1
|
Dzeranova LK, Pigarova EA, Vorotnikova SY, Voznesenskaya AA. [Hypophisitis in pregnant women with persistent diabetes insipidus in the outcome]. PROBLEMY ENDOKRINOLOGII 2024; 70:15-23. [PMID: 39302861 DOI: 10.14341/probl13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 09/22/2024]
Abstract
Autoimmune/lymphocytic hypophysitis is one of the rare causes of central diabetes insipidus in adults and is most common among women in the second or third trimester of pregnancy. Numerous studies have shown that lymphocytic hypophysitis is characterized by a very variable clinical signs with the development of neurological symptoms, visual disturbances and hypopituitarism with partial or complete loss of pituitary function, as well as a number of features in magnetic resonance imaging (MRI). Isolated lymphocytic indibuloneurohypophysitis occurs in fewer cases and involves the posterior lobe and stalk of the pituitary gland with a clinical presentation of diabetes insipidus. The above clinical case describes the development of hypophysitis in a pregnant woman with a predominant lesion of the posterior pituitary gland and an outcome in diabetes insipidus, which persists 6 years after pregnancy and childbirth. In the article some aspects of the differential diagnosis of diabetes insipidus in pregnant women, as well as instrumental diagnosis and treatment approaches of hypophysitis are discussed.
Collapse
|
2
|
Refardt J, Atila C, Christ-Crain M. New insights on diagnosis and treatment of AVP deficiency. Rev Endocr Metab Disord 2024; 25:639-649. [PMID: 38087160 PMCID: PMC11162367 DOI: 10.1007/s11154-023-09862-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 06/09/2024]
Abstract
Arginine vasopressin deficiency (AVP-D) is one of the main entities of the polyuria-polydipsia syndrome. Its correct diagnosis and differentiation from the other two causes - AVP resistance and primary polydipsia - is crucial as this determines the further management of these patients.Over the last years, several new diagnostic tests using copeptin, the stable surrogate marker of AVP, have been introduced. Among them, hypertonic saline stimulated copeptin was confirmed to reliably and safely improve the diagnostic accuracy to diagnose AVP-D. Due to its simplicity, arginine stimulated copeptin was put forward as alternative test procedure. Glucagon-stimulated copeptin also showed promising results, while the oral growth hormone secretagogue Macimorelin failed to provide a sufficient stimulus. Interestingly, an approach using machine learning techniques also showed promising results concerning diagnostic accuracy.Once AVP-D is diagnosed, further workup is needed to evaluate its etiology. This will partly define the further treatment and management. In general, treatment of AVP-D focuses on desmopressin substitution, with oral formulations currently showing the best tolerance and safety profile. However, in addition to desmopressin substitution, recent data also showed that psychopathological factors play an important role in managing AVP-D patients.
Collapse
Affiliation(s)
- Julie Refardt
- Departments of Endocrinology, Diabetology and Metabolism University Hospital Basel, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
- Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Cihan Atila
- Departments of Endocrinology, Diabetology and Metabolism University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mirjam Christ-Crain
- Departments of Endocrinology, Diabetology and Metabolism University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Hoogstraten CA, Hoenderop JG, de Baaij JHF. Mitochondrial Dysfunction in Kidney Tubulopathies. Annu Rev Physiol 2024; 86:379-403. [PMID: 38012047 DOI: 10.1146/annurev-physiol-042222-025000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Mitochondria play a key role in kidney physiology and pathology. They produce ATP to fuel energy-demanding water and solute reabsorption processes along the nephron. Moreover, mitochondria contribute to cellular health by the regulation of autophagy, (oxidative) stress responses, and apoptosis. Mitochondrial abundance is particularly high in cortical segments, including proximal and distal convoluted tubules. Dysfunction of the mitochondria has been described for tubulopathies such as Fanconi, Gitelman, and Bartter-like syndromes and renal tubular acidosis. In addition, mitochondrial cytopathies often affect renal (tubular) tissues, such as in Kearns-Sayre and Leigh syndromes. Nevertheless, the mechanisms by which mitochondrial dysfunction results in renal tubular diseases are only scarcely being explored. This review provides an overview of mitochondrial dysfunction in the development and progression of kidney tubulopathies. Furthermore, it emphasizes the need for further mechanistic investigations to identify links between mitochondrial function and renal electrolyte reabsorption.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Joost G Hoenderop
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Jeroen H F de Baaij
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| |
Collapse
|
4
|
Boot C. The laboratory investigation of diabetes insipidus: A review. Ann Clin Biochem 2024; 61:19-31. [PMID: 36650746 DOI: 10.1177/00045632231154391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Diabetes insipidus (DI) is a group of disorders that lead to inappropriate production of large volumes of dilute urine. The three main forms are central DI (CDI), nephrogenic DI (NDI) and primary polydipsia (PP). Differentiating CDI/NDI from PP is important as patients with true DI are at risk of severe dehydration without treatment. Biochemical testing is key in the diagnosis of DI. The indirect water deprivation test (WDT) is commonly used in the investigation of DI but has drawbacks including being cumbersome and sometimes producing equivocal results. Direct measurement of AVP has theoretical advantages but has generally only been used in specialist centres. Disadvantages include the requirement to measure AVP under hypertonic stimulation and pre-analytical/analytical challenges. Copeptin (CT-proAVP) is a proxy marker for AVP that is more stable, easier to measure and has been studied more widely in recent years. Historically, the evidence supporting the diagnostic performance of these tests has been relatively poor, being based on a few small, usually single-centre studies. However more recent, well-designed prospective studies are improving the evidence base for investigation of DI. These studies have focused on the utility of copeptin measurements during stimulation tests. There is evidence that measurement of copeptin under stimulation offers improved diagnostic performance compared to the WDT. There is currently a lack of systematic, evidence-based guidelines on the diagnosis of DI, but as the quality of the evidence defining the diagnostic performance of tests for DI continues to improve, a clearer consensus on the optimal approach should become achievable.
Collapse
Affiliation(s)
- Christopher Boot
- Blood Sciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
5
|
Angelousi A, Alexandraki KI, Mytareli C, Grossman AB, Kaltsas G. New developments and concepts in the diagnosis and management of diabetes insipidus (AVP-deficiency and resistance). J Neuroendocrinol 2023; 35:e13233. [PMID: 36683321 DOI: 10.1111/jne.13233] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Diabetes insipidus (DI) is a disorder characterised by the excretion of large amounts of hypotonic urine, with a prevalence of 1 per 25,000 population. Central DI (CDI), better now referred to as arginine vasopressin (AVP)-deficiency, is the most common form of DI resulting from deficiency of the hormone AVP from the pituitary. The less common nephrogenic DI (NDI) or AVP-resistance develops secondary to AVP resistance in the kidneys. The majority of causes of DI are acquired, with CDI developing when more than 80% of AVP-secreting neurons are damaged. Inherited/familial CDI causes account for approximately 1% of cases. Although the pathogenesis of NDI is unclear, more than 280 disease-causing mutations affecting the AVP2 protein or AVP V2 receptor, as well as in aquaporin 2 (AQP2), have been described. Although the cAMP/protein kinase A pathway remains the major regulatory pathway of AVP/AQP2 action, in vitro data have also revealed additional cAMP independent pathways of NDI pathogenesis. Diagnosing partial forms of DI, and distinguishing them from primary polydipsia, can be challenging, previously necessitating the use of the water deprivation test. However, measurements of circulating copeptin levels, especially after stimulation, are increasingly replacing the classical tests in clinical practice because of their ease of use and high sensitivity and specificity. The treatment of CDI relies on desmopressin administration, whereas NDI requires the management of any underlying diseases, removal of offending drugs and, in some cases, administration of diuretics. A better understanding of the pathophysiology of DI has led to novel evolving therapeutic agents that are under clinical trial.
Collapse
Affiliation(s)
- Anna Angelousi
- First Department of Internal Medicine, Unit of Endocrinology, Laikon Hospital, Athens, Greece
| | | | - Chrysoula Mytareli
- First Department of Internal Medicine, Unit of Endocrinology, Laikon Hospital, Athens, Greece
| | - Ashley B Grossman
- Green Templeton College, University of Oxford, Oxford, UK
- Centre for Endocrinology, Barts and the London School of Medicine, London, UK
- NET Unit, Royal Free Hospital, London, UK
| | - Gregory Kaltsas
- First Department of Propaedeutic Internal Medicine, Laikon Hospital, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Watanabe H, Tamura H, Furuie K, Kuraoka S, Nakazato H. Three Pediatric Patients with Congenital Nephrogenic Diabetes Insipidus due to AVPR2 Nonsense Mutations and Different Clinical Manifestations: A Case Report. Case Rep Nephrol Dial 2023; 13:162-172. [PMID: 37900924 PMCID: PMC10601857 DOI: 10.1159/000533895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/29/2023] [Indexed: 10/31/2023] Open
Abstract
Congenital nephrogenic diabetes insipidus (CNDI), a rare hereditary disorder, is characterized by the inability of the kidneys to concentrate urine in response to the antidiuretic hormone arginine vasopressin (AVP); as a result, large volumes of unconcentrated urine are excreted. In addition to the clinical manifestations of CNDI, such as dehydration and electrolyte disturbances (hypernatremia and hyperchloremia), developmental delay can result without prompt treatment. In approximately 90% of cases, CNDI is an X-linked disease caused by mutations in the arginine vasopressin receptor 2 (AVPR2) gene. In approximately 9% of cases, CNDI is an autosomal recessive disease caused by mutations in the water channel protein aquaporin 2 (AQP2), and 1% of cases are autosomal dominant. We report a case of CNDI caused by a novel AVPR2 nonsense mutation, c.520C>T (p.Q174X), and cases of siblings in another family who had a different AVPR2 nonsense mutation, c.852G>A (p.W284X). Both cases responded well to treatment with hydrochlorothiazide and spironolactone. If CNDI is suspected, especially in carriers and neonates, aggressive genetic testing and early treatment may alleviate growth disorders and prevent irreversible central nervous system disorders and developmental delay.
Collapse
Affiliation(s)
- Hijiri Watanabe
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Tamura
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishiro Furuie
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shohei Kuraoka
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Nakazato
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Özcan Türkmen M, Karaduman T, Mergen H. Comparison of ELISA and RIA methods to quantify arginine vasopressin hormone levels in cell culture. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Wolke H. Polyurie. Dtsch Med Wochenschr 2022. [DOI: 10.1055/a-1837-3156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Christ-Crain M, Refardt J, Winzeler B. Approach to the Patient: "Utility of the Copeptin Assay". J Clin Endocrinol Metab 2022; 107:1727-1738. [PMID: 35137148 PMCID: PMC9113794 DOI: 10.1210/clinem/dgac070] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Indexed: 11/19/2022]
Abstract
Copeptin derives from the same precursor peptide preprovasopressin as arginine vasopressin (AVP). The secretion of both peptides is stimulated by similar physiological processes, such as osmotic stimulation, hypovolemia, or stress. AVP is difficult to measure due to complex preanalytical requirements and due to technical difficulties. In the last years, copeptin was found to be a stable, sensitive, and simple to measure surrogate marker of AVP release. Different immunoassays exist to measure copeptin. The 2 assays which have most often be used in clinical studies are the original sandwich immunoluminometric assay and its automated immunofluorescent successor. In addition, various enzyme-linked immunosorbent assay have been developed. With the availability of the copeptin assay, the differential diagnosis of diabetes insipidus was recently revisited. The goal for this article is therefore to first review the physiology of copeptin, and second to describe its use as marker for the differential diagnosis of vasopressin-dependent fluid disorders, mainly diabetes insipidus but also hyper- and hyponatremia. Furthermore, we highlight the role of copeptin as prognostic marker in other acute and chronic diseases.
Collapse
Affiliation(s)
- Mirjam Christ-Crain
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
- Correspondence: Mirjam Christ-Crain, MD, PhD, Department of Endocrinology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | - Julie Refardt
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| | - Bettina Winzeler
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
10
|
Patti G, Napoli F, Fava D, Casalini E, Di Iorgi N, Maghnie M. Approach to the Pediatric Patient: Central Diabetes Insipidus. J Clin Endocrinol Metab 2022; 107:1407-1416. [PMID: 34993537 DOI: 10.1210/clinem/dgab930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 11/19/2022]
Abstract
Central diabetes insipidus (CDI) is a complex disorder in which large volumes of dilute urine are excreted due to arginine-vasopressin deficiency, and it is caused by a variety of disorders affecting the hypothalamic-posterior pituitary network. The differential diagnosis is challenging and requires a detailed medical history, physical examination, biochemical approach, imaging studies, and, in some cases, histological confirmation. Magnetic resonance imaging is the gold standard method for evaluating congenital or acquired cerebral and pituitary stalk lesions. Pituitary stalk size at presentation could be normal, but it may change over time, depending on the underlying condition, while other brain areas or organs may become involved during follow-up. Early diagnosis and treatment are crucial to avoid central nervous system damage and germ cell tumor dissemination and to minimize complications of multiple pituitary hormone defects. We provide a practical update on the diagnosis and management of patients with CDI and highlight several pitfalls that may complicate the differential diagnosis of conditions presenting with polyuria and polydipsia. The need for a careful and close follow-up of patients with apparently idiopathic CDI is particularly emphasized because the underlying condition may be recognized over time. The clinical scenario that we outline at the beginning of this article represents the basis for the discussion about how the etiological diagnosis of CDI can be overlooked and demonstrates how a water intake and urine output improvement can be a sign of progressive damage of both hypothalamus and anterior pituitary gland with associated pituitary hormonal deficiencies.
Collapse
Affiliation(s)
- Giuseppa Patti
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genova, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Flavia Napoli
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genova, Genova, Italy
| | - Daniela Fava
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genova, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Emilio Casalini
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genova, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Natascia Di Iorgi
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genova, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genova, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
11
|
Ishida A, Mizuno H, Aoyama K, Sasaki S, Negishi Y, Arakawa T, Mori T. Partial nephrogenic diabetes insipidus with a novel arginine vasopressin receptor 2 gene variant. Clin Pediatr Endocrinol 2022; 31:44-49. [PMID: 35002068 PMCID: PMC8713061 DOI: 10.1297/cpe.2021-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/19/2021] [Indexed: 11/04/2022] Open
Abstract
X-linked nephrogenic diabetes insipidus (NDI) is caused by variations in arginine vasopressin receptor 2 (AVPR2). Some patients show partial resistance to arginine vasopressin (AVP). A 19-month-old Japanese boy presented with polydipsia since infancy. His mother had a history of polydipsia during pregnancy, and his maternal granduncle also had polydipsia. Intermediate urine osmolality and markedly high plasma AVP levels were observed in the water deprivation test. Subsequent pitressin administration caused no further elevation in urine osmolality. We diagnosed the patient with partial NDI, initiated therapy with hydrochlorothiazide, and placed him on a low-sodium diet. Although his urine volume decreased by 20-30% after the initiation of therapy, progressive hydronephrosis and growth retardation developed 2 years later. We investigated his genetic background by multiplex targeted sequencing of genes associated with inherited renal diseases, including AVPR2 and aquaporin-2 (AQP2). We identified a hemizygous missense variant in AVPR2 NM_000054:c.371A>G,p.(Tyr124Cys) in the boy and a heterozygous variant in the mother at the same locus. Distinguishing partial NDI from primary polydipsia is difficult because of its mild symptoms. Markedly elevated plasma AVP levels with intermediate urine osmolality may suggest partial NDI, and genetic analysis can be useful for such patients.
Collapse
Affiliation(s)
- Atsushi Ishida
- Department of Pediatrics, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Haruo Mizuno
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kohei Aoyama
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shiori Sasaki
- Department of Pediatrics, Gifu Prefectural Tajimi Hospital, Tajimi, Japan.,Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Yutaka Negishi
- Department of Pediatrics, Gifu Prefectural Tajimi Hospital, Tajimi, Japan.,Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Takeshi Arakawa
- Department of Pediatrics, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
12
|
Viggiano D, Bruchfeld A, Carriazo S, de Donato A, Endlich N, Ferreira AC, Figurek A, Fouque D, Franssen CFM, Giannakou K, Goumenos D, Hoorn EJ, Nitsch D, Arduan AO, Pešić V, Rastenyté D, Soler MJ, Rroji M, Trepiccione F, Unwin RJ, Wagner CA, Wiecek A, Zacchia M, Zoccali C, Capasso G. Brain dysfunction in tubular and tubulointerstitial kidney diseases. Nephrol Dial Transplant 2021; 37:ii46-ii55. [PMID: 34792176 PMCID: PMC8713153 DOI: 10.1093/ndt/gfab276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/14/2022] Open
Abstract
Kidney function has two important elements: glomerular filtration and tubular function (secretion and reabsorption). A persistent decrease in glomerular filtration rate (GFR), with or without proteinuria, is diagnostic of chronic kidney disease (CKD). While glomerular injury or disease is a major cause of CKD and usually associated with proteinuria, predominant tubular injury, with or without tubulointerstitial disease, is typically non-proteinuric. CKD has been linked with cognitive impairment, but it is unclear how much this depends on a reduced GFR, altered tubular function or the presence of proteinuria. Since CKD is often accompanied by tubular and interstitial dysfunction, we explore here for the first time the potential role of the tubular and tubulointerstitial compartments in cognitive dysfunction. To help address this issue, we have selected a group of primary tubular diseases with preserved GFR, in which to review the evidence for any association with brain dysfunction. Cognition, mood, neurosensory, and motor disturbances are not well characterized in tubular diseases, possibly because they are subclinical and less prominent than other clinical manifestations. The available literature suggests that brain dysfunction in tubular and tubulointerstitial diseases is usually mild and is more often seen in disorders of water handling. Brain dysfunction may occur when severe electrolyte and water disorders in young children persist over a long period of time before the diagnosis is made. We have chosen as examples to highlight this topic, Bartter and Gitelman syndromes and nephrogenic diabetes insipidus. We discuss current published findings, some unanswered questions, and propose topics for future research.
Collapse
Affiliation(s)
- Davide Viggiano
- Department of Translational Medical Sciences, Univ. Campania "L.Vanvitelli", Naples, Italy. BIOGEM, Institute of Molecular Biology and Genetics, Ariano Irpino. Italy
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden. Department of Renal Medicine, Karolinska University Hospital and CLINTEC Karolinska Institutet, Stockholm, Sweden
| | - Sol Carriazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Antonio de Donato
- Department of Translational Medical Sciences, Univ. Campania "L.Vanvitelli", Naples, Italy. BIOGEM, Institute of Molecular Biology and Genetics, Ariano Irpino. Italy
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Germany
| | - Ana Carina Ferreira
- Nephrology Department, Centro Hospitalar E Universitário de Lisboa Central, Lisbon, Portugal; Universidade Nova de Lisboa
- Faculdade de Ciências Médicas, Lisbon, Portugal
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Denis Fouque
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Benite, France; University of Lyon, France
| | - Casper F M Franssen
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Konstantinos Giannakou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Dimitrios Goumenos
- Department of Nephrology and Renal Transplantation, Patras University Hospital, Patras, Greece
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dorothea Nitsch
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alberto Ortiz Arduan
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Vesna Pešić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Daiva Rastenyté
- Medical Academy, Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Maria José Soler
- Nephrology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Merita Rroji
- Department of Nephrology, University Hospital Center "Mother Tereza", Tirana, Albania
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, Univ. Campania "L.Vanvitelli", Naples, Italy. BIOGEM, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Robert J Unwin
- Department of Renal Medicine, Division of Medicine, University College London, UK
| | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Zurich, Switzerland
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Miriam Zacchia
- Department of Translational Medical Sciences, Univ. Campania "L.Vanvitelli", Naples, Italy. BIOGEM, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, USA and Associazione Ipertensione, Nefrologia, Trapianto Renale (IPNET), Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, Univ. Campania "L.Vanvitelli", Naples, Italy. BIOGEM, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | | |
Collapse
|
13
|
Abstract
Diabetes insipidus (DI) is a disorder characterized by a high hypotonic urinary output of more than 50ml per kg body weight per 24 hours, with associated polydipsia of more than 3 liters a day [1,2]. Central DI results from inadequate secretion and usually deficient synthesis of Arginine vasopressin (AVP) in the hypothalamus or pituitary gland. Besides central DI further underlying etiologies of DI can be due to other primary forms (renal origin) or secondary forms of polyuria (resulting from primary polydipsia). All these forms belong to the Polyuria Polydipsia Syndrom (PPS). In most cases central and nephrogenic DI are acquired, but there are also congenital forms caused by genetic mutations of the AVP gene (central DI) [3] or by mutations in the gene for the AVP V2R or the AQP2 water channel (nephrogenic DI) [4]. Primary polydipsia (PP) as secondary form of polyuria includes an excessive intake of large amounts of fluid leading to polyuria in the presence of intact AVP secretion and appropriate antidiuretic renal response. Differentiation between the three mentioned entities is difficult [5], especially in patients with Primary polydipsia or partial, mild forms of DI [1,6], but different tests for differential diagnosis, most recently based on measurement of copeptin, and a thorough medical history mostly lead to the correct diagnosis. This is important since treatment strategies vary and application of the wrong treatment can be dangerous [7]. Treatment of central DI consists of fluid management and drug therapy with the synthetic AVP analogue Desmopressin (DDAVP), that is used as nasal or oral preparation in most cases. Main side effect can be dilutional hyponatremia [8]. In this review we will focus on central diabetes insipidus and describe the prevalence, the clinical manifestations, the etiology as well as the differential diagnosis and management of central diabetes insipidus in the out- and inpatient setting.
Collapse
|
14
|
Marzocchi C, Cantara S, Sagnella A, Castagna MG, Capezzone M. Autosomal dominant familial neurohypophyseal diabetes insipidus caused by a novel missense mutation in AVP gene in a large Italian kindred. Endocrine 2021; 74:188-192. [PMID: 34319541 PMCID: PMC8440291 DOI: 10.1007/s12020-021-02830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE Familial neurohypophysial diabetes insipidus (FNDI), commonly caused by autosomal dominant arginine vasopressin (AVP) mutations, is a rare condition in which vasopressin fails in regulating body's level of water with final polyuria and polydipsia. Genetic testing in familial cases of FNDI should be carry out to ensure adequate treatments and avoid disease manifestations especially in infants. METHODS In this study, we investigated three-generations of a large Italian family with clinical diagnosis of familial central diabetes insipidus for the presence of potential pathogenic mutations in the AVP gene. RESULTS We identified a heterozygous missense mutation (c.154 T > A; p.C52S) in AVP gene in all affected members studied of a large Italian family. In silico tools were used to investigate the pathogenic role of the mutation and three-dimensional protein structure predicted that the p.C52S impairs disulfide bridges formation resulting in misfolding of the protein. CONCLUSIONS This is the first study that identified a novel missense p.C52S mutation as causative of central diabetes insipidus in a large Italian pedigree.
Collapse
Affiliation(s)
- Carlotta Marzocchi
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Silvia Cantara
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy.
| | - Alfonso Sagnella
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Maria Grazia Castagna
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Marco Capezzone
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| |
Collapse
|
15
|
Li Q, Lu B, Yang J, Li C, Li Y, Chen H, Li N, Duan L, Gu F, Zhang J, Xia W. Molecular Characterization of an Aquaporin-2 Mutation Causing Nephrogenic Diabetes Insipidus. Front Endocrinol (Lausanne) 2021; 12:665145. [PMID: 34512542 PMCID: PMC8429928 DOI: 10.3389/fendo.2021.665145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
The aquaporin 2 (AQP2) plays a critical role in water reabsorption to maintain water homeostasis. AQP2 mutation leads to nephrogenic diabetes insipidus (NDI), characterized by polyuria, polydipsia, and hypernatremia. We previously reported that a novel AQP2 mutation (G215S) caused NDI in a boy. In this study, we aimed to elucidate the cell biological consequences of this mutation on AQP2 function and clarify the molecular pathogenic mechanism for NDI in this patient. First, we analyzed AQP2 expression in Madin-Darby canine kidney (MDCK) cells by AQP2-G215S or AQP2-WT plasmid transfection and found significantly decreased AQP2-G215S expression in cytoplasmic membrane compared with AQP2-WT, independent of forskolin treatment. Further, we found co-localization of endoplasmic reticulum (ER) marker (Calnexin) with AQP2-G215S rather than AQP2-WT in MDCK cells by immunocytochemistry. The functional analysis showed that MDCK cells transfected with AQP2-G215S displayed reduced water permeability compared with AQP2-WT. Visualization of AQP2 structure implied that AQP2-G215S mutation might interrupt the folding of the sixth transmembrane α-helix and/or the packing of α-helices, resulting in the misfolding of monomer and further impaired formation of tetramer. Taken together, these findings suggested that AQP2-G215S was misfolded and retained in the ER and could not be translocated to the apical membrane to function as a water channel, which revealed the molecular pathogenic mechanism of AQP2-G215S mutation and explained for the phenotype of NDI in this patient.
Collapse
Affiliation(s)
- Qian Li
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Bichao Lu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Jia Yang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Chao Li
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yanchun Li
- Department of Radiation Oncology, Stanford University, School of Medicine, Stanford, CA, United States
| | - Hui Chen
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Naishi Li
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lian Duan
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Gu
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Kurimoto J, Takagi H, Miyata T, Hodai Y, Kawaguchi Y, Hagiwara D, Suga H, Kobayashi T, Sugiyama M, Onoue T, Ito Y, Iwama S, Banno R, Tanabe K, Tanizawa Y, Arima H. Deficiency of WFS1 leads to the impairment of AVP secretion under dehydration in male mice. Pituitary 2021; 24:582-588. [PMID: 33666833 DOI: 10.1007/s11102-021-01135-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
Wolfram syndrome (WS) is mainly caused by mutations in the WFS1 gene and characterized by diabetes mellitus, optic atrophy, hearing loss, and central diabetes insipidus (CDI). WFS1 is an endoplasmic reticulum (ER)-resident transmembrane protein, and Wfs1 knockout (Wfs1-/-) mice, which have been used as a mouse model for WS, reportedly manifested impairment of glucose tolerance due to pancreatic β-cell loss. In the present study, we examined water balance, arginine vasopressin (AVP) secretion, and ER stress in AVP neurons of the hypothalamus in Wfs1-/- mice. There were no differences in urine volumes between Wfs1-/- and wild-type mice with free access to water. Conversely, when mice were subjected to intermittent water deprivation (WD) for 20 weeks, during which water was unavailable for 2 days a week, urine volumes were larger in Wfs1-/- mice, accompanied by lower urine AVP concentrations and urine osmolality, compared to wild-type mice. The mRNA expression of immunoglobulin heavy chain binding protein, a marker of ER stress, was significantly increased in the supraoptic nucleus and paraventricular nuclei in Wfs1-/- mice compared to wild-type mice after WD. Our results thus showed that Wfs1 knockout leads to a decrease in AVP secretion during dehydration, which could explain in part the mechanisms by which Wfs1 mutations cause CDI in humans.
Collapse
Affiliation(s)
- Junki Kurimoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuichi Hodai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yohei Kawaguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, 464-8601, Japan
| | - Katsuya Tanabe
- Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Yukio Tanizawa
- Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
17
|
Christ-Crain M, Winzeler B, Refardt J. Diagnosis and management of diabetes insipidus for the internist: an update. J Intern Med 2021; 290:73-87. [PMID: 33713498 DOI: 10.1111/joim.13261] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 12/26/2022]
Abstract
Diabetes insipidus is a disorder characterized by excretion of large amounts of hypotonic urine. Four entities have to be differentiated: central diabetes insipidus resulting from a deficiency of the hormone arginine vasopressin (AVP) in the pituitary gland or the hypothalamus, nephrogenic diabetes insipidus resulting from resistance to AVP in the kidneys, gestational diabetes insipidus resulting from an increase in placental vasopressinase and finally primary polydipsia, which involves excessive intake of large amounts of water despite normal AVP secretion and action. Distinguishing between the different types of diabetes insipidus can be challenging. A detailed medical history, physical examination and imaging studies are needed to detect the aetiology of diabetes insipidus. Differentiation between the various forms of hypotonic polyuria is then done by the classical water deprivation test or the more recently developed hypertonic saline or arginine stimulation together with copeptin (or AVP) measurement. In patients with idiopathic central DI, a close follow-up is needed since central DI can be the first sign of an underlying pathology. Treatment of diabetes insipidus or primary polydipsia depends on the underlying aetiology and differs in central diabetes insipidus, nephrogenic diabetes insipidus and primary polydipsia. This review will discuss issues and newest developments in diagnosis, differential diagnosis and treatment, with a focus on central diabetes insipidus.
Collapse
Affiliation(s)
- M Christ-Crain
- From the, Clinic for Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Basel, Switzerland
| | - B Winzeler
- From the, Clinic for Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Basel, Switzerland
| | - J Refardt
- From the, Clinic for Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Sun L, Zhao D, Zhu L, Shen Y, Zhao Y, Tang D. Asymptomatic obstructive hydronephrosis associated with diabetes insipidus: a case report and review. Transl Pediatr 2021; 10:1721-1727. [PMID: 34295787 PMCID: PMC8261591 DOI: 10.21037/tp-20-476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/20/2021] [Indexed: 11/06/2022] Open
Abstract
The treatment of asymptomatic hydronephrosis due to ureteropelvic junction obstruction (UPJO), as well as the timing and indications for surgical intervention, remain controversial. Diabetes insipidus (DI) is a rare disease in infants that is known to cause non-obstructive hydronephrosis, while its association with obstructive hydronephrosis has not been reported. Some studies have found that increased water intake is a predisposing risk factor of developing hydronephrosis. However, there are no studies or guidelines that indicate the specific follow-up intervals and surgical indications for mild hydronephrosis if predisposing risk factors persist. A 46-month-old boy was admitted to our Urology Department with a history of Society of Fetal Urology (SFU) Grade 2 prenatal left hydronephrosis, which was stable at SFU Grade 1-2 at regular postnatal follow-ups. The patient developed polydipsia and polyuria three months prior to admission, then he was considered as primary polydipsia by endocrinology and was treated with fluid restriction while the examination was negative. Renal ultrasound at follow-up demonstrated severe left hydronephrosis with an anterior-posterior diameter (APD) of 6.25 cm three months after symptom onset. Diuretic renography (DR) revealed a renal function of 13.7% with a glomerular filtration rate (GFR) of 11.25 mL/min. The patient was otherwise asymptomatic without any abdominal pain or vomiting. He underwent left pyelostomy immediately as well as laparoscopic left dismembered ureteropelvioplasty after three months, and a diagnosis of UPJO was confirmed. The patient had an uncomplicated postoperative recovery and the result of follow-up renal ultrasound was stable. However, the symptoms of polydipsia and polyuria did not improve significantly. He underwent pituitary magnetic resonance imaging (MRI) and pathological examination, the results of which were consistent with central DI caused by Langerhans cell hyperplasia four months postoperatively. This case indicates the need to pay attention to children with mild hydronephrosis undergoing regular observation and conservative treatment, as a sudden aggravation of the hydronephrosis and a rapid decline of renal function may occur if DI persists.
Collapse
Affiliation(s)
- Long Sun
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dongyan Zhao
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Linfeng Zhu
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yiding Shen
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yijun Zhao
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Daxing Tang
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
19
|
Abstract
The autosomal dominant familial form of neurohypophyseal diabetes insipidus (adFNDI) is a rare inherited endocrine disorder characterized by hypotonic polyuria, severe thirst and polydipsia, which results from a deficient neurosecretion of the antidiuretic hormone, also known as arginine vasopressin (AVP). To date, adFNDI has been linked to more than 70 different heterozygous point mutations of the 2.5 kb AVP gene, encoding the composite precursor protein of AVP. A minority of disease-causing mutations, such as the common c.55G>A variant, are predicted to affect amino acid residues close to the signal peptide (SP) cleavage site, and result in abnormal post-translational processing and intracellular trafficking of AVP precursors exerting neurotoxic activity on vasopressinergic magnocellular neurons. Generally, SP variants cause a gradual decline in the neurohypophyseal secretion of AVP in small children, although a wide variability in clinical onset and severity of manifestations has been reported. For the first time, we describe a kindred from Calabria (Southern Italy) with adFNDI and document a partial clinical phenotype in one female young adult member of the family. Methods: A young adult woman was subjected to clinical, neuroradiological and genetic assessments for a mild, adolescent-onset, polyuric state at our Endocrinology Unit. Her family medical history revealed an early-onset (<12 years of age) occurrence of polyuria and polydipsia, which was successfully managed with high doses of oral desmopressin, and a typical adFNDI inheritance pattern that was seen over three generations. Results: In the index patient, the extensive hypertonic dehydration during fluid deprivation test elicited a prompt elevation of urine osmolality and diuresis contraction, indicative of a partial adFNDI phenotype. Diagnosis was confirmed by concordant hormonal tests and magnetic resonance imaging (MRI) evidence of a reduced hyperintense signal of the neurohypophysis, which was regarded as compatible with the depletion of the vasopressinergic magnocellular neurons. Direct DNA sequencing and restriction enzyme cleavage analysis revealed that a heterozygous c.55G>A transition, predicting a p.Ala19Thr replacement in the C-terminal region of SP, was the cause of adFNDI in the investigated kindred. Conclusions: The identification of the genetic cause of aFNDI in this Calabrian kindred provides further information and confirms the wide variability of disease onset and severity of manifestations related to SP variants of the AVP gene, supporting the need for genetic testing in all patients with familial occurrence of polyuria, regardless of their clinical and radiological phenotype. Even though sexual differences in the antidiuretic responses are documented, it is unclear whether female gender would attenuate clinical disease progression in the presence of a pathogenic c.55G>A mutation.
Collapse
|
20
|
Huang L, Ma L, Li L, Luo J, Sun T. Case Report: A Case of Congenital Nephrogenic Diabetes Insipidus Caused by Thr273Met Mutation in Arginine Vasopressin Receptor 2. Front Pediatr 2021; 9:707452. [PMID: 34336746 PMCID: PMC8319565 DOI: 10.3389/fped.2021.707452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Congenital nephrogenic diabetes insipidus (CNDI) is a rare hereditary tubular dysfunction caused mainly by X-linked recessive inheritance of AVPR2 gene mutations. Pathogenic genes are a result of mutations in AVPR2 on chromosome Xq28 and in AQP2 on chromosome 12q13. The clinical manifestations of CNDI include polyuria, compensatory polydipsia, thirst, irritability, constipation, developmental delay, mental retardation, persistent decrease in the specific gravity of urine, dehydration, and electrolyte disorders (hypernatremia and hyperchloremia). Herein, we report a rare case of CNDI caused by an AVPR2 mutation in a 2-year-old Chinese boy who had sustained polyuria, polydipsia, and irritability for more than 20 months. Laboratory examinations showed no obvious abnormality in blood sodium and chloride levels but decreased urine osmolality and specific gravity. Imaging findings were also normal. However, genetic analysis revealed a C > T transition leading to T273M missense mutations in AVPR2. We provided the boy a low-sodium diet and administered oral hydrochlorothiazide and indomethacin for 1 month, after which his clinical symptoms significantly improved. This case report suggests that CNDI is characterized by pathogenic T273M missense mutations alone and expands our understanding of the pathogenesis of CNDI.
Collapse
Affiliation(s)
- Li Huang
- Department of Pediatric Nephrology, Lanzhou University Second Hospital, Lanzhou, China.,Department of Nephrology, Gansu Children's Hospital, Lanzhou, China
| | - Lina Ma
- Department of Pediatric Nephrology, Lanzhou University Second Hospital, Lanzhou, China.,Department of Nephrology, Gansu Children's Hospital, Lanzhou, China
| | - Linjing Li
- Department of Pediatric Nephrology, Lanzhou University Second Hospital, Lanzhou, China.,Department of Nephrology, Gansu Children's Hospital, Lanzhou, China
| | - Jiajia Luo
- Department of Pediatric Nephrology, Lanzhou University Second Hospital, Lanzhou, China.,Department of Nephrology, Gansu Children's Hospital, Lanzhou, China
| | - Tianhong Sun
- Department of Pediatric Nephrology, Lanzhou University Second Hospital, Lanzhou, China.,Department of Nephrology, Gansu Children's Hospital, Lanzhou, China
| |
Collapse
|
21
|
Farrell TP, Adams NC, Looby S. Neuroimaging of central diabetes insipidus. HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:207-237. [PMID: 34238459 DOI: 10.1016/b978-0-12-820683-6.00016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Central diabetes insipidus (CDI) occurs secondary to deficient synthesis or secretion of arginine vasopressin peptide from the hypothalamo-neurohypophyseal system (HNS). It is characterized by polydipsia and polyuria (urine output >30mL/kg/day in adults and >2l/m2/24h in children) of dilute urine (<250mOsm/L). It can result from any pathology affecting one or more components of the HNS including the hypothalamic osmoreceptors, supraoptic or paraventricular nuclei, and median eminence of the hypothalamus, infundibulum, stalk or the posterior pituitary gland. MRI is the imaging modality of choice for evaluation of the hypothalamic-pituitary axis (HPA), and a dedicated pituitary or sella protocol is essential. CT can provide complimentary diagnostic information and is also of value when MRI is contraindicated. The most common causes are benign or malignant neoplasia of the HPA (25%), surgery (20%), and head trauma (16%). No cause is identified in up to 30% of cases, classified as idiopathic CDI. Knowledge of the anatomy and physiology of the HNS is crucial when evaluating a patient with CDI. Establishing the etiology of CDI with MRI in combination with clinical and biochemical assessment facilitates appropriate targeted treatment. This chapter illustrates the wide variety of causes and imaging correlates of CDI on neuroimaging, discusses the optimal imaging protocols, and revises the detailed neuroanatomy required to interpret these studies.
Collapse
Affiliation(s)
- Terence Patrick Farrell
- Division of Neuroradiology, Thomas Jefferson University Hospital, Philadelphia, PA, United States
| | - Niamh Catherine Adams
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| | - Seamus Looby
- Department of Neuroradiology, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
22
|
Li Q, Tian D, Cen J, Duan L, Xia W. Novel AQP2 Mutations and Clinical Characteristics in Seven Chinese Families With Congenital Nephrogenic Diabetes Insipidus. Front Endocrinol (Lausanne) 2021; 12:686818. [PMID: 34177810 PMCID: PMC8225504 DOI: 10.3389/fendo.2021.686818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Mutations in AQP2 (aquaporin-2) lead to rare congenital nephrogenic diabetes insipidus (NDI), which has been limitedly studied in Chinese population. METHODS Twenty-five subjects from seven families with NDI in a department (Beijing, PUMCH) were screened for AQP2 mutations. Clinical characteristics were described and genotype-phenotype correlation analysis was performed. RESULTS We identified 9 AQP2 mutations in 13 patients with NDI, including 3 novel AQP2 mutations (p.G165D, p.Q255RfsTer72 and IVS3-3delC). Missense mutations were the most common mutation type, followed by splicing mutations, and frameshift mutations caused by small deletion or insertion. The onset-age in our patients was younger than 1 year old. Common manifestations included polydipsia, polyuria (7/7) and intermittent fever (6/7). Less common presentations included short stature (3/7) and mental impairment (1/7). High osmotic hypernatremia and low osmotic urine were the main biochemical features. Dilation of the urinary tract was a common complication of NDI (3/6). Level of serum sodium in NDI patients with compound het AQP2 mutations was higher than non-compound het mutations. CONCLUSION In the first and largest case series of NDI caused by AQP2 mutation in Chinese population, we identified 9 AQP2 mutations, including 3 novel mutations. Phenotype was found to correlate with genotypes, revealed by higher level of serum sodium in patients with compound het AQP2 mutations than non-compound het mutations. This knowledge broadens genotypic and phenotypic spectrum for rare congenital NDI and provided basis for studying molecular biology of AQP2.
Collapse
Affiliation(s)
- Qian Li
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Tian
- Department of Nuclear Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Cen
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Lian Duan
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Weibo Xia, ; Lian Duan,
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Weibo Xia, ; Lian Duan,
| |
Collapse
|
23
|
Muresanu DF, Sharma A, Sahib S, Tian ZR, Feng L, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma HS. Diabetes exacerbates brain pathology following a focal blast brain injury: New role of a multimodal drug cerebrolysin and nanomedicine. PROGRESS IN BRAIN RESEARCH 2020; 258:285-367. [PMID: 33223037 DOI: 10.1016/bs.pbr.2020.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blast brain injury (bBI) is a combination of several forces of pressure, rotation, penetration of sharp objects and chemical exposure causing laceration, perforation and tissue losses in the brain. The bBI is quite prevalent in military personnel during combat operations. However, no suitable therapeutic strategies are available so far to minimize bBI pathology. Combat stress induces profound cardiovascular and endocrine dysfunction leading to psychosomatic disorders including diabetes mellitus (DM). This is still unclear whether brain pathology in bBI could exacerbate in DM. In present review influence of DM on pathophysiology of bBI is discussed based on our own investigations. In addition, treatment with cerebrolysin (a multimodal drug comprising neurotrophic factors and active peptide fragments) or H-290/51 (a chain-breaking antioxidant) using nanowired delivery of for superior neuroprotection on brain pathology in bBI in DM is explored. Our observations are the first to show that pathophysiology of bBI is exacerbated in DM and TiO2-nanowired delivery of cerebrolysin induces profound neuroprotection in bBI in DM, not reported earlier. The clinical significance of our findings with regard to military medicine is discussed.
Collapse
Affiliation(s)
- Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
24
|
Bianco D, Napoli F, Morana G, Pistorio A, Allegri AEM, Fava D, Schiavone M, Thiabat HF, Crocco M, Camia T, Lezzi M, Calandrino A, Tortora D, Severino M, Patti G, Ibba A, Rossi A, Di Iorgi N, Maghnie M. Endocrine Outcomes In Central Diabetes Insipidus: the Predictive Value of Neuroimaging "Mismatch Pattern". J Clin Endocrinol Metab 2020; 105:5892808. [PMID: 32797230 DOI: 10.1210/clinem/dgaa540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 01/21/2023]
Abstract
CONTEXT The etiology of central diabetes insipidus (CDI) in children is often unknown. Clinical and radiological features at disease onset do not allow discrimination between idiopathic forms and other conditions or to predict anterior pituitary dysfunction. OBJECTIVE To evaluate the evolution of pituitary stalk (PS) thickening and the pattern of contrast-enhancement in relation with etiological diagnosis and pituitary function. METHODS We enrolled 39 children with CDI, 29 idiopathic and 10 with Langerhans cell histiocytosis (LCH). Brain magnetic resonance images taken at admission and during follow-up (332 studies) were examined, focusing on PS thickness, contrast-enhancement pattern, and pituitary gland size; T2-DRIVE and postcontrast T1-weighted images were analyzed. RESULTS Seventeen of 29 patients (58.6%) with idiopathic CDI displayed "mismatch pattern," consisting in a discrepancy between PS thickness in T2-DRIVE and postcontrast T1-weighted images; neuroimaging findings became stable after its appearance, while "mismatch" appeared in LCH patients after chemotherapy. Patients with larger PS displayed mismatch more frequently (P = 0.003); in these patients, reduction of proximal and middle PS size was documented over time (P = 0.045 and P = 0.006). The pituitary gland was smaller in patients with mismatch (P < 0.0001). Patients with mismatch presented more frequently with at least one pituitary hormone defect, more often growth hormone deficiency (P = 0.033). CONCLUSIONS The PS mismatch pattern characterizes patients with CDI, reduced pituitary gland size, and anterior pituitary dysfunction. The association of mismatch pattern with specific underlying conditions needs further investigation. As patients with mismatch show stabilization of PS size, we assume a prognostic role of this peculiar pattern, which could be used to lead follow-up.
Collapse
Affiliation(s)
- Deborah Bianco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Flavia Napoli
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Morana
- Department of Neurosciences, University of Turin, Turin, Italy
| | - Angela Pistorio
- Epidemiology and Biostatistics Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Daniela Fava
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Maurizio Schiavone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Hanan F Thiabat
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Marco Crocco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Tiziana Camia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Marilea Lezzi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Andrea Calandrino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Domenico Tortora
- Pediatric Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Giuseppa Patti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Anastasia Ibba
- SSD Endocrinologia Pediatrica, Azienda Ospedaliera Brotzu, SSD Endocrinologia Pediatrica, Ospedale Pediatrico Microcitemico "A. Cao", Cagliari, Italy
| | - Andrea Rossi
- Pediatric Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Natascia Di Iorgi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Mohamad Maghnie
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
25
|
Hussain A, Baier RJ, Mehrem AA, Soylu H, Fraser D, Elsayed Y. Central Diabetes Insipidus in a Preterm Neonate Unresponsive to Intranasal Desmopressin. Neonatal Netw 2020; 39:339-346. [PMID: 33318230 DOI: 10.1891/0730-0832/11-t-679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2020] [Indexed: 06/12/2023]
Abstract
Central or neurogenic diabetes insipidus (DI) is uncommon in the pediatric age group and rarely occurs in neonates. It should be suspected in any neonate presenting with excessive urine output and hypernatremia that persists despite increased fluid administration. Diabetes insipidus may be secondary to asphyxia, intraventricular hemorrhage, infection, and structural abnormalities or may be idiopathic or genetic. Diagnosis includes a careful history, laboratory testing, and magnetic resonance imaging. Management of neonatal DI involves a careful balance between fluid intake and pharmacologic treatment. In this article we report a case of an extremely low birth weight infant presenting with central DI possibly caused by abnormality of the pituitary gland. Persistent hypernatremia was the initial presentation. Increased fluids were given initially but were only partially helpful. Eventually subcutaneous desmopressin (DDAVP) was required. The infant was unresponsive to intranasal DDAVP and required subcutaneous DDAVP upon discharge.
Collapse
|
26
|
Miyata T, Hagiwara D, Hodai Y, Miwata T, Kawaguchi Y, Kurimoto J, Ozaki H, Mitsumoto K, Takagi H, Suga H, Kobayashi T, Sugiyama M, Onoue T, Ito Y, Iwama S, Banno R, Matsumoto M, Kawakami N, Ohno N, Sakamoto H, Arima H. Degradation of Mutant Protein Aggregates within the Endoplasmic Reticulum of Vasopressin Neurons. iScience 2020; 23:101648. [PMID: 33103081 PMCID: PMC7578753 DOI: 10.1016/j.isci.2020.101648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/08/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Misfolded or unfolded proteins in the ER are said to be degraded only after translocation or isolation from the ER. Here, we describe a mechanism by which mutant proteins are degraded within the ER. Aggregates of mutant arginine vasopressin (AVP) precursor were confined to ER-associated compartments (ERACs) connected to the ER in AVP neurons of a mouse model of familial neurohypophysial diabetes insipidus. The ERACs were enclosed by membranes, an ER chaperone and marker protein of phagophores and autophagosomes were expressed around the aggregates, and lysosomes fused with the ERACs. Moreover, lysosome-related molecules were present within the ERACs, and aggregate degradation within the ERACs was dependent on autophagic-lysosomal activity. Thus, we demonstrate that protein aggregates can be degraded by autophagic-lysosomal machinery within specialized compartments of the ER. Mutant AVP precursors are confined to ERACs connected to the ER of FNDI AVP neurons Lysosomes fuse with ERACs surrounded by phagophore-like membranes Lysosome-related molecules are localized within ERACs Rapamycin reduces and chloroquine increases protein aggregate accumulation in ERACs
Collapse
Affiliation(s)
- Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuichi Hodai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tsutomu Miwata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yohei Kawaguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Junki Kurimoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hajime Ozaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kazuki Mitsumoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.,Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan
| | - Mami Matsumoto
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | - Natsuko Kawakami
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Setouchi 701-4303, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke 329-0498, Japan.,Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Setouchi 701-4303, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
27
|
Yang LY, Lin S, Xie QB, Yin G. Central diabetes insipidus unveiled by glucocorticoid therapy in a patient with an empty sella: A case report and literature review. Medicine (Baltimore) 2020; 99:e22939. [PMID: 33120853 PMCID: PMC7581106 DOI: 10.1097/md.0000000000022939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RATIONALE Some diseases contribute to hypopituitarism without clinical manifestations and the glucocorticoid therapy may unveil central diabetes insipidus. The condition is rare and usually causes problems for clinical physicians. PATIENT CONCERNS A 59-year-old woman presented to our hospital due to facial numbness and persistent eyelid heaviness. DIAGNOSIS Physical examination and cerebrospinal fluid examination supported a diagnosis of Guillain-Barre[Combining Acute Accent] syndrome. Magnetic resonance imaging showed an empty sella. Hormone test indicated hypopituitarism. INTERVENTIONS The patient received intravenous immunoglobulin and glucocorticoid. Central diabetes insipidus appeared after 20 days. Subsequently, the patient was prescribed 1-desamino-8-D-arginine vasopressin and prednisone. OUTCOMES During 6 months' follow-up, the patient's urine output was gradually reduced to normal level. LESSONS This case indicated that hypopituitarism may be caused by an empty sella and be masked by adrenal insufficiency. Central diabetes insipidus may present after glucocorticoid therapy.
Collapse
|
28
|
Mahiat C, Capes A, Duprez T, Whenham N, Duck L, Labriola L. Central diabetes insipidus induced by temozolomide: A report of two cases. J Oncol Pharm Pract 2020; 27:1040-1045. [PMID: 32990192 DOI: 10.1177/1078155220961551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Central diabetes insipidus is a heterogeneous condition characterized by decreased release of antidiuretic hormone by the neurohypophysis resulting in a urine concentration deficit with variable degrees of polyuria. The most common causes include idiopathic diabetes insipidus, tumors or infiltrative diseases, neurosurgery and trauma. Temozolomide is an oral DNA-alkylating agent capable of crossing the blood-brain barrier and used as chemotherapy primarily to treat glioblastoma and other brain cancers. CASES Two men (aged 38 and 54 years) suddenly developed polyuria and polydispsia approximately four weeks after the initiation of temozolomide for a glioblastoma. Plasma and urine parameters demonstrated the presence of a urinary concentration defect. MANAGEMENT The clinical and laboratory abnormalities completely resolved with intranasal desmopressin therapy, allowing the continuation of temozolomide. The disorder did not relapse after cessation of temozolomide and desmopressin and relapsed in one patient after rechallenge with temozolomide. DISCUSSION Our report highlights the importance of a quick recognition of this exceptional complication, in order to initiate promptly treatment with desmopressin and to maintain therapy with temozolomide.
Collapse
Affiliation(s)
- Cédric Mahiat
- Department of Oncology, Clinique Saint-Pierre, Ottignies, Belgium
| | - Antoine Capes
- Department of Nephrology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Thierry Duprez
- Department of Medical Imaging, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Nicolas Whenham
- Department of Oncology, Clinique Saint-Pierre, Ottignies, Belgium.,Department of Oncology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Lionel Duck
- Department of Oncology, Clinique Saint-Pierre, Ottignies, Belgium
| | - Laura Labriola
- Department of Nephrology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
29
|
Merani S, Emuron D, Westphal S, Hoffman A. Central diabetes insipidus unmasked by kidney transplantation: a case report and literature review. TRANSPLANTATION REPORTS 2020. [DOI: 10.1016/j.tpr.2020.100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
30
|
Patti G, Ibba A, Morana G, Napoli F, Fava D, di Iorgi N, Maghnie M. Central diabetes insipidus in children: Diagnosis and management. Best Pract Res Clin Endocrinol Metab 2020; 34:101440. [PMID: 32646670 DOI: 10.1016/j.beem.2020.101440] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Central diabetes insipidus (CDI) is a complex disorder in which large volumes of dilute urine are excreted due to arginine-vasopressin deficiency, and it is caused by a variety of conditions (genetic, congenital, inflammatory, neoplastic, traumatic) that arise mainly from the hypothalamus. The differential diagnosis between diseases presenting with polyuria and polydipsia is challenging and requires a detailed medical history, physical examination, biochemical approach, imaging studies and, in some cases, histological confirmation. Magnetic resonance imaging is the gold standard method for evaluating the sellar-suprasellar region in CDI. Pituitary stalk size at presentation is variable and can change over time, depending on the underlying condition, and other brain areas or other organs - in specific diseases - may become involved during follow up. An early diagnosis and treatment are preferable in order to avoid central nervous system damage and the risk of dissemination of germ cell tumor, or progression of Langerhans Cell Histiocytosis, and in order to start treatment of additional pituitary defects without further delay. This review focuses on current diagnostic work-up and on the role of neuroimaging in the differential diagnosis of CDI in children and adolescents. It provides an update on the best approach for diagnosis - including novel biochemical markers such as copeptin - treatment and follow up of children and adolescents with CDI; it also describes the best approach to challenging situations such as post-surgical patients, adipsic patients, patients undergoing chemotherapy and/or in critical care.
Collapse
MESH Headings
- Adolescent
- Age of Onset
- Biomarkers/analysis
- Brain/diagnostic imaging
- Brain/pathology
- Child
- Diabetes Insipidus, Neurogenic/diagnosis
- Diabetes Insipidus, Neurogenic/epidemiology
- Diabetes Insipidus, Neurogenic/etiology
- Diabetes Insipidus, Neurogenic/therapy
- Diagnosis, Differential
- Diagnostic Imaging/methods
- Diagnostic Imaging/trends
- Diagnostic Techniques, Endocrine/trends
- Histiocytosis, Langerhans-Cell/complications
- Histiocytosis, Langerhans-Cell/diagnosis
- Histiocytosis, Langerhans-Cell/epidemiology
- Histiocytosis, Langerhans-Cell/therapy
- Humans
- Magnetic Resonance Imaging
- Polydipsia/diagnosis
- Polydipsia/epidemiology
- Polydipsia/etiology
- Polydipsia/therapy
- Polyuria/diagnosis
- Polyuria/epidemiology
- Polyuria/etiology
- Polyuria/therapy
Collapse
Affiliation(s)
- Giuseppa Patti
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genova, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Anastasia Ibba
- SSD Endocrinologia Pediatrica, Ospedale Pediatrico Microcitemico "A. Cao", AO Brotzu, Cagliari, Italy
| | - Giovanni Morana
- Department of Neurosciences, University of Turin, Turin, Italy; Department of Neuroradiology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Flavia Napoli
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genova, Genova, Italy
| | - Daniela Fava
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genova, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Natascia di Iorgi
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genova, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genova, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy.
| |
Collapse
|
31
|
Abstract
In the pregnant patient, hypotonic polyuria in the setting of elevated serum osmolality and polydipsia should narrow the differential to causes related to diabetes insipidus (DI). Gestational DI, also called transient DI of pregnancy, is a distinct entity, unique from central DI or nephrogenic DI which may both become exacerbated during pregnancy. These three different processes relate to vasopressin, where increased metabolism, decreased production or altered renal sensitivity to this neuropeptide should be considered. Gestational DI involves progressively rising levels of placental vasopressinase throughout pregnancy, resulting in decreased endogenous vasopressin and resulting hypotonic polyuria worsening through the pregnancy. Gestational DI should be distinguished from central and nephrogenic DI that may be seen during pregnancy through use of clinical history, urine and serum osmolality measurements, response to desmopressin and potentially, the newer, emerging copeptin measurement. This review focuses on a brief overview of osmoregulatory and vasopressin physiology in pregnancy and how this relates to the clinical presentation, pathophysiology, diagnosis and management of gestational DI, with comparisons to the other forms of DI during pregnancy. Differentiating the subtypes of DI during pregnancy is critical in order to provide optimal management of DI in pregnancy and avoid dehydration and hypernatremia in this vulnerable population.
Collapse
Affiliation(s)
- Sonia Ananthakrishnan
- Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine/Boston Medical Center, 72 Concord Street, Evans 122, Boston, MA, 02118, United States.
| |
Collapse
|
32
|
Abstract
The two main differential diagnoses of central diabetes insipidus are nephrogenic diabetes insipidus and primary polydipsia. Reliable distinction between those entities is essential as treatment differs substantially with the wrong treatment potentially leading to serious complications. Past diagnostic measures using the indirect water deprivation test had several pitfalls, resulting in a low diagnostic accuracy. With the introduction of copeptin, a stable and reliable surrogate marker for arginine vasopressin, diagnosis of diabetes insipidus was new evaluated. While unstimulated basal copeptin measurement reliably diagnoses nephrogenic diabetes insipidus, a stimulation test is needed to differentiate patients with central diabetes insipidus from patients with primary polydipsia. Stimulation can either be achieved through hypertonic saline infusion or arginine infusion. While the former showed high diagnostic accuracy and superiority over the indirect water deprivation test in a recent validation study, the diagnostic accuracy for arginine-stimulated copeptin was slightly lower, but superior in test tolerance. In summary of the recent findings, a new copeptin based diagnostic algorithm is proposed for the reliable diagnosis of diabetes insipidus.
Collapse
Affiliation(s)
- Julie Refardt
- Departments of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
33
|
Abstract
The differential diagnosis of diabetes insipidus involves the distinction between central or nephrogenic diabetes insipidus and primary polydipsia. Differentiation is important because treatment strategies vary; the wrong treatment can be dangerous. Reliable differentiation is difficult especially in patients with primary polydipsia or partial forms of diabetes insipidus. New diagnostic algorithms are based on the measurement of copeptin after osmotic stimulation by hypertonic saline infusion or after nonosmotic stimulation by arginine and have a higher diagnostic accuracy than the water deprivation test. Treatment involves correcting preexisting water deficits, but is different for central diabetes insipidus, nephrogenic diabetes insipidus, and primary polydipsia.
Collapse
Affiliation(s)
- Julie Refardt
- Division of Endocrinology, Diabetes and Metabolism, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Endocrinology, University Hospital Basel, University of Basel, Petersgraben 4, Basel 4031, Switzerland
| | - Bettina Winzeler
- Division of Endocrinology, Diabetes and Metabolism, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Endocrinology, University Hospital Basel, University of Basel, Petersgraben 4, Basel 4031, Switzerland
| | - Mirjam Christ-Crain
- Division of Endocrinology, Diabetes and Metabolism, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Endocrinology, University Hospital Basel, University of Basel, Petersgraben 4, Basel 4031, Switzerland.
| |
Collapse
|
34
|
Cui W, Ma A, Huang Z, Wang X, Liu Z, Xia D, Yang S, Zhao T. Comparative transcriptomic analysis reveals mechanisms of divergence in osmotic regulation of the turbot Scophthalmus maximus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1519-1536. [PMID: 32383147 DOI: 10.1007/s10695-020-00808-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The turbot Scophthalmus maximus has evolved extensive physiological ability to adapt to multiple environmental salinities. The morphological changes of the kidney indicated the adaptability difference and similarity of turbot to salinity stress. Identify transcriptome-wide differences between low-salinity seawater (LSW, salinity 5)- and high-salinity seawater (HSW, salinity 50)-acclimated kidneys of turbot to decipher the osmotic regulation mechanism. We identified 688 differentially expressed genes (DEGs) in the LSW-acclimated kidneys and 2441 DEGs in the HSW-acclimated kidneys of turbot compared with seawater-acclimated kidneys, respectively. We investigated three patterns of gene regulation to salinity stress that involved in ion channels and transporters, functions of calcium regulation, organic osmolytes, energy demand, cell cycle regulation, and cell protection. Additionally, protein-protein interaction (PPI) analysis of DEGs suggested the presence of a frequent functional interaction pattern and that crucial genes in the PPI network are involved in hyper-osmotic regulation. Based on the analysis of comparative transcriptome data and related literature reports, we conclude that the mechanisms responsible for osmotic regulation and its divergence in turbot are related to various genes that are involved in canonical physiological functions. These findings provide insight into the divergence in osmoregulation of turbot and valuable information about osmoregulation mechanisms that will benefit other studies in this field.
Collapse
Affiliation(s)
- Wenxiao Cui
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Aijun Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Zhihui Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xinan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Zhifeng Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Dandan Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Shuangshuang Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Tingting Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
35
|
Patti G, Maghnie M. Letter to the Editor: "Forty-One Individuals With Mutations in the AVP-NPII Gene Associated With Familial Neurohypophyseal Diabetes Insipidus.". J Clin Endocrinol Metab 2020; 105:5835886. [PMID: 32392320 DOI: 10.1210/clinem/dgaa253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Giuseppa Patti
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genova, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health /Department of Excellence - University of Genova, Genova, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genova, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health /Department of Excellence - University of Genova, Genova, Italy
| |
Collapse
|
36
|
Patel S, Volpe AB, Awwad S, Schätzlein AG, Haider S, Liu B, Uchegbu IF. A Self-Assembling Lipidic Peptide and Selective Partial V2 Receptor Agonist Inhibits Urine Production. Sci Rep 2020; 10:7269. [PMID: 32350300 PMCID: PMC7190706 DOI: 10.1038/s41598-020-64070-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/21/2020] [Indexed: 11/09/2022] Open
Abstract
Lipidised analgesic peptide prodrugs self-assemble into peptide nanofibers; with the nanofiber morphology protecting the peptide from plasma degradation and improving therapeutic efficacy. Extending this learning, we hypothesised that a self-assembling lipidized peptide arginine vasopressin (AVP) receptor agonist, that had not been designed as a prodrug, could prove pharmacologically active and control urine production. The only approved AVP receptor agonist, desmopressin is indicated for the treatment of central diabetes insipidus (DI), bedwetting, haemophilia A and von Willebrand disease. Desmopressin is well tolerated by most patients, however adverse effects, such as hyponatraemia and water intoxication necessitate a strict fluid intake, thus motivating the search for alternative DI treatments. Selective V2 receptor agonism is required for anti-DI activity and we hypothesised that our new lipidized peptide (METx) would lead to selective AVP receptor agonism. METx was synthesised and characterised and then tested for activity against the V2, V1a and OT uterine receptors and not tested against the V1b receptor as METx was not expected to cross the blood brain barrier. METx was also tested in vivo in a healthy rat model. METx forms nanofibers and is a partial V2 receptor agonist (determined by measuring MDCK cell line cAMP accumulation), producing 57% of AVP's maximal activity (EC50 = 2.7 nM) and is not a V1a agonist up to a concentration of 1 μM (determined by measuring A7r5 cell line D-myo-inositol-1-phosphate accumulation). METx is a weak OT receptor antagonist, reducing the frequency of OT induced contractions (EC50 = 350 nM) and increasing the OT EC50 from 0.081 nM to 21 nM at a concentration of 600 nM. METx (41 nM) had no effect on spontaneous uterine contractions and METx (100 nM) had no effect on OT induced uterine contractions. Simulated binding studies show that binding avidity to the receptors follows the trend: V2 > OT > V1a. On intravenous injection, a nanoparticle formulation of METx reduced urine production in a healthy rat model in a dose responsive manner, with 40 mg kg-1 METx resulting in no urine production over 4 hours. The lipidized self-assembling peptide - METx - is a selective competitive V2 receptor agonist and an anti-diuretic.
Collapse
Affiliation(s)
- Sunish Patel
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | | | - Sahar Awwad
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Andreas G Schätzlein
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK.,Nanomerics Ltd. 30-34 New Bridge Street, London, EC4V 6BJ, UK
| | - Shozeb Haider
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Boqian Liu
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Ijeoma F Uchegbu
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK. .,Nanomerics Ltd. 30-34 New Bridge Street, London, EC4V 6BJ, UK.
| |
Collapse
|
37
|
Affiliation(s)
- Alyson Weiner
- Columbia University Irving Medical Center, New York, NY
| | | |
Collapse
|
38
|
Christ-Crain M, Fenske WK. Copeptin in the differential diagnosis of hypotonic polyuria. J Endocrinol Invest 2020; 43:21-30. [PMID: 31368050 DOI: 10.1007/s40618-019-01087-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/17/2019] [Indexed: 11/26/2022]
Abstract
COPEPTIN Copeptin is secreted in equimolar amount to Arginine Vasopressin (AVP) but can easily be measured with a sandwich immunoassay. Both peptides, copeptin and AVP, show a high correlation. Accordingly, copeptin mirrors the amount of AVP in the circulation and its measurement provides an attractive marker in the differential diagnosis of diabetes insipidus. THE POLYURIA POLYDIPSIA SYNDROME Diabetes insipidus-either central or nephrogenic-has to be differentiated from primary polydipsia. Differentiation is crucial since wrong treatment can have deleterious consequences. Since many decades, the "gold standard" for differential diagnosis has been the classical water deprivation test, which has several limitations leading to an overall limited diagnostic accuracy. In addition, the test has a long duration of 17 hours and is cumbersome for patients. Clinical signs and symptoms as well as MRI characteristics overlap between patients with diabetes insipidus and primary polydipsia. Direct measurement of AVP upon osmotic stimulation was first shown to overcome these limitations, but failed to enter clinical practice mainly due to technical limitations of the AVP assay. COPEPTIN AS DIAGNOSTIC TOOL IN THE POLYURIA POLYDIPSIA SYNDROME We have recently shown that copeptin, without prior water deprivation, identifies patients with nephrogenic diabetes insipidus. On the other hand, for the more difficult differentiation between central diabetes insipidus and primary polydipsia, a copeptin level of 4.9 pmol/L stimulated with hypertonic saline infusion differentiates between these two entities with a high diagnostic accuracy, and is superior to the water deprivation test. It is important to note that close sodium monitoring during the hypertonic saline test is a prerequisite. CONCLUSION Therefore, we propose that copeptin upon hypertonic saline infusion should become the new standard test in the differential diagnosis of diabetes insipidus.
Collapse
Affiliation(s)
- M Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism, University Hospital of Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, University Hospital Leipzig, Leipzig, Germany.
| | - W K Fenske
- Department of Endocrinology, Diabetology and Metabolism, University Hospital of Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
39
|
Ma L, Wu D, Wang X, Yang Y. A Case of Congenital Nephrogenic Diabetes Insipidus Caused by Thr108Met Variant of Aquaporin 2. Front Pediatr 2020; 8:15. [PMID: 32083042 PMCID: PMC7002472 DOI: 10.3389/fped.2020.00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Congenital nephrogenic diabetes insipidus (CNDI) is a rare renal disorder caused by mutations in arginine vasopressin receptor 2 (AVPR2) or aquaporin 2 (AQP2). The clinical signs of CNDI include polyuria, compensatory polydipsia, dehydration, electrolyte disorder, and developmental retardation without prompt treatment. In this study we report a rare case of CNDI caused by a single base transition in AQP2 gene. A 4.5 years old male patient suffered from oral dryness, polydipsia, and polyuria for more than 3 years. Laboratory examinations showed hypernatremia, hyperchloremia, and decreased urine osmolality and specific gravity. Ultrasound and MRI found bilateral upper ureteral dilatation and hydronephrosis. Furthermore, sequencing analysis found a C>T transition leading to a T108M missense mutation of AQP2. The patient was given low sodium diet and treated with hydrochlorothiazide followed by amiloride with indomethacin. The patient's clinical course improved remarkably after 1 year of treatment. This study reports the first case of CNDI featuring T108M missense mutation alone. These findings demonstrate a causative role of T108M mutation for CNDI and contribute to the mechanistic understanding of CNDI disease process.
Collapse
Affiliation(s)
- Lina Ma
- Department of Pediatric Nephrology, Lanzhou University Second Hospital, Lanzhou, China.,Department of Nephrology, Gansu Children's Hospital, Lanzhou, China
| | - Dengyan Wu
- Department of Pediatric Nephrology, Lanzhou University Second Hospital, Lanzhou, China.,Department of Nephrology, Gansu Children's Hospital, Lanzhou, China
| | - Xingmin Wang
- Nantong Institute of Genetics and Reproductive Medicine, Nantong Maternity and Child Healthcare Hospital, Nantong University, Nantong, China.,School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yonghong Yang
- Department of Pediatric Nephrology, Lanzhou University Second Hospital, Lanzhou, China.,Department of Nephrology, Gansu Children's Hospital, Lanzhou, China
| |
Collapse
|
40
|
Christ-Crain M. Diabetes Insipidus: New Concepts for Diagnosis. Neuroendocrinology 2020; 110:859-867. [PMID: 31986514 DOI: 10.1159/000505548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/18/2019] [Indexed: 11/19/2022]
Abstract
Diabetes insipidus (DI), be it from central or from nephrogenic origin, has to be differentiated from primary polydipsia. This differentiation is crucial since wrong treatment can have dangerous consequences. For decades, the "gold standard" for differential diagnosis has been the standard water deprivation test. However, this test has several limitations leading to an overall limited diagnostic accuracy. In addition, the test has a long duration of 17 h and is cumbersome for patients. Also clinical signs and symptoms and MRI characteristics overlap between patients with DI and primary polydipsia. Direct measurement of arginine vasopressin (AVP) upon osmotic stimulation was first shown to overcome these limitations, but failed to enter clinical practice mainly due to technical limitations of the AVP assay. Copeptin is secreted in equimolar ratio to AVP, mirroring AVP concentrations in the circulation. We have shown that copeptin, without prior fluid deprivation, identifies patients with nephrogenic DI. For the more difficult differentiation between central DI and primary polydipsia, a copeptin level of 4.9 pmol/L stimulated with hypertonic saline infusion differentiates between these 2 entities with a high diagnostic accuracy and is superior to the water deprivation test. However, it is important to note that close and regular sodium monitoring every 30 min during the hypertonic saline test is a prerequisite, which is not possible in all hospitals. Furthermore, side effects are common. Therefore, a nonosmotic stimulation test would be advantageous. Arginine significantly stimulates copeptin and therefore is a novel, so far unknown stimulus of this peptide. Consequently, infusion of arginine with subsequent copeptin measurement was shown to be an even simpler and better tolerated test, but head to head comparison is still lacking.
Collapse
Affiliation(s)
- Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism University Hospital Basel, Basel, Switzerland,
- Department of Clinical Research, University of Basel, Basel, Switzerland,
| |
Collapse
|
41
|
Abstract
Diabetes insipidus (DI) is a disorder characterized by excretion of large amounts of hypotonic urine. Central DI results from a deficiency of the hormone arginine vasopressin (AVP) in the pituitary gland or the hypothalamus, whereas nephrogenic DI results from resistance to AVP in the kidneys. Central and nephrogenic DI are usually acquired, but genetic causes must be evaluated, especially if symptoms occur in early childhood. Central or nephrogenic DI must be differentiated from primary polydipsia, which involves excessive intake of large amounts of water despite normal AVP secretion and action. Primary polydipsia is most common in psychiatric patients and health enthusiasts but the polydipsia in a small subgroup of patients seems to be due to an abnormally low thirst threshold, a condition termed dipsogenic DI. Distinguishing between the different types of DI can be challenging and is done either by a water deprivation test or by hypertonic saline stimulation together with copeptin (or AVP) measurement. Furthermore, a detailed medical history, physical examination and imaging studies are needed to ensure an accurate DI diagnosis. Treatment of DI or primary polydipsia depends on the underlying aetiology and differs in central DI, nephrogenic DI and primary polydipsia.
Collapse
|
42
|
Refardt J, Winzeler B, Christ-Crain M. Copeptin and its role in the diagnosis of diabetes insipidus and the syndrome of inappropriate antidiuresis. Clin Endocrinol (Oxf) 2019; 91:22-32. [PMID: 31004513 PMCID: PMC6850413 DOI: 10.1111/cen.13991] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 01/14/2023]
Abstract
Copeptin is secreted in an equimolar amount to arginine vasopressin (AVP) but can easily be measured in plasma or serum with a sandwich immunoassay. The main stimuli for copeptin are similar to AVP, that is an increase in osmolality and a decrease in arterial blood volume and pressure. A high correlation between copeptin and AVP has been shown. Accordingly, copeptin mirrors the amount of AVP in the circulation. Copeptin has, therefore, been evaluated as diagnostic biomarker in vasopressin-dependent disorders of body fluid homeostasis. Disorders of body fluid homeostasis are common and can be divided into hyper- and hypoosmolar circumstances: the classical hyperosmolar disorder is diabetes insipidus, while the most common hypoosmolar disorder is the syndrome of inappropriate antidiuresis (SIAD). Copeptin measurement has led to a "revival" of the direct test in the differential diagnosis of diabetes insipidus. Baseline copeptin levels, without prior thirsting, unequivocally identify patients with nephrogenic diabetes insipidus. In contrast, for the difficult differentiation between central diabetes insipidus and primary polydipsia, a stimulated copeptin level of 4.9 pmol/L upon hypertonic saline infusion differentiates these two entities with a high diagnostic accuracy and is clearly superior to the classical water deprivation test. On the contrary, in the SIAD, copeptin measurement is of only little diagnostic value. Copeptin levels widely overlap in patients with hyponatraemia and emphasize the heterogeneity of the disease. Additionally, a variety of factors lead to unspecific copeptin elevations in the acute setting further complicating its interpretation. The broad use of copeptin as diagnostic marker in hyponatraemia and specifically to detect cancer-related disease in SIADH patients can, therefore, not be recommended.
Collapse
Affiliation(s)
- Julie Refardt
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Bettina Winzeler
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
43
|
Christ-Crain M. EJE AWARD 2019: New diagnostic approaches for patients with polyuria polydipsia syndrome. Eur J Endocrinol 2019; 181:R11-R21. [PMID: 31067508 PMCID: PMC6598864 DOI: 10.1530/eje-19-0163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/08/2019] [Indexed: 02/02/2023]
Abstract
Diabetes insipidus (DI), be it from central or nephrogenic origin, must be differentiated from secondary forms of hypotonic polyuria such as primary polydipsia. Differentiation is crucial since wrong treatment can have deleterious consequences. Since decades, the gold standard for differentiation has been the water deprivation test, which has limitations leading to an overall unsatisfying diagnostic accuracy. Furthermore, it is cumbersome for patients with a long test duration. Clinical signs and symptoms and MRI characteristics overlap between patients with DI and primary polydipsia. The direct test including vasopressin (AVP) measurement upon osmotic stimulation was meant to overcome these limitations, but failed to enter clinical practice mainly due to technical constraints of the AVP assay. Copeptin is secreted in equimolar amount to AVP but can easily be measured with a sandwich immunoassay. A high correlation between copeptin and AVP has been shown. Accordingly, copeptin mirrors the amount of AVP in the circulation and has led to a 'revival' of the direct test in the differential diagnosis of DI. We have shown that a baseline copeptin, without prior thirsting, unequivocally identifies patients with nephrogenic DI. In contrast, for the differentiation between central DI and primary polydipsia, a stimulated copeptin level of 4.9 pmol/L upon hypertonic saline infusion differentiates these two entities with a high diagnostic accuracy and is superior to the water deprivation test. Close sodium monitoring during the test is a prerequisite. Further new test methods are currently evaluated and might provide an even simpler way of differential diagnosis in the future.
Collapse
Affiliation(s)
- Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
44
|
Jung HJ, Kwon TH. New insights into the transcriptional regulation of aquaporin-2 and the treatment of X-linked hereditary nephrogenic diabetes insipidus. Kidney Res Clin Pract 2019; 38:145-158. [PMID: 31189221 PMCID: PMC6577206 DOI: 10.23876/j.krcp.19.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022] Open
Abstract
The kidney collecting duct (CD) is a tubular segment of the kidney where the osmolality and final flow rate of urine are established, enabling urine concentration and body water homeostasis. Water reabsorption in the CD depends on the action of arginine vasopressin (AVP) and a transepithelial osmotic gradient between the luminal fluid and surrounding interstitium. AVP induces transcellular water reabsorption across CD principal cells through associated signaling pathways after binding to arginine vasopressin receptor 2 (AVPR2). This signaling cascade regulates the water channel protein aquaporin-2 (AQP2). AQP2 is exclusively localized in kidney connecting tubules and CDs. Specifically, AVP stimulates the intracellular translocation of AQP2-containing vesicles to the apical plasma membrane, increasing the osmotic water permeability of CD cells. Moreover, AVP induces transcription of the Aqp2 gene, increasing AQP2 protein abundance. This review provides new insights into the transcriptional regulation of the Aqp2 gene in the kidney CD with an overview of AVP and AQP2. It summarizes current therapeutic approaches for X-linked nephrogenic diabetes insipidus caused by AVPR2 gene mutations.
Collapse
Affiliation(s)
- Hyun Jun Jung
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
45
|
Nigro N, Grossmann M, Chiang C, Inder WJ. Polyuria-polydipsia syndrome: a diagnostic challenge. Intern Med J 2018; 48:244-253. [PMID: 28967192 DOI: 10.1111/imj.13627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/10/2017] [Accepted: 09/21/2017] [Indexed: 01/28/2023]
Abstract
The main determinants for the maintenance of water homeostasis are the hormone arginine vasopressin (AVP) and thirst. Disturbances in these regulatory mechanisms can lead to polyuria-polydipsia syndrome, which comprises of three different conditions: central diabetes insipidus (DI) due to insufficient secretion of AVP, nephrogenic DI caused by renal insensitivity to AVP action and primary polydipsia due to excessive fluid intake and consequent physiological suppression of AVP. It is crucial to determine the exact diagnosis because treatment strategies vary substantially. To differentiate between the causes of the polyuria-polydipsia syndrome, a water deprivation test combined with desmopressin administration is the diagnostic 'gold standard'. Thereby, AVP activity is indirectly evaluated through the measurement of urine osmolality after prolonged dehydration. However, this test has several limitations and may fail to distinguish precisely between patients with primary polydipsia and mild forms of central and nephrogenic DI. The direct measurement of AVP during the water deprivation test, which was reported in the 1980s, has not been widely adopted due to availability, assay issues and diagnostic performance. Recently, copeptin, the c-terminal portion of the larger precursor peptide of AVP, has been evaluated in the setting of polyuria-polydipsia syndrome and appears to be a useful candidate biomarker for the differential diagnosis. A standardised method for the water deprivation test is presented as part of a joint initiative of the Endocrine Society of Australia, the Australasian Association of Clinical Biochemists and the Royal College of Pathologists of Australasia to harmonise dynamic endocrine tests across Australia.
Collapse
Affiliation(s)
- Nicole Nigro
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Mathis Grossmann
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Endocrinology, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Cherie Chiang
- Department of Endocrinology, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Warrick J Inder
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
46
|
Hagiwara D, Grinevich V, Arima H. A novel mechanism of autophagy-associated cell death of vasopressin neurons in familial neurohypophysial diabetes insipidus. Cell Tissue Res 2018; 375:259-266. [PMID: 29961215 DOI: 10.1007/s00441-018-2872-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/09/2018] [Indexed: 10/28/2022]
Abstract
Familial neurohypophysial diabetes insipidus (FNDI), characterized by delayed-onset progressive polyuria and loss of arginine vasopressin (AVP) neuron, is an autosomal dominant disorder caused by AVP gene mutations. We previously generated a knock-in mouse model for FNDI, which recapitulated the phenotype of human FNDI. To address the mechanisms underlying AVP neuron loss, we subjected FNDI mice to intermittent water deprivation, which accelerated the phenotype and induced AVP neuron loss within a relative short period. Electron microscopic analyses revealed that aggregates were confined to a sub-compartment of the endoplasmic reticulum (ER), ER-associated compartment (ERAC), in AVP neurons of FNDI mice under normal conditions. In contrast, aggregates scattered throughout the dilated ER lumen, and phagophores, autophagosome precursors, emerged and surrounded the ER containing scattered aggregates in FNDI mice subjected to water deprivation for 4 weeks, suggesting that failure of ERAC formation leads to autophagy induction for degradation of aggregates. Furthermore, the cytoplasm was entirely occupied with large vacuoles in AVP neurons of FNDI mice subjected to water deprivation for 12 weeks, at which stage 30-40% of AVP neurons were lost. Our data demonstrated that although autophagy should primarily be a protective mechanism, continuous autophagy leads to gradual loss of organelles including ER, resulting in autophagy-associated cell death of AVP neurons in FNDI mice.
Collapse
Affiliation(s)
- Daisuke Hagiwara
- Schaller Research Group on Neuropeptides, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Center (DKFZ), Heidelberg, Germany.,CellNetworks Cluster of Excellence, University of Heidelberg, Heidelberg, Germany.,Central Institute of Mental Health, Mannheim, Germany
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
47
|
Xu Y, Shi W, Song R, Long W, Guo H, Yuan S, Zhang T. Divergent patterns of genic copy number variation in KCNIP1 gene reveal risk locus of type 2 diabetes in Chinese population. Endocr J 2018; 65:537-545. [PMID: 29491224 DOI: 10.1507/endocrj.ej17-0496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Copy number variation (CNV) has emerged as another important genetic marker in addition to SNP for understanding etiology of complex disease. Kv channel interacting protein 1 (KCNIP1) is a Ca2+-dependent transcriptional modulator that contributes to the regulation of insulin secretion. Previous genome-wide CNV assay identified the KCNIP1 gene encompassing a CNV region, however, its further effect and risk rate on type 2 diabetes (T2D) have rarely been addressed, especially in Chinese population. The current study aims to detect and excavate genetic distribution profile of KCNIP1 CNV in Chinese T2D and control populations, and further to investigate the associations with clinical characteristics. Divergent patterns of the KCNIP1 CNV were identified (p < 0.01), in which the copy number gain was predominant in T2D, while the copy number normal accounted for the most in control group. Consistently, the individuals with copy number gain showed significant risk on T2D (OR = 4.550, p < 0.01). The KCNIP1 copy numbers presented significantly positive correlations with fasting plasma glucose and glycated hemoglobin in T2D. For OGTT test, the T2D patients with copy number gain had remarkably elevated glucose contents (60, 120, 180-min, p < 0.05 or p < 0.01) and diminished insulin levels (60, 120-min, p < 0.05) than those with copy number loss and normal, which suggested that the KCNIP1 CNV was correlated with the glucose and insulin action. This is the first CNV association study of the KCNIP1 gene in Chinese population, and these data indicated that KCNIP1 might function as a T2D-susceptibility gene whose dysregulation alters insulin production.
Collapse
Affiliation(s)
- Yao Xu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Weilin Shi
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Ruhui Song
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Wenlin Long
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Hui Guo
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Shiliang Yuan
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430064, China
| | - Tongcun Zhang
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| |
Collapse
|
48
|
CREB1 functional polymorphisms modulating promoter transcriptional activity are associated with type 2 diabetes mellitus risk in Chinese population. Gene 2018; 665:133-140. [PMID: 29729382 DOI: 10.1016/j.gene.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/14/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
The cAMP responsive element binding protein 1 (CREB1) is a ubiquitous transcription factor that contributes to the regulation of gluconeogenesis. The mechanisms of the CREB1 function remain largely unknown. In this study, we aimed to explore genetic variations in CREB1 promoter region and determine whether these loci affect transcriptional activity and risk on type 2 diabetes (T2D). Three polymorphisms were identified and designated as MU1, MU2 and MU3, respectively. Genotypic distribution analysis revealed that MU1 genotypes presented similar distribution between T2D and healthy controls (P > 0.05), while the MU2 and MU3 showed significant differences (P < 0.05). Haplotypic blocks of the three loci were constructed, and H1-TGA, H2-TTT and H3-ATT had higher frequencies in T2D patients than those in controls. Association studies revealed that the three loci significantly affected plasma glucose, glycated hemoglobin and insulin secretion. Disequilibrium analysis identified that the MU2 and MU3 variants were strongly linked in T2D (r2 = 0.348, D' = 1.0). Further analysis indicated that MU2 (TT vs GG, OR = 2.38, 95%CI = 1.19-4.77, P = 0.01) and MU3 (AA vs TT, OR = 1.16, 95%CI = 1.19-4.77, P = 0.04) were significantly associated with T2D in dominant genotypes. Luciferase assay showed that T-A haplotype from the highly linked MU2 and MU3 exhibited maximal promoter activity, which was consistent with the correlation results. We concluded that the TT genotype of MU2 and the AA genotype of MU3 could be used as molecular markers for evaluating the risk on T2D.
Collapse
|
49
|
Gong T, Liu T, Zhang L, Ye W, Guo X, Wang L, Quan L, Pan C. Design Redox-Sensitive Drug-Loaded Nanofibers for Bone Reconstruction. ACS Biomater Sci Eng 2017; 4:240-247. [PMID: 33418691 DOI: 10.1021/acsbiomaterials.7b00827] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Implantation of a scaffold into the body in a safe and convenient manner remains a challenge in the repair of patient bone defect. In the present study, a strategy for fabrication of the redox-sensitive nanofibers with a core-shell structure that can deliver the growth factors in a tunable manner is presented. Poly(ethylene oxide) (PEO) and bone morphogenetic protein 2 (BMP-2) forms the inner core region, and a mixture of poly(epsilon-caprolactone) (PCL) and redox-responsive c-6A PEG-PCL nanogel with -S-S- bond forms the outer shell. The redox-sensitive shell of the nanofibers can respond the change of the GSH (glutathione) concentration and thus regulate the BMP-2 release behavior in vitro and in vivo. In vitro cytotoxicity results indicated that the redox-sensitive nanofiber had good osteoinduction. The in vivo results demonstrated that the nanofibers exhibited a capacity of prompting new bone generation in the bone defect. Therefore, the redox-responsive nanofiber in the present study may be of great potential for application in bone reconstruction.
Collapse
Affiliation(s)
- Tao Gong
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, No. 1 Meicheng Road, Huai'an, Jiangsu Province 223003, China
| | - Tao Liu
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, No. 1 Meicheng Road, Huai'an, Jiangsu Province 223003, China
| | - Lincai Zhang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, No. 1 Meicheng Road, Huai'an, Jiangsu Province 223003, China
| | - Wei Ye
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, No. 1 Meicheng Road, Huai'an, Jiangsu Province 223003, China
| | - Xin Guo
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, No. 1 Meicheng Road, Huai'an, Jiangsu Province 223003, China
| | - Lingren Wang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, No. 1 Meicheng Road, Huai'an, Jiangsu Province 223003, China
| | - Li Quan
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, No. 1 Meicheng Road, Huai'an, Jiangsu Province 223003, China
| | - Changjiang Pan
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, No. 1 Meicheng Road, Huai'an, Jiangsu Province 223003, China
| |
Collapse
|
50
|
Abstract
Diabetes insipidus is a disease characterized by polyuria and polydipsia due to inadequate release of arginine vasopressin from the posterior pituitary gland (neurohypophyseal diabetes insipidus) or due to arginine vasopressin insensitivity by the renal distal tubule, leading to a deficiency in tubular water reabsorption (nephrogenic diabetes insipidus). This article reviews the genetics of diabetes insipidus in the context of its diagnosis, clinical presentation, and therapy.
Collapse
Affiliation(s)
- Marie Helene Schernthaner-Reiter
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria; Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 31 Center Drive, Bethesda, MD 20892, USA.
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 31 Center Drive, Bethesda, MD 20892, USA
| | - Anton Luger
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| |
Collapse
|