1
|
Yan Y, Ahmed HMM, Wimmer EA, Schetelig MF. Biotechnology-enhanced genetic controls of the global pest Drosophila suzukii. Trends Biotechnol 2024:S0167-7799(24)00249-X. [PMID: 39327106 DOI: 10.1016/j.tibtech.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Spotted wing Drosophila (Drosophila suzukii Matsumura, or SWD), an insect pest of soft-skinned fruits native to East Asia, has rapidly spread worldwide in the past 15 years. Genetic controls such as sterile insect technique (SIT) have been considered for the environmentally friendly and cost-effective management of this pest. In this review, we provide the latest developments for the genetic control strategies of SWD, including sperm-marking strains, CRISPR-based sex-ratio distortion, neoclassical genetic sexing strains, transgenic sexing strains, a sex-sorting incompatible male system, precision-guided SIT, and gene drives based on synthetic Maternal effect dominant embryonic arrest (Medea) or homing CRISPR systems. These strategies could either enhance the efficacy of traditional SIT or serve as standalone methods for the sustainable control of SWD.
Collapse
Affiliation(s)
- Ying Yan
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Gießen, Germany.
| | - Hassan M M Ahmed
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany; Department of Crop Protection, Faculty of Agriculture - University of Khartoum, Postal code 13314 Khartoum North, Sudan
| | - Ernst A Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Marc F Schetelig
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Gießen, Germany
| |
Collapse
|
2
|
Zhao Y, Li L, Wei L, Wang Y, Han Z. Advancements and Future Prospects of CRISPR-Cas-Based Population Replacement Strategies in Insect Pest Management. INSECTS 2024; 15:653. [PMID: 39336621 PMCID: PMC11432399 DOI: 10.3390/insects15090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Population replacement refers to the process by which a wild-type population of insect pests is replaced by a population possessing modified traits or abilities. Effective population replacement necessitates a gene drive system capable of spreading desired genes within natural populations, operating under principles akin to super-Mendelian inheritance. Consequently, releasing a small number of genetically edited insects could potentially achieve population control objectives. Currently, several gene drive approaches are under exploration, including the newly adapted CRISPR-Cas genome editing system. Multiple studies are investigating methods to engineer pests that are incapable of causing crop damage or transmitting vector-borne diseases, with several notable successful examples documented. This review summarizes the recent advancements of the CRISPR-Cas system in the realm of population replacement and provides insights into research methodologies, testing protocols, and implementation strategies for gene drive techniques. The review also discusses emerging trends and prospects for establishing genetic tools in pest management.
Collapse
Affiliation(s)
- Yu Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Longfeng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Liangzi Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yifan Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhilin Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Mushtaq I, Sarwar MS, Munzoor I. A comprehensive review of Wolbachia-mediated mechanisms to control dengue virus transmission in Aedes aegypti through innate immune pathways. Front Immunol 2024; 15:1434003. [PMID: 39176079 PMCID: PMC11338905 DOI: 10.3389/fimmu.2024.1434003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024] Open
Abstract
The Dengue virus (DENV), primarily spread by Aedes aegypti and also by Aedes albopictus in some regions, poses significant global health risks. Alternative techniques are urgently needed because the current control mechanisms are insufficient to reduce the transmission of DENV. Introducing Wolbachia pipientis into Ae. aegypti inhibits DENV transmission, however, the underlying mechanisms are still poorly understood. Innate immune effector upregulation, the regulation of autophagy, and intracellular competition between Wolbachia and DENV for lipids are among the theories for the mechanism of inhibition. Furthermore, mainly three immune pathways Toll, IMD, and JAK/STAT are involved in the host for the suppression of the virus. These pathways are activated by Wolbachia and DENV in the host and are responsible for the upregulation and downregulation of many genes in mosquitoes, which ultimately reduces the titer of the DENV in the host. The functioning of these immune pathways depends upon the Wolbachia, host, and virus interaction. Here, we summarize the current understanding of DENV recognition by the Ae. aegypti's immune system, aiming to create a comprehensive picture of our knowledge. Additionally, we investigated how Wolbachia regulates the activation of multiple genes associated with immune priming for the reduction of DENV.
Collapse
|
4
|
Hollingsworth BD, Cho C, Vella M, Roh H, Sass J, Lloyd AL, Brown ZS. Economic optimization of Wolbachia-infected Aedes aegypti release to prevent dengue. PEST MANAGEMENT SCIENCE 2024; 80:3829-3838. [PMID: 38507220 DOI: 10.1002/ps.8086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Dengue virus, primarily transmitted by the Aedes aegypti mosquito, is a major public health concern affecting ≈3.83 billion people worldwide. Recent releases of Wolbachia-transinfected Ae. aegypti in several cities worldwide have shown that it can reduce dengue transmission. However, these releases are costly, and, to date, no framework has been proposed for determining economically optimal release strategies that account for both costs associated with disease risk and releases. RESULTS We present a flexible stochastic dynamic programming framework for determining optimal release schedules for Wolbachia-transinfected mosquitoes that balances the cost of dengue infection with the costs of rearing and releasing transinfected mosquitoes. Using an ordinary differential equation model of Wolbachia and dengue in a hypothetical city loosely describing areas at risk of new dengue epidemics, we determined that an all-or-nothing release strategy that quickly brings Wolbachia to fixation is often the optimal solution. Based on this, we examined the optimal facility size, finding that it was inelastic with respect to the mosquito population size, with a 100% increase in population size resulting in a 50-67% increase in optimal facility size. Furthermore, we found that these results are robust to mosquito life-history parameters and are mostly determined by the mosquito population size and the fitness costs associated with Wolbachia. CONCLUSIONS These results reinforce that Wolbachia-transinfected mosquitoes can reduce the cost of dengue epidemics. Furthermore, they emphasize the importance of determining the size of the target population and fitness costs associated with Wolbachia before releases occur. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Brandon D Hollingsworth
- Department of Entomology, Cornell University, Ithaca, NY, USA
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Chanheung Cho
- Department of Agricultural and Resource Economics, North Carolina State University, Raleigh, NC, USA
| | - Michael Vella
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Hyeongyul Roh
- Department of Agricultural and Resource Economics, North Carolina State University, Raleigh, NC, USA
| | - Julian Sass
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Alun L Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Zachary S Brown
- Department of Agricultural and Resource Economics, North Carolina State University, Raleigh, NC, USA
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
Resnik DB, Medina RF, Gould F, Church G, Kuzma J. Genes drive organisms and slippery slopes. Pathog Glob Health 2024; 118:348-357. [PMID: 36562087 PMCID: PMC11234912 DOI: 10.1080/20477724.2022.2160895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The bioethical debate about using gene drives to alter or eradicate wild populations has focused mostly on issues concerning short-term risk assessment and management, governance and oversight, and public and community engagement, but has not examined big-picture- 'where is this going?'-questions in great depth. In other areas of bioethical controversy, big-picture questions often enter the public forum via slippery slope arguments. Given the incredible potential of gene drive organisms to alter the Earth's biota, it is somewhat surprising that slippery slope arguments have not played a more prominent role in ethical and policy debates about these emerging technologies. In this article, we examine a type of slippery slope argument against using gene drives to alter or suppress wild pest populations and consider whether it has a role to play in ethical and policy debates. Although we conclude that this argument does not provide compelling reasons for banning the use of gene drives in wild pest populations, we believe that it still has value as a morally instructive cautionary narrative that can motivate scientists, ethicists, and members of the public to think more clearly about appropriate vs. inappropriate uses of gene drive technologies, the long-term and cumulative and emergent risks of using gene drives in wild populations, and steps that can be taken to manage these risks, such as protecting wilderness areas where people can enjoy life forms that have not been genetically engineered.
Collapse
Affiliation(s)
- David B. Resnik
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Raul F. Medina
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Fred Gould
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - George Church
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, USA
| | - Jennifer Kuzma
- School of Public and International Affairs, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
6
|
Liu Y, Jiao B, Champer J, Qian W. Overriding Mendelian inheritance in Arabidopsis with a CRISPR toxin-antidote gene drive that impairs pollen germination. NATURE PLANTS 2024; 10:910-922. [PMID: 38886523 DOI: 10.1038/s41477-024-01692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/09/2024] [Indexed: 06/20/2024]
Abstract
Synthetic gene drives, inspired by natural selfish genetic elements and transmitted to progeny at super-Mendelian (>50%) frequencies, present transformative potential for disseminating traits that benefit humans throughout wild populations, even facing potential fitness costs. Here we constructed a gene drive system in plants called CRISPR-Assisted Inheritance utilizing NPG1 (CAIN), which uses a toxin-antidote mechanism in the male germline to override Mendelian inheritance. Specifically, a guide RNA-Cas9 cassette targets the essential No Pollen Germination 1 (NPG1) gene, serving as the toxin to block pollen germination. A recoded, CRISPR-resistant copy of NPG1 serves as the antidote, providing rescue only in pollen cells that carry the drive. To limit potential consequences of inadvertent release, we used self-pollinating Arabidopsis thaliana as a model. The drive demonstrated a robust 88-99% transmission rate over two successive generations, producing minimal resistance alleles that are unlikely to inhibit drive spread. Our study provides a strong basis for rapid genetic modification or suppression of outcrossing plant populations.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Bingke Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
de Haas FJH, Kläy L, Débarre F, Otto SP. Modelling daisy quorum drive: A short-term bridge across engineered fitness valleys. PLoS Genet 2024; 20:e1011262. [PMID: 38753875 PMCID: PMC11135765 DOI: 10.1371/journal.pgen.1011262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/29/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Engineered gene-drive techniques for population modification and/or suppression have the potential for tackling complex challenges, including reducing the spread of diseases and invasive species. Gene-drive systems with low threshold frequencies for invasion, such as homing-based gene drive, require initially few transgenic individuals to spread and are therefore easy to introduce. The self-propelled behavior of such drives presents a double-edged sword, however, as the low threshold can allow transgenic elements to expand beyond a target population. By contrast, systems where a high threshold frequency must be reached before alleles can spread-above a fitness valley-are less susceptible to spillover but require introduction at a high frequency. We model a proposed drive system, called "daisy quorum drive," that transitions over time from a low-threshold daisy-chain system (involving homing-based gene drive such as CRISPR-Cas9) to a high-threshold fitness-valley system (requiring a high frequency-a "quorum"-to spread). The daisy-chain construct temporarily lowers the high thresholds required for spread of the fitness-valley construct, facilitating use in a wide variety of species that are challenging to breed and release in large numbers. Because elements in the daisy chain only drive subsequent elements in the chain and not themselves and also carry deleterious alleles ("drive load"), the daisy chain is expected to exhaust itself, removing all CRISPR elements and leaving only the high-threshold fitness-valley construct, whose spread is more spatially restricted. Developing and analyzing both discrete patch and continuous space models, we explore how various attributes of daisy quorum drive affect the chance of modifying local population characteristics and the risk that transgenic elements expand beyond a target area. We also briefly explore daisy quorum drive when population suppression is the goal. We find that daisy quorum drive can provide a promising bridge between gene-drive and fitness-valley constructs, allowing spread from a low frequency in the short term and better containment in the long term, without requiring repeated introductions or persistence of CRISPR elements.
Collapse
Affiliation(s)
- Frederik J. H. de Haas
- Biodiversity Research Center, Department of Zoology, University of British Columbia, Vancouver BC, Canada
| | - Léna Kläy
- Institute of Ecology and Environmental Sciences Paris (IEES Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Creteil, Université de Paris, Paris Cedex 5, France
| | - Florence Débarre
- Institute of Ecology and Environmental Sciences Paris (IEES Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Creteil, Université de Paris, Paris Cedex 5, France
| | - Sarah P. Otto
- Biodiversity Research Center, Department of Zoology, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
8
|
Olejarz JW, Nowak MA. Gene drives for the extinction of wild metapopulations. J Theor Biol 2024; 577:111654. [PMID: 37984587 DOI: 10.1016/j.jtbi.2023.111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/15/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Population-suppressing gene drives may be capable of extinguishing wild populations, with proposed applications in conservation, agriculture, and public health. However, unintended and potentially disastrous consequences of release of drive-engineered individuals are extremely difficult to predict. We propose a model for the dynamics of a sex ratio-biasing drive, and using simulations, we show that failure of the suppression drive is often a natural outcome due to stochastic and spatial effects. We further demonstrate rock-paper-scissors dynamics among wild-type, drive-infected, and extinct populations that can persist for arbitrarily long times. Gene drive-mediated extinction of wild populations entails critical complications that lurk far beyond the reach of laboratory-based studies. Our findings help in addressing these challenges.
Collapse
Affiliation(s)
- Jason W Olejarz
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA; Department of Mathematics, Harvard University, Cambridge, MA, 02138, USA.
| | - Martin A Nowak
- Department of Mathematics, Harvard University, Cambridge, MA, 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
9
|
Fallon AM. Wolbachia: Advancing into a Second Century. Methods Mol Biol 2024; 2739:1-13. [PMID: 38006542 DOI: 10.1007/978-1-0716-3553-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Wolbachia pipientis had its scientific debut nearly a century ago and has recently emerged as a target for therapeutic treatment of filarial infections and an attractive tool for control of arthropod pests. Wolbachia was known as a biological entity before DNA was recognized as the molecule that carries the genetic information on which life depends, and before arthropods and nematodes were grouped in the Ecdysozoa. Today, some investigators consider Wolbachia the most abundant endosymbiont on earth, given the numbers of its hosts and its diverse mutualistic, commensal, and parasitic roles in their life histories. Recent advances in molecular technologies have revolutionized our understanding of Wolbachia and its associated reproductive phenotypes. New models have emerged for its investigation, and substantial progress has been made towards Wolbachia-based interventions in medicine and agriculture. Here I introduce Wolbachia, with a focus on aspects of its biology that are covered in greater detail in subsequent chapters.
Collapse
Affiliation(s)
- Ann M Fallon
- Department of Entomology, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
10
|
Harvey-Samuel T, Feng X, Okamoto EM, Purusothaman DK, Leftwich PT, Alphey L, Gantz VM. CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector Culex quinquefasciatus. Nat Commun 2023; 14:7561. [PMID: 37985762 PMCID: PMC10662442 DOI: 10.1038/s41467-023-41834-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/21/2023] [Indexed: 11/22/2023] Open
Abstract
Culex mosquitoes pose a significant public health threat as vectors for a variety of diseases including West Nile virus and lymphatic filariasis, and transmit pathogens threatening livestock, companion animals, and endangered birds. Rampant insecticide resistance makes controlling these mosquitoes challenging and necessitates the development of new control strategies. Gene drive technologies have made significant progress in other mosquito species, although similar advances have been lagging in Culex. Here we test a CRISPR-based homing gene drive for Culex quinquefasciatus, and show that the inheritance of two split-gene-drive transgenes, targeting different loci, are biased in the presence of a Cas9-expressing transgene although with modest efficiencies. Our findings extend the list of disease vectors where engineered homing gene drives have been demonstrated to include Culex alongside Anopheles and Aedes, and pave the way for future development of these technologies to control Culex mosquitoes.
Collapse
Affiliation(s)
- Tim Harvey-Samuel
- Arthropod Genetics Group, The Pirbright Institute, Woking, GU24 0NF, UK
| | - Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong, 518106, Shenzhen, China.
| | - Emily M Okamoto
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Deepak-Kumar Purusothaman
- Arthropod Genetics Group, The Pirbright Institute, Woking, GU24 0NF, UK
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Luke Alphey
- Arthropod Genetics Group, The Pirbright Institute, Woking, GU24 0NF, UK.
- Biology Department, University of York, York, YO10 5DD, UK.
| | - Valentino M Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Li J, Dong B, Zhong Y, Li Z. Transinfected Wolbachia strains induce a complex of cytoplasmic incompatibility phenotypes: Roles of CI factor genes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:370-382. [PMID: 37194361 PMCID: PMC10472523 DOI: 10.1111/1758-2229.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Wolbachia can modulate the reproductive development of their hosts in multiple modes, and cytoplasmic incompatibility (CI) is the most well-studied phenotype. The whitefly Bemisia tabaci is highly receptive to different Wolbachia strains: wCcep strain from the rice moth Corcyra cephalonica and wMel strain from the fruit fly Drosophila melanogaster could successfully establish and induce CI in transinfected whiteflies. Nevertheless, it is unknown what will happen when these two exogenous Wolbachia strains are co-transinfected into a new host. Here, we artificially transinferred wCcep and wMel into the whitefly and established double- and singly-transinfected B. tabaci isofemale lines. Reciprocal crossing experiments showed that wCcep and wMel induced a complex of CI phenotypes in the recipient host, including unidirectional and bidirectional CI. We next sequenced the whole genome of wCcep and performed a comparative analysis of the CI factor genes between wCcep and wMel, indicating that their cif genes were phylogenetically and structurally divergent, which can explain the crossing results. The amino acid sequence identity and structural features of Cif proteins may be useful parameters for predicting their function. Structural comparisons between CifA and CifB provide valuable clues for explaining the induction or rescue of CI observed in crossing experiments between transinfected hosts.
Collapse
Affiliation(s)
- Jing Li
- Department of Entomology and Key Laboratory of Pest Monitoring and Green Management, MOA, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Bei Dong
- Jinan Academy of Agricultural SciencesJinanChina
| | - Yong Zhong
- Pingxiang Customs Comprehensive Technical Service CenterPingxiangChina
| | - Zheng‐Xi Li
- Department of Entomology and Key Laboratory of Pest Monitoring and Green Management, MOA, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| |
Collapse
|
12
|
Kim J, Harris KD, Kim IK, Shemesh S, Messer PW, Greenbaum G. Incorporating ecology into gene drive modelling. Ecol Lett 2023; 26 Suppl 1:S62-S80. [PMID: 37840022 DOI: 10.1111/ele.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 10/17/2023]
Abstract
Gene drive technology, in which fast-spreading engineered drive alleles are introduced into wild populations, represents a promising new tool in the fight against vector-borne diseases, agricultural pests and invasive species. Due to the risks involved, gene drives have so far only been tested in laboratory settings while their population-level behaviour is mainly studied using mathematical and computational models. The spread of a gene drive is a rapid evolutionary process that occurs over timescales similar to many ecological processes. This can potentially generate strong eco-evolutionary feedback that could profoundly affect the dynamics and outcome of a gene drive release. We, therefore, argue for the importance of incorporating ecological features into gene drive models. We describe the key ecological features that could affect gene drive behaviour, such as population structure, life-history, environmental variation and mode of selection. We review previous gene drive modelling efforts and identify areas where further research is needed. As gene drive technology approaches the level of field experimentation, it is crucial to evaluate gene drive dynamics, potential outcomes, and risks realistically by including ecological processes.
Collapse
Affiliation(s)
- Jaehee Kim
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Keith D Harris
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isabel K Kim
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Shahar Shemesh
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Gili Greenbaum
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
13
|
Harvey-Samuel T, Feng X, Okamoto EM, Purusothaman DK, Leftwich PT, Alphey L, Gantz VM. CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector Culex quinquefasciatus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544656. [PMID: 37398284 PMCID: PMC10312623 DOI: 10.1101/2023.06.12.544656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Culex mosquitoes pose a significant public health threat as vectors for a variety of diseases including West Nile virus and lymphatic filariasis, and transmit pathogens threatening livestock, companion animals, and endangered birds. Rampant insecticide resistance makes controlling these mosquitoes challenging and necessitates the development of new control strategies. Gene drive technologies have made significant progress in other mosquito species, although similar advances have been lagging in Culex. Here we test the first CRISPR-based homing gene drive for Culex quinquefasciatus, demonstrating the possibility of using this technology to control Culex mosquitoes. Our results show that the inheritance of two split-gene-drive transgenes, targeting different loci, are biased in the presence of a Cas9-expressing transgene although with modest efficiencies. Our findings extend the list of disease vectors where engineered homing gene drives have been demonstrated to include Culex alongside Anopheles and Aedes, and pave the way for future development of these technologies to control Culex mosquitoes.
Collapse
Affiliation(s)
- Tim Harvey-Samuel
- Arthropod Genetics Group, The Pirbright Institute, Woking, UK, GU24 0NF
| | - Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA 92093
| | - Emily M Okamoto
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA 92093
| | - Deepak-Kumar Purusothaman
- Arthropod Genetics Group, The Pirbright Institute, Woking, UK, GU24 0NF
- Present address: MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK G12 8QQ
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK, NR4 7TJ
| | - Luke Alphey
- Present address: Biology Department, University of York, York, UK, YO10 5DD
| | - Valentino M Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA 92093
| |
Collapse
|
14
|
Contreras B, Adelman ZN, Chae K. Evaluating the Mating Competency of Genetically Modified Male Mosquitoes in Laboratory Conditions. FRONTIERS IN TROPICAL DISEASES 2023; 4:1106671. [PMID: 37860147 PMCID: PMC10586724 DOI: 10.3389/fitd.2023.1106671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Efforts to eradicate mosquito-borne diseases have increased the demand for genetic control strategies, many of which involve the release of genetically modified (GM) mosquito males into natural populations. The first hurdle for GM males is to compete with their wild-type counterparts for access to females. Here, we introduce an eye color-based mating assay, in which both Lvp wild-type and kynurenine 3-monooxygenase (kmo)-null males compete for access to kmo-null females, and therefore the eye color phenotype (black or white) of the progeny is dependent on the parental mating pair. A series of tests addressed that male mating competitiveness between the two strains can significantly be influenced by adult density, light intensity, and mating duration. Interestingly, the mating competitiveness of males was not correlated with body size, which was negatively influenced by a high larval density. Lastly, this eye color-associated assay was applied to characterize GM mosquitoes in their mating competitiveness, establishing this method as a fast and precise way of benchmarking this fitness parameter for laboratory-raised males.
Collapse
Affiliation(s)
- Bryan Contreras
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Zach N. Adelman
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Keun Chae
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
15
|
Chen H, Sun H, Xie J, Yao Z, Zheng W, Li Z, Deng Z, Li X, Zhang H. CRISPR/Cas9-induced Mutation of Sex Peptide Receptor Gene Bdspr Affects Ovary, Egg Laying, and Female Fecundity in Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:2. [PMID: 36640045 PMCID: PMC9840094 DOI: 10.1093/jisesa/ieac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 06/17/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is an invasive and polyphagous pest of horticultural crops, and it can cause huge economic losses in agricultural production. The rapid development of CRISPR/Cas9 gene editing technology has provided new opportunities for the scientific control of agricultural pests. Here, we explore the applicability of the B. dorsalis sex peptide receptor (Bdspr) as a target gene for the CRISPR/Cas9-based sterile insect technique (SIT) in B. dorsalis. We screened two high-efficient single guide RNAs (sgRNAs) for gene editing. The results showed that both mutation efficiency and germline transmission rate were 100% in the surviving G0 females (8/8) from injected embryos, and that 75% of mosaically mutated G0 females (6/8) were sterile. The 50% of heterozygous G1 females (4/8) could not lay eggs; 100% of eggs laid by them could not survive; and 62.5% of individual females (5/8) had abnormal ovaries. These results indicate that Bdspr plays an important role in regulating fertility, egg viability, and ovary development in female B. dorsalis, suggesting that the spr gene can be used for CRISPR/Cas9-based SIT in B. dorsalis.
Collapse
Affiliation(s)
| | | | - Junfei Xie
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Zhichao Yao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Wenping Zheng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Ziniu Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Zhurong Deng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xiaoxue Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | | |
Collapse
|
16
|
Ou D, Qiu JH, Su ZQ, Wang L, Qiu BL. The phylogeny and distribution of Wolbachia in two pathogen vector insects, Asian citrus psyllid and Longan psyllid. Front Cell Infect Microbiol 2023; 13:1121186. [PMID: 36949814 PMCID: PMC10025399 DOI: 10.3389/fcimb.2023.1121186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Background Wolbachia is the most abundant bacterial endosymbiont among insects. It can play a prominent role in the development, reproduction and immunity of its given insect host. To date, Wolbachia presence is well studied within aphids, whiteflies and planthoppers, but relatively few studies have investigated its presence in psyllids. Methods Here, the infection status of Wolbachia in five species of psyllid, including Asian citrus psyllid Diaphorina citri and longan psyllid Cornegenapsylla sinica was investigated. The phylogenetic relationships of different Wolbachia lines and their infection density and patterns in D. citri and C. sinica from different countries was also examined. Results The infection rates of Wolbachia in D. citri and C. sinica were both 100%, and their sequencing types are ST173 and ST532 respectively. Phylogenetic analysis revealed that the Wolbachia lines in D. citri and C. sinica both belong to the Con subgroup of Wolbachia supergroup B. In addition, Wolbachia displayed a scattered localization pattern in the 5th instar nymphs and in the reproductive organs of both D. citri and C. sinica but differed in other tissues; it was highest in the midgut, lowest in the salivary glands and medium in both the testes and ovaries. Conclusion Our findings assist in further understanding the coevolution of Wolbachia and its psyllid hosts. Given that Wolbachia could play an important role in insect pest control and pathogen transmission inhibition, our findings may also provide new insights for development of control strategies for D. citri and C. sinica.
Collapse
Affiliation(s)
- Da Ou
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jun-Hong Qiu
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zheng-Qin Su
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lei Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Bao-Li Qiu
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou, China
- *Correspondence: Bao-Li Qiu,
| |
Collapse
|
17
|
Asad M, Liu D, Chen J, Yang G. Applications of gene drive systems for population suppression of insect pests. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:724-733. [PMID: 36043456 DOI: 10.1017/s0007485322000268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Population suppression is an effective way for controlling insect pests and disease vectors, which cause significant damage to crop and spread contagious diseases to plants, animals and humans. Gene drive systems provide innovative opportunities for the insect pests population suppression by driving genes that impart fitness costs on populations of pests or disease vectors. Different gene-drive systems have been developed in insects and applied for their population suppression. Here, different categories of gene drives such as meiotic drive (MD), under-dominance (UD), homing endonuclease-based gene drive (HEGD) and especially the CRISPR/Cas9-based gene drive (CCGD) were reviewed, including the history, types, process and mechanisms. Furthermore, the advantages and limitations of applying different gene-drive systems to suppress the insect population were also summarized. This review provides a foundation for developing a specific gene-drive system for insect population suppression.
Collapse
Affiliation(s)
- Muhammad Asad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Dan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Jing Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
18
|
Sychla A, Feltman NR, Hutchison WD, Smanski MJ. Modeling-informed Engineered Genetic Incompatibility strategies to overcome resistance in the invasive Drosophila suzukii. FRONTIERS IN INSECT SCIENCE 2022; 2:1063789. [PMID: 38468757 PMCID: PMC10926386 DOI: 10.3389/finsc.2022.1063789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 03/13/2024]
Abstract
Engineered Genetic Incompatibility (EGI) is an engineered extreme underdominance genetic system wherein hybrid animals are not viable, functioning as a synthetic speciation event. There are several strategies in which EGI could be leveraged for genetic biocontrol of pest populations. We used an agent-based model of Drosophila suzukii (Spotted Wing Drosophila) to determine how EGI would fare with high rates of endemic genetic resistance alleles. We discovered a surprising failure mode wherein field-generated females convert an incompatible male release program into a population replacement gene drive. Local suppression could still be attained in two seasons by tailoring the release strategy to take advantage of this effect, or alternatively in one season by altering the genetic design of release agents. We show in this work that data from modeling can be utilized to recognize unexpected emergent phenomena and a priori inform genetic biocontrol treatment design to increase efficacy.
Collapse
Affiliation(s)
- Adam Sychla
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN, United States
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Nathan R. Feltman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN, United States
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - William D. Hutchison
- Department of Entomology, University of Minnesota, Saint Paul, MN, United States
| | - Michael J. Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN, United States
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
19
|
Spinner SAM, Barnes ZH, Puinean AM, Gray P, Dafa’alla T, Phillips CE, Nascimento de Souza C, Frazon TF, Ercit K, Collado A, Naish N, Sulston E, Ll. Phillips GC, Greene KK, Poletto M, Sperry BD, Warner SA, Rose NR, Frandsen GK, Verza NC, Gorman KJ, Matzen KJ. New self-sexing Aedes aegypti strain eliminates barriers to scalable and sustainable vector control for governments and communities in dengue-prone environments. Front Bioeng Biotechnol 2022; 10:975786. [PMID: 36394032 PMCID: PMC9650594 DOI: 10.3389/fbioe.2022.975786] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/22/2022] [Indexed: 10/20/2023] Open
Abstract
For more than 60 years, efforts to develop mating-based mosquito control technologies have largely failed to produce solutions that are both effective and scalable, keeping them out of reach of most governments and communities in disease-impacted regions globally. High pest suppression levels in trials have yet to fully translate into broad and effective Aedes aegypti control solutions. Two primary challenges to date-the need for complex sex-sorting to prevent female releases, and cumbersome processes for rearing and releasing male adult mosquitoes-present significant barriers for existing methods. As the host range of Aedes aegypti continues to advance into new geographies due to increasing globalisation and climate change, traditional chemical-based approaches are under mounting pressure from both more stringent regulatory processes and the ongoing development of insecticide resistance. It is no exaggeration to state that new tools, which are equal parts effective and scalable, are needed now more than ever. This paper describes the development and field evaluation of a new self-sexing strain of Aedes aegypti that has been designed to combine targeted vector suppression, operational simplicity, and cost-effectiveness for use in disease-prone regions. This conditional, self-limiting trait uses the sex-determination gene doublesex linked to the tetracycline-off genetic switch to cause complete female lethality in early larval development. With no female progeny survival, sex sorting is no longer required, eliminating the need for large-scale mosquito production facilities or physical sex-separation. In deployment operations, this translates to the ability to generate multiple generations of suppression for each mosquito released, while being entirely self-limiting. To evaluate these potential benefits, a field trial was carried out in densely-populated urban, dengue-prone neighbourhoods in Brazil, wherein the strain was able to suppress wild mosquito populations by up to 96%, demonstrating the utility of this self-sexing approach for biological vector control. In doing so, it has shown that such strains offer the critical components necessary to make these tools highly accessible, and thus they harbour the potential to transition mating-based approaches to effective and sustainable vector control tools that are within reach of governments and at-risk communities who may have only limited resources.
Collapse
Affiliation(s)
| | | | | | - Pam Gray
- Oxitec Ltd., Abingdon, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Natalia C. Verza
- Oxitec Ltd., Abingdon, United Kingdom
- Oxitec do Brasil, Campinas, Brazil
| | | | | |
Collapse
|
20
|
Common LK, Kleindorfer S, Colombelli-Négrel D, Dudaniec RY. Genetics reveals shifts in reproductive behaviour of the invasive bird parasite Philornis downsi collected from Darwin’s finch nests. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractDue to novel or dynamic fluctuations in environmental conditions and resources, host and parasite relationships can be subject to diverse selection pressures that may lead to significant changes during and after invasion of a parasite. Genomic analyses are useful for elucidating evolutionary processes in invasive parasites following their arrival to a new area and host. Philornis downsi (Diptera: Muscidae), the avian vampire fly, was introduced to the Galápagos Islands circa 1964 and has since spread across the archipelago, feeding on the blood of developing nestlings of endemic land birds. Since its discovery, there have been significant changes to the dynamics of P. downsi and its novel hosts, such as shifting mortality rates and changing oviposition behaviour, however no temporal genetic studies have been conducted. We collected P. downsi from nests and traps from a single island population over a 14-year period, and genotyped flies at 469 single nucleotide polymorphisms (SNPs) using restriction-site associated DNA sequencing (RADSeq). Despite significant genetic differentiation (FST) between years, there was no evidence for genetic clustering within or across four sampling years between 2006 and 2020, suggesting a lack of population isolation. Sibship reconstructions from P. downsi collected from 10 Darwin’s finch nests sampled in 2020 showed evidence for shifts in reproductive behaviour compared to a similar genetic analysis conducted in 2004–2006. Compared with this previous study, females mated with fewer males, individual females oviposited fewer offspring per nest, but more unique females oviposited per nest. These findings are important to consider within reproductive control techniques, and have fitness implications for both parasite evolution and host fitness.
Collapse
|
21
|
Dilani PVD, Dassanayake RS, Tyagi BK, Gunawardene YINS. The impact of transgenesis on mosquito fitness: A review. FRONTIERS IN INSECT SCIENCE 2022; 2:957570. [PMID: 38468772 PMCID: PMC10926467 DOI: 10.3389/finsc.2022.957570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 03/13/2024]
Abstract
Transgenic mosquitoes developed by genetic manipulation, offer a promising strategy for the sustainable and effective control of mosquito-borne diseases. This strategy relies on the mass release of transgenic mosquitoes into the wild, where their transgene is expected to persist in the natural environment, either permanently or transiently, within the mosquito population. In such circumstances, the fitness of transgenic mosquitoes is an important factor in determining their survival in the wild. The impact of transgene expression, insertional mutagenesis, inbreeding depression related to laboratory adaptation, and the hitchhiking effect involved in developing homozygous mosquito lines can all have an effect on the fitness of transgenic mosquitoes. Therefore, real-time estimation of transgene-associated fitness cost is imperative for modeling and planning transgenic mosquito release programs. This can be achieved by directly comparing fitness parameters in individuals homozygous or hemizygous for the transgene and their wild-type counterparts, or by cage invasion experiments to monitor the frequency of the transgenic allele over multiple generations. Recent advancements such as site-specific integration systems and gene drives, provide platforms to address fitness issues in transgenic mosquitoes. More research on the fitness of transgenic individuals is required to develop transgenic mosquitoes with a low fitness cost.
Collapse
Affiliation(s)
| | | | - Brij Kishore Tyagi
- Sponsored Research & Industrial Centre, VIT University, Vellore (TN), India
| | | |
Collapse
|
22
|
Paril JF, Phillips BL. Slow and steady wins the race: spatial and stochastic processes and the failure of suppression gene drives. Mol Ecol 2022; 31:4451-4464. [PMID: 35790043 PMCID: PMC9541681 DOI: 10.1111/mec.16598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
Gene drives that skew sex ratios offer a new management tool to suppress or eradicate pest populations. Early models and empirical work suggest that these suppression drives can completely eradicate well‐mixed populations, but models that incorporate stochasticity and space (i.e. drift and recolonization events) often result in loss or failure of the drive. We developed a stochastic model to examine these processes in a simple one‐dimensional space. This simple space allows us to map the events and outcomes that emerged and examine how properties of the drive's wave of invasion affect outcomes. Our simulations, across a biologically realistic section of parameter space, suggest that drive failure might be a common outcome in spatially explicit, stochastic systems, and that properties of the drive wave appear to mediate outcomes. Surprisingly, the drives that would be considered fittest in an aspatial model were strongly associated with failure in the spatial setting. The fittest drives cause relatively fast moving, and narrow waves that have a high chance of being penetrated by wild‐types (WTs) leading to WT recolonization, leading to failure. Our results also show that high rates of dispersal reduce the chance of failure because drive waves get disproportionately wider than WT waves as dispersal rates increase. Overall, wide, slow‐moving drive waves were much less prone to failure. Our results point to the complexity inherent in using a genetic system to effect demographic outcomes and speak to a clear need for ecological and evolutionary modelling to inform the drive design process.
Collapse
Affiliation(s)
- Jeff F. Paril
- School of BioSciences University of Melbourne Parkville VIC
| | | |
Collapse
|
23
|
Fallon AM. Muramidase, nuclease, or hypothetical protein genes intervene between paired genes encoding DNA packaging terminase and portal proteins in Wolbachia phages and prophages. Virus Genes 2022; 58:327-349. [PMID: 35538383 DOI: 10.1007/s11262-022-01907-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/11/2022] [Indexed: 12/25/2022]
Abstract
Genomes of the obligate intracellular alpha proteobacterium Wolbachia pipientis often encode prophage-like regions, and in a few cases, purified particles have been recovered. Because the structure of a conserved WO phage genome has been difficult to establish, we examined paired terminase and portal genes in Wolbachia phages and prophages, relative to those encoded by the gene transfer agent RcGTA from the free-living alpha proteobacterium Rhodobacter capsulatus. Terminase and portal proteins from Wolbachia have higher similarity to orthologs encoded by RcGTA than to orthologs encoded by bacteriophage lambda. In lambdoid phages, these proteins play key roles in assembly of mature phage particles, while in less well-studied gene transfer agents, terminase and portal proteins package random fragments of bacterial DNA, which could confound elucidation of WO phage genomes. In WO phages and prophages, terminase genes followed by a short gpW gene may be separated from the downstream portal gene by open-reading frames encoding a GH_25 hydrolase/muramidase, a PD-(D/E)XK nuclease, a hypothetical protein and/or a RelE/ParE toxin-antitoxin module. These aspects of gene organization, coupled with evidence for a low, non-inducible yield of WO phages, and the small size of WO phage particles described in the literature raise the possibility that Wolbachia prophage regions participate in processes that extend beyond conventional bacteriophage lysogeny and lytic replication. These intervening genes, and their possible relation to functions associated with GTAs, may contribute to variability among WO phage genomes recovered from physical particles and impact the ability of WO phages to act as transducing agents.
Collapse
Affiliation(s)
- Ann M Fallon
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, St. Paul, MN, 55108, USA.
| |
Collapse
|
24
|
Tek MI, Budak K. A New Approach to Develop Resistant Cultivars Against the Plant Pathogens: CRISPR Drives. FRONTIERS IN PLANT SCIENCE 2022; 13:889497. [PMID: 35574145 PMCID: PMC9096106 DOI: 10.3389/fpls.2022.889497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/25/2022] [Indexed: 06/01/2023]
Abstract
CRISPR drive is a recent and robust tool that allows durable genetic manipulation of the pest population like human disease vectors such as malaria vector mosquitos. In recent years, it has been suggested that CRISPR drives can also be used to control plant diseases, pests, and weeds. However, using a CRISPR drive in Arabidopsis for the first time in 2021 has been shown to use this technology in plant breeding to obtain homozygous parental lines. This perspective has proposed using CRISPR drive to develop pathogen-resistant cultivars by disrupting the susceptibility gene (S). In the breeding program, CRISPR is used to create S-gene mutations in two parental lines of hybrid cultivars. However, CRISPR must be reapplied or long-term backcrossed for the parental line to obtain homozygous S-mutant cultivars. When a parental line crosses with different parental lines to develop new hybrids, heterozygous S-mutations could not resist in hybrid against the pathogen. CRISPR drives are theoretically valid to develop homozygous S-mutant plants against pathogens by only routine pollination after CRISPR drive transformation to just one parental line. This way, breeders could use this parental line in different crossing combinations without reapplying the genome-editing technique or backcrossing. Moreover, CRISPR drive also could allow the development of marker-free resistant cultivars with modifications on the drive cassette.
Collapse
Affiliation(s)
- Mumin Ibrahim Tek
- Molecular Mycology Laboratory, Plant Protection Department, Akdeniz University, Antalya, Turkey
| | - Kubra Budak
- Plant Transformation Laboratory, Plant Biotechnology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
25
|
Chae K, Dawson C, Valentin C, Contreras B, Zapletal J, Myles KM, Adelman ZN. Engineering a self-eliminating transgene in the yellow fever mosquito, Aedes aegypti. PNAS NEXUS 2022; 1:pgac037. [PMID: 36713320 PMCID: PMC9802104 DOI: 10.1093/pnasnexus/pgac037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023]
Abstract
Promising genetics-based approaches are being developed to reduce or prevent the transmission of mosquito-vectored diseases. Less clear is how such transgenes can be removed from the environment, a concern that is particularly relevant for highly invasive gene drive transgenes. Here, we lay the groundwork for a transgene removal system based on single-strand annealing (SSA), a eukaryotic DNA repair mechanism. An SSA-based rescuer strain (kmoRG ) was engineered to have direct repeat sequences (DRs) in the Aedes aegypti kynurenine 3-monooxygenase (kmo) gene flanking the intervening transgenic cargo genes, DsRED and EGFP. Targeted induction of DNA double-strand breaks (DSBs) in the DsRED transgene successfully triggered complete elimination of the entire cargo from the kmoRG strain, restoring the wild-type kmo gene, and thereby, normal eye pigmentation. Our work establishes the framework for strategies to remove transgene sequences during the evaluation and testing of modified strains for genetics-based mosquito control.
Collapse
Affiliation(s)
- Keun Chae
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Chanell Dawson
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Collin Valentin
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Bryan Contreras
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Josef Zapletal
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Kevin M Myles
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
26
|
Xu X, Harvey-Samuel T, Siddiqui HA, Ang JXD, Anderson ME, Reitmayer CM, Lovett E, Leftwich PT, You M, Alphey L. Toward a CRISPR-Cas9-based Gene Drive in the Diamondback Moth Plutella xylostella. CRISPR J 2022; 5:224-236. [PMID: 35285719 DOI: 10.1089/crispr.2021.0129] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Promising to provide powerful genetic control tools, gene drives have been constructed in multiple dipteran insects, yeast, and mice for the purposes of population elimination or modification. However, it remains unclear whether these techniques can be applied to lepidopterans. Here, we used endogenous regulatory elements to drive Cas9 and single guide RNA (sgRNA) expression in the diamondback moth (DBM), Plutella xylostella, and test the first split gene drive system in a lepidopteran. The DBM is an economically important global agriculture pest of cruciferous crops and has developed severe resistance to various insecticides, making it a prime candidate for such novel control strategy development. A very high level of somatic editing was observed in Cas9/sgRNA transheterozygotes, although no significant homing was revealed in the subsequent generation. Although heritable Cas9-medated germline cleavage as well as maternal and paternal Cas9 deposition were observed, rates were far lower than for somatic cleavage events, indicating robust somatic but limited germline activity of Cas9/sgRNA under the control of selected regulatory elements. Our results provide valuable experience, paving the way for future construction of gene drives or other Cas9-based genetic control strategies in DBM and other lepidopterans.
Collapse
Affiliation(s)
- Xuejiao Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, P.R. China.,School of Life Sciences, Peking University, Beijing, P.R. China
| | - Tim Harvey-Samuel
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| | - Hamid Anees Siddiqui
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Joshua Xin De Ang
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| | | | - Christine M Reitmayer
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| | - Erica Lovett
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Luke Alphey
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, P.R. China.,Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| |
Collapse
|
27
|
Mark-release-recapture experiment in Burkina Faso demonstrates reduced fitness and dispersal of genetically-modified sterile malaria mosquitoes. Nat Commun 2022; 13:796. [PMID: 35145082 PMCID: PMC8831579 DOI: 10.1038/s41467-022-28419-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/12/2022] [Indexed: 11/15/2022] Open
Abstract
Every year, malaria kills approximately 405,000 people in Sub-Saharan Africa, most of them children under the age of five years. In many countries, progress in malaria control has been threatened by the rapid spread of resistance to antimalarial drugs and insecticides. Novel genetic mosquito control approaches could play an important role in future integrated malaria control strategies. In July 2019, the Target Malaria consortium proceeded with the first release of hemizygous genetically-modified (GM) sterile and non-transgenic sibling males of the malaria mosquito Anopheles coluzzii in Burkina Faso. This study aimed to determine the potential fitness cost associated to the transgene and gather important information related to the dynamic of transgene-carrying mosquitoes, crucial for next development steps. Bayesian estimations confirmed that GM males had lower survival and were less mobile than their wild type (WT) siblings. The estimated male population size in Bana village, at the time of the release was 28,000 - 37,000. These results provide unique information about the fitness and behaviour of released GM males that will inform future releases of more effective strains of the A. gambiae complex. Release of genetically-modified sterile mosquitoes is a potential method of malaria control but has yet to be tested in the field. Here, the authors perform a mark-release-recapture experiment and show that genetically-modified mosquitoes have reduced survival and dispersal compared to wild-types.
Collapse
|
28
|
Mysore K, Sun L, Li P, Roethele JB, Misenti JK, Kosmach J, Igiede J, Duman-Scheel M. A Conserved Female-Specific Requirement for the GGT Gene in Mosquito Larvae Facilitates RNAi-Mediated Sex Separation in Multiple Species of Disease Vector Mosquitoes. Pathogens 2022; 11:169. [PMID: 35215113 PMCID: PMC8879970 DOI: 10.3390/pathogens11020169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/05/2023] Open
Abstract
Although several emerging mosquito control technologies are dependent on mass releases of adult males, methods of sex-sorting that can be implemented globally have not yet been established. RNAi screens led to the discovery of siRNA, which targets gamma-glutamyl transpeptidase (GGT), a gene which is well conserved in multiple species of mosquitoes and located at the sex-determining M locus region in Aedes aegypti. Silencing the A. aegypti, Aedes albopictus, Anopheles gambiae, Culex pipiens, and Culex quinquefasciatus GGT genes resulted in female larval death, with no significant impact on male survival. Generation of yeast strains that permitted affordable expression and oral delivery of shRNA corresponding to mosquito GGT genes facilitated larval target gene silencing and generated significantly increased 5 males:1 female adult ratios in each species. Yeast targeting a conserved sequence in Culex GGT genes was incorporated into a larval mass-rearing diet, permitting the generation of fit adult male C. pipiens and C. quinquefasciatus, two species for which labor-intensive manual sex separation had previously been utilized. The results of this study indicate that female-specific yeast-based RNAi larvicides may facilitate global implementation of population-based control strategies that require releases of sterile or genetically modified adult males, and that yeast RNAi strategies can be utilized in various species of mosquitoes that have progressed to different stages of sex chromosome evolution.
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Longhua Sun
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ping Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joseph B. Roethele
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joi K. Misenti
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - John Kosmach
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jessica Igiede
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
29
|
Transcriptome Analysis of an Aedes albopictus Cell Line Single- and Dual-Infected with Lammi Virus and WNV. Int J Mol Sci 2022; 23:ijms23020875. [PMID: 35055061 PMCID: PMC8777793 DOI: 10.3390/ijms23020875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/27/2022] Open
Abstract
Understanding the flavivirus infection process in mosquito hosts is important and fundamental in the search for novel control strategies that target the mosquitoes’ ability to carry and transmit pathogenic arboviruses. A group of viruses known as insect-specific viruses (ISVs) has been shown to interfere with the infection and replication of a secondary arbovirus infection in mosquitoes and mosquito-derived cell lines. However, the molecular mechanisms behind this interference are unknown. Therefore, in the present study, we infected the Aedes albopictus cell line U4.4 with either the West Nile virus (WNV), the insect-specific Lammi virus (LamV) or an infection scheme whereby cells were pre-infected with LamV 24 h prior to WNV challenge. The qPCR analysis showed that the dual-infected U4.4 cells had a reduced number of WNV RNA copies compared to WNV-only infected cells. The transcriptome profiles of the different infection groups showed a variety of genes with altered expression. WNV-infected cells had an up-regulation of a broad range of immune-related genes, while in LamV-infected cells, many genes related to stress, such as different heat-shock proteins, were up-regulated. The transcriptome profile of the dual-infected cells was a mix of up- and down-regulated genes triggered by both viruses. Furthermore, we observed an up-regulation of signal peptidase complex (SPC) proteins in all infection groups. These SPC proteins have shown importance for flavivirus assembly and secretion and could be potential targets for gene modification in strategies for the interruption of flavivirus transmission by mosquitoes.
Collapse
|
30
|
Mateos Fernández R, Petek M, Gerasymenko I, Juteršek M, Baebler Š, Kallam K, Moreno Giménez E, Gondolf J, Nordmann A, Gruden K, Orzaez D, Patron NJ. Insect pest management in the age of synthetic biology. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:25-36. [PMID: 34416790 PMCID: PMC8710903 DOI: 10.1111/pbi.13685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 05/10/2023]
Abstract
Arthropod crop pests are responsible for 20% of global annual crop losses, a figure predicted to increase in a changing climate where the ranges of numerous species are projected to expand. At the same time, many insect species are beneficial, acting as pollinators and predators of pest species. For thousands of years, humans have used increasingly sophisticated chemical formulations to control insect pests but, as the scale of agriculture expanded to meet the needs of the global population, concerns about the negative impacts of agricultural practices on biodiversity have grown. While biological solutions, such as biological control agents and pheromones, have previously had relatively minor roles in pest management, biotechnology has opened the door to numerous new approaches for controlling insect pests. In this review, we look at how advances in synthetic biology and biotechnology are providing new options for pest control. We discuss emerging technologies for engineering resistant crops and insect populations and examine advances in biomanufacturing that are enabling the production of new products for pest control.
Collapse
Affiliation(s)
| | - Marko Petek
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Iryna Gerasymenko
- Plant Biotechnology and Metabolic EngineeringTechnische Universität DarmstadtDarmstadtGermany
| | - Mojca Juteršek
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
- Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
| | - Špela Baebler
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | | | | | - Janine Gondolf
- Institut für PhilosophieTechnische Universität DarmstadtDarmstadtGermany
| | - Alfred Nordmann
- Institut für PhilosophieTechnische Universität DarmstadtDarmstadtGermany
| | - Kristina Gruden
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Diego Orzaez
- Institute for Plant Molecular and Cell Biology (IBMCP)UPV‐CSICValenciaSpain
| | | |
Collapse
|
31
|
Girardin L, Débarre F. Demographic feedbacks can hamper the spatial spread of a gene drive. J Math Biol 2021; 83:67. [PMID: 34862932 DOI: 10.1007/s00285-021-01702-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022]
Abstract
This paper is concerned with a reaction-diffusion system modeling the fixation and the invasion in a population of a gene drive (an allele biasing inheritance, increasing its own transmission to offspring). In our model, the gene drive has a negative effect on the fitness of individuals carrying it, and is therefore susceptible of decreasing the total carrying capacity of the population locally in space. This tends to generate an opposing demographic advection that the gene drive has to overcome in order to invade. While previous reaction-diffusion models neglected this aspect, here we focus on it and try to predict the sign of the traveling wave speed. It turns out to be an analytical challenge, only partial results being within reach, and we complete our theoretical analysis by numerical simulations. Our results indicate that taking into account the interplay between population dynamics and population genetics might actually be crucial, as it can effectively reverse the direction of the invasion and lead to failure. Our findings can be extended to other bistable systems, such as the spread of cytoplasmic incompatibilities caused by Wolbachia.
Collapse
Affiliation(s)
- Léo Girardin
- CNRS, Institut Camille Jordan, Université Claude Bernard Lyon-1, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne Cedex, France.
| | - Florence Débarre
- CNRS, Sorbonne Université, Université Paris Est Creteil, INRAE, IRD, Institute of Ecology and Environmental Sciences, Paris, IEES-Paris, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
32
|
Faber NR, Meiborg AB, Mcfarlane GR, Gorjanc G, Harpur BA. A gene drive does not spread easily in populations of the honey bee parasite Varroa destructor. APIDOLOGIE 2021; 52:1112-1127. [PMID: 35068598 PMCID: PMC8755698 DOI: 10.1007/s13592-021-00891-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 05/29/2023]
Abstract
UNLABELLED Varroa mites (Varroa destructor) are the most significant threat to beekeeping worldwide. They are directly or indirectly responsible for millions of colony losses each year. Beekeepers are somewhat able to control varroa populations through the use of physical and chemical treatments. However, these methods range in effectiveness, can harm honey bees, can be physically demanding on the beekeeper, and do not always provide complete protection from varroa. More importantly, in some populations varroa mites have developed resistance to available acaricides. Overcoming the varroa mite problem will require novel and targeted treatment options. Here, we explore the potential of gene drive technology to control varroa. We show that spreading a neutral gene drive in varroa is possible but requires specific colony-level management practices to overcome the challenges of both inbreeding and haplodiploidy. Furthermore, continued treatment with acaricides is necessary to give a gene drive time to fix in the varroa population. Unfortunately, a gene drive that impacts female or male fertility does not spread in varroa. Therefore, we suggest that the most promising way forward is to use a gene drive which carries a toxin precursor or removes acaricide resistance alleles. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13592-021-00891-5.
Collapse
Affiliation(s)
- Nicky R. Faber
- HighlanderLab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG United Kingdom
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Adriaan B. Meiborg
- HighlanderLab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG United Kingdom
| | - Gus R. Mcfarlane
- Burdon Group, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG United Kingdom
| | - Gregor Gorjanc
- HighlanderLab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG United Kingdom
| | - Brock A. Harpur
- Department of Entomology, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
33
|
Söllner JH, Mettenleiter TC, Petersen B. Genome Editing Strategies to Protect Livestock from Viral Infections. Viruses 2021; 13:1996. [PMID: 34696426 PMCID: PMC8539128 DOI: 10.3390/v13101996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
The livestock industry is constantly threatened by viral disease outbreaks, including infections with zoonotic potential. While preventive vaccination is frequently applied, disease control and eradication also depend on strict biosecurity measures. Clustered regularly interspaced palindromic repeats (CRISPR) and associated proteins (Cas) have been repurposed as genome editors to induce targeted double-strand breaks at almost any location in the genome. Thus, CRISPR/Cas genome editors can also be utilized to generate disease-resistant or resilient livestock, develop vaccines, and further understand virus-host interactions. Genes of interest in animals and viruses can be targeted to understand their functions during infection. Furthermore, transgenic animals expressing CRISPR/Cas can be generated to target the viral genome upon infection. Genetically modified livestock can thereby reduce disease outbreaks and decrease zoonotic threats.
Collapse
Affiliation(s)
- Jenny-Helena Söllner
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt am Rübenberge, Germany;
| | | | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt am Rübenberge, Germany;
| |
Collapse
|
34
|
Warburton B, Eason C, Fisher P, Hancox N, Hopkins B, Nugent G, Ogilvie S, Prowse TAA, Ross J, Cowan PE. Alternatives for mammal pest control in New Zealand in the context of concerns about 1080 toxicant (sodium fluoroacetate). NEW ZEALAND JOURNAL OF ZOOLOGY 2021. [DOI: 10.1080/03014223.2021.1977345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Charles Eason
- Lincoln University, Department of Pest Management and Conservation, Lincoln, New Zealand
| | - Penny Fisher
- Manaaki Whenua – Landcare Research, Lincoln, New Zealand
| | | | - Brian Hopkins
- Manaaki Whenua – Landcare Research, Lincoln, New Zealand
| | - Graham Nugent
- Manaaki Whenua – Landcare Research, Lincoln, New Zealand
| | - Shaun Ogilvie
- Eco Research Associates Ltd, Christchurch, New Zealand
| | | | - James Ross
- Lincoln University, Department of Pest Management and Conservation, Lincoln, New Zealand
| | - Phil E. Cowan
- Manaaki Whenua – Landcare Research, Lincoln, New Zealand
| |
Collapse
|
35
|
Reid WR, Olson KE, Franz AWE. Current Effector and Gene-Drive Developments to Engineer Arbovirus-Resistant Aedes aegypti (Diptera: Culicidae) for a Sustainable Population Replacement Strategy in the Field. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1987-1996. [PMID: 33704462 PMCID: PMC8421695 DOI: 10.1093/jme/tjab030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 05/13/2023]
Abstract
Arthropod-borne viruses (arboviruses) such as dengue, Zika, and chikungunya viruses cause morbidity and mortality among human populations living in the tropical regions of the world. Conventional mosquito control efforts based on insecticide treatments and/or the use of bednets and window curtains are currently insufficient to reduce arbovirus prevalence in affected regions. Novel, genetic strategies that are being developed involve the genetic manipulation of mosquitoes for population reduction and population replacement purposes. Population replacement aims at replacing arbovirus-susceptible wild-type mosquitoes in a target region with those that carry a laboratory-engineered antiviral effector to interrupt arboviral transmission in the field. The strategy has been primarily developed for Aedes aegypti (L.), the most important urban arbovirus vector. Antiviral effectors based on long dsRNAs, miRNAs, or ribozymes destroy viral RNA genomes and need to be linked to a robust gene drive to ensure their fixation in the target population. Synthetic gene-drive concepts are based on toxin/antidote, genetic incompatibility, and selfish genetic element principles. The CRISPR/Cas9 gene editing system can be configurated as a homing endonuclease gene (HEG) and HEG-based drives became the preferred choice for mosquitoes. HEGs are highly allele and nucleotide sequence-specific and therefore sensitive to single-nucleotide polymorphisms/resistant allele formation. Current research efforts test new HEG-based gene-drive designs that promise to be less sensitive to resistant allele formation. Safety aspects in conjunction with gene drives are being addressed by developing procedures that would allow a recall or overwriting of gene-drive transgenes once they have been released.
Collapse
Affiliation(s)
- William R Reid
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Ken E Olson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Alexander W E Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
- Corresponding author, e-mail:
| |
Collapse
|
36
|
Growth and Maintenance of Wolbachia in Insect Cell Lines. INSECTS 2021; 12:insects12080706. [PMID: 34442272 PMCID: PMC8396524 DOI: 10.3390/insects12080706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Wolbachia is an intracellular bacterium that occurs in arthropods and in filarial worms. First described nearly a century ago in the reproductive tissues of Culex pipiens mosquitoes, Wolbachia is now known to occur in roughly 50% of insect species, and has been considered the most abundant intracellular bacterium on earth. In insect hosts, Wolbachia modifies reproduction in ways that facilitate spread of the microbe within the host population, but otherwise is relatively benign. In this “gene drive” capacity, Wolbachia provides a tool for manipulating mosquito populations. In mosquitoes, Wolbachia causes cytoplasmic incompatibility, in which the fusion of egg and sperm nuclei is disrupted, and eggs fail to hatch, depending on the presence/absence of Wolbachia in the parent insects. Recent findings demonstrate that Wolbachia from infected insects can be transferred into mosquito species that do not host a natural infection. When transinfected into Aedes aegypti, an important vector of dengue and Zika viruses, Wolbachia causes cytoplasmic incompatibility and, in addition, decreases the mosquito’s ability to transmit viruses to humans. This review addresses the maintenance of Wolbachia in insect cell lines, which provide a tool for high-level production of infectious bacteria. In vitro technologies will improve use of Wolbachia for pest control, and provide the microbiological framework for genetic engineering of this promising biocontrol agent. Abstract The obligate intracellular microbe, Wolbachia pipientis (Rickettsiales; Anaplasmataceae), is a Gram-negative member of the alpha proteobacteria that infects arthropods and filarial worms. Although closely related to the genera Anaplasma and Ehrlichia, which include pathogens of humans, Wolbachia is uniquely associated with invertebrate hosts in the clade Ecdysozoa. Originally described in Culex pipiens mosquitoes, Wolbachia is currently represented by 17 supergroups and is believed to occur in half of all insect species. In mosquitoes, Wolbachia acts as a gene drive agent, with the potential to modify vector populations; in filarial worms, Wolbachia functions as a symbiont, and is a target for drug therapy. A small number of Wolbachia strains from supergroups A, B, and F have been maintained in insect cell lines, which are thought to provide a more permissive environment than the natural host. When transferred back to an insect host, Wolbachia produced in cultured cells are infectious and retain reproductive phenotypes. Here, I review applications of insect cell lines in Wolbachia research and describe conditions that facilitate Wolbachia infection and replication in naive host cells. Progress in manipulation of Wolbachia in vitro will enable genetic and biochemical advances that will facilitate eventual genetic engineering of this important biological control agent.
Collapse
|
37
|
Schember I, Halfon MS. Identification of new Anopheles gambiae transcriptional enhancers using a cross-species prediction approach. INSECT MOLECULAR BIOLOGY 2021; 30:410-419. [PMID: 33866636 PMCID: PMC8266755 DOI: 10.1111/imb.12705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The success of transgenic mosquito vector control approaches relies on well-targeted gene expression, requiring the identification and characterization of a diverse set of mosquito promoters and transcriptional enhancers. However, few enhancers have been characterized in Anopheles gambiae to date. Here, we employ the SCRMshaw method we previously developed to predict enhancers in the A. gambiae genome, preferentially targeting vector-relevant tissues such as the salivary glands, midgut and nervous system. We demonstrate a high overall success rate, with at least 8 of 11 (73%) tested sequences validating as enhancers in an in vivo xenotransgenic assay. Four tested sequences drive expression in either the salivary gland or the midgut, making them directly useful for probing the biology of these infection-relevant tissues. The success of our study suggests that computational enhancer prediction should serve as an effective means for identifying A. gambiae enhancers with activity in tissues involved in malaria propagation and transmission.
Collapse
Affiliation(s)
- Isabella Schember
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203
| | - Marc S. Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203
- Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, NY 14203
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14203
- NY State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY 14203
- Department of Molecular and Cellular Biology and Program in Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| |
Collapse
|
38
|
Mysore K, Sun L, Roethele JB, Li P, Igiede J, Misenti JK, Duman-Scheel M. A conserved female-specific larval requirement for MtnB function facilitates sex separation in multiple species of disease vector mosquitoes. Parasit Vectors 2021; 14:338. [PMID: 34174948 PMCID: PMC8234664 DOI: 10.1186/s13071-021-04844-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022] Open
Abstract
Background Clusters of sex-specific loci are predicted to shape the boundaries of the M/m sex-determination locus of the dengue vector mosquito Aedes aegypti, but the identities of these genes are not known. Identification and characterization of these loci could promote a better understanding of mosquito sex chromosome evolution and lead to the elucidation of new strategies for male mosquito sex separation, a requirement for several emerging mosquito population control strategies that are dependent on the mass rearing and release of male mosquitoes. This investigation revealed that the methylthioribulose-1-phosphate dehydratase (MtnB) gene, which resides adjacent to the M/m locus and encodes an evolutionarily conserved component of the methionine salvage pathway, is required for survival of female larvae. Results Larval consumption of Saccharomyces cerevisiae (yeast) strains engineered to express interfering RNA corresponding to MtnB resulted in target gene silencing and significant female death, yet had no impact on A. aegypti male survival or fitness. Integration of the yeast larvicides into mass culturing protocols permitted scaled production of fit adult male mosquitoes. Moreover, silencing MtnB orthologs in Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus revealed a conserved female-specific larval requirement for MtnB among different species of mosquitoes. Conclusions The results of this investigation, which may have important implications for the study of mosquito sex chromosome evolution, indicate that silencing MtnB can facilitate sex separation in multiple species of disease vector insects. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04844-w.
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Longhua Sun
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Joseph B Roethele
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Ping Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Jessica Igiede
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Joi K Misenti
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA. .,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA.
| |
Collapse
|
39
|
Lanzaro GC, Sánchez C HM, Collier TC, Marshall JM, James AA. Population modification strategies for malaria vector control are uniquely resilient to observed levels of gene drive resistance alleles. Bioessays 2021; 43:e2000282. [PMID: 34151435 DOI: 10.1002/bies.202000282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/13/2021] [Accepted: 05/31/2021] [Indexed: 11/09/2022]
Abstract
Cas9/guide RNA (gRNA)-based gene drive systems are expected to play a transformative role in malaria elimination efforts., whether through population modification, in which the drive system contains parasite-refractory genes, or population suppression, in which the drive system induces a severe fitness load resulting in population decline or extinction. DNA sequence polymorphisms representing alternate alleles at gRNA target sites may confer a drive-resistant phenotype in individuals carrying them. Modeling predicts that, for observed levels of SGV at potential target sites and observed rates of de novo DRA formation, population modification strategies are uniquely resilient to DRAs. We conclude that gene drives can succeed when fitness costs incurred by drive-carrying mosquitoes are low enough to prevent strong positive selection for DRAs produced de novo or as part of the SGV and that population modification strategies are less prone to failure due to drive resistance.
Collapse
Affiliation(s)
- Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Hector M Sánchez C
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, California, USA
| | - Travis C Collier
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, California, USA
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, California, USA.,Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| |
Collapse
|
40
|
Sutter A, Price TA, Wedell N. The impact of female mating strategies on the success of insect control technologies. CURRENT OPINION IN INSECT SCIENCE 2021; 45:75-83. [PMID: 33601059 DOI: 10.1016/j.cois.2021.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/11/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Attempts to control insect pests and disease vectors have a long history. Recently, new technology has opened a whole new range of possible methods to suppress or transform natural populations. But it has also become clear that a better understanding of the ecology of targeted populations is needed. One key parameter is mating behaviour. Often modified males are released which need to successfully reproduce with females while competing with wild males. Insect control techniques can be affected by target species' mating ecology, and conversely mating ecology is likely to evolve in response to manipulation attempts. A better understanding of (female) mating behaviour will help anticipate and overcome potential challenges, and thus make desirable outcomes more likely.
Collapse
Affiliation(s)
- Andreas Sutter
- School of Biological Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Tom Ar Price
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Nina Wedell
- Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK.
| |
Collapse
|
41
|
Chae K, Valentin C, Dawson C, Jakes E, Myles KM, Adelman ZN. A knockout screen of genes expressed specifically in Ae. aegypti pupae reveals a critical role for stretchin in mosquito flight. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 132:103565. [PMID: 33716097 DOI: 10.1016/j.ibmb.2021.103565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Aedes aegypti is a critical vector for transmitting Zika, dengue, chikungunya, and yellow fever viruses to humans. Genetic strategies to limit mosquito survival based upon sex distortion or disruption of development may be valuable new tools to control Ae. aegypti populations. We identified six genes with expression limited to pupal development; osi8 and osi11 (Osiris protein family), CPRs and CPF (cuticle protein family), and stretchin (a muscle protein). Heritable CRISPR/Cas9-mediated gene knockout of these genes did not reveal any defects in pupal development. However, stretchin-null mutations (strnΔ35/Δ41) resulted in flightless mosquitoes with an abnormal open wing posture. The inability of adult strnΔ35/Δ41 mosquitoes to fly restricted their escape from aquatic rearing media following eclosion, and substantially reduced adult survival rates. Transgenic strains which contain the EGFP marker gene under the control of strn regulatory regions (0.8 kb, 1.4 kb, and 2.2 kb upstream, respectively), revealed the gene expression pattern of strn in muscle-like tissues in the thorax during late morphogenesis from L4 larvae to young adults. We demonstrated that Ae. aegypti pupae-specific strn is critical for adult mosquito flight capability and a key late-acting lethal target for mosquito-borne disease control.
Collapse
Affiliation(s)
- Keun Chae
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Collin Valentin
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Chanell Dawson
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Emma Jakes
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Kevin M Myles
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Zach N Adelman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
42
|
Bacterial Symbionts of Tsetse Flies: Relationships and Functional Interactions Between Tsetse Flies and Their Symbionts. Results Probl Cell Differ 2021; 69:497-536. [PMID: 33263885 DOI: 10.1007/978-3-030-51849-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Tsetse flies (Glossina spp.) act as the sole vectors of the African trypanosome species that cause Human African Trypanosomiasis (HAT or African Sleeping Sickness) and Nagana in animals. These flies have undergone a variety of specializations during their evolution including an exclusive diet consisting solely of vertebrate blood for both sexes as well as an obligate viviparous reproductive biology. Alongside these adaptations, Glossina species have developed intricate relationships with specific microbes ranging from mutualistic to parasitic. These relationships provide fundamental support required to sustain the specializations associated with tsetse's biology. This chapter provides an overview on the knowledge to date regarding the biology behind these relationships and focuses primarily on four bacterial species that are consistently associated with Glossina species. Here their interactions with the host are reviewed at the morphological, biochemical and genetic levels. This includes: the obligate symbiont Wigglesworthia, which is found in all tsetse species and is essential for nutritional supplementation to the blood-specific diet, immune system maturation and facilitation of viviparous reproduction; the commensal symbiont Sodalis, which is a frequently associated symbiont optimized for survival within the fly via nutritional adaptation, vertical transmission through mating and may alter vectorial capacity of Glossina for trypanosomes; the parasitic symbiont Wolbachia, which can manipulate Glossina via cytoplasmic incompatibility and shows unique interactions at the genetic level via horizontal transmission of its genetic material into the genome in two Glossina species; finally, knowledge on recently observed relations between Spiroplasma and Glossina is explored and potential interactions are discussed based on knowledge of interactions between this bacterial Genera and other insect species. These flies have a simple microbiome relative to that of other insects. However, these relationships are deep, well-studied and provide a window into the complexity and function of host/symbiont interactions in an important disease vector.
Collapse
|
43
|
Pilkiewicz KR, Mayo ML. Modeling the impacts of a simple meiotic gene drive on small, homeostatic populations. Phys Rev E 2021; 101:022412. [PMID: 32168619 DOI: 10.1103/physreve.101.022412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/16/2020] [Indexed: 11/07/2022]
Abstract
Gene drives offer unprecedented control over the fate of natural ecosystems by leveraging non-Mendelian inheritance mechanisms to proliferate synthetic genes across wild populations. However, these benefits are offset by a need to avoid the potentially disastrous consequences of unintended ecological interactions. The efficacy of many gene-editing drives has been brought into question due to predictions that they will inevitably be thwarted by the emergence of drive-resistant mutations, but these predictions derive largely from models of large or infinite populations that cannot be driven to extinction faster than mutations can fixate. To address this issue, we characterize the impact of a simple, meiotic gene drive on a small, homeostatic population whose genotypic composition may vary due to the stochasticity inherent in natural mating events (e.g., partner choice, number of offspring) or the genetic inheritance process (e.g., mutation rate, gene drive fitness). To determine whether the ultimate genotypic fate of such a population is sensitive to such stochastic fluctuations, we compare the results of two dynamical models: a deterministic model that attempts to predict how the genetics of an average population evolve over successive generations, and an agent-based model that examines how stable these predictions are to fluctuations. We find that, even on average, our stochastic model makes qualitatively distinct predictions from those of the deterministic model, and we identify the source of these discrepancies as a dynamic instability that arises at short times, when genetic diversity is maximized as a consequence of the gene drive's rapid proliferation. While we ultimately conclude that extinction can only beat out the fixation of drive-resistant mutations over a limited region of parameter space, the reason for this is more complex than previously understood, which could open new avenues for engineered gene drives to circumvent this weakness.
Collapse
Affiliation(s)
- Kevin R Pilkiewicz
- U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi 39180, USA
| | - Michael L Mayo
- U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi 39180, USA
| |
Collapse
|
44
|
Abstract
BACKGROUND The Oriental fruit fly, Bactrocera dorsalis, is a highly polyphagous invasive species with a high reproductive potential. In many tropical and subtropical parts of the world it ranks as one of the major pests of fruits and vegetables. Due to its economic importance, genetic, cytogenetic, genomic and biotechnological approaches have been applied to understand its biology and to implement the Sterile Insect Technique, currently a part of area-wide control programmes against this fly. Its chromosome complement includes five pairs of autosomes and the sex chromosomes. The X and Y sex chromosomes are heteromorphic and the highly heterochromatic and degenerate Y harbours the male factor BdMoY. The characterization of the Y chromosome in this fly apart from elucidating its role as primary sex determination system, it is also of crucial importance to understand its role in male biology. The repetitive nature of the Y chromosome makes it challenging to sequence and characterise. RESULTS Using Representational Difference Analysis, fluorescent in situ hybridisation on mitotic chromosomes and in silico genome resources, we show that the B. dorsalis Y chromosome harbours transcribed sequences of gyf, (typo-gyf) a homologue of the Drosophila melanogaster Gigyf gene, and of a non-LTR retrotransposon R1. Similar sequences are also transcribed on the X chromosome. Paralogues of the Gigyf gene are also present on the Y and X chromosomes of the related species B. tryoni. Another identified Y-specific repetitive sequence linked to BdMoY appears to be specific to B. dorsalis. CONCLUSIONS Our random scan of the Y chromosome provides a broad picture of its general composition and represents a starting point for further applicative and evolutionary studies. The identified repetitive sequences can provide a useful Y-marking system for molecular karyotyping of single embryos. Having a robust diagnostic marker associated with BdMoY will facilitate studies on how BdMoY regulates the male sex determination cascade during the embryonic sex-determination window. The Y chromosome, despite its high degeneracy and heterochromatic nature, harbours transcribed sequences of typo-gyf that may maintain their important function in post-transcriptional mRNA regulation. That transcribed paralogous copies of Gigyf are present also on the X and that this genomic distribution is maintained also in B. tryoni raises questions on the evolution of sex chromosomes in Bactrocera and other tephritids.
Collapse
|
45
|
O’Leary S, Adelman ZN. CRISPR/Cas9 knockout of female-biased genes AeAct-4 or myo-fem in Ae. aegypti results in a flightless phenotype in female, but not male mosquitoes. PLoS Negl Trop Dis 2020; 14:e0008971. [PMID: 33338046 PMCID: PMC7781531 DOI: 10.1371/journal.pntd.0008971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/04/2021] [Accepted: 11/11/2020] [Indexed: 02/04/2023] Open
Abstract
Aedes aegypti is a vector of dengue, chikungunya, and Zika viruses. Current vector control strategies such as community engagement, source reduction, and insecticides have not been sufficient to prevent viral outbreaks. Thus, interest in novel strategies involving genetic engineering is growing. Female mosquitoes rely on flight to mate with males and obtain a bloodmeal from a host. We hypothesized that knockout of genes specifically expressed in female mosquitoes associated with the indirect flight muscles would result in a flightless female mosquito. Using CRISPR-Cas9 we generated loss-of-function mutations in several genes hypothesized to control flight in mosquitoes, including actin (AeAct-4) and myosin (myo-fem) genes expressed specifically in the female flight muscle. Genetic knockout of these genes resulted in 100% flightless females, with homozygous males able to fly, mate, and produce offspring, albeit at a reduced rate when compared to wild type males. Interestingly, we found that while AeAct-4 was haplosufficient, with most heterozygous individuals capable of flight, this was not the case for myo-fem, where about half of individuals carrying only one intact copy could not fly. These findings lay the groundwork for developing novel mechanisms of controlling Ae. aegypti populations, and our results suggest that this mechanism could be applicable to other vector species of mosquito.
Collapse
Affiliation(s)
- Sarah O’Leary
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| | - Zach N. Adelman
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
46
|
Edgington MP, Harvey-Samuel T, Alphey L. Split drive killer-rescue provides a novel threshold-dependent gene drive. Sci Rep 2020; 10:20520. [PMID: 33239631 PMCID: PMC7689494 DOI: 10.1038/s41598-020-77544-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
A wide range of gene drive mechanisms have been proposed that are predicted to increase in frequency within a population even when they are deleterious to individuals carrying them. This also allows associated desirable genetic material ("cargo genes") to increase in frequency. Gene drives have garnered much attention for their potential use against a range of globally important problems including vector borne disease, crop pests and invasive species. Here we propose a novel gene drive mechanism that could be engineered using a combination of toxin-antidote and CRISPR components, each of which are already being developed for other purposes. Population genetics mathematical models are developed here to demonstrate the threshold-dependent nature of the proposed system and its robustness to imperfect homing, incomplete penetrance of toxins and transgene fitness costs, each of which are of practical significance given that real-world components inevitably have such imperfections. We show that although end-joining repair mechanisms may cause the system to break down, under certain conditions, it should persist over time scales relevant for genetic control programs. The potential of such a system to provide localised population suppression via sex ratio distortion or female-specific lethality is also explored. Additionally, we investigate the effect on introduction thresholds of adding an extra CRISPR base element, showing that this may either increase or decrease dependent on parameter context.
Collapse
Affiliation(s)
| | - Tim Harvey-Samuel
- The Pirbright Institute, Ash Road, Woking, Surrey, Pirbright, GU24 0NF, UK
| | - Luke Alphey
- The Pirbright Institute, Ash Road, Woking, Surrey, Pirbright, GU24 0NF, UK
| |
Collapse
|
47
|
Gopal J, Ramamoorthy T, Kasinathan G, Narendran PK, Purushothaman J, Yellapu NK. VectorInfo: A web resource for medically important Indian arthropod disease vectors. Acta Trop 2020; 211:105601. [PMID: 32598921 DOI: 10.1016/j.actatropica.2020.105601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 11/19/2022]
Abstract
VectorInfo is a freely accessible web resource, emphasised on medically important Indian arthropods funded by Indian Council of Medical Research (ICMR) and maintained by one of its premier institute, Vector Control Research Centre (VCRC). VectorInfo elucidates and curates medically important Indian arthropod's biological, omics technologies to adopt a holistic view of the molecules that make up an organism, aimed at the detection of genomics, transcriptomics, proteomics, enzymes & pathways and immune specific genes. The nitty-gritty of VectorInfo is aimed at scrutinizing all the possible information on Indian disease vectors in a single window for the scientific community. The database affords 53 medically important Indian arthropod's biological and omics information well-structured and provided with downloadable facilities. In addition to this, huge number of research articles were mined in the quest for gathering the recommended insecticide targets and their mechanisms, that pave ways to design and develop novel lead molecules through computational means. This current up-to-date database contains 2,498 omics entries beneficial for the molecular studies and analysis. In order to maintain regular updates, user forms were provided for the scientific community to submit research data to the database administrator. The VectorInfo furthermore conveys various resources for vector control and diagnostics and the links to the crucial software tools used for the Bioinformatics analysis.
Collapse
Affiliation(s)
- Jeyakodi Gopal
- Biomedical Informatics Centre, Vector Control Research Center, Indian Council of Medical Research, Pondicherry, 605006, India; Centre for Bioinformatics, Pondicherry University, Pondicherry, 605014, India
| | - Thulasibabu Ramamoorthy
- Biomedical Informatics Centre, Vector Control Research Center, Indian Council of Medical Research, Pondicherry, 605006, India
| | - Gunasekaran Kasinathan
- Biomedical Informatics Centre, Vector Control Research Center, Indian Council of Medical Research, Pondicherry, 605006, India
| | - Pradeep Kumar Narendran
- Biomedical Informatics Centre, Vector Control Research Center, Indian Council of Medical Research, Pondicherry, 605006, India
| | - Jambulingam Purushothaman
- Biomedical Informatics Centre, Vector Control Research Center, Indian Council of Medical Research, Pondicherry, 605006, India
| | - Nanda Kumar Yellapu
- Biomedical Informatics Centre, Vector Control Research Center, Indian Council of Medical Research, Pondicherry, 605006, India; Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
48
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Bonsall MB, Mumford J, Wimmer EA, Devos Y, Paraskevopoulos K, Firbank LG. Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives. EFSA J 2020; 18:e06297. [PMID: 33209154 PMCID: PMC7658669 DOI: 10.2903/j.efsa.2020.6297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in molecular and synthetic biology are enabling the engineering of gene drives in insects for disease vector/pest control. Engineered gene drives (that bias their own inheritance) can be designed either to suppress interbreeding target populations or modify them with a new genotype. Depending on the engineered gene drive system, theoretically, a genetic modification of interest could spread through target populations and persist indefinitely, or be restricted in its spread or persistence. While research on engineered gene drives and their applications in insects is advancing at a fast pace, it will take several years for technological developments to move to practical applications for deliberate release into the environment. Some gene drive modified insects (GDMIs) have been tested experimentally in the laboratory, but none has been assessed in small-scale confined field trials or in open release trials as yet. There is concern that the deliberate release of GDMIs in the environment may have possible irreversible and unintended consequences. As a proactive measure, the European Food Safety Authority (EFSA) has been requested by the European Commission to review whether its previously published guidelines for the risk assessment of genetically modified animals (EFSA, 2012 and 2013), including insects (GMIs), are adequate and sufficient for GDMIs, primarily disease vectors, agricultural pests and invasive species, for deliberate release into the environment. Under this mandate, EFSA was not requested to develop risk assessment guidelines for GDMIs. In this Scientific Opinion, the Panel on Genetically Modified Organisms (GMO) concludes that EFSA's guidelines are adequate, but insufficient for the molecular characterisation (MC), environmental risk assessment (ERA) and post-market environmental monitoring (PMEM) of GDMIs. While the MC,ERA and PMEM of GDMIs can build on the existing risk assessment framework for GMIs that do not contain engineered gene drives, there are specific areas where further guidance is needed for GDMIs.
Collapse
|
49
|
Dhole S, Lloyd AL, Gould F. Gene Drive Dynamics in Natural Populations: The Importance of Density Dependence, Space, and Sex. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020; 51:505-531. [PMID: 34366722 PMCID: PMC8340601 DOI: 10.1146/annurev-ecolsys-031120-101013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The spread of synthetic gene drives is often discussed in the context of panmictic populations connected by gene flow and described with simple deterministic models. Under such assumptions, an entire species could be altered by releasing a single individual carrying an invasive gene drive, such as a standard homing drive. While this remains a theoretical possibility, gene drive spread in natural populations is more complex and merits a more realistic assessment. The fate of any gene drive released in a population would be inextricably linked to the population's ecology. Given the uncertainty often involved in ecological assessment of natural populations, understanding the sensitivity of gene drive spread to important ecological factors is critical. Here we review how different forms of density dependence, spatial heterogeneity, and mating behaviors can impact the spread of self-sustaining gene drives. We highlight specific aspects of gene drive dynamics and the target populations that need further research.
Collapse
Affiliation(s)
- Sumit Dhole
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Alun L Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8213, USA
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, North Carolina 27695-7565, USA
| | - Fred Gould
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, North Carolina 27695-7565, USA
| |
Collapse
|
50
|
The Antiviral Small-Interfering RNA Pathway Induces Zika Virus Resistance in Transgenic Aedes aegypti. Viruses 2020; 12:v12111231. [PMID: 33142991 PMCID: PMC7692394 DOI: 10.3390/v12111231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/21/2023] Open
Abstract
The resurgence of arbovirus outbreaks across the globe, including the recent Zika virus (ZIKV) epidemic in 2015–2016, emphasizes the need for innovative vector control methods. In this study, we investigated ZIKV susceptibility to transgenic Aedes aegypti engineered to target the virus by means of the antiviral small-interfering RNA (siRNA) pathway. The robustness of antiviral effector expression in transgenic mosquitoes is strongly influenced by the genomic insertion locus and transgene copy number; we therefore used CRISPR/Cas9 to re-target a previously characterized locus (Chr2:321382225) and engineered mosquitoes expressing an inverted repeat (IR) dsRNA against the NS3/4A region of the ZIKV genome. Small RNA analysis revealed that the IR effector triggered the mosquito’s siRNA antiviral pathway in bloodfed females. Nearly complete (90%) inhibition of ZIKV replication was found in vivo in both midguts and carcasses at 7 or 14 days post-infection (dpi). Furthermore, significantly fewer transgenic mosquitoes contained ZIKV in their salivary glands (p = 0.001), which led to a reduction in the number of ZIKV-containing saliva samples as measured by transmission assay. Our work shows that Ae. aegypti innate immunity can be co-opted to engineer mosquitoes resistant to ZIKV.
Collapse
|