to mono-culture (P = 0.0068). Comet tail intensity also significantly increased in ara-C-treated MSC with HL-60 influence (P = 0.0308). MSC sensitisation to ara-C genotoxicity was also demonstrated following co-culture with HL60 (P = 0.0116), which showed significantly greater sensitisation when MSC-HL-60 co-cultures were exposed to ara-C (P = 0.0409). This study shows for the first time that malignant HSC and MSC bidirectionally modulate genotoxicity, providing grounding for future research identifying mechanisms of altered genotoxicity in leukaemic microenvironments. MSC retain long-term genotoxic and functional damage following chemotherapy exposure. Understanding the interactions perpetuating such damage may inform modifications to reduce therapy-related complications, such as secondary malignancies and BM failure.
Collapse
Affiliation(s)
- Liana E Gynn
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Elizabeth Anderson
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Gareth Robinson
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Sarah A Wexler
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.,Royal United Hospitals Bath NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Gillian Upstill-Goddard
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.,Royal United Hospitals Bath NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Christine Cox
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.,Royal United Hospitals Bath NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Jennifer E May
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
5
|
Solimando AG, Annese T, Tamma R, Ingravallo G, Maiorano E, Vacca A, Specchia G, Ribatti D. New Insights into Diffuse Large B-Cell Lymphoma Pathobiology. Cancers (Basel) 2020; 12:cancers12071869. [PMID: 32664527 PMCID: PMC7408689 DOI: 10.3390/cancers12071869] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma (NHL), accounting for about 40% of all cases of NHL. Analysis of the tumor microenvironment is an important aspect of the assessment of the progression of DLBCL. In this review article, we analyzed the role of different cellular components of the tumor microenvironment, including mast cells, macrophages, and lymphocytes, in the tumor progression of DLBCL. We examined several approaches to confront the available pieces of evidence, whereby three key points emerged. DLBCL is a disease of malignant B cells spreading and accumulating both at nodal and at extranodal sites. In patients with both nodal and extranodal lesions, the subsequent induction of a cancer-friendly environment appears pivotal. The DLBCL cell interaction with mature stromal cells and vessels confers tumor protection and inhibition of immune response while delivering nutrients and oxygen supply. Single cells may also reside and survive in protected niches in the nodal and extranodal sites as a source for residual disease and relapse. This review aims to molecularly and functionally recapitulate the DLBCL–milieu crosstalk, to relate niche and pathological angiogenic constitution and interaction factors to DLBCL progression.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico-IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080.5478326 (D.R.)
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy; (T.A.); (R.T.)
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy; (T.A.); (R.T.)
| | - Giuseppe Ingravallo
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, 70100 Bari, Italy; (G.I.); (E.M.)
| | - Eugenio Maiorano
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, 70100 Bari, Italy; (G.I.); (E.M.)
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
| | - Giorgina Specchia
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, 70100 Bari, Italy;
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy; (T.A.); (R.T.)
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080.5478326 (D.R.)
| |
Collapse
|
6
|
Nair-Gupta P, Rudnick SI, Luistro L, Smith M, McDaid R, Li Y, Pillarisetti K, Joseph J, Heidrich B, Packman K, Attar R, Gaudet F. Blockade of VLA4 sensitizes leukemic and myeloma tumor cells to CD3 redirection in the bone marrow microenvironment. Blood Cancer J 2020; 10:65. [PMID: 32483120 PMCID: PMC7264144 DOI: 10.1038/s41408-020-0331-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023] Open
Abstract
Redirecting T cells to specifically kill malignant cells has been validated as an effective anti-cancer strategy in the clinic with the approval of blinatumomab for acute lymphoblastic leukemia. However, the immunosuppressive nature of the tumor microenvironment potentially poses a significant hurdle to T cell therapies. In hematological malignancies, the bone marrow (BM) niche is protective to leukemic stem cells and has minimized the efficacy of several anti-cancer drugs. In this study, we investigated the impact of the BM microenvironment on T cell redirection. Using bispecific antibodies targeting specific tumor antigens (CD123 and BCMA) and CD3, we observed that co-culture of acute myeloid leukemia or multiple myeloma cells with BM stromal cells protected tumor cells from bispecific antibody-T cell-mediated lysis in vitro and in vivo. Impaired CD3 redirection cytotoxicity was correlated with reduced T cell effector responses and cell-cell contact with stromal cells was implicated in reducing T cell activation and conferring protection of cancer cells. Finally, blocking the VLA4 adhesion pathway in combination with CD3 redirection reduced the stromal-mediated inhibition of cytotoxicity and T cell activation. Our results lend support to inhibiting VLA4 interactions along with administering CD3 redirection therapeutics as a novel combinatorial regimen for robust anti-cancer responses.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/therapeutic use
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- B-Cell Maturation Antigen/antagonists & inhibitors
- B-Cell Maturation Antigen/immunology
- Bone Marrow/drug effects
- Bone Marrow/immunology
- Bone Marrow/pathology
- CD3 Complex/antagonists & inhibitors
- CD3 Complex/immunology
- Cell Line, Tumor
- Female
- Humans
- Integrin alpha4beta1/antagonists & inhibitors
- Integrin alpha4beta1/immunology
- Interleukin-3 Receptor alpha Subunit/antagonists & inhibitors
- Interleukin-3 Receptor alpha Subunit/immunology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Mice
- Multiple Myeloma/drug therapy
- Multiple Myeloma/immunology
- Multiple Myeloma/pathology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Tumor Microenvironment/drug effects
Collapse
Affiliation(s)
| | | | | | - Melissa Smith
- Janssen Research & Development LLC, Spring House, PA, USA
| | - Ronan McDaid
- Janssen Research & Development LLC, Spring House, PA, USA
| | - Yingzhe Li
- Janssen Research & Development LLC, Spring House, PA, USA
| | | | - Jocelin Joseph
- Janssen Research & Development LLC, Spring House, PA, USA
| | | | | | - Ricardo Attar
- Janssen Research & Development LLC, Spring House, PA, USA
| | | |
Collapse
|
7
|
In vivo RNAi screening identifies Pafah1b3 as a target for combination therapy with TKIs in BCR-ABL1+ BCP-ALL. Blood Adv 2019; 2:1229-1242. [PMID: 29853524 DOI: 10.1182/bloodadvances.2017015610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/19/2018] [Indexed: 01/01/2023] Open
Abstract
Despite the addition of tyrosine kinase inhibitors (TKIs) to the treatment of patients with BCR-ABL1+ B-cell precursor acute lymphoblastic leukemia (BCR-ABL1+ BCP-ALL), relapse both with and without BCR-ABL1 mutations is a persistent clinical problem. To identify BCR-ABL1-independent genetic mediators of response to the TKI dasatinib, we performed in vivo and in vitro RNA interference (RNAi) screens in a transplantable syngeneic mouse model of BCR-ABL1+ BCP-ALL. By using a novel combination of a longitudinal screen design and independent component analysis of screening data, we identified hairpins that have distinct behavior in different therapeutic contexts as well as in the in vivo vs in vitro settings. In the set of genes whose loss sensitized BCR-ABL1+ BCP-ALL cells to dasatinib, we identified Pafah1b3, which regulates intracellular levels of platelet-activating factor (PAF), as an in vivo-specific mediator of therapeutic response. Pafah1b3 loss significantly sensitized leukemia cells to the multiple TKIs, indicating that inhibition of PAFAH1B3 in combination with TKI treatment may be an effective therapeutic strategy for BCR-ABL1+ BCP-ALL patients. PAF-induced cell death as well as surface levels of PAF receptor (PAFR) in our model are altered upon dasatinib treatment and depend on the local leukemia microenvironment; the response of Pafah1b3 KO vs overexpressing cells to dasatinib is also dependent on microenvironmental context. Antagonism of the PAFR partially reverses the observed sensitization to TKI treatment upon Pafah1b3 loss in vivo, suggesting that signaling via the PAF/PAFR pathway is at least partially responsible for this effect.
Collapse
|
8
|
Fiedler EC, Hemann MT. Aiding and Abetting: How the Tumor Microenvironment Protects Cancer from Chemotherapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disease recurrence following cancer therapy remains an intractable clinical problem and represents a major impediment to reducing the mortality attributable to malignant tumors. While research has traditionally focused on the cell-intrinsic mechanisms and mutations that render tumors refractory to both classical chemotherapeutics and targeted therapies, recent studies have begun to uncover myriad roles for the tumor microenvironment (TME) in modulating therapeutic efficacy. This work suggests that drug resistance is as much ecological as it is evolutionary. Specifically, cancers resident in organs throughout the body do not develop in isolation. Instead, tumor cells arise in the context of nonmalignant cellular components of a tissue. While the roles of these cell-extrinsic factors in cancer initiation and progression are well established, our understanding of the TME's influence on therapeutic outcome is in its infancy. Here, we focus on mechanisms by which neoplastic cells co-opt preexisting or treatment-induced signaling networks to survive chemotherapy.
Collapse
Affiliation(s)
- Eleanor C. Fiedler
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Michael T. Hemann
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
9
|
Deshantri AK, Fens MH, Ruiter RWJ, Metselaar JM, Storm G, van Bloois L, Varela-Moreira A, Mandhane SN, Mutis T, Martens ACM, Groen RWJ, Schiffelers RM. Liposomal dexamethasone inhibits tumor growth in an advanced human-mouse hybrid model of multiple myeloma. J Control Release 2019; 296:232-240. [PMID: 30682443 DOI: 10.1016/j.jconrel.2019.01.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/08/2019] [Accepted: 01/19/2019] [Indexed: 02/08/2023]
Abstract
Glucocorticoids are the cornerstone in the clinic for treatment of hematological malignancies, including multiple myeloma. Nevertheless, poor pharmacokinetic properties of glucocorticoids require high and frequent dosing with the off-target adverse effects defining the maximum dose. Recently, nanomedicine formulations of glucocorticoids have been developed that improve the pharmacokinetic profile, limit adverse effects and improve solid tumor accumulation. Multiple myeloma is a hematological malignancy characterized by uncontrolled growth of plasma cells. These tumors initiate increased angiogenesis and microvessel density in the bone marrow, which might be exploited using nanomedicines, such as liposomes. Nano-sized particles can accumulate as a result of the increased vascular leakiness at the bone marrow tumor lesions. Pre-clinical screening of novel anti-myeloma therapeutics in vivo requires a suitable animal model that represents key features of the disease. In this study, we show that fluorescently labeled long circulating liposomes were found in plasma up to 24 h after injection in an advanced human-mouse hybrid model of multiple myeloma. Besides the organs involved in clearance, liposomes were also found to accumulate in tumor bearing human-bone scaffolds. The therapeutic efficacy of liposomal dexamethasone phosphate was evaluated in this model showing strong tumor growth inhibition while free drug being ineffective at an equivalent dose (4 mg/kg) regimen. The liposomal formulation slightly reduced total body weight of myeloma-bearing mice during the course of treatment, which appeared reversible when treatment was stopped. Liposomal dexamethasone could be further developed as monotherapy or could fit in with existing therapy regimens to improve therapeutic outcomes for multiple myeloma.
Collapse
Affiliation(s)
- Anil K Deshantri
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands; Biological Research Pharmacology Department, Sun Pharma Advanced Research Company Ltd., Vadodara, India
| | - Marcel H Fens
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ruud W J Ruiter
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Josbert M Metselaar
- Enceladus Pharmaceuticals, Naarden, The Netherlands; Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| | - Louis van Bloois
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Aida Varela-Moreira
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Sanjay N Mandhane
- Biological Research Pharmacology Department, Sun Pharma Advanced Research Company Ltd., Vadodara, India
| | - Tuna Mutis
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Anton C M Martens
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Richard W J Groen
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Jalali S, Ansell SM. The Bone Marrow Microenvironment in Waldenström Macroglobulinemia. Hematol Oncol Clin North Am 2018; 32:777-786. [DOI: 10.1016/j.hoc.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Deshantri AK, Varela Moreira A, Ecker V, Mandhane SN, Schiffelers RM, Buchner M, Fens MHAM. Nanomedicines for the treatment of hematological malignancies. J Control Release 2018; 287:194-215. [PMID: 30165140 DOI: 10.1016/j.jconrel.2018.08.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022]
Abstract
Hematological malignancies (HM) are a collection of malignant transformations originating from cells in the primary or secondary lymphoid organs. Leukemia, lymphoma, and multiple myeloma comprise the three major types of HM. Current treatment consists of bone marrow transplantation, radiotherapy, immunotherapy and chemotherapy. Although, many chemotherapeutic drugs are clinically available for the treatment of HM, the use of these agents is limited due to dose-related toxicity and lack of specificity to tumor tissue. Moreover, the poor pharmacokinetic profile of most of the chemotherapeutics requires high dosage and frequent administration to maintain therapeutic levels at the target site, both increasing adverse effects. This underlines an urgent need for a suitable drug delivery system to improve efficacy, safety, and pharmacokinetic properties of conventional therapeutics. Nanomedicines have proven to enhance these properties for anticancer therapeutics. The most extensively studied nanomedicine systems are lipid-based nanoparticles and polymeric nanoparticles. Typically, nanomedicines are small sub-micron sized particles in the size range of 20-200 nm. The biocompatible and biodegradable nature of nanomedicines makes them attractive vehicles to improve drug delivery. Their small size allows them to extravasate and accumulate at malignant sites passively by means of the enhanced permeability and retention (EPR) effect, resulting from rapid angiogenesis and inflammation. Moreover, the specificity to the target tissue can be further enhanced by surface modification of nanoparticles. This review describes currently available therapies as well as limitations and potential advantages of nanomedicine formulations for treatment of various types of HM. Additionally, recent investigational and approved nanomedicine formulations and their limited applications in HM are discussed.
Collapse
Affiliation(s)
- Anil K Deshantri
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands; Biological Research Pharmacology Department, Sun Pharma Advanced Research Company Ltd, India
| | - Aida Varela Moreira
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Veronika Ecker
- Institute for Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Sanjay N Mandhane
- Biological Research Pharmacology Department, Sun Pharma Advanced Research Company Ltd, India
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maike Buchner
- Institute for Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Marcel H A M Fens
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Wong SW, Lenzini S, Shin JW. Perspective: Biophysical regulation of cancerous and normal blood cell lineages in hematopoietic malignancies. APL Bioeng 2018; 2:031802. [PMID: 31069313 PMCID: PMC6324213 DOI: 10.1063/1.5025689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/04/2018] [Indexed: 01/15/2023] Open
Abstract
It is increasingly appreciated that physical forces play important roles in cancer biology, in terms of progression, invasiveness, and drug resistance. Clinical progress in treating hematological malignancy and in developing cancer immunotherapy highlights the role of the hematopoietic system as a key model in devising new therapeutic strategies against cancer. Understanding mechanobiology of the hematopoietic system in the context of cancer will thus yield valuable fundamental insights that can information about novel cancer therapeutics. In this perspective, biophysical insights related to blood cancer are defined and detailed. The interactions with immune cells relevant to immunotherapy against cancer are considered and expounded, followed by speculation of potential regulatory roles of mesenchymal stromal cells (MSCs) in this complex network. Finally, a perspective is presented as to how insights from these complex interactions between matrices, blood cancer cells, immune cells, and MSCs can be leveraged to influence and engineer the treatment of blood cancers in the clinic.
Collapse
Affiliation(s)
- Sing Wan Wong
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA and Department of Bioengineering, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Stephen Lenzini
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA and Department of Bioengineering, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Jae-Won Shin
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA and Department of Bioengineering, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| |
Collapse
|
13
|
Class A1 scavenger receptor modulates glioma progression by regulating M2-like tumor-associated macrophage polarization. Oncotarget 2018; 7:50099-50116. [PMID: 27367025 PMCID: PMC5226571 DOI: 10.18632/oncotarget.10318] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/12/2016] [Indexed: 01/10/2023] Open
Abstract
Macrophages enhance glioma development and progression by shaping the tumor microenvironment. Class A1 scavenger receptor (SR-A1), a pattern recognition receptor primarily expressed in macrophages, is up-regulated in many human solid tumors. We found that SR-A1 expression in 136 human gliomas was positively correlated with tumor grade (P<0.01), but not prognosis or tumor recurrence. SR-A1-expressing macrophages originated primarily from circulating monocytes attracted to tumor tissue, and were almost twice as numerous as resident microglia in glioma tissues (P<0.001). The effects of SR-A1 on glioma proliferation and invasion were assessed in vivo using an SR-A1-deficient murine orthotopic glioma model. SR-A1 deletion promoted M2-like tumor-associated macrophage (TAM) polarization in mice by activating STAT3 and STAT6, which resulted in robust orthotopic glioma proliferation and angiogenesis. Finally, we found that HSP70 might be an endogenous ligand that activates SR-A1-dependent anti-tumorigenic pathways in gliomas, although its expression does not appear informative for diagnostic purposes. Our findings demonstrate a relationship between TAMs, SR-A1 expression and glioma growth and provide new insights into the pathogenic role of TAMs in glioma.
Collapse
|
14
|
Cutrona G, Tripodo C, Matis S, Recchia AG, Massucco C, Fabbi M, Colombo M, Emionite L, Sangaletti S, Gulino A, Reverberi D, Massara R, Boccardo S, de Totero D, Salvi S, Cilli M, Pellicanò M, Manzoni M, Fabris S, Airoldi I, Valdora F, Ferrini S, Gentile M, Vigna E, Bossio S, De Stefano L, Palummo A, Iaquinta G, Cardillo M, Zupo S, Cerruti G, Ibatici A, Neri A, Fais F, Ferrarini M, Morabito F. Microenvironmental regulation of the IL-23R/IL-23 axis overrides chronic lymphocytic leukemia indolence. Sci Transl Med 2018; 10:10/428/eaal1571. [DOI: 10.1126/scitranslmed.aal1571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 06/28/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022]
|
15
|
Leiva O, Ng SK, Chitalia S, Balduini A, Matsuura S, Ravid K. The role of the extracellular matrix in primary myelofibrosis. Blood Cancer J 2017; 7:e525. [PMID: 28157219 PMCID: PMC5386340 DOI: 10.1038/bcj.2017.6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm that arises from clonal proliferation of hematopoietic stem cells and leads to progressive bone marrow (BM) fibrosis. While cellular mutations involved in the development of PMF have been heavily investigated, noteworthy is the important role the extracellular matrix (ECM) plays in the progression of BM fibrosis. This review surveys ECM proteins contributors of PMF, and highlights how better understanding of the control of the ECM within the BM niche may lead to combined therapeutic options in PMF.
Collapse
Affiliation(s)
- O Leiva
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - S K Ng
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - S Chitalia
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - A Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - S Matsuura
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - K Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
16
|
Abdelouahab H, Zhang Y, Wittner M, Oishi S, Fujii N, Besancenot R, Plo I, Ribrag V, Solary E, Vainchenker W, Barosi G, Louache F. CXCL12/CXCR4 pathway is activated by oncogenic JAK2 in a PI3K-dependent manner. Oncotarget 2016; 8:54082-54095. [PMID: 28903325 PMCID: PMC5589564 DOI: 10.18632/oncotarget.10789] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/17/2016] [Indexed: 12/26/2022] Open
Abstract
JAK2 activation is the driver mechanism in BCR-ABL-negative myeloproliferative neoplasms (MPN). These diseases are characterized by an abnormal retention of hematopoietic stem cells within the bone marrow microenvironment and their increased trafficking to extramedullary sites. The CXCL12/CXCR4 axis plays a central role in hematopoietic stem cell/ progenitor trafficking and retention in hematopoietic sites. The present study explores the crosstalk between JAK2 and CXCL12/CXCR4 signaling pathways in MPN. We show that JAK2, activated by either MPL-W515L expression or cytokine stimulation, cooperates with CXCL12/CXCR4 signaling to increase the chemotactic response of human cell lines and primary CD34+ cells through an increased phosphatidylinositol-3-kinase (PI3K) signaling. Accordingly, primary myelofibrosis (MF) patient cells demonstrate an increased CXCL12-induced chemotaxis when compared to controls. JAK2 inhibition by knock down or chemical inhibitors decreases this effect in MPL-W515L expressing cell lines and reduces the CXCL12/CXCR4 signaling in some patient primary cells. Taken together, these data indicate that CXCL12/CXCR4 pathway is overactivated in MF patients by oncogenic JAK2 that maintains high PI3K signaling over the threshold required for CXCR4 activation. These results suggest that inhibition of this crosstalk may contribute to the therapeutic effects of JAK2 inhibitors.
Collapse
Affiliation(s)
- Hadjer Abdelouahab
- INSERM, UMR 1170, Gustave Roussy, Villejuif, France.,University Paris Diderot, Paris, France.,University Paris-Sud 11, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Yanyan Zhang
- INSERM, UMR 1170, Gustave Roussy, Villejuif, France.,University Paris-Sud 11, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Monika Wittner
- INSERM, UMR 1170, Gustave Roussy, Villejuif, France.,University Paris-Sud 11, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Shinya Oishi
- Kyoto University, Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Nobutaka Fujii
- Kyoto University, Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Rodolphe Besancenot
- INSERM, UMR 1170, Gustave Roussy, Villejuif, France.,University Paris-Sud 11, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR 1170, Gustave Roussy, Villejuif, France.,University Paris-Sud 11, Villejuif, France.,Gustave Roussy, Villejuif, France.,Equipe labellisée Ligue Nationale contre le Cancer, UMR 1170, Institut Gustave Roussy, Villejuif, France.,Grex, Laboratoire d'Excellence, Paris, France
| | - Vincent Ribrag
- INSERM, UMR 1170, Gustave Roussy, Villejuif, France.,University Paris-Sud 11, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Eric Solary
- INSERM, UMR 1170, Gustave Roussy, Villejuif, France.,University Paris-Sud 11, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - William Vainchenker
- INSERM, UMR 1170, Gustave Roussy, Villejuif, France.,University Paris-Sud 11, Villejuif, France.,Gustave Roussy, Villejuif, France.,Grex, Laboratoire d'Excellence, Paris, France
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Biotechnology Research Area, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Fawzia Louache
- INSERM, UMR 1170, Gustave Roussy, Villejuif, France.,University Paris Diderot, Paris, France.,University Paris-Sud 11, Villejuif, France.,Gustave Roussy, Villejuif, France
| |
Collapse
|
17
|
Jalali S, Ansell SM. Bone marrow microenvironment in Waldenstrom's Macroglobulinemia. Best Pract Res Clin Haematol 2016; 29:148-155. [DOI: 10.1016/j.beha.2016.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/23/2016] [Indexed: 12/31/2022]
|
18
|
Yu J, Cao J, Li H, Liu P, Xu S, Zhou R, Yao Z, Guo X. Bone marrow fibrosis with fibrocytic and immunoregulatory responses induced by β-catenin activation in osteoprogenitors. Bone 2016; 84:38-46. [PMID: 26688275 DOI: 10.1016/j.bone.2015.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/14/2015] [Accepted: 12/09/2015] [Indexed: 12/17/2022]
Abstract
Wnt/β-catenin signaling has been reported to contribute to the development of bone fibrous dysplasia. However, it remains unclear whether fibrocytes and immune cells are involved in this β-catenin-mediated bone marrow fibrosis. In this study, we showed that constitutive activation of β-catenin by Col1a1-Cre (3.6-kb) exhibited bone marrow fibrosis, featured with expanded populations of fibrocytes, myofibroblasts and osteoprogenitors. Lineage tracing and IHC examinations showed that Col3.6-Cre display Cre recombinase activity not only in osteoprogenitors, but also in monocyte-derived fibrocytes in the endosteal niches of bones. Additionally, β-catenin stimulated the secretion of cytokines and pro-fibrotic signals in bone marrow, including GM-CSF, TGFβ1 and VEGF. Consequently, the frequency of differentiated immature monocyte-derived dendritic cells and naïve T cells was markedly increased in the mutant bone marrow. These phenotypes were quite different from those following β-catenin activation in mature osteoblasts driven by Col1a1-Cre (2.3-kb). Our findings suggested that a conserved pro-fibrotic signal cascade might underlie β-catenin-mediated bone marrow fibrosis, involving TGFβ1-enhanced fibrocyte activation and immunoregulatory responses. This study might shed new light on the understanding and development of a therapeutic strategy for bone fibrous dysplasia.
Collapse
Affiliation(s)
- Jian Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingjing Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hanjun Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pei Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuqin Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rujiang Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengju Yao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xizhi Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
19
|
Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood 2015; 126:1106-17. [PMID: 26100252 DOI: 10.1182/blood-2014-12-618025] [Citation(s) in RCA: 366] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/16/2015] [Indexed: 02/08/2023] Open
Abstract
Exosomes derived from solid tumor cells are involved in immune suppression, angiogenesis, and metastasis, but the role of leukemia-derived exosomes has been less investigated. The pathogenesis of chronic lymphocytic leukemia (CLL) is stringently associated with a tumor-supportive microenvironment and a dysfunctional immune system. Here, we explore the role of CLL-derived exosomes in the cellular and molecular mechanisms by which malignant cells create this favorable surrounding. We show that CLL-derived exosomes are actively incorporated by endothelial and mesenchymal stem cells ex vivo and in vivo and that the transfer of exosomal protein and microRNA induces an inflammatory phenotype in the target cells, which resembles the phenotype of cancer-associated fibroblasts (CAFs). As a result, stromal cells show enhanced proliferation, migration, and secretion of inflammatory cytokines, contributing to a tumor-supportive microenvironment. Exosome uptake by endothelial cells increased angiogenesis ex vivo and in vivo, and coinjection of CLL-derived exosomes and CLL cells promoted tumor growth in immunodeficient mice. Finally, we detected α-smooth actin-positive stromal cells in lymph nodes of CLL patients. These findings demonstrate that CLL-derived exosomes actively promote disease progression by modulating several functions of surrounding stromal cells that acquire features of cancer-associated fibroblasts.
Collapse
|
20
|
Méhes G, Tzankov A, Hebeda K, Anagnostopoulos I, Krenács L, Bedekovics J. Platelet-derived growth factor receptor β (PDGFRβ) immunohistochemistry highlights activated bone marrow stroma and is potentially predictive for fibrosis progression in prefibrotic myeloproliferative neoplasia. Histopathology 2015; 67:617-24. [DOI: 10.1111/his.12704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/26/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Gábor Méhes
- Department of Pathology; University of Debrecen; Debrecen Hungary
| | | | - Konnie Hebeda
- Department of Pathology; Radboud University Medical Centre; Nijmegen the Netherlands
| | - Ioannis Anagnostopoulos
- Institute of Pathology; Charité-University Medicine Berlin; Campus Charité Mitte; Berlin Germany
| | - László Krenács
- Laboratory of Tumor Pathology and Molecular Diagnostics; Szeged Hungary
| | - Judit Bedekovics
- Department of Pathology; University of Debrecen; Debrecen Hungary
| |
Collapse
|
21
|
Riminucci M, Remoli C, Robey PG, Bianco P. Stem cells and bone diseases: new tools, new perspective. Bone 2015; 70:55-61. [PMID: 25240458 PMCID: PMC5524373 DOI: 10.1016/j.bone.2014.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022]
Abstract
Postnatal skeletal stem cells are a unique class of progenitors with biological properties that extend well beyond the limits of stemness as commonly defined. Skeletal stem cells sustain skeletal tissue homeostasis, organize and maintain the complex architectural structure of the bone marrow microenvironment and provide a niche for hematopoietic progenitor cells. The identification of stem cells in the human post-natal skeleton has profoundly changed our approach to the physiology and pathology of this system. Skeletal diseases have been long interpreted essentially in terms of defective function of differentiated cells and/or abnormal turnover of the matrix that they produce. The notion of a skeletal stem cell has brought forth multiple, novel concepts in skeletal biology that provide potential alternative concepts. At the same time, the recognition of the complex functions played by skeletal progenitors, such as the structural and functional organization of the bone marrow, has provided an innovative, unifying perspective for understanding bone and bone marrow changes simultaneously occurring in many disorders. Finally, the possibility to isolate and highly enrich for skeletal progenitors, enables us to reproduce perfectly normal or pathological organ miniatures. These, in turn, provide suitable models to investigate and manipulate the pathogenetic mechanisms of many genetic and non-genetic skeletal diseases. This article is part of a Special Issue entitled Stem cells and Bone.
Collapse
Affiliation(s)
- Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Italy.
| | - Cristina Remoli
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Pamela G Robey
- Craniofacial and Skeletal Diseases Branch, National Institute of Craniofacial and Dental Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Paolo Bianco
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| |
Collapse
|
22
|
Sangaletti S, Tripodo C, Portararo P, Dugo M, Vitali C, Botti L, Guarnotta C, Cappetti B, Gulino A, Torselli I, Casalini P, Chiodoni C, Colombo MP. Stromal niche communalities underscore the contribution of the matricellular protein SPARC to B-cell development and lymphoid malignancies. Oncoimmunology 2014; 3:e28989. [PMID: 25083326 PMCID: PMC4108469 DOI: 10.4161/onci.28989] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/23/2014] [Indexed: 12/26/2022] Open
Abstract
Neoplastic B-cell clones commonly arise within secondary lymphoid organs (SLO). However, during disease progression, lymphomatous cells may also colonize the bone marrow (BM), where they localize within specialized stromal niches, namely the osteoblastic and the vascular niche, according to their germinal center- or extra-follicular-derivation, respectively. We hypothesized the existence of common stromal motifs in BM and SLO B-cell lymphoid niches involved in licensing normal B-cell development as well as in fostering transformed B lymphoid cells. Thus, we tested the expression of prototypical mesenchymal stromal cell (MSC) markers and regulatory matricellular proteins in human BM and SLO under physiologically unperturbed conditions and during B-cell lymphoma occurrence. We identified common stromal features in the BM osteoblastic niche and SLO germinal center (GC) microenvironments, traits that were also enriched within BM infiltrates of GC-associated B-cell lymphomas, suggesting that stromal programs involved in central and peripheral B-cell lymphopoiesis are also involved in malignant B-cell nurturing. Among factors co-expressed by stromal elements within these different specialized niches, we identified the pleiotropic matricellular protein secreted protein acidic and rich in cysteine (SPARC). The actual role of stromal SPARC in normal B-cell lymphopoiesis, investigated in Sparc-/- mice and BM chimeras retaining the Sparc-/- genotype in host stroma, demonstrated defective BM and splenic B-cell lymphopoiesis. Moreover, in the Trp53 knockout (KO) lymphoma model, p53-/-/Sparc-/- double-KO mice displayed impaired spontaneous splenic B-cell lymphomagenesis and reduced neoplastic clone BM infiltration in comparison with their p53-/-/Sparc+/+ counterparts. Our results are among the first to demonstrate the existence of common stromal programs regulating both the BM osteoblastic niche and the SLO GC lymphopoietic functions potentially fostering the genesis and progression of B-cell malignancies.
Collapse
Affiliation(s)
- Sabina Sangaletti
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences; University of Palermo; Palermo, Italy
| | - Paola Portararo
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Matteo Dugo
- Functional Genomics Core Facility; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Caterina Vitali
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Laura Botti
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Carla Guarnotta
- Tumor Immunology Unit, Department of Health Sciences; University of Palermo; Palermo, Italy
| | - Barbara Cappetti
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Alessandro Gulino
- Tumor Immunology Unit, Department of Health Sciences; University of Palermo; Palermo, Italy
| | - Ilaria Torselli
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Patrizia Casalini
- Molecular Therapies Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Mario P Colombo
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| |
Collapse
|
23
|
Franco G, Guarnotta C, Frossi B, Piccaluga PP, Boveri E, Gulino A, Fuligni F, Rigoni A, Porcasi R, Buffa S, Betto E, Florena AM, Franco V, Iannitto E, Arcaini L, Pileri SA, Pucillo C, Colombo MP, Sangaletti S, Tripodo C. Bone marrow stroma CD40 expression correlates with inflammatory mast cell infiltration and disease progression in splenic marginal zone lymphoma. Blood 2014; 123:1836-49. [PMID: 24452203 DOI: 10.1182/blood-2013-04-497271] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Splenic marginal zone lymphoma (SMZL) is a mature B-cell neoplasm characterized by rather indolent clinical course. However, nearly one third of patients experience a rapidly progressive disease with a dismal outcome. Despite the characterization of clone genetics and the recognition of deregulated immunologic stimulation in the pathogenesis of SMZL, little is known about microenvironment dynamics and their potential biological influence on disease outcome. Here we investigate the effect of stroma-intrinsic features on SMZL disease progression by focusing on the microenvironment of the bone marrow (BM), which represents an elective disease localization endorsing diagnostic and prognostic relevance. We show that the quality of the BM stromal meshwork of SMZL infiltrates correlates with time to progression. In particular, we describe the unfavorable prognostic influence of dense CD40 expression by BM stromal cells, which involves the contribution of CD40 ligand (CD40L)-expressing bystander mast cells infiltrating SMZL BM aggregates. The CD40/CD40L-assisted crosstalk between mesenchymal stromal cells and mast cells populating the SMZL microenvironment finds correlation in p53(-/-) mice developing SMZL and contributes to the engendering of detrimental proinflammatory conditions. Our study highlights a dynamic interaction, playing between nonneoplastic elements within the SMZL niche, toward disease progression.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- CD40 Antigens/metabolism
- CD40 Ligand/metabolism
- Cell Differentiation
- Cell Proliferation
- Cytokines/biosynthesis
- Disease Progression
- Disease-Free Survival
- Female
- Genes, p53
- Humans
- Inflammation Mediators/metabolism
- Lymphoma, B-Cell, Marginal Zone/etiology
- Lymphoma, B-Cell, Marginal Zone/immunology
- Lymphoma, B-Cell, Marginal Zone/pathology
- Male
- Mast Cells/immunology
- Mast Cells/pathology
- Mesenchymal Stem Cells/immunology
- Mesenchymal Stem Cells/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Middle Aged
- Prognosis
- Tumor Microenvironment/immunology
Collapse
|
24
|
Bedekovics J, Méhes G. [Pathomechanism and clinical impact of myelofibrosis in neoplastic diseases of the bone marrow]. Orv Hetil 2014; 155:367-75. [PMID: 24583557 DOI: 10.1556/oh.2014.29823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polyclonal mesenchymal cells (fibroblasts, endothelial cells, pericytes, osteoblasts, reticular cells, adipocytes, etc.) of the bone marrow create a functional microenvironment, which actively contributes to the maintenance of hemopoesis. This takes place through cellular interactions via growth factors, cytokines, adhesion molecules and extracellular matrix components, as well as through the control of calcium and oxygen concentration. Inflammatory and neoplastic diseases of the bone marrow result in pathologic interaction between hemopoietic progenitors and stromal cells. This may lead to the activation and expansion of the stroma and to the accumulation of reticulin and collagen fibers produced by mesenchymal cells. Clinically relevant fiber accumulation, termed as myelofibrosis accompanies many diseases, although, the extent and the consequence of myelofibrosis are variable in different disorders. The aim of this review is to summarize basic features of the normal bone marrow mesenchymal environment and the pathological process leading to myelofibrosis. In addition, the special features of myelofibrosis in bone marrow diseases, including myeloproliferative neoplasia, myelodysplastic syndrome and other neoplastic conditions are discussed.
Collapse
Affiliation(s)
- Judit Bedekovics
- Debreceni Egyetem, Általános Orvostudományi Kar Pathologiai Intézet Debrecen Nagyerdei krt. 98. 4012
| | - Gábor Méhes
- Debreceni Egyetem, Általános Orvostudományi Kar Pathologiai Intézet Debrecen Nagyerdei krt. 98. 4012
| |
Collapse
|
25
|
Sovani V, Harvey C, Haynes AP, McMillan AK, Clark DM, O'Connor SR. Bone marrow trephine biopsy involvement by lymphoma: review of histopathological features in 511 specimens and correlation with diagnostic biopsy, aspirate and peripheral blood findings. J Clin Pathol 2013; 67:389-95. [PMID: 24327662 DOI: 10.1136/jclinpath-2013-201520] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS This study aimed to evaluate the key features of bone marrow trephine (BMT) biopsy involvement by lymphoma. METHODS 511 cases were assessed for percentage of marrow involvement, pattern of involvement (diffuse, nodular, paratrabecular, interstitial or intrasinusoidal), presence/absence of granulomas, stromal fibrosis and necrosis, presence/absence of neoplastic/reactive follicles and discordance with other biopsy sites. Correlation with aspirate and peripheral blood findings was made in a subset of 345 patients (167 aspirates, 178 blood). RESULTS The most frequent subtype was follicular lymphoma (26.2%) followed by extranodal marginal zone (23.1%), lymphoplasmacytic (19.2%), diffuse large B cell (DLBCL) (12.5%), Hodgkin (HL) (5.7%) and mantle cell lymphomas (4.3%). The predominant pattern in follicular lymphoma was paratrabecular. Marginal zone lymphomas of all types and lymphoplasmacytic lymphoma showed a relatively even distribution between diffuse, interstitial, paratrabecular and nodular patterns. The majority of mantle cell lymphoma cases showed either diffuse or nodular patterns. A diffuse pattern was common in DLBCL and Burkitt lymphomas. An intrasinusoidal pattern was seen only in extranodal and splenic marginal zone lymphomas. Granulomas and fibrosis were uncommon in small cell B cell lymphomas but frequent in DLBCL and HL. Aspirate and trephine results concurred in 73.8% of cases overall, but this varied widely between subtypes. Peripheral blood involvement rates by lymphoma also varied, with a mean of 37.1%. CONCLUSIONS Different lymphomas often demonstrate reliably characteristic architectural patterns of marrow involvement which can help differentiate them even when cytological features do not permit this, and marrow stromal and other background changes may also be useful pointers towards a particular lymphoma subtype.
Collapse
Affiliation(s)
- Vishakha Sovani
- Department of Histopathology, Nottingham University Hospital, , Nottingham, UK
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Galectins are a family of lectin molecules that have emerged as key players in inflammation and tumor progresssion by displaying intracellular and extracellular activities. This review describes the recent advances on the role of galectins in hematological neoplasms. RECENT FINDINGS Galectin-1 and galectin-3 are the best studied galectins in oncohematology. Increased expression of galectin-1 has been associated with tumor progression in Hodgkin's lymphoma and chronic lymphocytic leukemia, whereas galectin-3 plays a supporting role in chronic myelogenous leukemia and multiple myeloma. Functional studies have assigned a key role for galectin-1 as a negative regulator of T-cell immunity in Hodgkin's lymphoma and cutaneous T-cell lymphoma. Of therapeutic interest is the development of agents with the capacity to interfere with galectin functions. SUMMARY Current knowledge indicates a key role for galectins in hematological neoplasms by favoring the growth and survival of tumor cells and facilitating tumor immune escape. Intervention using specific galectin inhibitors is emerging as an attractive therapeutic option to alter the course of these malignancies.
Collapse
|
27
|
Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee CCR, Restifo NP, Rosenberg SA. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. ACTA ACUST UNITED AC 2013; 210:1125-35. [PMID: 23712432 PMCID: PMC3674706 DOI: 10.1084/jem.20130110] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transfer of FAP-reactive T cells into mice bearing a variety of subcutaneous tumors mediated limited antitumor effects and induced significant cachexia and lethal bone toxicities Fibroblast activation protein (FAP) is a candidate universal target antigen because it has been reported to be selectively expressed in nearly all solid tumors by a subset of immunosuppressive tumor stromal fibroblasts. We verified that 18/18 human tumors of various histologies contained pronounced stromal elements staining strongly for FAP, and hypothesized that targeting tumor stroma with FAP-reactive T cells would inhibit tumor growth in cancer-bearing hosts. T cells genetically engineered with FAP-reactive chimeric antigen receptors (CARs) specifically degranulated and produced effector cytokines upon stimulation with FAP or FAP-expressing cell lines. However, adoptive transfer of FAP-reactive T cells into mice bearing a variety of subcutaneous tumors mediated limited antitumor effects and induced significant cachexia and lethal bone toxicities in two mouse strains. We found that FAP was robustly expressed on PDGFR-α+, Sca-1+ multipotent bone marrow stromal cells (BMSCs) in mice, as well as on well-characterized, clinical-grade multipotent human BMSCs. Accordingly, both mouse and human multipotent BMSCs were recognized by FAP-reactive T cells. The lethal bone toxicity and cachexia observed after cell-based immunotherapy targeting FAP cautions against its use as a universal target. Moreover, the expression of FAP by multipotent BMSCs may point toward the cellular origins of tumor stromal fibroblasts.
Collapse
Affiliation(s)
- Eric Tran
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Tripodo C, Sangaletti S, Guarnotta C, Piccaluga PP, Cacciatore M, Giuliano M, Franco G, Chiodoni C, Sciandra M, Miotti S, Calvaruso G, Carè A, Florena AM, Scotlandi K, Orazi A, Pileri SA, Colombo MP. Stromal SPARC contributes to the detrimental fibrotic changes associated with myeloproliferation whereas its deficiency favors myeloid cell expansion. Blood 2012; 120:3541-54. [PMID: 22955913 DOI: 10.1182/blood-2011-12-398537] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In myeloid malignancies, the neoplastic clone outgrows normal hematopoietic cells toward BM failure. This event is also sustained by detrimental stromal changes, such as BM fibrosis and osteosclerosis, whose occurrence is harbinger of a dismal prognosis. We show that the matricellular protein SPARC contributes to the BM stromal response to myeloproliferation. The degree of SPARC expression in BM stromal elements, including CD146(+) mesenchymal stromal cells, correlates with the degree of stromal changes, and the severity of BM failure characterizing the prototypical myeloproliferative neoplasm primary myelofibrosis. Using Sparc(-/-) mice and BM chimeras, we demonstrate that SPARC contributes to the development of significant stromal fibrosis in a model of thrombopoietin-induced myelofibrosis. We found that SPARC deficiency in the radioresistant BM stroma compartment impairs myelofibrosis but, at the same time, associates with an enhanced reactive myeloproliferative response to thrombopoietin. The link betwen SPARC stromal deficiency and enhanced myeloid cell expansion under a myeloproliferative spur is also supported by the myeloproliferative phenotype resulting from the transplantation of defective Apc(min) mutant hematopoietic cells into Sparc(-/-) but not WT recipient BM stroma. Our results highlight a complex influence of SPARC over the stromal and hematopoietic BM response in myeloproliferative conditions.
Collapse
Affiliation(s)
- Claudio Tripodo
- Tumor Immunology Unit, Human Pathology Section, Department of Health Sciences, University of Palermo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Normal hematopoiesis and hematologic malignancies: role of canonical Wnt signaling pathway and stromal microenvironment. Biochim Biophys Acta Rev Cancer 2012; 1835:1-10. [PMID: 22982245 DOI: 10.1016/j.bbcan.2012.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/22/2012] [Accepted: 08/28/2012] [Indexed: 02/06/2023]
Abstract
Wnts are a family of evolutionary-conserved secreted signaling molecules critically involved in a variety of developmental processes and in cell fate determination. A growing body of evidence suggests that Wnt signaling plays a crucial role in the influence of bone marrow stromal microenvironment on the balance between hematopoietic stem cell self-renewal and differentiation. Emerging clinical and experimental evidence also indicates Wnt signaling involvement in the disruption of the latter balance in hematologic malignancies, where the stromal microenvironment favors the homing of cancer cells to the bone marrow, as well as leukemia stem cell development and chemoresistance. In the present review, we summarize and discuss the role of the canonical Wnt signaling pathway in normal hematopoiesis and hematologic malignancies, with regard to recent findings on the stromal microenvironment involvement in these process and diseases.
Collapse
|
30
|
Kleppe M, Levine RL. New pieces of a puzzle: the current biological picture of MPN. Biochim Biophys Acta Rev Cancer 2012; 1826:415-22. [PMID: 22824378 DOI: 10.1016/j.bbcan.2012.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/14/2022]
Abstract
Over the last years, we have witnessed significant improvement in our ability to elucidate the genetic events, which contribute to the pathogenesis of acute and chronic leukemias, and also in patients with myeloproliferative neoplasms (MPN). However, despite significant insight into the role of specific mutations, including the JAK2V617F mutation, in MPN pathogenesis, the precise mechanisms by which specific disease alleles contribute to leukemic transformation in MPN remain elusive. Here we review recent studies aimed at understanding the role of downstream signaling pathways in MPN initiation and phenotype, and discuss how these studies have begun to lead to novel insights with biologic, clinical, and therapeutic relevance.
Collapse
Affiliation(s)
- Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
31
|
Cacciatore M, Guarnotta C, Calvaruso M, Sangaletti S, Florena AM, Franco V, Colombo MP, Tripodo C. Microenvironment-centred dynamics in aggressive B-cell lymphomas. Adv Hematol 2012; 2012:138079. [PMID: 22400028 PMCID: PMC3287037 DOI: 10.1155/2012/138079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/27/2011] [Indexed: 12/13/2022] Open
Abstract
Aggressive B-cell lymphomas share high proliferative and invasive attitudes and dismal prognosis despite heterogeneous biological features. In the interchained sequence of events leading to cancer progression, neoplastic clone-intrinsic molecular events play a major role. Nevertheless, microenvironment-related cues have progressively come into focus as true determinants for this process. The cancer-associated microenvironment is a complex network of nonneoplastic immune and stromal cells embedded in extracellular components, giving rise to a multifarious crosstalk with neoplastic cells towards the induction of a supportive milieu. The immunological and stromal microenvironments have been classically regarded as essential partners of indolent lymphomas, while considered mainly negligible in the setting of aggressive B-cell lymphomas that, by their nature, are less reliant on external stimuli. By this paper we try to delineate the cardinal microenvironment-centred dynamics exerting an influence over lymphoid clone progression in aggressive B-cell lymphomas.
Collapse
Affiliation(s)
- Matilde Cacciatore
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Carla Guarnotta
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Marco Calvaruso
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Sabina Sangaletti
- Dipartimento di Oncologia Sperimentale, Unità di Immunologia Molecolare, IRCCS Fondazione Istituto Nazionale Tumori, 20133 Milano, Italy
| | - Ada Maria Florena
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Vito Franco
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Mario Paolo Colombo
- Dipartimento di Oncologia Sperimentale, Unità di Immunologia Molecolare, IRCCS Fondazione Istituto Nazionale Tumori, 20133 Milano, Italy
| | - Claudio Tripodo
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| |
Collapse
|
32
|
SNPs array karyotyping reveals a novel recurrent 20p13 amplification in primary myelofibrosis. PLoS One 2011; 6:e27560. [PMID: 22110671 PMCID: PMC3215741 DOI: 10.1371/journal.pone.0027560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/19/2011] [Indexed: 01/22/2023] Open
Abstract
The molecular pathogenesis of primary mielofibrosis (PMF) is still largely unknown. Recently, single-nucleotide polymorphism arrays (SNP-A) allowed for genome-wide profiling of copy-number alterations and acquired uniparental disomy (aUPD) at high-resolution. In this study we analyzed 20 PMF patients using the Genome-Wide Human SNP Array 6.0 in order to identify novel recurrent genomic abnormalities. We observed a complex karyotype in all cases, detecting all the previously reported lesions (del(5q), del(20q), del(13q), +8, aUPD at 9p24 and abnormalities on chromosome 1). In addition, we identified several novel cryptic lesions. In particular, we found a recurrent alteration involving cytoband 20p13 in 55% of patients. We defined a minimal affected region (MAR), an amplification of 9,911 base-pair (bp) overlapping the SIRPB1 gene locus. Noteworthy, by extending the analysis to the adjacent areas, the cytoband was overall affected in 95% of cases. Remarkably, these results were confirmed by real-time PCR and validated in silico in a large independent series of myeloproliferative diseases. Finally, by immunohistochemistry we found that SIRPB1 was over-expressed in the bone marrow of PMF patients carrying 20p13 amplification. In conclusion, we identified a novel highly recurrent genomic lesion in PMF patients, which definitely warrant further functional and clinical characterization.
Collapse
|
33
|
|
34
|
The cumulative amount of serum-free light chain is a strong prognosticator in chronic lymphocytic leukemia. Blood 2011; 118:6353-61. [PMID: 21998207 DOI: 10.1182/blood-2011-04-345587] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Identification of patients at risk of early disease progression is the mainstay of tailored management in chronic lymphocytic leukemia (CLL). Although application of established biomarkers is limited by intrinsic detection/readout complexities, abnormality of κ and λ serum-free light chain ratio [sFLC (κ/λ)] was proposed as a straightforward prognosticator in CLL. By analyzing 449 therapy-naive patients, we show that an abnormal sFLC(κ/λ), along with CD38, ZAP-70, IGHV mutations, cytogenetics and stage, independently predicts treatment-free survival (TFS) but becomes prognostically irrelevant if the cumulative amount of clonal and nonclonal FLCs [sFLC(κ + λ)], a variable associated with cytogenetic risk, exceeds the threshold of 60.6 mg/mL. Patients with sFLC(κ + λ) above cut-off displayed a poorer TFS outcome, irrespective of sFLC(κ/λ). Only ZAP-70, cytogenetics, stage, and TFS remained associated with sFLC(κ + λ) in a multivariate model. By assigning 1 point each for these variables, the 3-year probability of TFS was 94.8%, 84.5%, 61.6%, and 21.1% for patients scoring 0, 1, 2, and 3 + 4, respectively (P < .0001). These data, and the demonstration that monoclonal and polyclonal B cells concur to FLC synthesis in tumor tissues, suggest that sFLC(κ/λ) and sFLC(κ + λ) mirror distinct biologic processes in CLL. sFLC(κ + λ) assessment represents a sensitive and cost-effective tool for identifying CLL patients requiring early treatment.
Collapse
|
35
|
Sangaletti S, Tripodo C, Cappetti B, Casalini P, Chiodoni C, Piconese S, Santangelo A, Parenza M, Arioli I, Miotti S, Colombo MP. SPARC oppositely regulates inflammation and fibrosis in bleomycin-induced lung damage. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:3000-10. [PMID: 22001347 DOI: 10.1016/j.ajpath.2011.08.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 10/16/2022]
Abstract
Fibrosis results from inflammatory tissue damage and impaired regeneration. In the context of bleomycin-induced pulmonary fibrosis, we demonstrated that the matricellular protein termed secreted protein acidic and rich in cysteine (SPARC) distinctly regulates inflammation and collagen deposition, depending on its cellular origin. Reciprocal Sparc(-/-) and wild-type (WT) bone marrow chimeras revealed that SPARC expression in host fibroblasts is required and sufficient to induce collagen fibrosis in a proper inflammatory environment. Accordingly, Sparc(-/-) >WT chimeras showed exacerbated inflammation and fibrosis due to the inability of Sparc(-/-) macrophages to down-regulate tumor necrosis factor production because of impaired responses to tumor growth factor-β. Hence, the use of bone marrow cells expressing a dominant-negative form of tumor growth factor-β receptor type II under the monocyte-specific CD68 promoter, as a decoy, phenocopied Sparc(-/-) donor chimeras. Our results point to an unexpected dual role of SPARC in oppositely influencing the outcome of fibrosis.
Collapse
Affiliation(s)
- Sabina Sangaletti
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|