1
|
Li Z, Cheng L, Xu X, Jia R, Zhu S, Zhang Q, Cheng G, Wu B, Liu Z, Tong X, Xiao B, Dai F. Cuproptosis-based layer-by-layer silk fibroin nanoplatform-loaded PD-L1 siRNA combining photothermal and chemodynamic therapy against metastatic breast cancer. Mater Today Bio 2024; 29:101298. [PMID: 39469315 PMCID: PMC11513806 DOI: 10.1016/j.mtbio.2024.101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/29/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Cuproptosis is a newly identified form of copper-dependent cell death that differs from other known pathways. This discovery provides a new way to explore copper-based nanomaterial applications in cancer therapy. This study used a layer-by-layer self-assembling method to load Cu2-xS nanoparticle (NP) cores with the siRNA of the PD-L1 immune escape-related gene and wrap a silk fibroin (SF) shell to form a multifunctional copper-based SF nanoplatform, denoted as CuS-PEI-siRNA-SFNs. CuS-PEI-siRNA-SFNs induced cuproptosis and exerted an antitumor effect via multiple mechanisms, including photothermal therapy (PTT), chemodynamic therapy (CDT), and immune activation. The presence of significant dihydrolipoamide S-acetyltransferase (DLAT) oligomers in 4T1 cells treated with CuS-PEI-siRNA-SFNs indicated the triggering of cuproptosis. Furthermore, in vivo experimental results showed that CuS-PEI-siRNA-SFNs efficiently accumulated in the tumor tissues of 4T1 tumor-bearing mice inhibited primary tumor and lung metastasis, and displayed excellent biosafety and antitumor activity. This study demonstrated that the synergistic effect of cuproptosis, PTT, CDT, and immune activation showed promise for treating metastatic breast cancer.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- National Agricultural Exhibition Center, China Agricultural Museum, Beijing, China
| | - Lan Cheng
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiang Xu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Rui Jia
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Siyu Zhu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Qian Zhang
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Guotao Cheng
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Baiqing Wu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Zulan Liu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Bo Xiao
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Chang Y, Jia HQ, Xu B, Yang L, Xu YT, Zhang JY, Wang MQ, Yang LX, Song ZC. Metadherin inhibits chemosensitivity of triple-negative breast cancer to paclitaxel via activation of AKT/GSK-3β signaling pathway. Chem Biol Drug Des 2024; 103:e14416. [PMID: 38093418 DOI: 10.1111/cbdd.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/09/2023] [Indexed: 01/18/2024]
Abstract
Triple-negative breast cancer (TNBC) has an aggressive clinical course, and paclitaxel (PTX)-based chemotherapy remains the main therapeutic drug. Metadherin (MTDH) acts as an oncogene that regulates proliferation, invasion, metastasis, and chemoresistance. This study aimed to investigate whether TNBC chemosensitivity to PTX was related to the MTDH/AKT/glycogen synthase kinase-3beta (GSK-3β) pathway. Clinical baseline characteristics and immunohistochemistry (IHC) were used to evaluate the expression and prognosis of MTDH and AKT (protein kinase B, PKB) in TNBC patient samples. MTDH shRNA, MTDH overexpression vector, MK-2206, and PTX intervention were used in cell models and mouse tumor-bearing models. Afterwards, mRNA and protein levels were assessed using quantitative real-time polymerase chain reaction and Western blot. Evaluate the level of tumor cell apoptosis and cell cycle using flow cytometry. Cell viability was detected using Cell Count Kit 8. The in vivo imaging system is used to analyze the growth of tumors. We found that higher expression of MTDH or AKT resulted in poorer disease-free survival and a lower Miller-Payne grade. MTDH promotes cell proliferation and increases p-AKT and p-GSK-3β expression in TNBC cells. Notably, suppression of AKT terminated MTDH overexpression-induced cell proliferation and apoptosis. MTDH knockdown or the AKT inhibitor MK2206 reduced the p-AKT and p-GSK-3β ratio, reduced cell viability and proliferation, increased cell apoptosis, and increased chemosensitivity to PTX. In vivo, xenograft tumors of an MTDH knockdown+MK2206 group treated with PTX were the smallest compared to other groups. In short, MTDH inhibits TNBC chemosensitivity to PTX by activating the AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Yan Chang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- Department of Breast Surgery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, P.R. China
| | - Hui-Qin Jia
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Bin Xu
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Liu Yang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Ye-Tong Xu
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Jing-Yu Zhang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Mei-Qi Wang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- Key Laboratory for Breast Cancer Molecular Medicine of Hebei Province, Shijiazhuang, Hebei, P.R. China
| | - Li-Xian Yang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei, P.R. China
| | - Zhen-Chuan Song
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- Key Laboratory for Breast Cancer Molecular Medicine of Hebei Province, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
3
|
Chen PJ, Lin ES, Su HH, Huang CY. Cytotoxic, Antibacterial, and Antioxidant Activities of the Leaf Extract of Sinningia bullata. PLANTS (BASEL, SWITZERLAND) 2023; 12:859. [PMID: 36840206 PMCID: PMC9967939 DOI: 10.3390/plants12040859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/12/2023]
Abstract
Sinningia bullata is a tuberous member of the flowering plant family Gesneriaceae. Prior to this work, the antibacterial, antioxidant, and cytotoxic properties of S. bullata were undetermined. Here, we prepared different extracts from the leaf, stem, and tuber of S. bullata and investigated their pharmacological activities. The leaf extract of S. bullata, obtained by 100% acetone (Sb-L-A), had the highest total flavonoid content, antioxidation capacity, and cytotoxic and antibacterial activities. Sb-L-A displayed a broad range of antibacterial activities against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The inhibition zones of Sb-L-A ranged from 8 to 30 mm and were in the following order: S. aureus > E. coli > P. aeruginosa. Incubation of B16F10 melanoma cells with Sb-L-A at a concentration of 80 μg/mL caused deaths at the rate of 96%, reduced migration by 100%, suppressed proliferation and colony formation by 99%, and induced apoptosis, which was observed in 96% of the B16F10 cells. In addition, the cytotoxic activities of Sb-L-A were synergistically enhanced when coacting with the antitumor drug epothilone B. Sb-L-A was also used to determine the cytotoxic effects against 4T1 mammary carcinoma cells. Sb-L-A of 60 μg/mL boosted the distribution of the G2 phase from 1.4% to 24.4% in the B16F10 cells. Accordingly, Sb-L-A might suppress melanoma cell proliferation by inducing G2 cell-cycle arrest. The most abundant compounds in Sb-L-A were identified using gas chromatography-mass spectrometry. Overall, the collective data in this study may indicate the pharmacological potentials of Sb-L-A for possible medical applications.
Collapse
Affiliation(s)
- Pin-Jui Chen
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan;
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan;
| | - Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan;
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
4
|
Chang X, Liu Z, Cao S, Bian J, Zheng D, Wang N, Guan Q, Wu Y, Zhang W, Li Z, Zuo D. Novel microtubule inhibitor SQ overcomes multidrug resistance in MCF-7/ADR cells by inhibiting BCRP function and mediating apoptosis. Toxicol Appl Pharmacol 2022; 436:115883. [PMID: 35031325 DOI: 10.1016/j.taap.2022.115883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 11/15/2022]
Abstract
The occurrence of multidrug resistance (MDR) is one of the impediments in the clinical treatment of breast cancer, and MDR breast cancer has abnormally high breast cancer resistance protein (BCRP/ABCG2) expression. However, there are currently no clinical drugs that inhibit this target. Our previous study found that 2-Methoxy-5((3,4,5-trimethosyphenyl)seleninyl) phenol (SQ0814061/SQ), a small molecule drug with low toxicity to normal tissues, could target microtubules, inhibit the proliferation of breast cancer, and reduce its migration and invasion abilities. However, the effect and the underlying mechanism of SQ on MDR breast cancers are still unknown. Therefore, in this study, we investigated the effect of SQ on adriamycin-resistant MCF-7 (MCF-7/ADR) cells and explored the underlying mechanism. The MTT assay showed that SQ had potent cytotoxicity to MCF-7/ADR cells. In particular, the results of western blot and flow cytometry proved that SQ could effectively inhibit the expression of BCRP in MCF-7/ADR cells to decrease its drug delivery activity. In addition, SQ could block the cell cycle at G2/M phase in parental and MCF-7/ADR cells, thereby mediating cell apoptosis, which was related with the inhibition of PI3K-Akt-MDM2 pathway. Taken together, our findings indicate that SQ overcomes multidrug resistance in MCF-7/ADR cells by inhibiting BCRP function and mediating apoptosis through PI3K-Akt-MDM2 pathway inhibition.
Collapse
Affiliation(s)
- Xing Chang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zi Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Simeng Cao
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jiang Bian
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Dayong Zheng
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; School of Pharmacy, North China University of Science and Technology, 21 Bohai Road, Caofeidian District, Tangshan 063210, China
| | - Nuo Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
5
|
Vermunt MA, Bergman AM, der Putten EV, Beijnen JH. The intravenous to oral switch of taxanes: strategies and current clinical developments. Future Oncol 2020; 17:1379-1399. [PMID: 33356545 DOI: 10.2217/fon-2020-0876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The taxanes paclitaxel, docetaxel and cabazitaxel are important anticancer agents that are widely used as intravenous treatment for several solid tumor types. Switching from intravenous to oral treatment can be more convenient for patients, improve cost-effectiveness and reduce the demands of chemotherapy treatment on hospital care. However, oral treatment with taxanes is challenging because of pharmaceutical and pharmacological factors that lead to low oral bioavailability. This review summarizes the current clinical developments in oral taxane treatment. Intravenous parent drugs, strategies in the oral switch, individual agents in clinical trials, challenges and further perspectives on treatment with oral taxanes are subsequently discussed.
Collapse
Affiliation(s)
- Marit Ac Vermunt
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Andries M Bergman
- Department of Medical Oncology & Oncogenomics, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Eric van der Putten
- Modra Pharmaceuticals BV, Barbara Strozzilaan 201, Amsterdam, 1083HN, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands.,Modra Pharmaceuticals BV, Barbara Strozzilaan 201, Amsterdam, 1083HN, The Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Heidelberglaan 100, Utrecht, 3584CX, The Netherlands
| |
Collapse
|
6
|
Wang B, Xu H, Hu X, Ma W, Zhang J, Li Y, Yu M, Zhang Y, Li X, Ye X. Synergetic inhibition of daidzein and regular exercise on breast cancer in bearing-4T1 mice by regulating NK cells and apoptosis pathway. Life Sci 2020; 245:117387. [PMID: 32007575 DOI: 10.1016/j.lfs.2020.117387] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/24/2022]
Abstract
The aim of this study was to investigate the inhibition of daidzein or/and regular exercise on breast cancer and to reveal the potential biological mechanisms. BALB/c mice pretreated with regular exercise training for 20 days (15 m/min, 60 min/d) were orthotopically transplanted with mouse breast cancer cells (4T1), and then treated with daidzein (145 mg/kg) by gavage for another 22 days. Results showed that exercise or daidzein inhibited tumor growth in mice to a different degree. Particularly, co-treatment with exercise and daidzein showed an obviously synergistic inhibition on the tumor growth (P < 0.01), compared with the tumor control. Further researches indicated that the combination of exercise and daidzein synergistically mobilized and redistributed natural killer cells through upregulating the level of epinephrine and interleukin-6. Moreover, exercise combined with daidzein induces apoptosis in cancer cells via Fas/FasL-initiated mitochondrial apoptosis signaling pathway. These results suggested that regular exercise combined with daidzein may explore a candidate way to prevent and treat the breast cancer.
Collapse
Affiliation(s)
- Bin Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Heshan Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoyin Hu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wenyu Ma
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jian Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuanfeng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Min Yu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yaru Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuegang Li
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Xiaoli Ye
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Bachelot T, Ciruelos E, Schneeweiss A, Puglisi F, Peretz-Yablonski T, Bondarenko I, Paluch-Shimon S, Wardley A, Merot JL, du Toit Y, Easton V, Lindegger N, Miles D. Preliminary safety and efficacy of first-line pertuzumab combined with trastuzumab and taxane therapy for HER2-positive locally recurrent or metastatic breast cancer (PERUSE). Ann Oncol 2019; 30:766-773. [PMID: 30796821 DOI: 10.1093/annonc/mdz061] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Pertuzumab combined with trastuzumab and docetaxel is the standard first-line therapy for HER2-positive metastatic breast cancer, based on results from the phase III CLEOPATRA trial. PERUSE was designed to assess the safety and efficacy of investigator-selected taxane with pertuzumab and trastuzumab in this setting. PATIENTS AND METHODS In the ongoing multicentre single-arm phase IIIb PERUSE study, patients with inoperable HER2-positive advanced breast cancer (locally recurrent/metastatic) (LR/MBC) and no prior systemic therapy for LR/MBC (except endocrine therapy) received docetaxel, paclitaxel or nab-paclitaxel with trastuzumab [8 mg/kg loading dose, then 6 mg/kg every 3 weeks (q3w)] and pertuzumab (840 mg loading dose, then 420 mg q3w) until disease progression or unacceptable toxicity. The primary end point was safety. Secondary end points included overall response rate (ORR) and progression-free survival (PFS). RESULTS Overall, 1436 patients received at least one treatment dose (initially docetaxel in 775 patients, paclitaxel in 589, nab-paclitaxel in 65; 7 discontinued before starting taxane). Median age was 54 years; 29% had received prior trastuzumab. Median treatment duration was 16 months for pertuzumab and trastuzumab and 4 months for taxane. Compared with docetaxel-containing therapy, paclitaxel-containing therapy was associated with more neuropathy (all-grade peripheral neuropathy 31% versus 16%) but less febrile neutropenia (1% versus 11%) and mucositis (14% versus 25%). At this preliminary analysis (52 months' median follow-up), median PFS was 20.6 [95% confidence interval (CI) 18.9-22.7] months overall (19.6, 23.0 and 18.1 months with docetaxel, paclitaxel and nab-paclitaxel, respectively). ORR was 80% (95% CI 78%-82%) overall (docetaxel 79%, paclitaxel 83%, nab-paclitaxel 77%). CONCLUSIONS Preliminary findings from PERUSE suggest that the safety and efficacy of first-line pertuzumab, trastuzumab and taxane for HER2-positive LR/MBC are consistent with results from CLEOPATRA. Paclitaxel appears to be a valid alternative taxane backbone to docetaxel, offering similar PFS and ORR with a predictable safety profile. CLINICALTRIALS.GOV NCT01572038.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Breast Neoplasms, Male/drug therapy
- Breast Neoplasms, Male/metabolism
- Breast Neoplasms, Male/pathology
- Bridged-Ring Compounds/administration & dosage
- Female
- Humans
- Male
- Middle Aged
- Neoplasm Metastasis
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Neoplasm Staging
- Prospective Studies
- Receptor, ErbB-2/metabolism
- Survival Rate
- Taxoids/administration & dosage
- Trastuzumab/administration & dosage
- Young Adult
Collapse
Affiliation(s)
- T Bachelot
- Medical Oncology Department, Centre Léon Bérard, Lyon, France.
| | - E Ciruelos
- Medical Oncology Department Breast Care Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - A Schneeweiss
- Gynecologic Oncology Division, National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - F Puglisi
- IRCCS Centro di Riferimento Oncologico Aviano-National Cancer Institute, Aviano; Department of Medicine, University of Udine, Udine, Italy
| | - T Peretz-Yablonski
- Sharett Institute of Oncology and Center for Malignant Breast Diseases, Hadassah Medical Organization, Jerusalem, Israel
| | - I Bondarenko
- City Clinical Hospital No. 4, Dnipropetrovsk, Ukraine
| | - S Paluch-Shimon
- Breast Oncology Unit, Shaare Zedek Medical Centre, Jerusalem, Israel
| | - A Wardley
- The NIHR Manchester Clinical Research Facility at the Christie NHS Foundation Trust, Manchester; Faculty of Biology Medicine & Health, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| | - J-L Merot
- Medical and Scientific Services, Oncology Therapeutic Unit, IQVIA, Saint Ouen, France
| | - Y du Toit
- Global Product Development Medical Affairs Oncology, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - V Easton
- Global Product Development Medical Affairs Oncology, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - N Lindegger
- Global Product Development Medical Affairs Oncology, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - D Miles
- Mount Vernon Cancer Centre, Middlesex, UK
| |
Collapse
|
8
|
Wu CL, Liu JF, Liu Y, Wang YX, Fu KF, Yu XJ, Pu Q, Chen XX, Zhou LJ. Beclin1 inhibition enhances paclitaxel‑mediated cytotoxicity in breast cancer in vitro and in vivo. Int J Mol Med 2019; 43:1866-1878. [PMID: 30720049 DOI: 10.3892/ijmm.2019.4089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 01/30/2019] [Indexed: 11/05/2022] Open
Abstract
Beclin1, a key regulator of autophagy, has been demonstrated to be associated with cancer cell resistance to chemotherapy. Paclitaxel is a conventional chemotherapeutic drug used in the clinical treatment of breast cancer. However, the function and mechanism of Beclin1 in paclitaxel‑mediated cytotoxicity in breast cancer are not well defined. The present study demonstrated that paclitaxel suppressed cell viability and Beclin1 expression levels in BT‑474 breast cancer cells in a dose‑ and time‑dependent fashion. Compared with the control, the knockdown of Beclin1 significantly enhanced breast cancer cell death via the induction of caspase‑dependent apoptosis following paclitaxel treatment in vitro (P<0.05). In a BT‑474 xenograft model, paclitaxel achieved substantial inhibition of tumor growth in the Beclin1 knockdown group compared with the control group. Furthermore, analysis of the publicly available Gene Expression Omnibus datasets revealed a clinical correlation between Beclin1 levels and the response to paclitaxel therapy in patients with breast cancer. Collectively, the present results suggest that Beclin1 protects breast cancer cells from apoptotic death. Thus, the inhibition of Beclin1 may be a novel way to improve the effect of paclitaxel. Additionally, Beclin1 may function as a favorable prognostic biomarker for paclitaxel treatment in patients with breast cancer.
Collapse
Affiliation(s)
- Cheng-Lin Wu
- Central Laboratory, Navy General Hospital, Beijing 100048, P.R. China
| | - Jian-Fei Liu
- Central Laboratory, Navy General Hospital, Beijing 100048, P.R. China
| | - Yan Liu
- Central Laboratory, Navy General Hospital, Beijing 100048, P.R. China
| | - Yu-Xiao Wang
- Central Laboratory, Navy General Hospital, Beijing 100048, P.R. China
| | - Kai-Fei Fu
- Central Laboratory, Navy General Hospital, Beijing 100048, P.R. China
| | - Xiao-Jie Yu
- Central Laboratory, Navy General Hospital, Beijing 100048, P.R. China
| | - Qian Pu
- Central Laboratory, Navy General Hospital, Beijing 100048, P.R. China
| | - Xiu-Xiu Chen
- Central Laboratory, Navy General Hospital, Beijing 100048, P.R. China
| | - Li-Jun Zhou
- Central Laboratory, Navy General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
9
|
Lang T, Dong X, Zheng Z, Liu Y, Wang G, Yin Q, Li Y. Tumor microenvironment-responsive docetaxel-loaded micelle combats metastatic breast cancer. Sci Bull (Beijing) 2019; 64:91-100. [PMID: 36659642 DOI: 10.1016/j.scib.2018.12.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 01/21/2023]
Abstract
Efficient tumor-targeting drug delivery systems are urgently needed for treating metastatic breast cancer. In this work, a docetaxel (DTX)-loaded micelle (pDM) as the tumor-microenvironment-responsive delivery platform is developed. The micelle is composed of a pH-sensitive amphiphilic copolymer, poly((1,4-butanediol)-diacrylate-β-N,N-diisopropylethylenediamine)-polyethyleneimine (BD-PEI), and a matrix metalloproteinase (MMP)-responsive polymer, poly((1,4-butanediol)-diacrylate-β-N,N-diisopropylethylenediamine)-peptide-polyethylene glycol (PEG) (BD-peptide-PEG). The PEG block of BD-peptide-PEG will be split by MMPs at the tumor microenvironment, which leads to the change of the surface charge and particle size of the micelle to more positive and smaller one. Owing to this transformation and enhanced permeability and retention (EPR) effect, pDM delivers more DTX into tumor tissues and is internalized more efficiently by tumor cells than the non-MMP-sensitive micelles in the 4T1 tumor-bearing mice model. In addition, DTX is released in acidic endo/lysosomes due to the dissociation of the micelle, triggered by the protonation of the hydrophobic block of BD-PEI. As a result, the DTX-loaded micelle inhibits primary tumor growth and pulmonary metastasis effectively. Thus, this pH/MMP-dual-sensitive drug delivery system, which simultaneously attains three keypoints: prolonged circulation time, directional and efficient uptake into tumor cells, and speedy intracellular drug release, is a promising strategy for metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyue Dong
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Zhong Zheng
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; College of Life Sciences, Jilin University, Changchun 130012, China
| | - Yiran Liu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Guanru Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
10
|
Lang T, Yin Q, Li Y. Progress of Cell-Derived Biomimetic Drug Delivery Systems for Cancer Therapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 501 Haike Road Shanghai 201203 China
- School of Pharmacy; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 501 Haike Road Shanghai 201203 China
- School of Pharmacy; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 501 Haike Road Shanghai 201203 China
- School of Pharmacy; University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
11
|
Lewis CW, Jin Z, Macdonald D, Wei W, Qian XJ, Choi WS, He R, Sun X, Chan G. Prolonged mitotic arrest induced by Wee1 inhibition sensitizes breast cancer cells to paclitaxel. Oncotarget 2017; 8:73705-73722. [PMID: 29088738 PMCID: PMC5650293 DOI: 10.18632/oncotarget.17848] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/27/2017] [Indexed: 11/25/2022] Open
Abstract
Wee1 kinase is a crucial negative regulator of Cdk1/cyclin B1 activity and is required for normal entry into and exit from mitosis. Wee1 activity can be chemically inhibited by the small molecule MK-1775, which is currently being tested in phase I/II clinical trials in combination with other anti-cancer drugs. MK-1775 promotes cancer cells to bypass the cell-cycle checkpoints and prematurely enter mitosis. In our study, we show premature mitotic cells that arise from MK-1775 treatment exhibited centromere fragmentation, a morphological feature of mitotic catastrophe that is characterized by centromeres and kinetochore proteins that co-cluster away from the condensed chromosomes. In addition to stimulating early mitotic entry, MK-1775 treatment also delayed mitotic exit. Specifically, cells treated with MK-1775 following release from G1/S or prometaphase arrested in mitosis. MK-1775 induced arrest occurred at metaphase and thus, cells required 12 times longer to transition into anaphase compared to controls. Consistent with an arrest in mitosis, MK-1775 treated prometaphase cells maintained high cyclin B1 and low phospho-tyrosine 15 Cdk1. Importantly, MK-1775 induced mitotic arrest resulted in cell death regardless the of cell-cycle phase prior to treatment suggesting that Wee1 inhibitors are also anti-mitotic agents. We found that paclitaxel enhances MK-1775 mediated cell killing. HeLa and different breast cancer cell lines (T-47D, MCF7, MDA-MB-468 and MDA-MB-231) treated with different concentrations of MK-1775 and low dose paclitaxel exhibited reduced cell survival compared to mono-treatments. Our data highlight a new potential strategy for enhancing MK-1775 mediated cell killing in breast cancer cells.
Collapse
Affiliation(s)
- Cody W Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada T6G 1Z2.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada T6G 2J7
| | - Zhigang Jin
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada T6G 1Z2.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada T6G 2J7
| | - Dawn Macdonald
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada T6G 1Z2.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada T6G 2J7
| | - Wenya Wei
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | - Xu Jing Qian
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | - Won Shik Choi
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | - Ruicen He
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | - Xuejun Sun
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada T6G 1Z2.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada T6G 2J7
| | - Gordon Chan
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada T6G 1Z2.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada T6G 2J7
| |
Collapse
|
12
|
Demečková V, Solár P, Hrčková G, Mudroňová D, Bojková B, Kassayová M, Gancarčiková S. Immodin and its immune system supportive role in paclitaxel therapy of 4T1 mouse breast cancer. Biomed Pharmacother 2017; 89:245-256. [PMID: 28235687 DOI: 10.1016/j.biopha.2017.02.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022] Open
Abstract
It is evident that standard chemotherapy agents may have an impact on both tumor and host immune system. Paclitaxel (PTX), a very potent anticancer drug from a taxane family, has achieved prominence in clinical oncology for its efficacy against a wide range of tumors including breast cancer. However, significant toxicity, such as myelosuppression, limit the effectiveness of Paclitaxel-based treatment regimens. Immodin (IM) is low molecular dialysate fraction of homogenate made from human leukocytes. It contains a mixture of substances from which so far have been described e.g. Imreg 1 and Imreg 2 formed by the dipeptide tyrosine-glycine and the tripeptide tyrosine-glycine-glycine, respectively. The aim of this study was to explore immunopharmacological activities of IM, using the strongly immunogenic 4T1 mouse breast cancer model, and evaluate its effect on the reactivity and the efficiency of PTX cancer therapy. The results highlight a potentially beneficial role for IM in alleviating PTX-induced toxicity, especially on the nonspecific immunity, during breast cancer therapy. Co-treatment exhibited an antitumor effect including reduced tumor growth, prolonged survival of tumor bearing mice, increased number of monocytes and lymphocytes in peripheral blood. In spleens, IM+PTX therapy elevated proportion of whole lymphocytes in the account of myelo-monocytic cells characteristic with low expression of CD11c+ and bearing Fc receptor (CD16/32) as well as T-lymphocytes, NK cells and dendritic cells. Accumulation of tumor-associated granulocytes in stroma of PTX-treated group and intensive 4T1-necrosis/apoptosis in tumors after co-treatment were also recorded. These findings suggest the possibility of using IM alongside PTX treatment for maintaining the immune system functions and increasing patient survival.
Collapse
Affiliation(s)
- Vlasta Demečková
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01, Košice, Slovak Republic
| | - Peter Solár
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01, Košice, Slovak Republic.
| | - Gabriela Hrčková
- Parasitological Institute of the Slovak Academy of Sciences, 040 01, Košice, Slovak Republic
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 041 81, Košice, Slovak Republic
| | - Bianka Bojková
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01, Košice, Slovak Republic
| | - Monika Kassayová
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01, Košice, Slovak Republic
| | - Soňa Gancarčiková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 041 81, Košice, Slovak Republic
| |
Collapse
|
13
|
Bevacizumab plus paclitaxel versus placebo plus paclitaxel as first-line therapy for HER2-negative metastatic breast cancer (MERiDiAN): A double-blind placebo-controlled randomised phase III trial with prospective biomarker evaluation. Eur J Cancer 2016; 70:146-155. [PMID: 27817944 DOI: 10.1016/j.ejca.2016.09.024] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 11/24/2022]
Abstract
AIM MERiDiAN evaluated plasma vascular endothelial growth factor-A (pVEGF-A) prospectively as a predictive biomarker for bevacizumab efficacy in metastatic breast cancer (mBC). METHODS In this double-blind placebo-controlled randomised phase III trial, eligible patients had HER2-negative mBC previously untreated with chemotherapy. pVEGF-A was measured before randomisation to paclitaxel 90 mg/m2 on days 1, 8 and 15 with either placebo or bevacizumab 10 mg/kg on days 1 and 15, repeated every 4 weeks until disease progression, unacceptable toxicity or consent withdrawal. Stratification factors were baseline pVEGF-A, prior adjuvant chemotherapy, hormone receptor status and geographic region. Co-primary end-points were investigator-assessed progression-free survival (PFS) in the intent-to-treat and pVEGF-Ahigh populations. RESULTS Of 481 patients randomised (242 placebo-paclitaxel; 239 bevacizumab-paclitaxel), 471 received study treatment. The stratified PFS hazard ratio was 0.68 (99% confidence interval, 0.51-0.91; log-rank p = 0.0007) in the intent-to-treat population (median 8.8 months with placebo-paclitaxel versus 11.0 months with bevacizumab-paclitaxel) and 0.64 (96% confidence interval, 0.47-0.88; log-rank p = 0.0038) in the pVEGF-Ahigh subgroup. The PFS treatment-by-VEGF-A interaction p value (secondary end-point) was 0.4619. Bevacizumab was associated with increased incidences of bleeding (all grades: 45% versus 27% with placebo), neutropenia (all grades: 39% versus 29%; grade ≥3: 25% versus 13%) and hypertension (all grades: 31% versus 13%; grade ≥3: 11% versus 4%). CONCLUSION The significant PFS improvement with bevacizumab is consistent with previous placebo-controlled first-line trials in mBC. Results do not support using baseline pVEGF-A to identify patients benefitting most from bevacizumab. CLINICAL TRIALS REGISTRATION ClinicalTrials.gov NCT01663727.
Collapse
|
14
|
Targeting CYP2J to reduce paclitaxel-induced peripheral neuropathic pain. Proc Natl Acad Sci U S A 2016; 113:12544-12549. [PMID: 27791151 DOI: 10.1073/pnas.1613246113] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathic pain (CIPNP) is a severe dose- and therapy-limiting side effect of widely used cytostatics that is particularly difficult to treat. Here, we report increased expression of the cytochrome-P450-epoxygenase CYP2J6 and increased concentrations of its linoleic acid metabolite 9,10-EpOME (9,10-epoxy-12Z-octadecenoic acid) in dorsal root ganglia (DRGs) of paclitaxel-treated mice as a model of CIPNP. The lipid sensitizes TRPV1 ion channels in primary sensory neurons and causes increased frequency of spontaneous excitatory postsynaptic currents in spinal cord nociceptive neurons, increased CGRP release from sciatic nerves and DRGs, and a reduction in mechanical and thermal pain hypersensitivity. In a drug repurposing screen targeting CYP2J2, the human ortholog of murine CYP2J6, we identified telmisartan, a widely used angiotensin II receptor antagonist, as a potent inhibitor. In a translational approach, administration of telmisartan reduces EpOME concentrations in DRGs and in plasma and reverses mechanical hypersensitivity in paclitaxel-treated mice. We therefore suggest inhibition of CYP2J isoforms with telmisartan as a treatment option for paclitaxel-induced neuropathic pain.
Collapse
|
15
|
2-Methoxy-5((3,4,5-trimethosyphenyl)seleninyl) phenol (SQ0814061), a novel microtubule inhibitor, evokes G2/M cell cycle arrest and apoptosis in human breast cancer cells. Biomed Pharmacother 2016; 78:308-321. [DOI: 10.1016/j.biopha.2016.01.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/26/2016] [Indexed: 11/16/2022] Open
|