1
|
Wu J, Mo H, An Z, Tang Z, Deng X, Zhou H, Gong Y, Zheng C, Zhuo L, Tan S. Discovery of 7-(1-methyl-1H-pyrazol-4-yl)-1,6-naphthyridine derivatives as potent inhibitors of rearranged during transfection (RET) and RET solvent-front mutants for overcoming selpercatinib resistance. Eur J Med Chem 2024; 279:116891. [PMID: 39316846 DOI: 10.1016/j.ejmech.2024.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Rearranged during transfection kinase (RET) inhibition has been considered a promising therapeutic approach for treatment of a variety of cancers. However, the clinical therapeutic benefits of the second-generation RET inhibitor selpercatinib are greatly compromised by acquired resistance mediated by solvent-front mutations (e.g., RETG810 R/S/C). Herein, we report a class of 7-(1-methyl-1H-pyrazol-4-yl)-1,6-naphthyridine derivatives as potent RET and RET solvent-front mutant inhibitors for overcoming selpercatinib resistance. The representative compound 20p exhibited excellent in vitro inhibitory activities against solvent-front mutations (RETG810R, RETG810S, and RETG810C) with low nanomolar range (IC50 of 5.7-8.3 nM), which was 15-29-fold more potent than selpercatinib (IC50 of 95.3-244.1 nM). Additionally, 20p exhibited acceptable pharmacokinetic properties with oral bioavailability of 30.4 %. Importantly, 20p exhibited highly impressive antitumor potency in both a Ba/F3-KIF5B-RETWT-derived xenograft mouse model and a selpercatinib-resistant Ba/F3-KIF5B-RETG810R-positive mutant xenograft mouse model. Overall, 20p represents a novel and promising drug lead for overcoming RET solvent-front mutation-based resistance to selpercatinib.
Collapse
Affiliation(s)
- Junbo Wu
- Department of Colorectal Surgery, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, 421001, Hunan, China
| | - Hanxuan Mo
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhigang An
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zishu Tang
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xinyu Deng
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huifang Zhou
- Department of Colorectal Surgery, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, 421001, Hunan, China
| | - Yi Gong
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, China
| | - Chenggong Zheng
- Pulmonary Hospital, Changsha Central Hospital, Changsha, Hunan, 410004, China
| | - Linsheng Zhuo
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Shuguang Tan
- Department of Colorectal Surgery, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Li W, Wang Y, Xiong A, Gao G, Song Z, Zhang Y, Huang D, Ye F, Wang Q, Li Z, Liu J, Xu C, Sun Y, Liu X, Zhou F, Zhou C. First-in-human, phase 1 dose-escalation and dose-expansion study of a RET inhibitor SY-5007 in patients with advanced RET-altered solid tumors. Signal Transduct Target Ther 2024; 9:300. [PMID: 39489747 DOI: 10.1038/s41392-024-02006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Oncogenic RET alteration is an important, tissue-agnostic therapeutic target across diverse cancers. We conducted a first-in-human phase 1 study on SY-5007, a potent and selective RET inhibitor, in patients with RET-altered solid tumors. Primary endpoints were safety, maximum tolerated dose (MTD), and recommended phase 2 dose (RP2D). Secondary endpoints included pharmacokinetics and preliminary anti-tumor activity. A total of 122 patients were enrolled (17 in dose-escalation phase and 105 in dose-expansion phase), including 91 with non-small cell lung cancer, 23 with medullary thyroid cancer, 7 with papillary thyroid cancer and 1 with gastric cancer. Treatment-related adverse events (TRAEs) were reported in 96.7% of patients, with the most common grade ≥ 3 TRAEs being hypertension (22.1%), diarrhea (16.4%), hypertriglyceridemia (6.6%), and neutropenia (6.6%). The exposure to SY-5007 was dose proportional. Among the 116 efficacy-evaluable patients, the overall objective response rate (ORR) was 57.8%, with 70.0% in treatment-naïve patients and 51.3% in previously treated patients. The median progression-free survival (PFS) was 21.1 months. Efficacy was observed regardless of tumor types and previous therapies. Biomarker analysis of 61 patients with circulating tumor DNA (ctDNA)-detectable RET alterations showed an ORR of 57.4% and median PFS of 13.8 months. Rapid ctDNA clearance of RET alteration correlated with faster responses and improved outcomes. In relapsed patients, off-target induced resistance was observed in 57.1% (12/21), with no on-target RET alterations identified. In conclusion, SY-5007 was well-tolerated and showed promising efficacy in patients with RET-altered solid tumors. Serial ctDNA monitoring may unveil treatment response and potential resistance mechanisms (NCT05278364).
Collapse
MESH Headings
- Humans
- Proto-Oncogene Proteins c-ret/genetics
- Proto-Oncogene Proteins c-ret/antagonists & inhibitors
- Male
- Female
- Middle Aged
- Aged
- Adult
- Thyroid Neoplasms/drug therapy
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Carcinoma, Neuroendocrine/drug therapy
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Thyroid Cancer, Papillary/drug therapy
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/pathology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Neoplasms/drug therapy
- Neoplasms/genetics
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/genetics
- Stomach Neoplasms/pathology
- Maximum Tolerated Dose
- Protein Kinase Inhibitors/pharmacokinetics
- Protein Kinase Inhibitors/adverse effects
- Protein Kinase Inhibitors/pharmacology
- Aged, 80 and over
Collapse
Affiliation(s)
- Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yongsheng Wang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Anwen Xiong
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Ge Gao
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Zhengbo Song
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yiping Zhang
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dingzhi Huang
- Lung Cancer Department, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Feng Ye
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Fujian, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhihui Li
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Jiaye Liu
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Chunwei Xu
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yinghui Sun
- Shouyao Holdings (Beijing) Co., Ltd, Beijing, China
| | - Xijie Liu
- Shouyao Holdings (Beijing) Co., Ltd, Beijing, China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Gorini F, Tonacci A. Vitamin C in the Management of Thyroid Cancer: A Highway to New Treatment? Antioxidants (Basel) 2024; 13:1242. [PMID: 39456495 PMCID: PMC11505632 DOI: 10.3390/antiox13101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy, with an increased global incidence in recent decades, despite a substantially unchanged survival. While TC has an excellent overall prognosis, some types of TC are associated with worse patient outcomes, depending on the genetic setting. Furthermore, oxidative stress is related to more aggressive features of TC. Vitamin C, an essential nutrient provided with food or as a dietary supplement, is a well-known antioxidant and a scavenger of reactive oxygen species; however, at high doses, it can induce pro-oxidant effects, acting through multiple biological mechanisms that play a crucial role in killing cancer cells. Although experimental data and, less consistently, clinical studies, suggest the possibility of antineoplastic effects of vitamin C at pharmacological doses, the antitumor efficacy of this nutrient in TC remains at least partly unexplored. Therefore, this review discusses the current state of knowledge on the role of vitamin C, alone or in combination with other conventional therapies, in the management of TC, the mechanisms underlying this association, and the perspectives that may emerge in TC treatment strategies, and, also, in light of the development of novel functional foods useful to this extent, by implementing novel sensory analysis strategies.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
4
|
Huai JX, Wang F, Zhang WH, Lou Y, Wang GX, Huang LJ, Sun J, Zhou XQ. Unveiling new chapters in medullary thyroid carcinoma therapy: advances in molecular genetics and targeted treatment strategies. Front Endocrinol (Lausanne) 2024; 15:1484815. [PMID: 39439561 PMCID: PMC11493660 DOI: 10.3389/fendo.2024.1484815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Medullary Thyroid Carcinoma (MTC), a neuroendocrine malignancy that arises from the calcitonin-secreting parafollicular C-cells of the thyroid, constitutes a minor yet impactful fraction of thyroid malignancies. Distinguished by its propensity for aggressive growth and a pronounced tendency for metastasis, MTC poses formidable obstacles to the early diagnosis and therapeutic intervention. The molecular genetics of MTC, particularly the role of the RET gene and the RAS gene family, have been extensively studied, offering insights into the pathogenesis of the disease and revealing potential therapeutic targets. This comprehensive review synthesizes the latest advancements in the molecular genetics of MTC, the evolution of precision therapies, and the identification of novel biomarkers. We also discuss the implications of these findings for clinical practice and the future direction of MTC research.
Collapse
Affiliation(s)
- Jia-Xuan Huai
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Wang
- Department of Otolaryngology, Xinyang Central Hospital, Xinyang, China
| | - Wen-Hui Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Lou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Gao-Xiang Wang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Ji Huang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Sun
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi-Qiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Gigliotti BJ, Brooks JA, Wirth LJ. Fundamentals and recent advances in the evaluation and management of medullary thyroid carcinoma. Mol Cell Endocrinol 2024; 592:112295. [PMID: 38871174 DOI: 10.1016/j.mce.2024.112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Medullary thyroid carcinoma (MTC) is a rare primary neuroendocrine thyroid carcinoma that is distinct from other thyroid or neuroendocrine cancers. Most cases of MTC are sporadic, although MTC exhibits a high degree of heritability as part of the multiple endocrine neoplasia syndromes. REarranged during Transfection (RET) mutations are the primary oncogenic drivers and advances in molecular profiling have revealed that MTC is enriched in druggable alterations. Surgery at an early stage is the only chance for cure, but many patients present with or develop metastases. C-cell-specific calcitonin trajectory and structural doubling times are critical biomarkers to inform prognosis, extent of surgery, likelihood of residual disease, and need for additional therapy. Recent advances in the role of active surveillance, regionally directed therapies for localized disease, and systemic therapy with multi-kinase and RET-specific inhibitors for progressive/metastatic disease have significantly improved outcomes for patients with MTC.
Collapse
Affiliation(s)
| | - Jennifer A Brooks
- Department of Otolaryngology Head & Neck Surgery, University of Rochester, Rochester, NY, USA.
| | - Lori J Wirth
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Wang Z, Yao Q, Bao L, Chang H, Ren M, Xue T, Wei R, Yu C, Wang Q, Wang Y, Ping B, Bai Q, Zhou X, Zhu X. Clinicopathological Features of CCDC6-RET and NCOA4-RET Fusions in Thyroid Cancer: A Single-Center Retrospective Cohort Study in a Chinese Population. Thyroid 2024; 34:1260-1270. [PMID: 39212716 DOI: 10.1089/thy.2024.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background: The rearranged during transfection (RET) proto-oncogene fusion is common in papillary thyroid cancer (PTC), varying across ethnic groups. However, comprehensive comparisons of RET fusion types are limited. This study aims to identify predominant RET fusions and analyze their clinicopathological characteristics in a cohort of Chinese thyroid cancer cases. Methods: This single-center retrospective cohort study analyzed thyroid cancer data, utilizing next-generation sequencing on formalin-fixed, paraffin-embedded tissue samples. Detailed clinicopathological data of thyroid cancer cases with RET fusions were collected. Results: Among 2300 thyroid cancer cases, RET fusions were exclusively found in PTC or differentiated high-grade thyroid carcinoma (DHGTC) cases (2234 cases), absent in other types (66 cases). Of the 2234 PTC or DHGTC cases, 113 (5.06%) exhibited RET fusions, including 100 primary cases. Coiled-coil domain containing 6 (CCDC6)-RET fusions predominated (78.0%, 78/100), with nuclear receptor coactivator 4 (NCOA4)-RET fusions representing 22.0% (22/100). NCOA4-RET fusions were more prevalent in patients aged 45 years and older (54.5% vs. 28.2%, p = 0.021) and DHGTC cases (p < 0.05) and associated with higher rates of lymph node metastases (90.9% vs. 67.9%, p = 0.032). CCDC6-RET fusion exhibited a higher prevalence of Hashimoto's thyroiditis (HT) (67.9% vs. 22.7%, p < 0.001) and elevated thyroglobulin antibody levels (14.11 [1.86-174.32] IU/mL vs. 2.01 [1.14-15.41] IU/mL, p = 0.018). Moreover, CCDC6-RET fusion predominantly occurred in classical PTC (56.4%, 44/78) and infiltrative follicular PTC (17.9%, 14/78), whereas NCOA4-RET fusion was more frequent in classical PTC (36.4%, 8/22), solid PTC (27.3%, 6/22), and DHGTC (27.3%, 6/22). RET fusions with compound mutations were associated with older age (≥45 years) and bilateral thyroid involvement. Follow-up data showed a higher recurrence rate in the RET fusion group compared with the BRAFV600E mutation group (5.0% vs. 0.0%, p = 0.018). Although the NCOA4-RET group showed a numerically higher recurrence rate compared with CCDC6-RET (9.1% vs. 3.8%), this difference was not statistically significant (p = 0.559). Conclusions: RET fusions are specific to PTC or DHGTC cases among Chinese thyroid cancer cases. CCDC6-RET and NCOA4-RET fusions exhibited distinct clinicopathological features, with NCOA4-RET being more aggressive.
Collapse
Affiliation(s)
- Zhiting Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qianlan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Longlong Bao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Heng Chang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Min Ren
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Tian Xue
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ran Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chengli Yu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qian Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yu Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bo Ping
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qianming Bai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaoli Zhu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
7
|
Zhang Y, Zheng WH, Zhou SH, Gu JL, Yu Q, Zhu YZ, Yan YJ, Zhu Z, Shang JB. Molecular genetics, therapeutics and RET inhibitor resistance for medullary thyroid carcinoma and future perspectives. Cell Commun Signal 2024; 22:460. [PMID: 39342195 PMCID: PMC11439284 DOI: 10.1186/s12964-024-01837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Medullary thyroid carcinoma (MTC) is a rare type of thyroid malignancy that accounts for approximately 1-2% of all thyroid cancers (TCs). MTC include hereditary and sporadic cases, the former derived from a germline mutation of rearrangement during transfection (RET) proto-oncogene, whereas somatic RET mutations are frequently present in the latter. Surgery is the standard treatment for early stage MTC, and the 10-year survival rate of early MTC is over 80%. While for metastatic MTC, chemotherapy showing low response rate, and there was a lack of effective systemic therapies in the past. Due to the high risk (ca. 15-20%) of distant metastasis and limited systemic therapies, the 10-year survival rate of patients with advanced MTC was only 10-40% from the time of first metastasis. Over the past decade, targeted therapy for RET has developed rapidly, bringing hopes to patients with advanced and progressive MTC. Two multi-kinase inhibitors (MKIs) including Cabozantinib and Vandetanib have been shown to increase progression-free survival (PFS) for patients with metastatic MTC and have been approved as choices of first-line treatment. However, these MKIs have not prolonged overall survival (OS) and their utility is limited due to high rates of off-target toxicities. Recently, new generation TKIs, including Selpercatinib and Pralsetinib, have demonstrated highly selective efficacy against RET and more favorable side effect profiles, and gained approval as second-line treatment options. Despite the ongoing development of RET inhibitors, the management of advanced and progressive MTC remains challenging, drug resistance remains the main reason for treatment failure, and the mechanisms are still unclear. Besides, new promising therapeutic approaches, such as novel drug combinations and next generation RET inhibitors are under development. Herein, we overview the pathogenesis, molecular genetics and current management approaches of MTC, and focus on the recent advances of RET inhibitors, summarize the current situation and unmet needs of these RET inhibitors in MTC, and provide an overview of novel strategies for optimizing therapeutic effects.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei-Hui Zheng
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shi-Hong Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jia-Lei Gu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, Zhejiang, China
| | - Qing Yu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yi-Zhou Zhu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yu-Jie Yan
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Jin-Biao Shang
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China.
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Zhou Y, Kang J, Lu X. Targeting Solvent-Front Mutations for Kinase Drug Discovery: From Structural Basis to Design Strategies. J Med Chem 2024; 67:14702-14722. [PMID: 39143914 DOI: 10.1021/acs.jmedchem.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Solvent-front mutations have emerged as a common mechanism leading to acquired resistance to kinase inhibitors, representing a major challenge in the clinic. Several new-generation kinase inhibitors targeting solvent-front mutations have either been approved or advanced to clinical trials. However, there remains a need to discover effective, new-generation inhibitors. In this Perspective, we systematically summarize the general types of solvent-front mutations across the kinome and describe the development of inhibitors targeting some key solvent-front mutations. Additionally, we highlight the challenges and opportunities for the next generation of kinase inhibitors directed toward overcoming solvent-front mutations.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Jibo Kang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Xiaoyun Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| |
Collapse
|
9
|
Nowak-Karnowska J, Głuszyńska A, Kosman J, Dembska A. Fluorescence Turn-Off Ligand for Parallel G-Quadruplexes. Molecules 2024; 29:3907. [PMID: 39202986 PMCID: PMC11357100 DOI: 10.3390/molecules29163907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Parallel-stranded G-quadruplex structures are found to be common in the human promoter sequences. We tested highly fluorescent 9-methoxyluminarine ligand (9-MeLM) binding interactions with different parallel G-quadruplexes DNA by spectroscopic methods such as fluorescence and circular dichroism (CD) titration as well as UV melting profiles. The results showed that the studied 9-MeLM ligand interacted with the intramolecular parallel G-quadruplexes (G4s) with similar affinity. The binding constants of 9-methoxyluminarine with different parallel G4s were determined. The studies upon oligonucleotides with different flanking sequences on c-MYC G-quadruplex suggest that 9-methoxyluminarine may preferentially interact with 3'end of the c-MYC promoter. The high decrease in 9-MeLM ligand fluorescence upon binding to all tested G4s indicates that 9-methoxyluminarine molecule can be used as a selective fluorescence turn-off probe for parallel G-quadruplexes.
Collapse
Affiliation(s)
- Joanna Nowak-Karnowska
- Department of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (J.N.-K.); (A.G.)
| | - Agata Głuszyńska
- Department of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (J.N.-K.); (A.G.)
| | - Joanna Kosman
- Department of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (J.N.-K.); (A.G.)
- Laboratory of Molecular Assays and Imaging, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Anna Dembska
- Department of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (J.N.-K.); (A.G.)
| |
Collapse
|
10
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Yokota T, Hamauchi S, Kawakami T, Fushiki K. Lenvatinib rechallenge after failure of lenvatinib and sorafenib in metastatic thyroid cancer. Invest New Drugs 2024; 42:361-368. [PMID: 38809355 DOI: 10.1007/s10637-024-01449-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
The oral multikinase inhibitors sorafenib and lenvatinib are currently available as first-line treatment for patients with unresectable or metastatic thyroid cancer. However, treatment options for patients who are refractory to these multikinase inhibitors are limited. This study aimed to evaluate the safety and efficacy of rechallenged lenvatinib after failure of both lenvatinib and sorafenib in patients with metastatic thyroid cancer in the real-world clinical practice. We retrospectively reviewed the data of consecutive 16 patients with metastatic thyroid cancer who received lenvatinib as a rechallenge after failure of initial lenvatinib and sorafenib treatment at Shizuoka Cancer Center between 2016 and 2023. Of these, the initial lenvatinib was discontinued in 12 patients owing to progressive disease, in 3 patients owing to adverse events, and in 1 patient owing to both. The overall response rate was 6.7%, and disease control was achieved by rechallenge with lenvatinib in all patients with the target lesions. The median progression free survival after rechallenging with lenvatinib was 15.0 months. No new signs of toxicity were observed after rechallenging with lenvatinib. Our findings suggest that rechallenge with lenvatinib after failure of both lenvatinib and sorafenib showed manageable safety and modest efficacy in patients with metastatic thyroid cancer in clinical practice. The strategy of lenvatinib rechallenge may provide an alternative option for patients with no targetable driver genes or when selective kinase inhibitors are not indicated.
Collapse
Affiliation(s)
- Tomoya Yokota
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Satoshi Hamauchi
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Takeshi Kawakami
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Kunihiro Fushiki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, Sunto-gun, Shizuoka, 411-8777, Japan
| |
Collapse
|
12
|
Li Y, Liu X, Liu J, Yang L, Wei S, Li J, Gan H, Ma T, Yi P. Lenvatinib in combination with transarterial chemoembolization vs. sorafenib in combination with transarterial chemoembolization for unresectable hepatocellular carcinoma: A network meta‑analysis. Oncol Lett 2024; 28:347. [PMID: 38872858 PMCID: PMC11170262 DOI: 10.3892/ol.2024.14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
The use of tyrosine kinase inhibitors combined with transarterial chemoembolization (TACE) is considered the standard therapy for patients with unresectable hepatocellular carcinoma (uHCC). However, information regarding the efficacy of lenvatinib or sorafenib in combination with TACE for patients with uHCC is limited. The present study involved a systematic search for randomized controlled trials on the PubMed, Embase, Web of Science and the Cochrane Library online databases to compare the use of TACE combined with either lenvatinib or sorafenib, and monotherapy using either lenvatinib or sorafenib for patients with uHCC. The network meta-analysis of the present study included eight randomized controlled trials involving 2,929 patients. The random-effects model was used, and hazard ratios and risk ratios with 95% CIs were calculated. Lenvatinib in combination with TACE provided the maximal overall survival (97.92%), progression-free survival (87.8%), objective response (96.68%) and disease control (96.27%) rates. The results of the present study indicated that, in the treatment of patients with uHCC, lenvatinib in combination with TACE showed a significantly improved efficacy when compared with sorafenib and TACE. Therefore, in the future, combination therapy of lenvatinib with TACE could be potentially prioritized over sorafenib with TACE for the treatment of patients with uHCC.
Collapse
Affiliation(s)
- Yong Li
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xingyu Liu
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Junning Liu
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Linfeng Yang
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Song Wei
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jijiang Li
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Huixin Gan
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Ting Ma
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Pengsheng Yi
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
13
|
Giovanella L, Tuncel M, Aghaee A, Campenni A, De Virgilio A, Petranović Ovčariček P. Theranostics of Thyroid Cancer. Semin Nucl Med 2024; 54:470-487. [PMID: 38503602 DOI: 10.1053/j.semnuclmed.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
Molecular imaging is pivotal in evaluating and managing patients with different thyroid cancer histotypes. The existing, pathology-based, risk stratification systems can be usefully refined, by incorporating tumor-specific molecular and molecular imaging biomarkers with theranostic value, allowing patient-specific treatment decisions. Molecular imaging with different radioactive iodine isotopes (ie, I131, I123, I124) is a central component of differentiated carcinoma (DTC)'s risk stratification while [18F]F-fluorodeoxyglucose ([18F]FDG) PET/CT is interrogated about disease aggressiveness and presence of distant metastases. Moreover, it is particularly useful to assess and risk-stratify patients with radioiodine-refractory DTC, poorly differentiated, and anaplastic thyroid cancers. [18F]F-dihydroxyphenylalanine (6-[18F]FDOPA) PET/CT is the most specific and accurate molecular imaging procedure for patients with medullary thyroid cancer (MTC), a neuroendocrine tumor derived from thyroid C-cells. In addition, [18F]FDG PET/CT can be used in patients with more aggressive clinical or biochemical (ie, serum markers levels and kinetics) MTC phenotypes. In addition to conventional radioiodine therapy for DTC, new redifferentiation strategies are now available to restore uptake in radioiodine-refractory DTC. Moreover, peptide receptor theranostics showed promising results in patients with advanced and metastatic radioiodine-refractory DTC and MTC, respectively. The current appropriate role and future perspectives of molecular imaging and theranostics in thyroid cancer are discussed in our present review.
Collapse
Affiliation(s)
- Luca Giovanella
- Department of Nuclear Medicine, Gruppo Ospedaliero Moncucco, Lugano, Switzerland; Clinic for Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland.
| | - Murat Tuncel
- Department of Nuclear Medicine, Hacettepe University, Ankara, Turkey
| | - Atena Aghaee
- Department of Nuclear Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alfredo Campenni
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Messina, Italy
| | - Armando De Virgilio
- Department of Head and Neck Surgery Humanitas Research Hospital, Rozzano, Italy
| | - Petra Petranović Ovčariček
- Department of Oncology and Nuclear Medicine, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia; School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
14
|
Kassir N, McDougall D, Kuruvilla D, Kim S, Kumar S, Rahman A, Ruf T, Cheeti S, Ankrom W. Exposure-Response Relationships for Pralsetinib in Patients with RET-Altered Thyroid Cancer or RET Fusion-Positive Nonsmall Cell Lung Cancer. J Clin Pharmacol 2024; 64:685-696. [PMID: 38337106 DOI: 10.1002/jcph.2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
Pralsetinib is a highly potent oral kinase inhibitor of oncogenic RET (rearranged during transfection) fusions and mutations. Pralsetinib received approval from the United States Food and Drug Administration for the treatment of patients with metastatic RET fusion-positive non-small cell lung cancer (NSCLC), and received accelerated approval for the treatment of patients with RET fusion-positive thyroid cancer. Exposure-response (ER) analyses of efficacy were performed separately in patients with thyroid cancer and in patients with NSCLC, but data for all patients were pooled for the safety analysis. ER models were developed with time-varying exposure; the effect of covariates was also examined. For patients with NSCLC, a higher starting dose was associated with improved progression-free survival (PFS), but this improvement did not correlate with a higher exposure overall. Significant covariates included sex and baseline Eastern Cooperative Oncology Group (ECOG) score. For patients with thyroid cancer, a higher exposure was associated with improved PFS. Significant covariates included prior systemic cancer therapy and ECOG score. For safety, higher exposure was associated with a greater risk of grade ≥3 anemia, pneumonia, and lymphopenia. Patients with an ECOG score of ≥1 had an increased risk of grade ≥3 pneumonia. Non-White patients had a lower risk of grade ≥3 lymphopenia. ER analysis revealed that higher pralsetinib exposure was associated with improved PFS in thyroid cancer, but not in NSCLC. However, a higher starting dose (ie, 400 vs ≤300 mg daily) was correlated with better PFS for all indications. Higher exposure was also associated with an increased risk of grade ≥3 adverse events (AEs); however, the overall incidence of these events was acceptably low (≤20%). This analysis supports the use of a 400 mg starting dose of pralsetinib, allowing for dose reduction in the event of AEs.
Collapse
Affiliation(s)
| | | | | | - Sean Kim
- Blueprint Medicines Corporation, Cambridge, MA, USA
| | | | | | | | | | - Wendy Ankrom
- Blueprint Medicines Corporation, Cambridge, MA, USA
| |
Collapse
|
15
|
Huang Y, Lin P, Liao J, Liang F, Han P, Fu S, Jiang Y, Yang Z, Tan N, Huang J, Chen R, Ouyang N, Huang X. Next-generation sequencing identified that RET variation associates with lymph node metastasis and the immune microenvironment in thyroid papillary carcinoma. BMC Endocr Disord 2024; 24:68. [PMID: 38734621 PMCID: PMC11088169 DOI: 10.1186/s12902-024-01586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND To date, although most thyroid carcinoma (THCA) achieves an excellent prognosis, some patients experience a rapid progression episode, even with differentiated THCA. Nodal metastasis is an unfavorable predictor. Exploring the underlying mechanism may bring a deep insight into THCA. METHODS A total of 108 THCA from Chinese patients with next-generation sequencing (NGS) were recruited. It was used to explore the gene alteration spectrum of THCA and identify gene alterations related to nodal metastasis in papillary thyroid carcinoma (PTC). The Cancer Genome Atlas THCA cohort was further studied to elucidate the relationship between specific gene alterations and tumor microenvironment. A pathway enrichment analysis was used to explore the underlying mechanism. RESULTS Gene alteration was frequent in THCA. BRAF, RET, POLE, ATM, and BRCA1 were the five most common altered genes. RET variation was positively related to nodal metastasis in PTC. RET variation is associated with immune cell infiltration levels, including CD8 naïve, CD4 T and CD8 T cells, etc. Moreover, Step 3 and Step 4 of the cancer immunity cycle (CIC) were activated, whereas Step 6 was suppressed in PTC with RET variation. A pathway enrichment analysis showed that RET variation was associated with several immune-related pathways. CONCLUSION RET variation is positively related to nodal metastasis in Chinese PTC, and anti-tumor immune response may play a role in nodal metastasis triggered by RET variation.
Collapse
Affiliation(s)
- Yongsheng Huang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Peiliang Lin
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jianwei Liao
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Faya Liang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Ping Han
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Sha Fu
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuanling Jiang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhifan Yang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Ni Tan
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jinghua Huang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Renhui Chen
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Nengtai Ouyang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Xiaoming Huang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
16
|
Kato T, Mizuno R, Miyake H. Prevalence and management of proteinuria associated with vascular endothelial growth factor receptor-targeted tyrosine kinase inhibitor treatment in advanced renal cell carcinoma, hepatocellular carcinoma, and thyroid cancer. Int J Urol 2024; 31:465-474. [PMID: 38318663 PMCID: PMC11524110 DOI: 10.1111/iju.15409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Vascular endothelial growth factor receptor-targeted tyrosine kinase inhibitors (VEGFR-TKIs) are often used for treatment of several types of cancer; however, they are associated with an increased risk of proteinuria, sometimes leading to treatment discontinuation. We searched PubMed and Scopus to identify clinical studies examining the incidence and risk factors for proteinuria caused by VEGFR-TKIs in patients with renal cell carcinoma, thyroid cancer, and hepatocellular carcinoma. The global incidence of proteinuria ranged from 6% to 34% for all grades of proteinuria, and from 1% to 10% for grade ≥3 proteinuria. The incidence of proteinuria did not differ significantly by cancer type, but in all three cancer types, there was a trend toward a higher incidence of proteinuria with lenvatinib than with other VEGFR-TKIs. In terms of risk factors, the incidence of proteinuria was significantly higher among Asians (including Japanese) compared with non-Asian populations. Other risk factors included diabetes mellitus, hypertension, and previous nephrectomy. When grade 3/4 proteinuria occurs, patients should be treated according to the criteria for dose reduction or withdrawal specified for each drug. For grade 2 proteinuria, treatment should be continued when the benefits outweigh the risks. Referral to a nephrologist should be considered for symptoms related to decreased renal function or when proteinuria has not improved after medication withdrawal. These management practices should be implemented universally, regardless of the cancer type.
Collapse
Affiliation(s)
- Taigo Kato
- Department of UrologyOsaka University Graduate School of MedicineOsakaJapan
| | - Ryuichi Mizuno
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Hideaki Miyake
- Division of UrologyKobe University Graduate School of MedicineHyogoJapan
| |
Collapse
|
17
|
Chatzi D, Kyriakoudi SA, Dermitzakis I, Manthou ME, Meditskou S, Theotokis P. Clinical and Genetic Correlation in Neurocristopathies: Bridging a Precision Medicine Gap. J Clin Med 2024; 13:2223. [PMID: 38673496 PMCID: PMC11050951 DOI: 10.3390/jcm13082223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Neurocristopathies (NCPs) encompass a spectrum of disorders arising from issues during the formation and migration of neural crest cells (NCCs). NCCs undergo epithelial-mesenchymal transition (EMT) and upon key developmental gene deregulation, fetuses and neonates are prone to exhibit diverse manifestations depending on the affected area. These conditions are generally rare and often have a genetic basis, with many following Mendelian inheritance patterns, thus making them perfect candidates for precision medicine. Examples include cranial NCPs, like Goldenhar syndrome and Axenfeld-Rieger syndrome; cardiac-vagal NCPs, such as DiGeorge syndrome; truncal NCPs, like congenital central hypoventilation syndrome and Waardenburg syndrome; and enteric NCPs, such as Hirschsprung disease. Additionally, NCCs' migratory and differentiating nature makes their derivatives prone to tumors, with various cancer types categorized based on their NCC origin. Representative examples include schwannomas and pheochromocytomas. This review summarizes current knowledge of diseases arising from defects in NCCs' specification and highlights the potential of precision medicine to remedy a clinical phenotype by targeting the genotype, particularly important given that those affected are primarily infants and young children.
Collapse
Affiliation(s)
| | | | | | | | | | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (S.A.K.); (I.D.); (M.E.M.); (S.M.)
| |
Collapse
|
18
|
Batool M, Khan NU, Khan H, Almutairi MH, Ali I, Adams BD. BRAF and RET polymorphism association with thyroid cancer risk, a preliminary study from Khyber Pakhtunkhwa population. Mol Biol Rep 2024; 51:502. [PMID: 38598020 DOI: 10.1007/s11033-024-09480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Thyroid cancer, originating in the neck's thyroid gland, encompasses various types. Genetic mutations, particularly in BRAF and RET genes are crucial in its development. This study investigates the association between BRAF (rs113488022) and RET (rs77709286) polymorphisms and thyroid cancer risk in the Khyber Pakhtunkhwa (KP) population. METHODS Blood samples from 100 thyroid cancer patients and 100 healthy controls were genotyped using ARMS-PCR followed by gel electrophoresis and statistical analysis. RESULTS Analysis revealed a significant association between the minor allele T of BRAF (rs113488022) and thyroid cancer risk (P = 0.0001). Both genotypes of BRAF (rs113488022) showed significant associations with thyroid cancer risk (AT; P = 0.0012 and TT; P = 0.045). Conversely, the minor allele G of RET (rs77709286) exhibited a non-significant association with thyroid cancer risk (P = 0.2614), and neither genotype showed significant associations (CG; P = 0.317, GG; P = 0.651). Demographic and clinical parameters analysis using SPSS showed a non-significant association between BRAF and RET variants and age group (P = 0.878 and P = 0.536), gender (P = 0.587 and P = 0.21), tumor size (P = 0.796 and P = 0.765), or tumor localization (P = 0.689 and P = 0.727). CONCLUSION In conclusion, this study emphasizes the significant association between BRAF polymorphism and thyroid cancer risk, while RET polymorphism showed a less pronounced impact. Further validation using larger and specific datasets is essential to establish conclusive results.
Collapse
Affiliation(s)
- Maryam Batool
- Institute of Biotechnology & Genetic Engineering (Health Division), The University of Agriculture Peshawar, P.O. Box: 25130, Peshawar, Pakistan
| | - Najeeb Ullah Khan
- Institute of Biotechnology & Genetic Engineering (Health Division), The University of Agriculture Peshawar, P.O. Box: 25130, Peshawar, Pakistan.
| | - Hamza Khan
- Institute of Biotechnology & Genetic Engineering (Health Division), The University of Agriculture Peshawar, P.O. Box: 25130, Peshawar, Pakistan
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Hawally, Kuwait
| | - Brian D Adams
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, USA
| |
Collapse
|
19
|
Xiang Y, Liu X, Wang Y, Zheng D, Meng Q, Jiang L, Yang S, Zhang S, Zhang X, Liu Y, Wang B. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges. Front Immunol 2024; 15:1366260. [PMID: 38655260 PMCID: PMC11035781 DOI: 10.3389/fimmu.2024.1366260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Resistance to targeted therapy and immunotherapy in non-small cell lung cancer (NSCLC) is a significant challenge in the treatment of this disease. The mechanisms of resistance are multifactorial and include molecular target alterations and activation of alternative pathways, tumor heterogeneity and tumor microenvironment change, immune evasion, and immunosuppression. Promising strategies for overcoming resistance include the development of combination therapies, understanding the resistance mechanisms to better use novel drug targets, the identification of biomarkers, the modulation of the tumor microenvironment and so on. Ongoing research into the mechanisms of resistance and the development of new therapeutic approaches hold great promise for improving outcomes for patients with NSCLC. Here, we summarize diverse mechanisms driving resistance to targeted therapy and immunotherapy in NSCLC and the latest potential and promising strategies to overcome the resistance to help patients who suffer from NSCLC.
Collapse
Affiliation(s)
- Yuchu Xiang
- West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Xudong Liu
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Dawei Zheng
- The College of Life Science, Sichuan University, Chengdu, China
| | - Qiuxing Meng
- Department of Laboratory Medicine, Liuzhou People’s Hospital, Liuzhou, China
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People’s Hospital), Liuzhou, China
| | - Lingling Jiang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sha Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Zhongshan Hospital of Fudan University, Xiamen, Fujian, China
| | - Yan Liu
- Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Wang
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
20
|
Lu X, Yu R, Li Z, Yang M, Dai J, Liu M. JC-010a, a novel selective SHP2 allosteric inhibitor, overcomes RTK/non-RTK-mediated drug resistance in multiple oncogene-addicted cancers. Cancer Lett 2024; 582:216517. [PMID: 38101609 DOI: 10.1016/j.canlet.2023.216517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
Src homology 2 domain-containing phosphatase (SHP2) is a non-receptor protein phosphatase that transduces signals from upstream receptor tyrosine kinases (RTKs)/non-RTKs to Ras/MAPK pathway. Accumulating studies indicated that SHP2 is a critical mediator of resistance to current targeted therapies in multiple cancers. Here, we reported a novel SHP2 allosteric inhibitor JC-010a, which was highly selective to SHP2 and bound at the "tunnel" allosteric site of SHP2. The effect of JC-010a on combating RTK/non-RTK or MAPK inhibitors-induced acquired resistance was explored. Our study demonstrated that JC-010a monotherapy significantly inhibited the proliferation of cancer cells with different oncogenic drivers via inhibiting signaling through SHP2. Importantly, JC-010a abolished acquired resistance induced by targeted therapies: in KRAS-mutant cancers, JC-010a abrogated selumetinib-induced adaptive resistance mediated by RTK/SHP2; in BCR-ABL-driven leukemia cells, we demonstrated JC-010a inhibited BCR-ABL T315I mutation-mediated imatinib resistance and proposed a novel mechanism of JC-010a involving the disrupted co-interaction of SHP2, BCR-ABL, and Hsp90; in non-small cell lung cancer (NSCLC) cells, JC-010a inhibited both EGFR T790M/C797S mutation and alternate RTK-driven resistance to gefitinib or osimertinib; importantly, we first proposed a novel potential therapeutic strategy for RET-rearranged cancer, we confirmed that JC-010a monotherapy inhibited cell resistance to BLU-667, and JC-010a/BLU-667 combination prolonged anticancer response both in vivo and in vitro cancer models by inhibiting the alternate MET activation-induced RAS/MAPK reactivation, thereby promoting cancer cell apoptosis. These findings suggested that JC-010a was a novel selective SHP2 allosteric inhibitor, and combing JC-010a with current targeted therapy agents provided a promising therapeutic approach for clinical resistant cancers.
Collapse
Affiliation(s)
- Xuxiu Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhen Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Mengke Yang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Jiajia Dai
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
21
|
Ju G, Sun Y, Wang H, Zhang X, Mu Z, Sun D, Huang L, Lin R, Xing T, Cheng W, Liang J, Lin YS. Fusion Oncogenes in Patients With Locally Advanced or Distant Metastatic Differentiated Thyroid Cancer. J Clin Endocrinol Metab 2024; 109:505-515. [PMID: 37622214 PMCID: PMC10795910 DOI: 10.1210/clinem/dgad500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
CONTEXT Fusion oncogenes are involved in the underlying pathology of advanced differentiated thyroid cancer (DTC), and even the cause of radioactive iodine (RAI)-refractoriness. OBJECTIVE We aimed to investigation between fusion oncogenes and clinicopathological characteristics involving a large-scale cohort of patients with advanced DTC. METHODS We collected 278 tumor samples from patients with locally advanced (N1b or T4) or distant metastatic DTC. Targeted next-generation sequencing with a 26-gene ThyroLead panel was performed on these samples. RESULTS Fusion oncogenes accounted for 29.86% of the samples (72 rearrangement during transfection (RET) fusions, 7 neurotrophic tropomyosin receptor kinase (NTRK) fusions, 4 anaplastic lymphoma kinase (ALK) fusions) and occurred more frequently in pediatric patients than in their adult counterparts (P = .003, OR 2.411, 95% CI 1.329-4.311) in our cohort. DTCs with fusion oncogenes appeared to have a more advanced American Joint Committee on Cancer (AJCC)_N and AJCC_M stage (P = .0002, OR 15.47, 95% CI 2.54-160.9, and P = .016, OR 2.35, 95% CI 1.18-4.81) than those without. DTCs with fusion oncogenes were associated with pediatric radioactive iodine (RAI) refractoriness compared with those without fusion oncogenes (P = .017, OR 4.85, 95% CI 1.29-15.19). However, in adult DTCs, those with fusion oncogenes were less likely to be associated with RAI refractoriness than those without (P = .029, OR 0.50, 95% CI 0.27-0.95), owing to a high occurrence of the TERT mutation, which was the most prominent genetic risk factor for RAI refractoriness in multivariate logistic regression analysis (P < .001, OR 7.36, 95% CI 3.14-17.27). CONCLUSION Fusion oncogenes were more prevalent in pediatric DTCs than in their adult counterparts and were associated with pediatric RAI refractoriness, while in adult DTCs, TERT mutation was the dominant genetic contributor to RAI refractoriness rather than fusion oncogenes.
Collapse
Affiliation(s)
- Gaoda Ju
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
- Department of Oncology, Peking University International Hospital, Peking University, Beijing, 102206, China
| | - Yuqing Sun
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Hao Wang
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266011, China
| | - Xin Zhang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Zhuanzhuan Mu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Di Sun
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Lisha Huang
- Department of Medical, Zhejiang Shaoxing Topgen Biomedical Technology Co., Ltd., Shanghai, 201321, China
| | - Ruijue Lin
- Department of Technology, Zhejiang Topgen Clinical Laboratory Co., Ltd., Huzhou, 201914, China
| | - Tao Xing
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Wuying Cheng
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Jun Liang
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Department of Oncology, Peking University International Hospital, Peking University, Beijing, 102206, China
| | - Yan-Song Lin
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| |
Collapse
|
22
|
Modica R, Liccardi A, Minotta R, Cannavale G, Benevento E, Colao A. Current understanding of pathogenetic mechanisms in neuroendocrine neoplasms. Expert Rev Endocrinol Metab 2024; 19:49-61. [PMID: 37936421 DOI: 10.1080/17446651.2023.2279540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Despite the fact that important advances in research on neuroendocrine neoplasms (NENs) have been made, consistent data about their pathogenetic mechanism are still lacking. Furthermore, different primary sites may recognize different pathogenetic mechanisms. AREAS COVERED This review analyzes the possible biological and molecular mechanisms that may lead to NEN onset and progression in different organs. Through extensive research of the literature, risk factors including hypercholesterolemia, inflammatory bowel disease, chronic atrophic gastritis are evaluated as potential pathogenetic mechanisms. Consistent evidence is available regarding sporadic gastric NENs and MEN1 related duodenopancreatic NENs precursor lesions, and genetic-epigenetic mutations may play a pivotal role in tumor development and bone metastases onset. In lung neuroendocrine tumors (NETs), diffuse proliferation of neuroendocrine cells on the bronchial wall (DIPNECH) has been proposed as a premalignant lesion, while in lung neuroendocrine carcinoma nicotine and smoke could be responsible for carcinogenic processes. Also, rare primary NENs such as thymic (T-NENs) and Merkel cell carcinoma (MCC) have been analyzed, finding different possible pathogenetic mechanisms. EXPERT OPINION New technologies in genomics and epigenomics are bringing new light to the pathogenetic landscape of NENs, but further studies are needed to improve both prevention and treatment in these heterogeneous neoplasms.
Collapse
Affiliation(s)
- Roberta Modica
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Alessia Liccardi
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Roberto Minotta
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Giuseppe Cannavale
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Elio Benevento
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Annamaria Colao
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
- UNESCO Chair "Education for Health and Sustainable Development, " Federico II University, Naples, Italy
| |
Collapse
|
23
|
Jiang W, Quan R, Bhandari A, Hirachan S, Chen C, Lv S, Zheng C. PAFAH1B3 Regulates Papillary Thyroid Carcinoma Cell Proliferation and Metastasis by Affecting the EMT. Curr Med Chem 2024; 31:1152-1164. [PMID: 37102492 DOI: 10.2174/0929867330666230427102920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 04/28/2023]
Abstract
INTRODUCTION Thyroid carcinoma (TC) is currently the prevalent type of endocrine malignancy worldwide, having an incidence of around 15.5 per 100,000 people. However, the underlying mechanisms of TC tumorigenesis remain to be further elucidated. METHODS Performing the database analyses, Platelet-activating factor acetylhydrolase 1B3 (PAFAH1B3) was found to be dysregulated in several carcinomas and might trigger tumor occurrence as well as the progression of TC. Clinicopathological information of patients from our local validated cohort and The Cancer Genome Atlas (TCGA) cohort also confirmed this hypothesis. RESULTS Our present research showed that elevated expression of PAFAH1B3 has a close association with worse behavior in papillary thyroid carcinoma (PTC). We utilized the small interfering RNA to obtain the PAFAH1B3-transfected PTC cell lines, including BCPAP, FTC-133, and TPC-1, and then further examined their biological function in vitro. Furthermore, gene set enrichment analysis suggested that PAFAH1B3 is implicated with epithelial-mesenchymal transition (EMT). Afterward, the western blotting assays aimed at EMT-related proteins were performed. CONCLUSION In short, our results revealed that silencing PAFAH1B3 could hinder the capabilities of proliferation, migration, and invasion of PTC cells. Increasing expression of PAFAH1B3 might be of quintessence with lymph node metastasis by triggering EMT in PTC patients.
Collapse
Affiliation(s)
- Wenjie Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ruida Quan
- Department of Thyroid Surgery, Ningbo No.2 Hospital: Ningbo Huamei Hospital University of Chinese Academy of Sciences, Ningbo, Zhejiang, P.R. China
| | - Adheesh Bhandari
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Department of General Surgery, Breast and Thyroid Unit, Primera Hospital, Kathmandu, Nepal
| | - Suzita Hirachan
- Department of General Surgery, Breast and Thyroid Unit, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Chengze Chen
- Department of Thyroid Surgery, Ningbo No.2 Hospital: Ningbo Huamei Hospital University of Chinese Academy of Sciences, Ningbo, Zhejiang, P.R. China
| | - Shihui Lv
- Department of Urology Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chen Zheng
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
24
|
Shen H, Zhu R, Liu Y, Hong Y, Ge J, Xuan J, Niu W, Yu X, Qin JJ, Li Q. Radioiodine-refractory differentiated thyroid cancer: Molecular mechanisms and therapeutic strategies for radioiodine resistance. Drug Resist Updat 2024; 72:101013. [PMID: 38041877 DOI: 10.1016/j.drup.2023.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 12/04/2023]
Abstract
Radioiodine-refractory differentiated thyroid cancer (RAIR-DTC) is difficult to treat with radioactive iodine because of the absence of the sodium iodide transporter in the basement membrane of thyroid follicular cells for iodine uptake. This is usually due to the mutation or rearrangement of genes and the aberrant activation of signal pathways, which result in abnormal expression of thyroid-specific genes, leading to resistance of differentiated thyroid cancer cells to radioiodine therapy. Therefore, inhibiting the proliferation and growth of RAIR-DTC with multikinase inhibitors and other drugs or restoring its differentiation and then carrying out radioiodine therapy have become the first-line treatment strategies and main research directions. The drugs that regulate these kinases or signaling pathways have been studied in clinical and preclinical settings. In this review, we summarized the major gene mutations, gene rearrangements and abnormal activation of signaling pathways that led to radioiodine resistance of RAIR-DTC, as well as the medicine that have been tested in clinical and preclinical trials.
Collapse
Affiliation(s)
- Huize Shen
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rui Zhu
- Department of stomatology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Yanyang Liu
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yangjian Hong
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiaming Ge
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jie Xuan
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenyuan Niu
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xuefei Yu
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Qinglin Li
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Li P, Zhang Y, Xu T, Zhu J, Wei T, Zhao W. Sensitivities evaluation of five radiopharmaceuticals in four common medullary thyroid carcinoma metastatic sites on PET/CT: a network meta-analysis and systematic review. Nucl Med Commun 2023; 44:1114-1125. [PMID: 37769014 PMCID: PMC10631508 DOI: 10.1097/mnm.0000000000001773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023]
Abstract
OBJECTIVES Detecting medullary thyroid carcinoma (MTC) metastatic lesions accurately is still a challenge for clinicians. PET/computed tomography (PET/CT) seems to be the most effective method in recent years. However, the sensitivity of each radiopharmaceutical varies greatly in different metastatic sites. We aim to investigate and compare five novel and common PET or PET/CT radiopharmaceutical sensitivities at the four most frequent metastatic sites by network meta-analysis. METHODS We searched for studies evaluating PET/CT radiopharmaceutical sensitivities at different metastatic sites in PubMed, Web of Science, Embase, and Cochrane Library. The risk bias was analyzed, and publication bias was accessed by funnel plot asymmetry tests. We performed both global inconsistency and local inconsistency tests by evaluating the agreement between direct and indirect comparisons. Then, we made pairwise meta-analyses and network meta-analyses for each metastatic site. Finally, we performed the surface under the cumulative ranking curves (SUCRA) and calculated the SUCRA values to rank the probability of each radiopharmaceutical being the most sensitive method. RESULTS In our results, 243 patients from 9 clinical studies which accessed sensitivities of different radiopharmaceuticals in MTC metastatic sites were included. For lymph nodes and liver, TF2/ 68 Ga-SSM288 showed the highest SUCRA values (0.974 in lymph nodes, 0.979 in liver). The SUCRA values for 18 F-DOPA and 68 Ga-SSA for bone metastatic lesions were nearly identical (0.301 and 0.319, respectively) and were higher than the other three radiopharmaceuticals. For lung lesions, 11 C-methionine had the highest SUCRA value (0.412). CONCLUSION TF2/ 68 Ga-SSM288 had the best sensitivity in lymph nodes and liver lesions. 11 C-methionine was most sensitive in lung lesions. While 18 F-DOPA and 68 Ga-SSA had familiar sensitivities to be the best two radiopharmaceuticals.
Collapse
Affiliation(s)
- Pengyu Li
- Department of Thyroid Surgery, West China Hospital, Sichuan University and
| | - Yujie Zhang
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tianfeng Xu
- Department of Thyroid Surgery, West China Hospital, Sichuan University and
| | - Jingqiang Zhu
- Department of Thyroid Surgery, West China Hospital, Sichuan University and
| | - Tao Wei
- Department of Thyroid Surgery, West China Hospital, Sichuan University and
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wanjun Zhao
- Department of Thyroid Surgery, West China Hospital, Sichuan University and
| |
Collapse
|
26
|
Liu J, Yan S, Zhang G, Yang L, Wei S, Yi P. A retrospective study of transarterial chemoembolization (TACE) combined with lenvatinib compared with TACE monotherapy for BCLC B2 stage hepatocellular carcinoma. Oncol Lett 2023; 26:507. [PMID: 37920437 PMCID: PMC10618929 DOI: 10.3892/ol.2023.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
The present study aimed to compare the efficacy and safety of combination therapy with lenvatinib (Len) plus transarterial chemoembolization (TACE) and TACE alone in patients with Barcelona Clinic Liver Cancer (BCLC) B2 stage hepatocellular carcinoma (HCC). A total of 66 patients with BCLC B2 stage HCC were retrospectively reviewed in the present study, of which 34 patients received Len + TACE, while 32 patients received TACE alone between May 2018 and May 2020. Survival outcome, tumor response and adverse events (AEs) were compared between the two treatment groups. The 6-month, 1- and 2-year overall survival (OS) rates were significantly higher in the Len + TACE group (97.1, 85.3 and 76.3%, respectively) compared with those in the TACE group [(93.8, 81.1 and 45.4%, respectively); hazard ratio (HR), 0.395; 95% confidence interval (CI), 0.180-0.867; P=0.023], but no significant difference in progression-free survival rate was observed between the two groups (HR, 0.815; 95% CI, 0.437-1.520; P=0.510). Patients receiving Len + TACE demonstrated a higher objective response rate compared with those receiving TACE alone (64.7 vs. 34.4%; P=0.014). Therefore, Len + TACE combination therapy was associated with increased OS and tumor response compared with that of TACE monotherapy in patients with BCLC B2 stage HCC. However, large-scale, multicenter, prospective studies are needed to further confirm these results.
Collapse
Affiliation(s)
- Junning Liu
- Department of Hepato-Biliary-Pancreas II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Shu Yan
- Department of Hepato-Biliary-Pancreas II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Guangnian Zhang
- Department of Hepato-Biliary-Pancreas II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Linfeng Yang
- Department of Hepato-Biliary-Pancreas II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Song Wei
- Department of Hepato-Biliary-Pancreas II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Pengsheng Yi
- Department of Hepato-Biliary-Pancreas II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
27
|
Laganà M, Cremaschi V, Alberti A, Vodopivec Kuri DM, Cosentini D, Berruti A. The Evolving Treatment Landscape of Medullary Thyroid Cancer. Curr Treat Options Oncol 2023; 24:1815-1832. [PMID: 37979019 PMCID: PMC10781862 DOI: 10.1007/s11864-023-01145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
OPINION STATEMENT Genetic assessment is crucial to address the correct treatment for advanced medullary thyroid cancer (MTC). Multi tyrosine kinase inhibitors (mTKIs) cabozantinib and vandetanib are good first line options, even vandetanib prescription is currently limited to RET mutated patients. Selective RET inhibitors such as pralsetinib could be a preferred upfront treatment in case of RET mutated MTC presenting common or gatekeeper RET mutations (e.g. M918T; V804L/M). Selpercatinib, otherwise, can be prescribed as the second line after disease progression to mTKIs. The best option for subsequent lines is to consider inclusion in clinical trials or alternatively other mTKIs such as sunitinib, sorafenib, lenvatinib, or pazopanib could be evaluated. New perspectives include next-generation RET inhibitors able to overcome resistance mechanisms responsible for disease progression to standard mTKIs and RET inhibitors, and immunotherapy for MTC presenting with high tumor mutational burden.
Collapse
Affiliation(s)
- Marta Laganà
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia at ASST Spedali Civili, 25123, Brescia, Italy
| | - Valentina Cremaschi
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia at ASST Spedali Civili, 25123, Brescia, Italy
| | - Andrea Alberti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia at ASST Spedali Civili, 25123, Brescia, Italy.
| | - Danica M Vodopivec Kuri
- Department of Endocrinology, Diabetes, and Metabolism, University Of Alabama, 619 19Th St S, Birmingham, AL, 35249, USA
| | - Deborah Cosentini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia at ASST Spedali Civili, 25123, Brescia, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia at ASST Spedali Civili, 25123, Brescia, Italy
| |
Collapse
|
28
|
Alzahrani AS. Clinical use of Molecular Data in Thyroid Nodules and Cancer. J Clin Endocrinol Metab 2023; 108:2759-2771. [PMID: 37200449 DOI: 10.1210/clinem/dgad282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
Over the past 3 decades, advances in the molecular genetics of thyroid cancer (TC) have been translated into diagnostic tests, prognostic markers, and therapeutic agents. The main drivers in differentiated TC pathogenesis are single-point mutations and gene fusions in components of the Mitogen-activated protein kinase (MAPK) and phosphoinositide-3-kinase-protein kinase B/Akt (PI3K/Akt) pathways. Other important genetic alterations in the more advanced types of TC include TERT promoter, TP53, EIF1AX, and epigenetic alterations. Using this knowledge, several molecular tests have been developed for cytologically indeterminate thyroid nodules. Currently, 3 commercially available tests are in use including a DNA/RNA-based test (ThyroSeq v.3), an RNA-based test (Afirma Gene Sequencing Classifier), and a hybrid DNA/miRNA test, ThyGeNEXT/ThyraMIR. These tests are mostly used to rule out malignancy in Bethesda III and IV thyroid nodules because they all have high sensitivities and negative predictive values. Their common use, predominantly in the United States, has resulted in a significant reduction in unnecessary thyroid surgeries for benign nodules. Some of these tests also provide information on the underlying molecular drivers of TC; this may support decision making in initial TC management planning, although this practice has not yet been widely adopted. More importantly, molecular testing is essential in patients with advanced disease before using specific mono-kinase inhibitors (eg, selpercatinib for RET-altered TC) because these drugs are ineffective in the absence of a specific molecular target. This mini-review discusses the utilization of molecular data in the clinical management of patients with thyroid nodules and TC in these different clinical situations.
Collapse
Affiliation(s)
- Ali S Alzahrani
- Department of Medicine and Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
29
|
Steen EA, Basilaia M, Kim W, Getz T, Gustafson JL, Zage PE. Targeting the RET tyrosine kinase in neuroblastoma: A review and application of a novel selective drug design strategy. Biochem Pharmacol 2023; 216:115751. [PMID: 37595672 PMCID: PMC10911250 DOI: 10.1016/j.bcp.2023.115751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The RET (REarranged during Transfection) gene, which encodes for a transmembrane receptor tyrosine kinase, is an established oncogene associated with the etiology and progression of multiple types of cancer. Oncogenic RET mutations and rearrangements resulting in gene fusions have been identified in many adult cancers, including medullary and papillary thyroid cancers, lung adenocarcinomas, colon and breast cancers, and many others. While genetic RET aberrations are much less common in pediatric solid tumors, increased RET expression has been shown to be associated with poor prognosis in children with solid tumors such as neuroblastoma, prompting an interest in RET inhibition as a form of therapy for these children. A number of kinase inhibitors currently in use for patients with cancer have RET inhibitory activity, but these inhibitors also display activity against other kinases, resulting in unwanted side effects and limiting their safety and efficacy. Recent efforts have been focused on developing more specific RET inhibitors, but due to high levels of conservation between kinase binding pockets, specificity remains a drug design challenge. Here, we review the background of RET as a potential therapeutic target in neuroblastoma tumors and the results of recent preclinical studies and clinical trials evaluating the safety and efficacy of RET inhibition in adults and children. We also present a novel approach to drug discovery leveraging the chemical phenomenon of atropisomerism to develop specific RET inhibitors and present preliminary data demonstrating the efficacy of a novel RET inhibitor against neuroblastoma tumor cells.
Collapse
Affiliation(s)
- Erica A Steen
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA
| | - Mariam Basilaia
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
| | - William Kim
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Taelor Getz
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA
| | - Jeffrey L Gustafson
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA
| | - Peter E Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA; Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital, San Diego, CA.
| |
Collapse
|
30
|
Li H, Chen Y, Hu L, Yang W, Gao Z, Liu M, Tao H, Li J. Will metformin use lead to a decreased risk of thyroid cancer? A systematic review and meta-analyses. Eur J Med Res 2023; 28:392. [PMID: 37773165 PMCID: PMC10542235 DOI: 10.1186/s40001-023-01287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/12/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND It has been reported that metformin use may reduce the risk of thyroid cancer, but existing studies have generated inconsistent results. The purpose of this study was to investigate such association between metformin use and the risk of thyroid cancer. METHODS Studies of metformin use for the risk of thyroid cancer were searched in Web of Science, PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, China Biomedical Database, Wanfang Data, and Chinese Scientific Journals Database (VIP) from the establishment date to December 2022. Newcastle-Ottawa scale is adopted for assessing the methodological quality of included studies, and the inter-study heterogeneity was assessed by using the I-squared statistic. Combined odds ratios (ORs) with the corresponding 95% confidence intervals (CIs) were calculated through either fixed-effects or random-effects model according to the heterogeneity. Besides, subgroup analyses, sensitivity analyses and test for publication bias were conducted. RESULTS Five studies involving 1,713,528 participants were enrolled in the qualitative and quantitative synthesis. The result of the meta-analyses showed that metformin use was associated with a statistically significant lower risk of thyroid cancer (pooled OR = 0.68, 95% CI = 0.50-0.91, P = 0.011). Moreover, in the subgroup analysis, we found that the use of metformin may also aid in the prevention of thyroid cancer in Eastern population (pooled OR = 0.55, 95% CI = 0.35-0.88, P = 0.012) rather than Western population (pooled OR = 0.89, 95% CI = 0.52-1.54, P = 0.685). Sensitivity analysis suggested the results of this meta-analyses were relatively stable. No publication bias was detected. CONCLUSION Metformin use is beneficial for reducing the risk of thyroid cancer. For further investigation, more well-designed studies are still needed to elucidate the association between metformin use and the risk of thyroid cancer.
Collapse
Affiliation(s)
- Hailong Li
- Department of Clinical Medicine, Sun Yat-Sen University, No.74 Nonglin Road, Guangzhou, 510030, Guangdong, People's Republic of China
| | - Yue Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China
| | - Lei Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China
| | - Wenzhi Yang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China
| | - Zongshi Gao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China
| | - Mengqing Liu
- Department of Clinical Medicine, School of Chaohu Clinical Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Hui Tao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China.
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China.
| | - Jie Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China.
| |
Collapse
|
31
|
Kabootari M, Habibi Tirtashi R, Zadeh-Vakili A, Zarkesh M, Samadanifard H, Haghighi S, Azizi F, Amouzegar A. RET/PTC rearrangement in papillary thyroid carcinoma arising in malignant struma ovarii with abdominal wall metastasis and cervical thyroid gland: a case report and review of the literature. Thyroid Res 2023; 16:39. [PMID: 37759238 PMCID: PMC10537935 DOI: 10.1186/s13044-023-00181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Struma ovarii refers to rare mature cystic teratomas containing at least 50% of thyroid tissue, and malignant transformation is known to be even rarer. The synchronous development of malignant struma ovarii and cervical thyroid carcinoma are also scarce and poorly understood due to limited data about molecular features. Here, we present the first report of RET/PTC 1 rearrangement in synchronous metastatic malignant struma ovarii to the abdominal wall and cervical thyroid cancer. CASE PRESENTATION We described a 47-year-old multigravida woman with bilateral adnexal and lower abdominal wall masses detected during the evaluation of abnormal uterine bleeding. The patient underwent a hysterectomy, bilateral salpingo-oophorectomy, and surgical removal of abdominal wall mass. Then, the pathological evaluation revealed papillary thyroid carcinoma (PTC) within struma ovarii and metastatic PTC in the abdominal wall fibro adipose tissue. Further, cervical thyroid gland physical examination and ultrasound illustrated a nodule within the left lobe. Subsequently, a total thyroidectomy was performed, and a histological examination revealed PTC. Furthermore, all affected tissue, i.e., struma ovarii, abdominal wall metastasis, and cervical thyroid gland tested for BRAF and RAS mutations and RET/PTC 1 rearrangement. RET/PTC 1 rearrangement was identified among all three different sites. Finally, after six years of follow-up, the patient had no evidence of recurrence or distant metastasis. CONCLUSIONS In light of these findings, malignant struma ovarii might yield a clue to cervical thyroid carcinoma, and the molecular analysis could provide valuable information for understanding the underlying mechanism, tumor clinicopathological behaviors, and prognosis.
Collapse
Affiliation(s)
- Maryam Kabootari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Habibi Tirtashi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Azita Zadeh-Vakili
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Aerabi St, Daneshjoo Blv, Velenjak, P.O. Box 19395-4763, Tehran, Tehran, Iran
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Samadanifard
- Department of Endocrinology, School of Medicine, Hazrat-e Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Haghighi
- Department of Hematology and Medical Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Aerabi St, Daneshjoo Blv, Velenjak, P.O. Box 19395-4763, Tehran, Tehran, Iran
| | - Atieh Amouzegar
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Aerabi St, Daneshjoo Blv, Velenjak, P.O. Box 19395-4763, Tehran, Tehran, Iran.
| |
Collapse
|
32
|
Li Q, Dong X, Jin G, Dong Y, Yu Y, Jin C, Huang X. Identification of Serpin peptidase inhibitor clade A member 1 (SERPINA1) might be a poor prognosis biomarker promoting the progression of papillary thyroid cancer. Life Sci 2023; 329:121938. [PMID: 37487942 DOI: 10.1016/j.lfs.2023.121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most prevalent malignancy within the endocrine system, exhibiting a rapid growth rate in recent years. Serpin peptidase inhibitor clade A member 1 (SERPINA1) has been previously proposed as a diagnostic biomarker; however, it's potential molecular relevance and biological function in PTC remains largely unexplored. METHODS Our study utilized multi-omics bioinformatic data from several public databases, supplemented with transcriptional profiles using our local cohort comprising 79 paired PTC samples. RESULTS Using multi-omics profiling of a PTC cohort, we have identified SERPINA1 as a potential oncogene involved in PTC progression. Our clinical analysis revealed a significant association between SERPINA1 expression and mutations in BRAFV600E and RAS. Furthermore, SERPINA1 level was correlated with clinicopathological factors in patients with PTC and with a worse prognosis in early-stage patients. Functionally, we found a strong correlation between SERPINA1 expression and increased infiltration of dendritic cells and regulatory T-cells, suggesting an elevated level of immune infiltration. Moreover, SERPINA1 knockdown reduced the proliferative and migrational ability of PTC cells in vitro. CONCLUSION Our study highlights the high expression of SERPINA1 in PTC and its potential role in shaping the immune microenvironment, thereby promoting disease progression. These findings suggest that SERPINA1 could serve as a promising therapeutic target for intervention in PTC.
Collapse
Affiliation(s)
- Quan Li
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xubin Dong
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Gebing Jin
- Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Youting Dong
- Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yan Yu
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cong Jin
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China.
| | - Xiaoli Huang
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
33
|
Han Y, Wen T, Wang J, Shi J, Zhu Y. Preclinical Pharmacokinetics and in vitro Metabolism of FHND5071, a Novel Selective RET Kinase Inhibitor. Eur J Drug Metab Pharmacokinet 2023; 48:595-614. [PMID: 37528327 DOI: 10.1007/s13318-023-00844-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND AND OBJECTIVES Rearranged during transfection (RET) is a transmembrane receptor tyrosine kinase that plays a crucial role in tumorigenesis. FHND5071, a potent and selective RET kinase inhibitor, could exert antitumor effects by inhibiting RET autophosphorylation. The present work aims to profile the pharmacokinetics of FHND5071 in in vivo and in vitro experiments as a ground work for further clinical research. METHODS The absorption, distribution, metabolism, and excretion properties of FHND5071 were examined, along with metabolite production and cytochrome P450 (CYP) phenotyping assay. Additionally, plasma protein binding and pharmacokinetics in mice were investigated. RESULTS Microsomal stability assay corroborated moderate to high clearance of FHND5071, and the use of UPLC-Q-TOF-MS identified a total of six metabolites and suggested a possible metabolic pathway involving oxidation, demethylation, and N-dealkylation. Primary contributors to the CYP-mediated metabolism of FHND5071 were found to be CYP2C8 and CYP3A4, and FHND5071 displayed low permeability and acted as a substrate for the P-glycoprotein (P-gp). FHND5071 had a moderate to high binding in plasma and exhibited a moderate absorption degree (absolute bioavailability > 60%) The distribution of FHND5071 in mouse tissues was rapid (mostly peaking at 1-4 h) and wide (detectable in almost all tissues and organs), with the highest exposure in the spleen. A small fraction of FHND5071 was excreted via the urine and feces, and a presumed metabolic pathway involving 20 metabolites in mice is proposed. CONCLUSION Pharmacokinetic characteristics of FHND5071 were systemically profiled, which may lay the foundation for further clinical development as a drug candidate.
Collapse
Affiliation(s)
- Yiran Han
- School of Life Sciences, Fudan University, No. 2005 Songhu Road, Shanghai, 200438, China
| | - Tiantian Wen
- School of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, China
| | - Jia Wang
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd, No. 9 Weidi Road, Nanjing, 210046, China
| | - Jinmiao Shi
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd, No. 9 Weidi Road, Nanjing, 210046, China
| | - Yongqiang Zhu
- School of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, China.
| |
Collapse
|
34
|
Desilets A, Repetto M, Yang SR, Sherman EJ, Drilon A. RET-Altered Cancers-A Tumor-Agnostic Review of Biology, Diagnosis and Targeted Therapy Activity. Cancers (Basel) 2023; 15:4146. [PMID: 37627175 PMCID: PMC10452615 DOI: 10.3390/cancers15164146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
RET alterations, such as fusions or mutations, drive the growth of multiple tumor types. These alterations are found in canonical (lung and thyroid) and non-canonical (e.g., gastrointestinal, breast, gynecological, genitourinary, histiocytic) cancers. RET alterations are best identified via comprehensive next-generation sequencing, preferably with DNA and RNA interrogation for fusions. Targeted therapies for RET-dependent cancers have evolved from older multikinase inhibitors to selective inhibitors of RET such as selpercatinib and pralsetinib. Prospective basket trials and retrospective reports have demonstrated the activity of these drugs in a wide variety of RET-altered cancers, notably those with RET fusions. This paved the way for the first tumor-agnostic selective RET inhibitor US FDA approval in 2022. Acquired resistance to RET kinase inhibitors can take the form of acquired resistance mutations (e.g., RET G810X) or bypass alterations.
Collapse
Affiliation(s)
- Antoine Desilets
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
| | - Matteo Repetto
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20133 Milan, Italy
| | - Soo-Ryum Yang
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
| | - Eric J. Sherman
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
35
|
Tasoulas J, Srivastava S, Xu X, Tarasova V, Maniakas A, Karreth FA, Amelio AL. Genetically engineered mouse models of head and neck cancers. Oncogene 2023; 42:2593-2609. [PMID: 37474617 PMCID: PMC10457205 DOI: 10.1038/s41388-023-02783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
The head and neck region is one of the anatomic sites commonly afflicted by cancer, with ~1.5 million new diagnoses reported worldwide in 2020 alone. Remarkable progress has been made in understanding the underlying disease mechanisms, personalizing care based on each tumor's individual molecular characteristics, and even therapeutically exploiting the inherent vulnerabilities of these neoplasms. In this regard, genetically engineered mouse models (GEMMs) have played an instrumental role. While progress in the development of GEMMs has been slower than in other major cancer types, several GEMMs are now available that recapitulate most of the heterogeneous characteristics of head and neck cancers such as the tumor microenvironment. Different approaches have been employed in GEMM development and implementation, though each can generally recapitulate only certain disease aspects. As a result, appropriate model selection is essential for addressing specific research questions. In this review, we present an overview of all currently available head and neck cancer GEMMs, encompassing models for head and neck squamous cell carcinoma, nasopharyngeal carcinoma, and salivary and thyroid gland carcinomas.
Collapse
Affiliation(s)
- Jason Tasoulas
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sonal Srivastava
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Valentina Tarasova
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Anastasios Maniakas
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florian A Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Antonio L Amelio
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
36
|
Porcelli T, Moccia M, De Stefano MA, Ambrosio R, Capoluongo E, Santoro M, Hadoux J, Schlumberger M, Carlomagno F, Salvatore D. D898_E901 RET Deletion Is Oncogenic, Responds to Selpercatinib, and Treatment Resistance Can Arise Via RET-Independent Mechanisms. JCO Precis Oncol 2023; 7:e2300052. [PMID: 37535881 PMCID: PMC10581602 DOI: 10.1200/po.23.00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/04/2023] [Accepted: 07/01/2023] [Indexed: 08/05/2023] Open
Abstract
PURPOSE We analyzed the oncogenic potential of RET Δ898-901 mutant and its response to selpercatinib, vandetanib, and cabozantinib in vitro and in a clinical case. MATERIALS AND METHODS A 35-year-old man with a medullary thyroid cancer (MTC) harboring a somatic D898_E901 RET deletion was sequentially treated with vandetanib, selpercatinib, cabozantinib, and fluorouracil (5-FU)-dacarbazine. Functional study of RET Δ898-901 mutant was performed in HEK-293T, NIH-3T3, and Ba/F3 cells. RET C634R and wild-type cells served as positive and negative controls, respectively. RESULTS The patient showed primary resistance to vandetanib and secondary resistance to selpercatinib after 12 months. Comprehensive next-generation sequencing of a progressing lesion during selpercatinib showed no additional RET mutation but an acquired complete genetic loss of CDKN2A, CDKN2B, and MTAP genes. Subsequent treatment with cabozantinib and 5-FU-dacarbazine had poor efficacy. In vitro, RET Δ898-901 showed higher ligand-independent RET autophosphorylation compared with RET C634R and similar proliferation rates in cell models. Subcutaneous injection of Δ898-901 NIH 3T3 cells in nude mice produced tumors of around 500 mm3 in 2 weeks, similarly to RET C634R cells. Selpercatinib inhibited cell growth of Ba/F3 RET Δ898-901 and RET C634R with a similar half maximal inhibitory concentration (IC50) of approximately 3 nM. Vandetanib was five-fold less effective at inhibiting cell growth promoted by RET Δ898-901 mutant (IC50, 564 nM) compared with RET C634R one (IC50, 91 nM). Cabozantinib efficiently inhibited Ba/F3 RET C634 proliferation (IC50, 25.9 nM), but was scarcely active in Ba/F3 RET 898-901 (IC50 > 1,350 nM). CONCLUSION D898_E901 RET deletion is a gain-of-function mutation and responds to tyrosine kinase inhibitors in MTC. RET Δ898-901 mutant is sensitive to selpercatinib and vandetanib, and acquired resistance to selpercatinib may develop via RET-independent mechanisms.
Collapse
Affiliation(s)
- Tommaso Porcelli
- Department of Public Health, University of Naples “Federico II”, Naples, Italy
| | - Marialuisa Moccia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | | | | | - Ettore Capoluongo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Massimo Santoro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Julien Hadoux
- Department of Endocrine Oncology, Gustave Roussy and University Paris-Saclay, Villejuif, France
| | - Martin Schlumberger
- Department of Endocrine Oncology, Gustave Roussy and University Paris-Saclay, Villejuif, France
| | - Francesca Carlomagno
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
37
|
Balinisteanu I, Panzaru MC, Caba L, Ungureanu MC, Florea A, Grigore AM, Gorduza EV. Cancer Predisposition Syndromes and Thyroid Cancer: Keys for a Short Two-Way Street. Biomedicines 2023; 11:2143. [PMID: 37626640 PMCID: PMC10452453 DOI: 10.3390/biomedicines11082143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer predisposition syndromes are entities determined especially by germinal pathogenic variants, with most of them autosomal dominantly inherited. The risk of a form of cancer is variable throughout life and affects various organs, including the thyroid. Knowing the heterogeneous clinical picture and the existing genotype-phenotype correlations in some forms of thyroid cancer associated with these syndromes is important for adequate and early management of patients and families. This review synthesizes the current knowledge on genes and proteins involved in cancer predisposition syndromes with thyroid cancer and the phenomena of heterogeneity (locus, allelic, mutational, and clinical).
Collapse
Affiliation(s)
- Ioana Balinisteanu
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.B.); (M.-C.U.)
- Endocrinology Department, “Sf. Spiridon” Hospital, 700106 Iasi, Romania
| | - Monica-Cristina Panzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.F.); (E.V.G.)
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.F.); (E.V.G.)
| | - Maria-Christina Ungureanu
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.B.); (M.-C.U.)
- Endocrinology Department, “Sf. Spiridon” Hospital, 700106 Iasi, Romania
| | - Andreea Florea
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.F.); (E.V.G.)
| | - Ana Maria Grigore
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.F.); (E.V.G.)
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.F.); (E.V.G.)
| |
Collapse
|
38
|
Pelizzo MR, Mazza EI, Mian C, Merante Boschin I. Medullary thyroid carcinoma. Expert Rev Anticancer Ther 2023; 23:943-957. [PMID: 37646181 DOI: 10.1080/14737140.2023.2247566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Medullary thyroid carcinoma (MTC) constitutes approximately 5-10% of all thyroid cancers. Although the tumor forms in the thyroid, it doesn't originate from thyroid cells, but from the C cells or parafollicular cells which produce and release a hormone called calcitonin (CT). Starting from the second half of the 1900s, MTC was progressively studied and defined. AREAS COVERED This study aims to analyze the history, clinical presentation and biological behavior of MTC, bio-humoral and instrumental diagnosis, molecular profiling, genetic screening, preoperative staging and instrumental procedures, indispensable in expert and dedicated hands, such as high-resolution ultrasonography, CT-scan, MRI and PET/TC. We examine recommended and controversial surgical indications and procedures, prophylactic early surgery and multiple endocrine neoplasia surgery. Also, we discuss pathological anatomy classification and targeted therapies. The role of serum CT is valued both as undisputed and constant preoperative diagnostic marker, obscuring cytology and as early postoperative marker that predicts disease persistence. EXPERT OPINION With a complete preoperative study, unnecessary or useless, late and extended interventions can be reduced in favor of tailored surgery that also considers quality of life. Finally, great progress has been made in targeted therapy, with favorable impact on survival.
Collapse
Affiliation(s)
- Maria Rosa Pelizzo
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Esmeralda Isabella Mazza
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Caterina Mian
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Isabella Merante Boschin
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
39
|
Tali G, Payne AE, Hudson TJ, da Silva SD, Pusztaszeri M, Tamilia M, Forest VI. The Difference in Clinical Behavior of Gene Fusions Involving RET/PTC Fusions and THADA/IGF2BP3 Fusions in Thyroid Nodules. Cancers (Basel) 2023; 15:3394. [PMID: 37444504 DOI: 10.3390/cancers15133394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Molecular testing has been used as an adjunct to morphological evaluation in the workup of thyroid nodules. This study investigated the impact of two gene fusions, RET/PTC and THADA/IGF2BP3, that have been described as oncogenic events in thyroid neoplasms. METHODS We performed a retrospective, single-centered study at a McGill University teaching hospital in Montreal, Canada, from January 2016 to August 2021. We included patients who underwent surgery for thyroid nodules that pre-operatively underwent molecular testing showing either RET/PTC or THADA/IGF2BP3 gene fusion. RESULTS This study included 697 consecutive operated thyroid nodules assessed using molecular testing, of which five had the RET/PTC fusion and seven had the THADA/IGF2BP3 fusion. Of the five nodules in the RET/PTC group, 100% were malignant and presented as Bethesda V/VI. Eighty percent (4/5) were found to have lymph node metastasis. Twenty percent (1/5) had extrathyroidal extensions. Sixty percent (3/5) were a diffuse sclerosing variant of papillary thyroid carcinoma, and the rest were the classical variant. Of the seven THADA/IGF2BP3 nodules, all presented as Bethesda III/IV and 71.4% (5/7) were malignant based on the final pathology analysis, and 28.6% (2/7) were NIFTP. All the THADA/IGF2BP3 fusion malignancies were a follicular variant of papillary thyroid carcinoma. None had lymph node metastasis or displayed extrathyroidal extensions. CONCLUSIONS RET/PTC nodules presented as Bethesda V/VI and potentially had more aggressive features, whereas THADA/IGF2BP3 nodules presented as Bethesda III/IV and had more indolent behavior. This understanding may allow clinicians to develop more targeted treatment plans, such as the extent of surgery and adjuvant radioactive iodine treatment.
Collapse
Affiliation(s)
- George Tali
- Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Alexandra E Payne
- Health Science Program, Marianopolis College, Westmount, QC H3Y 1X9, Canada
| | - Thomas J Hudson
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, QC H3A 0G4, Canada
| | - Sabrina Daniela da Silva
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, QC H3A 0G4, Canada
| | - Marc Pusztaszeri
- Department of Pathology, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Michael Tamilia
- Division of Endocrinology, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Véronique-Isabelle Forest
- Department of Otolaryngology-Head and Neck Surgery, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
40
|
Trocchianesi S, Po A, Citarella A, Spinello Z, Rughetti A, Besharat ZM, Autilio TM, Pecce V, Verrienti A, Elisei R, Durante C, Catanzaro G, Ferretti E. Molecular mechanisms of the tyrosine kinase inhibitor pralsetinib activity in in-vitro models of medullary thyroid carcinoma: Aberrant activation of the HH-Gli signaling pathway in acquired resistance. Biomed Pharmacother 2023; 164:114995. [PMID: 37301138 DOI: 10.1016/j.biopha.2023.114995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
Medullary thyroid carcinoma (MTC) is a malignant tumor with challenging management. Multi-targeted kinase inhibitors (MKI) and tyrosine-kinase inhibitors (TKI) with high specificity for RET protein are approved for advanced MTC treatment. However, their efficacy is hindered by evasion mechanisms of tumor cells. Thus, the aim of this study was the identification of an escape mechanism in MTC cells exposed to a highly selective RET TKI. TT cells were treated with TKI, MKI, and/or the HH-Gli inhibitors, GANT61 and Arsenic Trioxide (ATO), in the presence or absence of hypoxia. RET modifications, oncogenic signaling activation, proliferation and apoptosis were assessed. Additionally, cell modifications and HH-Gli activation were also evaluated in pralsetinib-resistant TT cells. Pralsetinib inhibited RET autophosphorylation and RET downstream pathways activation in normoxic and hypoxic conditions. Additionally, pralsetinib impaired proliferation, induced the activation of apoptosis and, in hypoxic cells, downregulated HIF-1α. Focusing on escape molecular mechanisms associated with therapy, we observed increased Gli1 levels in a subset of cells. Indeed, pralsetinib stimulated the re-localization of Gli1 into the cell nuclei. Treatment of TT cells with both pralsetinib and ATO resulted in Gli1 down-regulation and impaired cell viability. Moreover, pralsetinib-resistant cells confirmed Gli1 activation and up-regulation of its transcriptionally regulated target genes. Altogether, we showed that pralsetinib impairs MTC cell growth and induces cell death, also in hypoxic conditions. The HH-Gli pathway is a new molecular mechanism of escape to pralsetinib therapy that can be overcome through combined therapy.
Collapse
Affiliation(s)
- Sofia Trocchianesi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Anna Citarella
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Zaira Spinello
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Aurelia Rughetti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Tanja Milena Autilio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Valeria Pecce
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Rossella Elisei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Giuseppina Catanzaro
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
41
|
Elisei R, Romei C. Looking for RET alterations in thyroid cancer: clinical relevance, methodology and timing. Endocrine 2023:10.1007/s12020-023-03368-w. [PMID: 37195581 DOI: 10.1007/s12020-023-03368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Thyroid carcinoma (TC) is a rare neoplasia of the endocrine system and account for about 2-3% of all human tumors. According to their cell origin and histological features, different histotypes of thyroid carcinoma are described. Genetic alterations involved in the pathogenesis of thyroid cancer have been described and it has been shown that alterations of the RET gene are common events in all TC hystotypes. Aim of this review is to give an overview of the relevance of RET alterations in TC and to provide indications, timing and methodologies, for RET genetic analysis. METHODS A revision of the literature has been performed and indications for the experimental approach for the RET analysis have been reported. CONCLUSIONS The analysis of RET mutations in TC has a very important clinical relevance for the early diagnosis of the hereditary forms of MTC, for the follow-up of TC patients and for the identification of those cases that can benefit from a specific treatment able to inhibit the effect of mutated RET.
Collapse
Affiliation(s)
- Rossella Elisei
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, 56124, Pisa, Italy.
| | - Cristina Romei
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, 56124, Pisa, Italy
| |
Collapse
|
42
|
Elisei R, Grande E, Kreissl MC, Leboulleux S, Puri T, Fasnacht N, Capdevila J. Current perspectives on the management of patients with advanced RET-driven thyroid cancer in Europe. Front Oncol 2023; 13:1141314. [PMID: 37207147 PMCID: PMC10189276 DOI: 10.3389/fonc.2023.1141314] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/30/2023] [Indexed: 05/21/2023] Open
Abstract
The incidence of thyroid cancer is increasing worldwide with the disease burden in Europe second only to that in Asia. In the last several decades, molecular pathways central to the pathogenesis of thyroid cancer have revealed a spectrum of targetable kinases/kinase receptors and oncogenic drivers characteristic of each histologic subtype, such as differentiated thyroid cancer, including papillary, follicular, and medullary thyroid cancer. Oncogenic alterations identified include B-Raf proto-oncogene (BRAF) fusions and mutations, neurotrophic tyrosine receptor kinase (NTRK) gene fusions, and rearranged during transfection (RET) receptor tyrosine kinase fusion and mutations. Multikinase inhibitors (MKIs) targeting RET in addition to multiple other kinases, such as sorafenib, lenvatinib and cabozantinib, have shown favourable activity in advanced radioiodine-refractory differentiated thyroid cancer or RET-altered medullary thyroid cancer; however, the clinical utility of MKI RET inhibition is limited by off-target toxicity resulting in high rates of dose reduction and drug discontinuation. Newer and selective RET inhibitors, selpercatinib and pralsetinib, have demonstrated potent efficacy and favourable toxicity profiles in clinical trials in the treatment of RET-driven advanced thyroid cancer and are now a therapeutic option in some clinical settings. Importantly, the optimal benefits of available specific targeted treatments for advanced RET-driven thyroid cancer require genetic testing. Prior to the initiation of systemic therapy, and in treatment-naïve patients, RET inhibitors may be offered as first-line therapy if a RET alteration is found, supported by a multidisciplinary team approach.
Collapse
Affiliation(s)
- Rossella Elisei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enrique Grande
- Medical Oncology Department, MD Anderson Cancer Center Madrid, Madrid, Spain
| | - Michael C. Kreissl
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital of Magdeburg, Magdeburg, Germany
| | - Sophie Leboulleux
- Department of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals, Geneva, Switzerland
| | - Tarun Puri
- Medical Affairs, Eli Lilly and Company, Indianapolis, IN, United States
| | - Nicolas Fasnacht
- Medical Affairs, Eli Lilly and Company, Indianapolis, IN, United States
| | - Jaume Capdevila
- Medical Oncology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), IOBTeknon, Barcelona, Spain
| |
Collapse
|
43
|
A Contemporary Review of the Treatment of Medullary Thyroid Carcinoma in the Era of New Drug Therapies. Surg Oncol Clin N Am 2023; 32:233-250. [PMID: 36925182 DOI: 10.1016/j.soc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Medullary thyroid cancer (MTC) is a rare neuroendocrine tumor that can be sporadic or inherited and is often associated with mutations in the RET (Rearranged during Transfection) oncogene. The primary treatment for MTC is surgical resection of all suspected disease, but recent advances in targeted therapies for MTC, including the selective RET inhibitors selpercatinib and pralsetinib, have led to changes in the management of patients with locally advanced, metastatic, or recurrent MTC. In this article, we review updates on the evaluation and management of patients with MTC, focusing on new and emerging therapies that are likely to improve patient outcomes.
Collapse
|
44
|
Hu X, Khatri U, Shen T, Wu J. Progress and challenges in RET-targeted cancer therapy. Front Med 2023; 17:207-219. [PMID: 37131086 DOI: 10.1007/s11684-023-0985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/06/2023] [Indexed: 05/04/2023]
Abstract
The rearranged during transfection (RET) is a receptor protein tyrosine kinase. Oncogenic RET fusions or mutations are found most often in non-small cell lung cancer (NSCLC) and in thyroid cancer, but also increasingly in various types of cancers at low rates. In the last few years, two potent and selective RET protein tyrosine kinase inhibitors (TKIs), pralsetinib (BLU-667) and selpercatinib (LOXO-292, LY3527723) were developed and received regulatory approval. Although pralsetinib and selpercatinib gave high overall response rates (ORRs), < 10% of patients achieved a complete response (CR). The RET TKI-tolerated residual tumors inevitably develop resistance by secondary target mutations, acquired alternative oncogenes, or MET amplification. RET G810 mutations located at the kinase solvent front site were identified as the major on-target mechanism of acquired resistance to both selpercatinib and pralsetinib. Several next-generation of RET TKIs capable of inhibiting the selpercatinib/pralsetinib-resistant RET mutants have progressed to clinical trials. However, it is likely that new TKI-adapted RET mutations will emerge to cause resistance to these next-generation of RET TKIs. Solving the problem requires a better understanding of the multiple mechanisms that support the RET TKI-tolerated persisters to identify a converging point of vulnerability to devise an effective co-treatment to eliminate the residual tumors.
Collapse
Affiliation(s)
- Xueqing Hu
- Peggy and Charles Stephenson Cancer Center, and Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Ujjwol Khatri
- Peggy and Charles Stephenson Cancer Center, and Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Tao Shen
- Peggy and Charles Stephenson Cancer Center, and Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jie Wu
- Peggy and Charles Stephenson Cancer Center, and Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
45
|
Discovery of 3,5-diaryl-1H-pyrazol-based ureas as potent RET inhibitors. Eur J Med Chem 2023; 251:115237. [PMID: 36905915 DOI: 10.1016/j.ejmech.2023.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Rearranged during transfection (RET) is a promising target for antitumor drug development. Multikinase inhibitors (MKI) have been developed for RET-driven cancers but displayed limited efficacy in disease control. Two selective RET inhibitors were approved by FDA in 2020 and proved potent clinical efficacy. However, the discovery of novel RET inhibitors with high target selectivity and improved safety is still highly desirable. Herein, we reported a class of 3,5-diaryl-1H-pyrazol-based ureas as new RET inhibitors. The representative compounds 17a/b displayed high selectivity to other kinases, and potently inhibited isogenic BaF3-CCDC6-RET cells harboring wild-type, or gatekeeper mutation (V804M). They also displayed moderate potency against BaF3-CCDC6-RET-G810C with solvent-front mutation. Compound 17b showed better pharmacokinetics properties and demonstrated promising oral in vivo antitumor efficacy in a BaF3-CCDC6-RET-V804M xenograft model. It may be utilized as a new lead compound for further development.
Collapse
|
46
|
Pichardo PFA, Hellums RN, Hao J, Savatt JM, Hassen D, Pellitteri PK, Alvi M, Buchanan AH, Purdy NC. Thyroidectomy Outcomes in Patients Identified With RET Pathogenic Variants Through a Population Genomic Screening Program. JAMA Otolaryngol Head Neck Surg 2023; 149:195-202. [PMID: 36602781 PMCID: PMC9857699 DOI: 10.1001/jamaoto.2022.4195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/24/2022] [Indexed: 01/06/2023]
Abstract
Importance Population-based genomic screening can facilitate early detection of medullary thyroid carcinoma (MTC) in patients with pathogenic/likely pathogenic (P/LP) RET variants. Objective To evaluate the clinical treatment and patient outcomes after identification of P/LP RET proto-oncogene variants associated with the risk of MTC via a population genomic screening program. Design, Setting, Participants This retrospective cross-sectional study was completed between June 1, 2016, and May 31, 2022, for a mean follow-up period of 22.4 months (range, 2-76 months). The study included patients who were identified as having P/LP RET variants through a population genomic screening program at a rural tertiary care center and who underwent thyroidectomy after results disclosure. Main Outcomes and Measures The outcomes of interest were preoperative evaluation and treatment-related outcomes. Measures included imaging and laboratory findings, extent of surgery, pathologic diagnosis, and staging. Results Seventy-five patients were identified as having P/LP RET variants exclusively through genomic screening. Twenty of these patients (27%; 11 women [55%] and 9 men [45%]; median age, 48 years [range, 22-73 years]) underwent total thyroidectomy; 13 of these patients (65%) also had a central neck dissection. No patients had clinically apparent disease at the time of surgery. Pathologic findings indicated MTC for 12 patients and papillary thyroid carcinoma in 2. Of patients with MTC, 10 had stage I disease, 1 had stage II disease, 1 had stage III disease, and none had stage IV disease. Based on postoperative surveillance imaging and laboratory results, no patient had evidence of recalcitrant disease. Conclusions and Relevance In this cross-sectional study, all malignant neoplasms identified on surgical pathology were clinically occult, with surgical intervention based solely on the identification of the P/LP RET variant via population genomic screening. This finding suggests that genomic screening may provide opportunities for early detection and treatment of MTC, with the potential for improved patient outcomes.
Collapse
Affiliation(s)
- Priscilla F. A. Pichardo
- Department of Otolaryngology–Head and Neck Surgery, Geisinger Medical Center, Danville, Pennsylvania
| | - Ryan N. Hellums
- Department of Otolaryngology–Head and Neck Surgery, Geisinger Medical Center, Danville, Pennsylvania
| | - Jing Hao
- Department of Population Health Sciences, Geisinger Medical Center, Danville, Pennsylvania
- Genomic Medicine Institute, Geisinger Medical Center, Danville, Pennsylvania
| | - Juliann M. Savatt
- Genomic Medicine Institute, Geisinger Medical Center, Danville, Pennsylvania
| | - Dina Hassen
- Department of Population Health Sciences, Geisinger Medical Center, Danville, Pennsylvania
| | - Phillip K. Pellitteri
- Department of Otolaryngology–Head and Neck Surgery, Geisinger Medical Center, Danville, Pennsylvania
| | - Madiha Alvi
- Department of Endocrinology, Geisinger Medical Center, Danville, Pennsylvania
| | - Adam H. Buchanan
- Genomic Medicine Institute, Geisinger Medical Center, Danville, Pennsylvania
| | - Nicholas C. Purdy
- Department of Otolaryngology–Head and Neck Surgery, Geisinger Medical Center, Danville, Pennsylvania
| |
Collapse
|
47
|
Jung CK, Agarwal S, Hang JF, Lim DJ, Bychkov A, Mete O. Update on C-Cell Neuroendocrine Neoplasm: Prognostic and Predictive Histopathologic and Molecular Features of Medullary Thyroid Carcinoma. Endocr Pathol 2023; 34:1-22. [PMID: 36890425 DOI: 10.1007/s12022-023-09753-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2023] [Indexed: 03/10/2023]
Abstract
Medullary thyroid carcinoma (MTC) is a C-cell-derived epithelial neuroendocrine neoplasm. With the exception of rare examples, most are well-differentiated epithelial neuroendocrine neoplasms (also known as neuroendocrine tumors in the taxonomy of the International Agency for Research on Cancer [IARC] of the World Health Organization [WHO]). This review provides an overview and recent evidence-based data on the molecular genetics, disease risk stratification based on clinicopathologic variables including molecular profiling and histopathologic variables, and targeted molecular therapies in patients with advanced MTC. While MTC is not the only neuroendocrine neoplasm in the thyroid gland, other neuroendocrine neoplasms in the thyroid include intrathyroidal thymic neuroendocrine neoplasms, intrathyroidal parathyroid neoplasms, and primary thyroid paragangliomas as well as metastatic neuroendocrine neoplasms. Therefore, the first responsibility of a pathologist is to distinguish MTC from other mimics using appropriate biomarkers. The second responsibility includes meticulous assessment of the status of angioinvasion (defined as tumor cells invading through a vessel wall and forming tumor-fibrin complexes, or intravascular tumor cells admixed with fibrin/thrombus), tumor necrosis, proliferative rate (mitotic count and Ki67 labeling index), and tumor grade (low- or high-grade) along with the tumor stage and the resection margins. Given the morphologic and proliferative heterogeneity in these neoplasms, an exhaustive sampling is strongly recommended. Routine molecular testing for pathogenic germline RET variants is typically performed in all patients with a diagnosis of MTC; however, multifocal C-cell hyperplasia in association with at least a single focus of MTC and/or multifocal C-cell neoplasia are morphological harbingers of germline RET alterations. It is of interest to assess the status of pathogenic molecular alterations involving genes other than RET like the MET variants in MTC families with no pathogenic germline RET variants. Furthermore, the status of somatic RET alterations should be determined in all advanced/progressive or metastatic diseases, especially when selective RET inhibitor therapy (e.g., selpercatinib or pralsetinib) is considered. While the role of routine SSTR2/5 immunohistochemistry remains to be further clarified, evidence suggests that patients with somatostatin receptor (SSTR)-avid metastatic disease may also benefit from the option of 177Lu-DOTATATE peptide radionuclide receptor therapy. Finally, the authors of this review make a call to support the nomenclature change of MTC to C-cell neuroendocrine neoplasm to align this entity with the IARC/WHO taxonomy since MTCs represent epithelial neuroendocrine neoplasms of endoderm-derived C-cells.
Collapse
Affiliation(s)
- Chan Kwon Jung
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Shipra Agarwal
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jen-Fan Hang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Dong-Jun Lim
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Andrey Bychkov
- Department of Pathology, Kameda Medical Center, Kamogawa, Chiba, 296-8602, Japan
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, M5G 2C4, Canada
- Endocrine Oncology Site, Princess Margaret Cancer, Toronto, ON, M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5G 2C4, Canada
| |
Collapse
|
48
|
Miani C, Locatello LG, Rugiu MG, Antonio JK, Di Loreto C, Pegolo E. The protean role of Val804Met RET mutation in thyroid neoplasms: An example of a "MEN2C" syndrome? Pathol Res Pract 2023; 244:154388. [PMID: 36889173 DOI: 10.1016/j.prp.2023.154388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Val804Met RET is one of the most common genetic alterations in Multiple Endocrine Neoplasia 2 and is considered to confer only a moderate risk for familial medullary thyroid carcinoma (MTC). The associated phenotype can however be much more complex in some cases. METHODS A clinical, genetic, and pathological analysis was conducted on a family cluster of thyroid neoplasms associated with Val804Met RET mutation. RESULTS All the kindreds who are carriers of the mutated RET received total thyroidectomy + /- VI level dissection. The proband presented with a pT1bN0 MTC, her 29-yo brother showed a concomitant papillary thyroid carcinoma (PTC) and MTC, their father had a pT1a PTC plus a follicular adenoma, while the uncle of the proband showed C-cell hyperplasia. None had clinical or biochemical evidence of parathyroid disorders or pheochromocytoma. CONCLUSIONS In the presence of Val804Met RET several types of thyroid premalignant and malignant should be screened for, and without limiting to MTC.
Collapse
Affiliation(s)
- Cesare Miani
- Department of Otorhinolaryngology, Academic Hospital "Santa Maria della Misericordia", Azienda Sanitaria Universitaria Friuli Centrale, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy; University of Udine, Department of Medicine (DAME), Via Colugna 50, 33100 Udine, Italy
| | - Luca Giovanni Locatello
- Department of Otorhinolaryngology, Academic Hospital "Santa Maria della Misericordia", Azienda Sanitaria Universitaria Friuli Centrale, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy.
| | - Maria Gabriella Rugiu
- Department of Otorhinolaryngology, Sant'Antonio Abate Hospital, Azienda Sanitaria Universitaria Friuli Centrale, 33028 Tolmezzo, Italy
| | - Jamile Karina Antonio
- Department of Otorhinolaryngology, San Polo Hospital, Azienda Sanitaria Universitaria Giuliano Isontina, 34074, Monfalcone, Italy
| | - Carla Di Loreto
- Institute of Anatomic Pathology, Academic Hospital "Santa Maria della Misericordia", Azienda Sanitaria Universitaria Friuli Centrale, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy; University of Udine, Department of Medicine (DAME), Via Colugna 50, 33100 Udine, Italy
| | - Enrico Pegolo
- Institute of Anatomic Pathology, Academic Hospital "Santa Maria della Misericordia", Azienda Sanitaria Universitaria Friuli Centrale, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
49
|
Liu Y, Wang J, Hu X, Pan Z, Xu T, Xu J, Jiang L, Huang P, Zhang Y, Ge M. Radioiodine therapy in advanced differentiated thyroid cancer: Resistance and overcoming strategy. Drug Resist Updat 2023; 68:100939. [PMID: 36806005 DOI: 10.1016/j.drup.2023.100939] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Thyroid cancer is the most prevalent endocrine tumor and its incidence is fast-growing worldwide in recent years. Differentiated thyroid cancer (DTC) is the most common pathological subtype which is typically curable with surgery and Radioactive iodine (RAI) therapy (approximately 85%). Radioactive iodine is the first-line treatment for patients with metastatic Papillary Thyroid Cancer (PTC). However, 60% of patients with aggressive metastasis DTC developed resistance to RAI treatment and had a poor overall prognosis. The molecular mechanisms of RAI resistance include gene mutation and fusion, failure to transport RAI into the DTC cells, and interference with the tumor microenvironment (TME). However, it is unclear whether the above are the main drivers of the inability of patients with DTC to benefit from iodine therapy. With the development of new biological technologies, strategies that bolster RAI function include TKI-targeted therapy, DTC cell redifferentiation, and improved drug delivery via extracellular vesicles (EVs) have emerged. Despite some promising data and early success, overall survival was not prolonged in the majority of patients, and the disease continued to progress. It is still necessary to understand the genetic landscape and signaling pathways leading to iodine resistance and enhance the effectiveness and safety of the RAI sensitization approach. This review will summarize the mechanisms of RAI resistance, predictive biomarkers of RAI resistance, and the current RAI sensitization strategies.
Collapse
Affiliation(s)
- Yujia Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiafeng Wang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiajie Xu
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liehao Jiang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China.
| | - Minghua Ge
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
50
|
Ng CK, Belz GT. Innate lymphoid cells: potential targets for cancer therapeutics. Trends Cancer 2023; 9:158-171. [PMID: 36357314 DOI: 10.1016/j.trecan.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022]
Abstract
Innate lymphoid cells (ILCs) comprise a number of different subsets, including natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue-inducer (LTi) cells that express receptors and signaling pathways that are highly responsive to continuously changing microenvironmental cues. In this Review, we highlight the key features of innate cells that define their capacity to respond rapidly to different environments, how this ability can drive both tumor protection (limiting tumor development) or, alternatively, tumor progression, promoting tumor dissemination and resistance to immunotherapy. We discuss how understanding the regulation of ILCs that can detect tumor cells early in a response opens the possibility of exploiting this functional plasticity to develop rational therapeutic strategies to bolster adaptive immune responses and improve patient outcomes.
Collapse
Affiliation(s)
- Chun Ki Ng
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Gabrielle T Belz
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|