1
|
Shi Y, Ma L, Zhou M, He Z, Zhao Y, Hong J, Zou X, Zhang L, Shu L. Copper stress shapes the dynamic behavior of amoebae and their associated bacteria. THE ISME JOURNAL 2024; 18:wrae100. [PMID: 38848278 PMCID: PMC11197307 DOI: 10.1093/ismejo/wrae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
Amoeba-bacteria interactions are prevalent in both natural ecosystems and engineered environments. Amoebae, as essential consumers, hold significant ecological importance within ecosystems. Besides, they can establish stable symbiotic associations with bacteria. Copper plays a critical role in amoeba predation by either killing or restricting the growth of ingested bacteria in phagosomes. However, certain symbiotic bacteria have evolved mechanisms to persist within the phagosomal vacuole, evading antimicrobial defenses. Despite these insights, the impact of copper on the symbiotic relationships between amoebae and bacteria remains poorly understood. In this study, we investigated the effects of copper stress on amoebae and their symbiotic relationships with bacteria. Our findings revealed that elevated copper concentration adversely affected amoeba growth and altered cellular fate. Symbiont type significantly influenced the responses of the symbiotic relationships to copper stress. Beneficial symbionts maintained stability under copper stress, but parasitic symbionts exhibited enhanced colonization of amoebae. Furthermore, copper stress favored the transition of symbiotic relationships between amoebae and beneficial symbionts toward the host's benefit. Conversely, the pathogenic effects of parasitic symbionts on hosts were exacerbated under copper stress. This study sheds light on the intricate response mechanisms of soil amoebae and amoeba-bacteria symbiotic systems to copper stress, providing new insights into symbiotic dynamics under abiotic factors. Additionally, the results underscore the potential risks of copper accumulation in the environment for pathogen transmission and biosafety.
Collapse
Affiliation(s)
- Yijing Shi
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Lu Ma
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Zhou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanchen Zhao
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Junyue Hong
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinyue Zou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Yasser M, Ribback S, Evert K, Utpatel K, Annweiler K, Evert M, Dombrowski F, Calvisi DF. Early Subcellular Hepatocellular Alterations in Mice Post Hydrodynamic Transfection: An Explorative Study. Cancers (Basel) 2023; 15:cancers15020328. [PMID: 36672277 PMCID: PMC9857294 DOI: 10.3390/cancers15020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Hydrodynamic transfection (HT) or hydrodynamic tail vein injection (HTVi) is among the leading technique that is used to deliver plasmid genes mainly into the liver of live mice or rats. The DNA constructs are composed of coupled plasmids, while one contains the gene of interest that stably integrate into the hepatocyte genome with help of the other consisting sleeping beauty transposase system. The rapid injection of a large volume of DNA-solution through the tail vein induces an acute cardiac congestion that refluxed into the liver, mainly in acinus zone 3, also found through our EM study. Although, HT mediated hydrodynamic force can permeabilizes the fenestrated sinusoidal endothelium of liver, but the mechanism of plasmid incorporation into the hepatocytes remains unclear. Therefore, in the present study, we have hydrodynamically injected 2 mL volume of empty plasmid (transposon vector) or saline solution (control) into the tail vein of anesthetized C57BL/6J/129Sv mice. Liver tissue was resected at different time points from two animal group conditions, i.e., one time point per animal (1, 5, 10-20, 60 min or 24 and 48 hrs after HT) or multiple time points per animal (0, 1, 2, 5, 10, 20 min) and quickly fixed with buffered 4% osmium tetroxide. The tissues fed with only saline solution was also resected and fixed in the similar way. EM evaluation from the liver ultrathin sections reveals that swiftly after 1 min, the hepatocytes near to the central venule in the acinus zone 3 shows cytoplasmic membrane-bound vesicles. Such vesicles increased in both numbers and size to vacuoles and precisely often found in the proximity to the nucleus. Further, EM affirm these vacuoles are also optically empty and do not contain any electron dense material. Although, some of the other hepatocytes reveals sign of cell damage including swollen mitochondria, dilated endoplasmic reticulum, Golgi apparatus and disrupted plasma membrane, but most of the hepatocytes appeared normal. The ultrastructural findings in the mice injected with empty vector or saline injected control mice were similar. Therefore, we have interpreted the vacuole formation as nonspecific endocytosis without specific interactions at the plasma membrane.
Collapse
Affiliation(s)
- Mohd Yasser
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany
| | - Silvia Ribback
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany
- Correspondence:
| | - Katja Evert
- Institut fuer Pathologie, Universitaetsklinikum Regensburg, 93053 Regensburg, Germany
| | - Kirsten Utpatel
- Institut fuer Pathologie, Universitaetsklinikum Regensburg, 93053 Regensburg, Germany
| | - Katharina Annweiler
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany
| | - Matthias Evert
- Institut fuer Pathologie, Universitaetsklinikum Regensburg, 93053 Regensburg, Germany
| | - Frank Dombrowski
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany
| | - Diego F. Calvisi
- Institut fuer Pathologie, Universitaetsklinikum Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
3
|
Hu S, Yu K, Yan J, Shan X, Xie D. Jasmonate perception: Ligand-receptor interaction, regulation, and evolution. MOLECULAR PLANT 2023; 16:23-42. [PMID: 36056561 DOI: 10.1016/j.molp.2022.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Phytohormones integrate external environmental and developmental signals with internal cellular responses for plant survival and multiplication in changing surroundings. Jasmonate (JA), which might originate from prokaryotes and benefit plant terrestrial adaptation, is a vital phytohormone that regulates diverse developmental processes and defense responses against various environmental stresses. In this review, we first provide an overview of ligand-receptor binding techniques used for the characterization of phytohormone-receptor interactions, then introduce the identification of the receptor COI1 and active JA molecules, and finally summarize recent advances on the regulation of JA perception and its evolution.
Collapse
Affiliation(s)
- Shuai Hu
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaiming Yu
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528200, China.
| | - Xiaoyi Shan
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Zhou J, Corvaisier M, Malycheva D, Alvarado-Kristensson M. Hubbing the Cancer Cell. Cancers (Basel) 2022; 14:5924. [PMID: 36497405 PMCID: PMC9738523 DOI: 10.3390/cancers14235924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Oncogenic transformation drives adaptive changes in a growing tumor that affect the cellular organization of cancerous cells, resulting in the loss of specialized cellular functions in the polarized compartmentalization of cells. The resulting altered metabolic and morphological patterns are used clinically as diagnostic markers. This review recapitulates the known functions of actin, microtubules and the γ-tubulin meshwork in orchestrating cell metabolism and functional cellular asymmetry.
Collapse
Affiliation(s)
| | | | | | - Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Skåne University Hospital Malmö 1, Lund University, 20502 Malmö, Sweden
| |
Collapse
|
5
|
Cerón-Romero MA, Fonseca MM, de Oliveira Martins L, Posada D, Katz LA. Phylogenomic Analyses of 2,786 Genes in 158 Lineages Support a Root of the Eukaryotic Tree of Life between Opisthokonts and All Other Lineages. Genome Biol Evol 2022; 14:evac119. [PMID: 35880421 PMCID: PMC9366629 DOI: 10.1093/gbe/evac119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Advances in phylogenomics and high-throughput sequencing have allowed the reconstruction of deep phylogenetic relationships in the evolution of eukaryotes. Yet, the root of the eukaryotic tree of life remains elusive. The most popular hypothesis in textbooks and reviews is a root between Unikonta (Opisthokonta + Amoebozoa) and Bikonta (all other eukaryotes), which emerged from analyses of a single-gene fusion. Subsequent, highly cited studies based on concatenation of genes supported this hypothesis with some variations or proposed a root within Excavata. However, concatenation of genes does not consider phylogenetically-informative events like gene duplications and losses. A recent study using gene tree parsimony (GTP) suggested the root lies between Opisthokonta and all other eukaryotes, but only including 59 taxa and 20 genes. Here we use GTP with a duplication-loss model in a gene-rich and taxon-rich dataset (i.e., 2,786 gene families from two sets of 155 and 158 diverse eukaryotic lineages) to assess the root, and we iterate each analysis 100 times to quantify tree space uncertainty. We also contrasted our results and discarded alternative hypotheses from the literature using GTP and the likelihood-based method SpeciesRax. Our estimates suggest a root between Fungi or Opisthokonta and all other eukaryotes; but based on further analysis of genome size, we propose that the root between Opisthokonta and all other eukaryotes is the most likely.
Collapse
Affiliation(s)
- Mario A Cerón-Romero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, USA
| | - Miguel M Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Leonardo de Oliveira Martins
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - David Posada
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
6
|
|
7
|
Bremer N, Tria FDK, Skejo J, Garg SG, Martin WF. Ancestral state reconstructions trace mitochondria but not phagocytosis to the last eukaryotic common ancestor. Genome Biol Evol 2022; 14:6596370. [PMID: 35642316 PMCID: PMC9185374 DOI: 10.1093/gbe/evac079] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Two main theories have been put forward to explain the origin of mitochondria in eukaryotes: phagotrophic engulfment (undigested food) and microbial symbiosis (physiological interactions). The two theories generate mutually exclusive predictions about the order in which mitochondria and phagocytosis arose. To discriminate the alternatives, we have employed ancestral state reconstructions (ASR) for phagocytosis as a trait, phagotrophy as a feeding habit, the presence of mitochondria, the presence of plastids, and the multinucleated organization across major eukaryotic lineages. To mitigate the bias introduced by assuming a particular eukaryotic phylogeny, we reconstructed the appearance of these traits across 1789 different rooted gene trees, each having species from opisthokonts, mycetozoa, hacrobia, excavate, archeplastida, and Stramenopiles, Alveolates and Rhizaria. The trees reflect conflicting relationships and different positions of the root. We employed a novel phylogenomic test that summarizes ASR across trees which reconstructs a last eukaryotic common ancestor that possessed mitochondria, was multinucleated, lacked plastids, and was non-phagotrophic as well as non-phagocytic. This indicates that both phagocytosis and phagotrophy arose subsequent to the origin of mitochondria, consistent with findings from comparative physiology. Furthermore, our ASRs uncovered multiple origins of phagocytosis and of phagotrophy across eukaryotes, indicating that, like wings in animals, these traits are useful but neither ancestral nor homologous across groups. The data indicate that mitochondria preceded the origin of phagocytosis, such that phagocytosis cannot have been the mechanism by which mitochondria were acquired.
Collapse
Affiliation(s)
- Nico Bremer
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf 40225 Düsseldorf, Germany
| | - Fernando D K Tria
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf 40225 Düsseldorf, Germany
| | - Josip Skejo
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf 40225 Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf 40225 Düsseldorf, Germany
| | - William F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf 40225 Düsseldorf, Germany
| |
Collapse
|
8
|
Eukaryogenesis and oxygen in Earth history. Nat Ecol Evol 2022; 6:520-532. [PMID: 35449457 DOI: 10.1038/s41559-022-01733-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
Abstract
The endosymbiotic origin of mitochondria during eukaryogenesis has long been viewed as an adaptive response to the oxygenation of Earth's surface environment, presuming a fundamentally aerobic lifestyle for the free-living bacterial ancestors of mitochondria. This oxygen-centric view has been robustly challenged by recent advances in the Earth and life sciences. While the permanent oxygenation of the atmosphere above trace concentrations is now thought to have occurred 2.2 billion years ago, large parts of the deep ocean remained anoxic until less than 0.5 billion years ago. Neither fossils nor molecular clocks correlate the origin of mitochondria, or eukaryogenesis more broadly, to either of these planetary redox transitions. Instead, mitochondria-bearing eukaryotes are consistently dated to between these two oxygenation events, during an interval of pervasive deep-sea anoxia and variable surface-water oxygenation. The discovery and cultivation of the Asgard archaea has reinforced metabolic evidence that eukaryogenesis was initially mediated by syntrophic H2 exchange between an archaeal host and an α-proteobacterial symbiont living under anoxia. Together, these results temporally, spatially and metabolically decouple the earliest stages of eukaryogenesis from the oxygen content of the surface ocean and atmosphere. Rather than reflecting the ancestral metabolic state, obligate aerobiosis in eukaryotes is most probably derived, having only become globally widespread over the past 1 billion years as atmospheric oxygen approached modern levels.
Collapse
|
9
|
Shao Y, Wang Z, Chen K, Li D, Lv Z, Zhang C, Zhang W, Li C. Xenophagy of invasive bacteria is differentially activated and modulated via a TLR-TRAF6-Beclin1 axis in echinoderms. J Biol Chem 2022; 298:101667. [PMID: 35120925 PMCID: PMC8902612 DOI: 10.1016/j.jbc.2022.101667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
In marine environments, organisms are confronted with numerous microbial challenges, although the differential regulation of xenophagy in response to different pathogenic bacterial species remains relatively unknown. Here, we addressed this issue using Apostichopus japonicus as a model. We identified 39 conserved autophagy-related genes by genome-wide screening, which provided a molecular basis for autophagy regulation in sea cucumbers. Furthermore, xenophagy of two Gram-negative bacteria, Vibrio splendidus and Escherichia coli, but not a Gram-positive bacteria, Micrococcus luteus, was observed in different autophagy assays. Surprisingly, a significantly higher autophagy capacity was found in the E. coli–challenged group than in the V. splendidus–challenged group. To confirm these findings, two different lipopolysaccharides, LPSV. splendidus and LPSE. coli, were isolated; we found that these LPS species differentially activated coelomocyte xenophagy. To explore the molecular mechanism mediating differential levels of xenophagy, we used an siRNA knockdown assay and confirmed that LPSV. splendidus-mediated xenophagy was dependent on an AjTLR3-mediated pathway, whereas LPSE. coli-mediated xenophagy was dependent on AjToll. Moreover, the activation of different AjTLRs resulted in AjTRAF6 ubiquitination and subsequent activation of K63-linked ubiquitination of AjBeclin1. Inversely, the LPSV. splendidus-induced AjTLR3 pathway simultaneously activated the expression of AjA20, which reduced the extent of K63-linked ubiquitination of AjBeclin1 and impaired the induction of autophagy; however, this finding was no t evident with LPSE. coli. Our present results provide the first evidence showing that xenophagy could be differentially induced by different bacterial species to yield differential autophagy levels in echinoderms.
Collapse
Affiliation(s)
- Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Zhenhui Wang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Kaiyu Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Dongdong Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Zhimeng Lv
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chundan Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
10
|
Szoke T, Nussbaum-Shochat A, Amster-Choder O. Evolutionarily conserved mechanism for membrane recognition from bacteria to mitochondria. FEBS Lett 2021; 595:2805-2815. [PMID: 34644400 DOI: 10.1002/1873-3468.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022]
Abstract
The mechanisms controlling membrane recognition by proteins with one hydrophobic stretch at their carboxyl terminus (tail anchor, TA) are poorly defined. The Escherichia coli TAs of ElaB and YqjD, which share sequential and structural similarity with the Saccharomyces cerevisiae TA of Fis1, were shown to localize to mitochondria. We show that YqjD and ElaB are directed by their TAs to bacterial cell poles. Fis1(TA) expressed in E. coli localizes like the endogenous TAs. The yeast and bacterial TAs are inserted in the E. coli inner membrane, and they all show affiliation to phosphatidic acid (PA), found in the membrane of the bacterial cell poles and of the yeast mitochondria. Our results suggest a mechanism for TA membrane recognition conserved from bacteria to mitochondria and raise the possibility that through their interaction with PA, and TAs play a role across prokaryotes and eukaryotes in controlling cell/organelle fate.
Collapse
Affiliation(s)
- Tamar Szoke
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Anat Nussbaum-Shochat
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
11
|
Charpentier JC, King PD. Mechanisms and functions of endocytosis in T cells. Cell Commun Signal 2021; 19:92. [PMID: 34503523 PMCID: PMC8427877 DOI: 10.1186/s12964-021-00766-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/17/2021] [Indexed: 11/11/2022] Open
Abstract
Once thought of primarily as a means to neutralize pathogens or to facilitate feeding, endocytosis is now known to regulate a wide range of eukaryotic cell processes. Among these are regulation of signal transduction, mitosis, lipid homeostasis, and directed migration, among others. Less well-appreciated are the roles various forms of endocytosis plays in regulating αβ and, especially, γδ T cell functions, such as T cell receptor signaling, antigen discovery by trogocytosis, and activated cell growth. Herein we examine the contribution of both clathrin-mediated and clathrin-independent mechanisms of endocytosis to T cell biology. Video Abstract
Collapse
Affiliation(s)
- John C Charpentier
- Department of Microbiology and Immunology, University of Michigan Medical School, 6606 Med Sci II, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5620, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, 6606 Med Sci II, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5620, USA.
| |
Collapse
|
12
|
Abstract
The origin of eukaryotes has been defined as the major evolutionary transition since the origin of life itself. Most hallmark traits of eukaryotes, such as their intricate intracellular organization, can be traced back to a putative common ancestor that predated the broad diversity of extant eukaryotes. However, little is known about the nature and relative order of events that occurred in the path from preexisting prokaryotes to this already sophisticated ancestor. The origin of mitochondria from the endosymbiosis of an alphaproteobacterium is one of the few robustly established events to which most hypotheses on the origin of eukaryotes are anchored, but the debate is still open regarding the time of this acquisition, the nature of the host, and the ecological and metabolic interactions between the symbiotic partners. After the acquisition of mitochondria, eukaryotes underwent a fast radiation into several major clades whose phylogenetic relationships have been largely elusive. Recent progress in the comparative analyses of a growing number of genomes is shedding light on the early events of eukaryotic evolution as well as on the root and branching patterns of the tree of eukaryotes. Here I discuss current knowledge and debates on the origin and early evolution of eukaryotes. I focus particularly on how phylogenomic analyses have challenged some of the early assumptions about eukaryotic evolution, including the widespread idea that mitochondrial symbiosis in an archaeal host was the earliest event in eukaryogenesis. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Toni Gabaldón
- Barcelona Supercomputing Centre (BCS-CNS), 08034 Barcelona, Spain; .,Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
13
|
Devos DP. Reconciling Asgardarchaeota Phylogenetic Proximity to Eukaryotes and Planctomycetes Cellular Features in the Evolution of Life. Mol Biol Evol 2021; 38:3531-3542. [PMID: 34229349 PMCID: PMC8382908 DOI: 10.1093/molbev/msab186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The relationship between the three domains of life—Archaea, Bacteria, and Eukarya—is one of Biology’s greatest mysteries. Current favored models imply two ancestral domains, Bacteria and Archaea, with eukaryotes originating within Archaea. This type of models has been supported by the recent description of the Asgardarchaeota, the closest prokaryotic relatives of eukaryotes. However, there are many problems associated with any scenarios implying that eukaryotes originated from within the Archaea, including genome mosaicism, phylogenies, the cellular organization of the Archaea, and their ancestral character. By contrast, all models of eukaryogenesis fail to consider two relevant discoveries: the detection of membrane coat proteins, and of phagocytosis-related processes in Planctomycetes, which are among the bacteria with the most developed endomembrane system. Consideration of these often overlooked features and others found in Planctomycetes and related bacteria suggest an evolutionary model based on a single ancestral domain. In this model, the proximity of Asgard and eukaryotes is not rejected but instead, Asgard are considered as diverging away from a common ancestor instead of on the way toward the eukaryotic ancestor. This model based on a single ancestral domain solves most of the ambiguities associated with the ones based on two ancestral domains. The single-domain model is better suited to explain the origin and evolution of all three domains of life, blurring the distinctions between them. Support for this model as well as the opportunities that it presents not only for reinterpreting previous results, but also for planning future experiments, are explored.
Collapse
Affiliation(s)
- Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD) - CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Seville, 41013, Spain
| |
Collapse
|
14
|
Neidhöfer C. On the Evolution of the Biological Framework for Insight. PHILOSOPHIES 2021; 6:43. [DOI: 10.3390/philosophies6020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The details of abiogenesis, to date, remain a matter of debate and constitute a key mystery in science and philosophy. The prevailing scientific hypothesis implies an evolutionary process of increasing complexity on Earth starting from (self-) replicating polymers. Defining the cut-off point where life begins is another moot point beyond the scope of this article. We will instead walk through the known evolutionary steps that led from these first exceptional polymers to the vast network of living biomatter that spans our world today, focusing in particular on perception, from simple biological feedback mechanisms to the complexity that allows for abstract thought. We will then project from the well-known to the unknown to gain a glimpse into what the universe aims to accomplish with living matter, just to find that if the universe had ever planned to be comprehended, evolution still has a long way to go.
Collapse
|
15
|
Evolution of default genetic control mechanisms. PLoS One 2021; 16:e0251568. [PMID: 33984070 PMCID: PMC8118313 DOI: 10.1371/journal.pone.0251568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/28/2021] [Indexed: 11/19/2022] Open
Abstract
We present a model of the evolution of control systems in a genome under environmental constraints. The model conceptually follows the Jacob and Monod model of gene control. Genes contain control elements which respond to the internal state of the cell as well as the environment to control expression of a coding region. Control and coding regions evolve to maximize a fitness function between expressed coding sequences and the environment. The model was run 118 times to an average of 1.4∙106 ‘generations’ each with a range of starting parameters probed the conditions under which genomes evolved a ‘default style’ of control. Unexpectedly, the control logic that evolved was not significantly correlated to the complexity of the environment. Genetic logic was strongly correlated with genome complexity and with the fraction of genes active in the cell at any one time. More complex genomes correlated with the evolution of genetic controls in which genes were active (‘default on’), and a low fraction of genes being expressed correlated with a genetic logic in which genes were biased to being inactive unless positively activated (‘default off’ logic). We discuss how this might relate to the evolution of the complex eukaryotic genome, which operates in a ‘default off’ mode.
Collapse
|
16
|
Tria FDK, Brueckner J, Skejo J, Xavier JC, Kapust N, Knopp M, Wimmer JLE, Nagies FSP, Zimorski V, Gould SB, Garg SG, Martin WF. Gene Duplications Trace Mitochondria to the Onset of Eukaryote Complexity. Genome Biol Evol 2021; 13:evab055. [PMID: 33739376 PMCID: PMC8175051 DOI: 10.1093/gbe/evab055] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
The last eukaryote common ancestor (LECA) possessed mitochondria and all key traits that make eukaryotic cells more complex than their prokaryotic ancestors, yet the timing of mitochondrial acquisition and the role of mitochondria in the origin of eukaryote complexity remain debated. Here, we report evidence from gene duplications in LECA indicating an early origin of mitochondria. Among 163,545 duplications in 24,571 gene trees spanning 150 sequenced eukaryotic genomes, we identify 713 gene duplication events that occurred in LECA. LECA's bacterial-derived genes include numerous mitochondrial functions and were duplicated significantly more often than archaeal-derived and eukaryote-specific genes. The surplus of bacterial-derived duplications in LECA most likely reflects the serial copying of genes from the mitochondrial endosymbiont to the archaeal host's chromosomes. Clustering, phylogenies and likelihood ratio tests for 22.4 million genes from 5,655 prokaryotic and 150 eukaryotic genomes reveal no evidence for lineage-specific gene acquisitions in eukaryotes, except from the plastid in the plant lineage. That finding, and the functions of bacterial genes duplicated in LECA, suggests that the bacterial genes in eukaryotes are acquisitions from the mitochondrion, followed by vertical gene evolution and differential loss across eukaryotic lineages, flanked by concomitant lateral gene transfer among prokaryotes. Overall, the data indicate that recurrent gene transfer via the copying of genes from a resident mitochondrial endosymbiont to archaeal host chromosomes preceded the onset of eukaryotic cellular complexity, favoring mitochondria-early over mitochondria-late hypotheses for eukaryote origin.
Collapse
Affiliation(s)
- Fernando D K Tria
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Julia Brueckner
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Josip Skejo
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
- Faculty of Science, University of Zagreb, Croatia
| | - Joana C Xavier
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Nils Kapust
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Michael Knopp
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Jessica L E Wimmer
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Falk S P Nagies
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Verena Zimorski
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - William F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
17
|
Barba-Aliaga M, Alepuz P, Pérez-Ortín JE. Eukaryotic RNA Polymerases: The Many Ways to Transcribe a Gene. Front Mol Biosci 2021; 8:663209. [PMID: 33968992 PMCID: PMC8097091 DOI: 10.3389/fmolb.2021.663209] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/09/2021] [Indexed: 01/04/2023] Open
Abstract
In eukaryotic cells, three nuclear RNA polymerases (RNA pols) carry out the transcription from DNA to RNA, and they all seem to have evolved from a single enzyme present in the common ancestor with archaea. The multiplicity of eukaryotic RNA pols allows each one to remain specialized in the synthesis of a subset of transcripts, which are different in the function, length, cell abundance, diversity, and promoter organization of the corresponding genes. We hypothesize that this specialization of RNA pols has conditioned the evolution of the regulatory mechanisms used to transcribe each gene subset to cope with environmental changes. We herein present the example of the homeostatic regulation of transcript levels versus changes in cell volume. We propose that the diversity and instability of messenger RNAs, transcribed by RNA polymerase II, have conditioned the appearance of regulatory mechanisms based on different gene promoter strength and mRNA stability. However, for the regulation of ribosomal RNA levels, which are very stable and transcribed mainly by RNA polymerase I from only one promoter, different mechanisms act based on gene copy variation, and a much simpler regulation of the synthesis rate.
Collapse
Affiliation(s)
- Marina Barba-Aliaga
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, València, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, València, Spain
| | - Paula Alepuz
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, València, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, València, Spain
| | - José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, València, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, València, Spain
| |
Collapse
|
18
|
Baluška F, Miller WB, Reber AS. Biomolecular Basis of Cellular Consciousness via Subcellular Nanobrains. Int J Mol Sci 2021; 22:ijms22052545. [PMID: 33802617 PMCID: PMC7961929 DOI: 10.3390/ijms22052545] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cells emerged at the very beginning of life on Earth and, in fact, are coterminous with life. They are enclosed within an excitable plasma membrane, which defines the outside and inside domains via their specific biophysical properties. Unicellular organisms, such as diverse protists and algae, still live a cellular life. However, fungi, plants, and animals evolved a multicellular existence. Recently, we have developed the cellular basis of consciousness (CBC) model, which proposes that all biological awareness, sentience and consciousness are grounded in general cell biology. Here we discuss the biomolecular structures and processes that allow for and maintain this cellular consciousness from an evolutionary perspective.
Collapse
Affiliation(s)
- František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany
- Correspondence:
| | | | - Arthur S. Reber
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
19
|
Giangreco G, Malabarba MG, Sigismund S. Specialised endocytic proteins regulate diverse internalisation mechanisms and signalling outputs in physiology and cancer. Biol Cell 2020; 113:165-182. [PMID: 33617023 DOI: 10.1111/boc.202000129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022]
Abstract
Although endocytosis was first described as the process mediating macromolecule or nutrient uptake through the plasma membrane, it is now recognised as a critical component of the cellular infrastructure involved in numerous processes, ranging from receptor signalling, proliferation and migration to polarity and stem cell regulation. To realise these varying roles, endocytosis needs to be finely regulated. Accordingly, multiple endocytic mechanisms exist that require specialised molecular machineries and an array of endocytic adaptor proteins with cell-specific functions. This review provides some examples of specialised functions of endocytic adaptors and other components of the endocytic machinery in different cell physiological processes, and how the alteration of these functions is linked to cancer. In particular, we focus on: (i) cargo selection and endocytic mechanisms linked to different adaptors; (ii) specialised functions in clathrin-mediated versus non-clathrin endocytosis; (iii) differential regulation of endocytic mechanisms by post-translational modification of endocytic proteins; (iv) cell context-dependent expression and function of endocytic proteins. As cases in point, we describe two endocytic protein families, dynamins and epsins. Finally, we discuss how dysregulation of the physiological role of these specialised endocytic proteins is exploited by cancer cells to increase cell proliferation, migration and invasion, leading to anti-apoptotic or pro-metastatic behaviours.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy.,Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, , Milan, Italy
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy.,Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, , Milan, Italy
| |
Collapse
|
20
|
Yu H, Li Y, Li L, Huang J, Wang X, Tang R, Jiang Z, Lv L, Chen F, Yu C, Yuan K. Functional reciprocity of proteins involved in mitosis and endocytosis. FEBS J 2020; 288:5850-5866. [PMID: 33300206 DOI: 10.1111/febs.15664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
Mitosis and endocytosis are two fundamental cellular processes essential for maintaining a eukaryotic life. Mitosis partitions duplicated chromatin enveloped in the nuclear membrane into two new cells, whereas endocytosis takes in extracellular substances through membrane invagination. These two processes are spatiotemporally separated and seemingly unrelated. However, recent studies have uncovered that endocytic proteins have moonlighting functions in mitosis, and mitotic complexes manifest additional roles in endocytosis. In this review, we summarize important proteins or protein complexes that participate in both processes, compare their mechanism of action, and discuss the rationale behind this multifunctionality. We also speculate on the possible origin of the functional reciprocity from an evolutionary perspective.
Collapse
Affiliation(s)
- Haibin Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yinshuang Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Li Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | | | - Xujuan Wang
- The High School Attached to Hunan Normal University, Changsha, China
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zhenghui Jiang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhong Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,The Biobank of Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
|
22
|
Almeida C, Amaral MD. A central role of the endoplasmic reticulum in the cell emerges from its functional contact sites with multiple organelles. Cell Mol Life Sci 2020; 77:4729-4745. [PMID: 32313974 PMCID: PMC11104799 DOI: 10.1007/s00018-020-03523-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
Abstract
Early eukaryotic cells emerged from the compartmentalization of metabolic processes into specific organelles through the development of an endomembrane system (ES), a precursor of the endoplasmic reticulum (ER), which was essential for their survival. Recently, substantial evidence emerged on how organelles communicate among themselves and with the plasma membrane (PM) through contact sites (CSs). From these studies, the ER-the largest single structure in eukaryotic cells-emerges as a central player communicating with all organelles to coordinate cell functions and respond to external stimuli to maintain cellular homeostasis. Herein we review the functional insights into the ER-CSs with other organelles in a physiological perspective. We hypothesize that, in addition to the primitive role by the ES in the appearance of proto-eukaryotes, its successor-the ER-emerges as the key coordinator of inter-organelle/PM communication. The ER thus appears to be the 'maestro' driving eukaryotic cell evolution by incorporating new functions/organelles, while remaining the real coordinator overarching cellular functions and orchestrating them with the external milieu.
Collapse
Affiliation(s)
- Celso Almeida
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, University of Lisboa, Campo Grande, C8 bdg, 1749-016, Lisbon, Portugal.
| | - Margarida D Amaral
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, University of Lisboa, Campo Grande, C8 bdg, 1749-016, Lisbon, Portugal.
| |
Collapse
|
23
|
Towarnicki SG, Ballard JWO. Towards understanding the evolutionary dynamics of mtDNA. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 31:355-364. [PMID: 33026269 DOI: 10.1080/24701394.2020.1830076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Historically, mtDNA was considered a selectively neutral marker that was useful for estimating the population genetic history of the maternal lineage. Over time there has been an increasing appreciation of mtDNA and mitochondria in maintaining cellular and organismal health. Beyond energy production, mtDNA and mitochondria have critical cellular roles in signalling. Here we briefly review the structure of mtDNA and the role of the mitochondrion in energy production. We then discuss the predictions that can be obtained from quaternary structure modelling and focus on mitochondrial complex I. Complex I is the primary entry point for electrons into the electron transport system is the largest respiratory complex of the chain and produces about 40% of the proton flux used to synthesize ATP. A focus of the review is Drosophila's utility as a model organism to study the selective advantage of specific mutations. However, we note that the incorporation of insights from a multitude of systems is necessary to fully understand the range of roles that mtDNA has in organismal fitness. We speculate that dietary changes can illicit stress responses that influence the selective advantage of specific mtDNA mutations and cause spatial and temporal fluctuations in the frequencies of mutations. We conclude that developing our understanding of the roles mtDNA has in determining organismal fitness will enable increased evolutionary insight and propose we can no longer assume it is evolving as a strictly neutral marker without testing this hypothesis.
Collapse
Affiliation(s)
- Samuel G Towarnicki
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - J William O Ballard
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| |
Collapse
|
24
|
Zachar I, Boza G. Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes. Cell Mol Life Sci 2020; 77:3503-3523. [PMID: 32008087 PMCID: PMC7452879 DOI: 10.1007/s00018-020-03462-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/25/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Endosymbiosis and organellogenesis are virtually unknown among prokaryotes. The single presumed example is the endosymbiogenetic origin of mitochondria, which is hidden behind the event horizon of the last eukaryotic common ancestor. While eukaryotes are monophyletic, it is unlikely that during billions of years, there were no other prokaryote-prokaryote endosymbioses as symbiosis is extremely common among prokaryotes, e.g., in biofilms. Therefore, it is even more precarious to draw conclusions about potentially existing (or once existing) prokaryotic endosymbioses based on a single example. It is yet unknown if the bacterial endosymbiont was captured by a prokaryote or by a (proto-)eukaryote, and if the process of internalization was parasitic infection, slow engulfment, or phagocytosis. In this review, we accordingly explore multiple mechanisms and processes that could drive the evolution of unicellular microbial symbioses with a special attention to prokaryote-prokaryote interactions and to the mitochondrion, possibly the single prokaryotic endosymbiosis that turned out to be a major evolutionary transition. We investigate the ecology and evolutionary stability of inter-species microbial interactions based on dependence, physical proximity, cost-benefit budget, and the types of benefits, investments, and controls. We identify challenges that had to be conquered for the mitochondrial host to establish a stable eukaryotic lineage. Any assumption about the initial interaction of the mitochondrial ancestor and its contemporary host based solely on their modern relationship is rather perilous. As a result, we warn against assuming an initial mutually beneficial interaction based on modern mitochondria-host cooperation. This assumption is twice fallacious: (i) endosymbioses are known to evolve from exploitative interactions and (ii) cooperativity does not necessarily lead to stable mutualism. We point out that the lack of evidence so far on the evolution of endosymbiosis from mutual syntrophy supports the idea that mitochondria emerged from an exploitative (parasitic or phagotrophic) interaction rather than from syntrophy.
Collapse
Affiliation(s)
- István Zachar
- Evolutionary Systems Research Group, Institute of Evolution, Centre for Ecological Research, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Taxonomy and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary.
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1, 82049, Munich, Germany.
| | - Gergely Boza
- Evolutionary Systems Research Group, Institute of Evolution, Centre for Ecological Research, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary
- Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361, Laxenburg, Austria
| |
Collapse
|
25
|
Abstract
Phagocytosis, or 'cell eating', is a eukaryote-specific process where particulate matter is engulfed via invaginations of the plasma membrane. The origin of phagocytosis has been central to discussions on eukaryogenesis for decades-, where it is argued as being either a prerequisite for, or consequence of, the acquisition of the ancestral mitochondrion. Recently, genomic and cytological evidence has increasingly supported the view that the pre-mitochondrial host cell-a bona fide archaeon branching within the 'Asgard' archaea-was incapable of phagocytosis and used alternative mechanisms to incorporate the alphaproteobacterial ancestor of mitochondria. Indeed, the diversity and variability of proteins associated with phagosomes across the eukaryotic tree suggest that phagocytosis, as seen in a variety of extant eukaryotes, may have evolved independently several times within the eukaryotic crown-group. Since phagocytosis is critical to the functioning of modern marine food webs (without it, there would be no microbial loop or animal life), multiple late origins of phagocytosis could help explain why many of the ecological and evolutionary innovations of the Neoproterozoic Era (e.g. the advent of eukaryotic biomineralization, the 'Rise of Algae' and the origin of animals) happened when they did.
Collapse
Affiliation(s)
- Daniel B. Mills
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020. [PMID: 31900730 DOI: 10.1007/s00709-019-01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
27
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020; 257:621-753. [PMID: 31900730 PMCID: PMC7203096 DOI: 10.1007/s00709-019-01442-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/19/2019] [Indexed: 05/02/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
28
|
López-García P, Moreira D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat Microbiol 2020; 5:655-667. [DOI: 10.1038/s41564-020-0710-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/13/2020] [Indexed: 11/10/2022]
|
29
|
Le T, Žárský V, Nývltová E, Rada P, Harant K, Vancová M, Verner Z, Hrdý I, Tachezy J. Anaerobic peroxisomes in Mastigamoeba balamuthi. Proc Natl Acad Sci U S A 2020; 117:2065-2075. [PMID: 31932444 PMCID: PMC6994998 DOI: 10.1073/pnas.1909755117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The adaptation of eukaryotic cells to anaerobic conditions is reflected by substantial changes to mitochondrial metabolism and functional reduction. Hydrogenosomes belong among the most modified mitochondrial derivative and generate molecular hydrogen concomitant with ATP synthesis. The reduction of mitochondria is frequently associated with loss of peroxisomes, which compartmentalize pathways that generate reactive oxygen species (ROS) and thus protect against cellular damage. The biogenesis and function of peroxisomes are tightly coupled with mitochondria. These organelles share fission machinery components, oxidative metabolism pathways, ROS scavenging activities, and some metabolites. The loss of peroxisomes in eukaryotes with reduced mitochondria is thus not unexpected. Surprisingly, we identified peroxisomes in the anaerobic, hydrogenosome-bearing protist Mastigamoeba balamuthi We found a conserved set of peroxin (Pex) proteins that are required for protein import, peroxisomal growth, and division. Key membrane-associated Pexs (MbPex3, MbPex11, and MbPex14) were visualized in numerous vesicles distinct from hydrogenosomes, the endoplasmic reticulum (ER), and Golgi complex. Proteomic analysis of cellular fractions and prediction of peroxisomal targeting signals (PTS1/PTS2) identified 51 putative peroxisomal matrix proteins. Expression of selected proteins in Saccharomyces cerevisiae revealed specific targeting to peroxisomes. The matrix proteins identified included components of acyl-CoA and carbohydrate metabolism and pyrimidine and CoA biosynthesis, whereas no components related to either β-oxidation or catalase were present. In conclusion, we identified a subclass of peroxisomes, named "anaerobic" peroxisomes that shift the current paradigm and turn attention to the reductive evolution of peroxisomes in anaerobic organisms.
Collapse
Affiliation(s)
- Tien Le
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Eva Nývltová
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Petr Rada
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Karel Harant
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Zdeněk Verner
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic;
| |
Collapse
|
30
|
Kamiya K, Osaki T, Takeuchi S. Formation of vesicles-in-a-vesicle with asymmetric lipid components using a pulsed-jet flow method. RSC Adv 2019; 9:30071-30075. [PMID: 35530244 PMCID: PMC9072116 DOI: 10.1039/c9ra04622d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/18/2019] [Indexed: 11/21/2022] Open
Abstract
Lipid distribution in intracellular vesicles is different from that in the plasma membrane of eukaryotic cells. The lipid components in the intracellular vesicles are composed of phosphatidylserine and phosphatidylethanolamine in the outer leaflet and phosphatidylcholine and sphingomyelin in the inner leaflet. The lipid asymmetricities both in the intracellular vesicle membrane and the plasma membrane contribute to synaptic transmission functions. In this study, we developed a cell-sized asymmetric lipid vesicle system containing small-sized asymmetric lipid vesicles (of diameter 200–1000 nm) (asymmetric vesicles-in-a-vesicle), emulating lipid components in the plasma membrane and intracellular vesicle membrane of eukaryotic cells, using microfluidic technology. We successfully constructed an artificial exocytosis system using the asymmetric vesicles-in-a-vesicle system. This asymmetric vesicles-in-a-vesicle system will be helpful in understanding the mechanisms of vesicle transport, such as neurotransmission and exocytosis. We develop a cell-sized asymmetric lipid vesicle system containing small-sized asymmetric lipid vesicles using microfluidic technology.![]()
Collapse
Affiliation(s)
- Koki Kamiya
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology 3-2-1 Sakado, Takatsu-ku Kawasaki Kanagawa 213-0012 Japan.,Division of Molecular Science, Graduate School of Science and Technology, Gunma University 1-5-1 Tenjin-cho Kiryu Gunma 376-8515 Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology 3-2-1 Sakado, Takatsu-ku Kawasaki Kanagawa 213-0012 Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology 3-2-1 Sakado, Takatsu-ku Kawasaki Kanagawa 213-0012 Japan.,Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
31
|
Mitochondrial Dysfunctions: A Thread Sewing Together Alzheimer's Disease, Diabetes, and Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7210892. [PMID: 31316720 PMCID: PMC6604285 DOI: 10.1155/2019/7210892] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/20/2019] [Accepted: 05/21/2019] [Indexed: 02/03/2023]
Abstract
Metabolic disorders are severe and chronic impairments of the health of many people and represent a challenge for the society as a whole that has to deal with an ever-increasing number of affected individuals. Among common metabolic disorders are Alzheimer's disease, obesity, and type 2 diabetes. These disorders do not have a univocal genetic cause but rather can result from the interaction of multiple genes, lifestyle, and environmental factors. Mitochondrial alterations have emerged as a feature common to all these disorders, underlining perhaps an impaired coordination between cellular needs and mitochondrial responses that could contribute to their development and/or progression.
Collapse
|
32
|
Bulzu PA, Andrei AŞ, Salcher MM, Mehrshad M, Inoue K, Kandori H, Beja O, Ghai R, Banciu HL. Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat Microbiol 2019; 4:1129-1137. [DOI: 10.1038/s41564-019-0404-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/08/2019] [Indexed: 11/09/2022]
|
33
|
Gabaldón T. Relative timing of mitochondrial endosymbiosis and the "pre-mitochondrial symbioses" hypothesis. IUBMB Life 2018; 70:1188-1196. [PMID: 30358047 PMCID: PMC6282991 DOI: 10.1002/iub.1950] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/07/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022]
Abstract
The origin of eukaryotes stands as a major open question in biology. Central to this question is the nature and timing of the origin of the mitochondrion, an ubiquitous eukaryotic organelle originated by the endosymbiosis of an alphaproteobacterial ancestor. Different hypotheses disagree, among other aspects, on whether mitochondria were acquired early or late during eukaryogenesis. Similarly, the nature and complexity of the receiving host is debated, with models ranging from a simple prokaryotic host to an already complex proto-eukaryote. Here, I will discuss recent findings from phylogenomics analyses of extant genomes that are shedding light into the evolutionary origins of the eukaryotic ancestor, and which suggest a later acquisition of alpha-proteobacterial derived proteins as compared to those with different bacterial ancestries. I argue that simple eukaryogenesis models that assume a binary symbiosis between an archaeon host and an alpha-proteobacterial proto-mitochondrion cannot explain the complex chimeric nature that is inferred for the eukaryotic ancestor. To reconcile existing hypotheses with the new data, I propose the "pre-mitochondrial symbioses" hypothesis that provides a framework for eukaryogenesis scenarios involving alternative symbiotic interactions that predate the acquisition of mitochondria. © 2018 The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(12):1188-1196, 2018.
Collapse
Affiliation(s)
- Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Department of experimental and health sciences, Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| |
Collapse
|
34
|
Lutfullahoğlu-Bal G, Seferoğlu AB, Keskin A, Akdoğan E, Dunn CD. A bacteria-derived tail anchor localizes to peroxisomes in yeast and mammalian cells. Sci Rep 2018; 8:16374. [PMID: 30401812 PMCID: PMC6219538 DOI: 10.1038/s41598-018-34646-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022] Open
Abstract
Prokaryotes can provide new genetic information to eukaryotes by horizontal gene transfer (HGT), and such transfers are likely to have been particularly consequential in the era of eukaryogenesis. Since eukaryotes are highly compartmentalized, it is worthwhile to consider the mechanisms by which newly transferred proteins might reach diverse organellar destinations. Toward this goal, we have focused our attention upon the behavior of bacteria-derived tail anchors (TAs) expressed in the eukaryote Saccharomyces cerevisiae. In this study, we report that a predicted membrane-associated domain of the Escherichia coli YgiM protein is specifically trafficked to peroxisomes in budding yeast, can be found at a pre-peroxisomal compartment (PPC) upon disruption of peroxisomal biogenesis, and can functionally replace an endogenous, peroxisome-directed TA. Furthermore, the YgiM(TA) can localize to peroxisomes in mammalian cells. Since the YgiM(TA) plays no endogenous role in peroxisomal function or assembly, this domain is likely to serve as an excellent tool allowing further illumination of the mechanisms by which TAs can travel to peroxisomes. Moreover, our findings emphasize the ease with which bacteria-derived sequences might target to organelles in eukaryotic cells following HGT, and we discuss the importance of flexible recognition of organelle targeting information during and after eukaryogenesis.
Collapse
Affiliation(s)
- Güleycan Lutfullahoğlu-Bal
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey
| | - Ayşe Bengisu Seferoğlu
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Abdurrahman Keskin
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey
- Department of Biological Sciences, Columbia University, New York, NY, 10027, United States of America
| | - Emel Akdoğan
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, United States of America
| | - Cory D Dunn
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland.
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey.
| |
Collapse
|
35
|
Ludewig-Klingner AK, Michael V, Jarek M, Brinkmann H, Petersen J. Distribution and Evolution of Peroxisomes in Alveolates (Apicomplexa, Dinoflagellates, Ciliates). Genome Biol Evol 2018; 10:1-13. [PMID: 29202176 PMCID: PMC5755239 DOI: 10.1093/gbe/evx250] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
The peroxisome was the last organelle to be discovered and five decades later it is still the Cinderella of eukaryotic compartments. Peroxisomes have a crucial role in the detoxification of reactive oxygen species, the beta-oxidation of fatty acids, and the biosynthesis of etherphospholipids, and they are assumed to be present in virtually all aerobic eukaryotes. Apicomplexan parasites including the malaria and toxoplasmosis agents were described as the first group of mitochondriate protists devoid of peroxisomes. This study was initiated to reassess the distribution and evolution of peroxisomes in the superensemble Alveolata (apicomplexans, dinoflagellates, ciliates). We established transcriptome data from two chromerid algae (Chromera velia, Vitrella brassicaformis), and two dinoflagellates (Prorocentrum minimum, Perkinsus olseni) and identified the complete set of essential peroxins in all four reference species. Our comparative genome analysis provides unequivocal evidence for the presence of peroxisomes in Toxoplasma gondii and related genera. Our working hypothesis of a common peroxisomal origin of all alveolates is supported by phylogenetic analyses of essential markers such as the import receptor Pex5. Vitrella harbors the most comprehensive set of peroxisomal proteins including the catalase and the glyoxylate cycle and it is thus a promising model organism to investigate the functional role of this organelle in Apicomplexa.
Collapse
Affiliation(s)
- Ann-Kathrin Ludewig-Klingner
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Protists and Cyanobacteria (PuC), Braunschweig, Germany
| | - Victoria Michael
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Protists and Cyanobacteria (PuC), Braunschweig, Germany
| | - Michael Jarek
- Helmholtz-Centre for Infection Research (HZI), Group of Genome Analytics, Braunschweig, Germany
| | - Henner Brinkmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Protists and Cyanobacteria (PuC), Braunschweig, Germany
| | - Jörn Petersen
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Protists and Cyanobacteria (PuC), Braunschweig, Germany
| |
Collapse
|
36
|
Reply to Garg and Martin: The mechanism works. Proc Natl Acad Sci U S A 2018; 115:E4545-E4546. [PMID: 29724859 DOI: 10.1073/pnas.1805021115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Méheust R, Bhattacharya D, Pathmanathan JS, McInerney JO, Lopez P, Bapteste E. Formation of chimeric genes with essential functions at the origin of eukaryotes. BMC Biol 2018. [PMID: 29534719 PMCID: PMC5851275 DOI: 10.1186/s12915-018-0500-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Eukaryotes evolved from the symbiotic association of at least two prokaryotic partners, and a good deal is known about the timings, mechanisms, and dynamics of these evolutionary steps. Recently, it was shown that a new class of nuclear genes, symbiogenetic genes (S-genes), was formed concomitant with endosymbiosis and the subsequent evolution of eukaryotic photosynthetic lineages. Understanding their origins and contributions to eukaryogenesis would provide insights into the ways in which cellular complexity has evolved. RESULTS Here, we show that chimeric nuclear genes (S-genes), built from prokaryotic domains, are critical for explaining the leap forward in cellular complexity achieved during eukaryogenesis. A total of 282 S-gene families contributed solutions to many of the challenges faced by early eukaryotes, including enhancing the informational machinery, processing spliceosomal introns, tackling genotoxicity within the cell, and ensuring functional protein interactions in a larger, more compartmentalized cell. For hundreds of S-genes, we confirmed the origins of their components (bacterial, archaeal, or generally prokaryotic) by maximum likelihood phylogenies. Remarkably, Bacteria contributed nine-fold more S-genes than Archaea, including a two-fold greater contribution to informational functions. Therefore, there is an additional, large bacterial contribution to the evolution of eukaryotes, implying that fundamental eukaryotic properties do not strictly follow the traditional informational/operational divide for archaeal/bacterial contributions to eukaryogenesis. CONCLUSION This study demonstrates the extent and process through which prokaryotic fragments from bacterial and archaeal genes inherited during eukaryogenesis underly the creation of novel chimeric genes with important functions.
Collapse
Affiliation(s)
- Raphaël Méheust
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Evolution Paris Seine - Institut de Biologie Paris Seine (EPS - IBPS), 75005, Paris, France
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Jananan S Pathmanathan
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Evolution Paris Seine - Institut de Biologie Paris Seine (EPS - IBPS), 75005, Paris, France
| | - James O McInerney
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, M13 9PL, Manchester, UK
| | - Philippe Lopez
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Evolution Paris Seine - Institut de Biologie Paris Seine (EPS - IBPS), 75005, Paris, France
| | - Eric Bapteste
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Evolution Paris Seine - Institut de Biologie Paris Seine (EPS - IBPS), 75005, Paris, France.
| |
Collapse
|
38
|
Zhou Z, Liu Y, Li M, Gu JD. Two or three domains: a new view of tree of life in the genomics era. Appl Microbiol Biotechnol 2018; 102:3049-3058. [PMID: 29484479 DOI: 10.1007/s00253-018-8831-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/26/2022]
Abstract
The deep phylogenetic topology of tree of life is in the center of a long-time dispute. The Woeseian three-domain tree theory, with the Eukarya evolving as a sister clade to Archaea, competes with the two-domain tree theory (the eocyte tree), with the Eukarya branched within Archaea. Revealed by the ongoing debate over the last three decades, sophisticated and proper phylogenetic methods should necessarily be paid with more emphasis, especially these are focusing on the compositional heterogeneity of sites and lineages, and the heterotachy issue. The newly emerging archaeal lineages with numerous eukaryotic-like features, such as membrane trafficking and cellular compartmentalization, are phylogenetically the closest to eukaryotes currently. These findings highlight the evolutionary history from an ancient archaeon to a more complex archaeon with protoeukaryotic-like features and complex cellular structures, thus providing clues to understand eukaryogenesis process. The increasing repertoire of precise genomic contents provides great advantages on understanding the deep phylogeny of tree of life and ancient evolutionary events on Eukarya branching process.
Collapse
Affiliation(s)
- Zhichao Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, People's Republic of China.,Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong, People's Republic of China
| | - Yang Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, People's Republic of China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong, People's Republic of China
| |
Collapse
|
39
|
Lo WS, Huang YY, Kuo CH. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev 2018; 40:855-874. [PMID: 28204477 PMCID: PMC5091035 DOI: 10.1093/femsre/fuw028] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/28/2016] [Accepted: 07/10/2016] [Indexed: 02/07/2023] Open
Abstract
Symbiosis between organisms is an important driving force in evolution. Among the diverse relationships described, extensive progress has been made in insect–bacteria symbiosis, which improved our understanding of the genome evolution in host-associated bacteria. Particularly, investigations on several obligate mutualists have pushed the limits of what we know about the minimal genomes for sustaining cellular life. To bridge the gap between those obligate symbionts with extremely reduced genomes and their non-host-restricted ancestors, this review focuses on the recent progress in genome characterization of facultative insect symbionts. Notable cases representing various types and stages of host associations, including those from multiple genera in the family Enterobacteriaceae (class Gammaproteobacteria), Wolbachia (Alphaproteobacteria) and Spiroplasma (Mollicutes), are discussed. Although several general patterns of genome reduction associated with the adoption of symbiotic relationships could be identified, extensive variation was found among these facultative symbionts. These findings are incorporated into the established conceptual frameworks to develop a more detailed evolutionary model for the discussion of possible trajectories. In summary, transitions from facultative to obligate symbiosis do not appear to be a universal one-way street; switches between hosts and lifestyles (e.g. commensalism, parasitism or mutualism) occur frequently and could be facilitated by horizontal gene transfer. This review synthesizes the recent progress in genome characterization of insect-symbiotic bacteria, the emphases include (i) patterns of genome organization, (ii) evolutionary models and trajectories, and (iii) comparisons between facultative and obligate symbionts.
Collapse
Affiliation(s)
- Wen-Sui Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
40
|
Abstract
Peroxisomes are single-membrane bound intracellular organelles that can be found in organisms across the tree of eukaryotes, and thus are likely to derive from an ancestral peroxisome in the last eukaryotic common ancestor (LECA). Yet, peroxisomes in different lineages can present a large diversity in terms of their metabolic capabilities, which reflects a highly variable proteomic content. Theories on the evolutionary origin of peroxisomes have shifted in the last decades from scenarios involving an endosymbiotic origin, similar to those of mitochondria and plastids, towards hypotheses purporting an endogenous origin from within the endomembrane system. The peroxisomal proteome is highly dynamic in evolutionary terms, and can evolve via differential loss and gain of proteins, as well as via relocalization of proteins from and to other sub-cellular compartments. Here, I review current knowledge and discussions on the diversity, origin, and evolution of the peroxisomal proteome.
Collapse
|
41
|
|
42
|
Bullon P, Pavillard LE, de la Torre-Torres R. Inflammasome and Oral Diseases. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 108:153-176. [PMID: 30536171 DOI: 10.1007/978-3-319-89390-7_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One of the main steps in the development of the life in the earth is multicellularity. It enables cell differentiation and the development of morphological structures within an organism and is an essential factor in how to recognize friendly cells that are part of the multicellular organism and which foreign organisms can be harmful. Recognition includes devices such as the major histocompatibility complex (MHC), and the pattern recognition receptors (PRRs). PRRs are a group of proteins expressed by cells of the innate immune system that identify two classes of products: pathogen-associated molecular patterns (PAMPs), related to microbial pathogens, and damage-associated molecular patterns (DAMPs), associated with cell components that are released during cell damage or death. All these activate the inflammasome, which is a multiprotein oligomer that includes caspase 1, PYCARD, NALP, and caspase 5 (also known as caspase 11 or ICH-3). It is responsible for activation of inflammatory processes and has been shown to induce cell pyroptosis, a programmed cell death distinct from apoptosis, and promotes the maturation of the inflammatory cytokines interleukin 1β (IL-1β) and interleukin 18 (IL-18). We review whether inflammasome is related to diseases that can occur in the oral cavity. The mouth is always a possible environment for the development of pathological conditions because of the wide variety of microorganisms. Small variations in the equilibrium of the oral flora can cause disorders that could affect the organism in a systemic form. We provide data on periodontal disease, candidiasis, herpes virus, oral cancer, caries, and other oral diseases. There are very few papers that study this issue; therefore, we need more investigation and publications about inflammatory molecular processes, and more specifically, related to the inflammasome complex.
Collapse
Affiliation(s)
- Pedro Bullon
- Departament Periodontology, Facultad de Odontología, Universidad de Sevilla, Sevilla, Spain.
| | - Luis E Pavillard
- Departament Periodontology, Facultad de Odontología, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
43
|
Paraskevaidi M, Martin-Hirsch PL, Kyrgiou M, Martin FL. Underlying role of mitochondrial mutagenesis in the pathogenesis of a disease and current approaches for translational research. Mutagenesis 2017; 32:335-342. [PMID: 27816931 DOI: 10.1093/mutage/gew058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/21/2016] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial diseases have been extensively investigated over the last three decades, but many questions regarding their underlying aetiologies remain unanswered. Mitochondrial dysfunction is not only responsible for a range of neurological and myopathy diseases but also considered pivotal in a broader spectrum of common diseases such as epilepsy, autism and bipolar disorder. These disorders are a challenge to diagnose and treat, as their aetiology might be multifactorial. In this review, the focus is placed on potential mechanisms capable of introducing defects in mitochondria resulting in disease. Special attention is given to the influence of xenobiotics on mitochondria; environmental factors inducing mutations or epigenetic changes in the mitochondrial genome can alter its expression and impair the whole cell's functionality. Specifically, we suggest that environmental agents can cause damage in mitochondrial DNA and consequently lead to mutagenesis. Moreover, we describe current approaches for handling mitochondrial diseases, as well as available prenatal diagnostic tests, towards eliminating these maternally inherited diseases. Undoubtedly, more research is required, as current therapeutic approaches mostly employ palliative therapies rather than targeting primary mechanisms or prophylactic approaches. Much effort is needed into further unravelling the relationship between xenobiotics and mitochondria, as the extent of influence in mitochondrial pathogenesis is increasingly recognised.
Collapse
Affiliation(s)
- Maria Paraskevaidi
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Pierre L Martin-Hirsch
- Department of Obstetrics and Gynaecology, Central Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR5 6AW, UK and
| | - Maria Kyrgiou
- Faculty of Medicine, Institute of Reproductive and Developmental Biology, Imperial College, London W12 0NN, UK
| | - Francis L Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
44
|
Martin WF, Cerff R. Physiology, phylogeny, early evolution, and GAPDH. PROTOPLASMA 2017; 254:1823-1834. [PMID: 28265765 PMCID: PMC5610209 DOI: 10.1007/s00709-017-1095-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/22/2017] [Indexed: 05/23/2023]
Abstract
The chloroplast and cytosol of plant cells harbor a number of parallel biochemical reactions germane to the Calvin cycle and glycolysis, respectively. These reactions are catalyzed by nuclear encoded, compartment-specific isoenzymes that differ in their physiochemical properties. The chloroplast cytosol isoenzymes of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) harbor evidence of major events in the history of life: the origin of the first genes, the bacterial-archaeal split, the origin of eukaryotes, the evolution of protein compartmentation during eukaryote evolution, the origin of plastids, and the secondary endosymbiosis among the algae with complex plastids. The reaction mechanism of GAPDH entails phosphorolysis of a thioester to yield an energy-rich acyl phosphate bond, a chemistry that points to primitive pathways of energy conservation that existed even before the origin of the first free-living cells. Here, we recount the main insights that chloroplast and cytosolic GAPDH provided into endosymbiosis and physiological evolution.
Collapse
Affiliation(s)
- William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Rüdiger Cerff
- Institute of Genetics, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| |
Collapse
|
45
|
Zachar I, Szathmáry E. Breath-giving cooperation: critical review of origin of mitochondria hypotheses : Major unanswered questions point to the importance of early ecology. Biol Direct 2017; 12:19. [PMID: 28806979 PMCID: PMC5557255 DOI: 10.1186/s13062-017-0190-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/20/2017] [Indexed: 02/08/2023] Open
Abstract
The origin of mitochondria is a unique and hard evolutionary problem, embedded within the origin of eukaryotes. The puzzle is challenging due to the egalitarian nature of the transition where lower-level units took over energy metabolism. Contending theories widely disagree on ancestral partners, initial conditions and unfolding of events. There are many open questions but there is no comparative examination of hypotheses. We have specified twelve questions about the observable facts and hidden processes leading to the establishment of the endosymbiont that a valid hypothesis must address. We have objectively compared contending hypotheses under these questions to find the most plausible course of events and to draw insight on missing pieces of the puzzle. Since endosymbiosis borders evolution and ecology, and since a realistic theory has to comply with both domains' constraints, the conclusion is that the most important aspect to clarify is the initial ecological relationship of partners. Metabolic benefits are largely irrelevant at this initial phase, where ecological costs could be more disruptive. There is no single theory capable of answering all questions indicating a severe lack of ecological considerations. A new theory, compliant with recent phylogenomic results, should adhere to these criteria. REVIEWERS This article was reviewed by Michael W. Gray, William F. Martin and Purificación López-García.
Collapse
Affiliation(s)
- István Zachar
- Eötvös Loránd University, Department of Plant Systematics, Ecology and Theoretical Biology, Pázmány P. sétány 1/C, Budapest, 1117, Hungary.
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary.
| | - Eörs Szathmáry
- Eötvös Loránd University, Department of Plant Systematics, Ecology and Theoretical Biology, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary
- Parmenides Foundation, Kirchplatz 1, 82049 Pullach/Munich, Munich, Germany
| |
Collapse
|
46
|
Lutfullahoğlu-Bal G, Keskin A, Seferoğlu AB, Dunn CD. Bacterial tail anchors can target to the mitochondrial outer membrane. Biol Direct 2017; 12:16. [PMID: 28738827 PMCID: PMC5525287 DOI: 10.1186/s13062-017-0187-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/10/2017] [Indexed: 01/15/2023] Open
Abstract
Background During the generation and evolution of the eukaryotic cell, a proteobacterial endosymbiont was re-fashioned into the mitochondrion, an organelle that appears to have been present in the ancestor of all present-day eukaryotes. Mitochondria harbor proteomes derived from coding information located both inside and outside the organelle, and the rate-limiting step toward the formation of eukaryotic cells may have been development of an import apparatus allowing protein entry to mitochondria. Currently, a widely conserved translocon allows proteins to pass from the cytosol into mitochondria, but how proteins encoded outside of mitochondria were first directed to these organelles at the dawn of eukaryogenesis is not clear. Because several proteins targeted by a carboxyl-terminal tail anchor (TA) appear to have the ability to insert spontaneously into the mitochondrial outer membrane (OM), it is possible that self-inserting, tail-anchored polypeptides obtained from bacteria might have formed the first gate allowing proteins to access mitochondria from the cytosol. Results Here, we tested whether bacterial TAs are capable of targeting to mitochondria. In a survey of proteins encoded by the proteobacterium Escherichia coli, predicted TA sequences were directed to specific subcellular locations within the yeast Saccharomyces cerevisiae. Importantly, TAs obtained from DUF883 family members ElaB and YqjD were abundantly localized to and inserted at the mitochondrial OM. Conclusions Our results support the notion that eukaryotic cells are able to utilize membrane-targeting signals present in bacterial proteins obtained by lateral gene transfer, and our findings make plausible a model in which mitochondrial protein translocation was first driven by tail-anchored proteins. Reviewers This article was reviewed by Michael Ryan and Thomas Simmen. Electronic supplementary material The online version of this article (doi:10.1186/s13062-017-0187-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Abdurrahman Keskin
- Department of Molecular Biology and Genetics, Koç University, 34450 Sarıyer, İstanbul, Turkey.,Present Address: Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Ayşe Bengisu Seferoğlu
- Department of Molecular Biology and Genetics, Koç University, 34450 Sarıyer, İstanbul, Turkey
| | - Cory D Dunn
- Department of Molecular Biology and Genetics, Koç University, 34450 Sarıyer, İstanbul, Turkey. .,Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
47
|
Cellular compartmentation follows rules: The Schnepf theorem, its consequences and exceptions. Bioessays 2017. [DOI: 10.1002/bies.201700030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Being right on Q: shaping eukaryotic evolution. Biochem J 2017; 473:4103-4127. [PMID: 27834740 PMCID: PMC5103874 DOI: 10.1042/bcj20160647] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/18/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) formation by mitochondria is an incompletely understood eukaryotic process. I proposed a kinetic model [BioEssays (2011) 33, 88–94] in which the ratio between electrons entering the respiratory chain via FADH2 or NADH (the F/N ratio) is a crucial determinant of ROS formation. During glucose breakdown, the ratio is low, while during fatty acid breakdown, the ratio is high (the longer the fatty acid, the higher is the ratio), leading to higher ROS levels. Thus, breakdown of (very-long-chain) fatty acids should occur without generating extra FADH2 in mitochondria. This explains peroxisome evolution. A potential ROS increase could also explain the absence of fatty acid oxidation in long-lived cells (neurons) as well as other eukaryotic adaptations, such as dynamic supercomplex formation. Effective combinations of metabolic pathways from the host and the endosymbiont (mitochondrion) allowed larger varieties of substrates (with different F/N ratios) to be oxidized, but high F/N ratios increase ROS formation. This might have led to carnitine shuttles, uncoupling proteins, and multiple antioxidant mechanisms, especially linked to fatty acid oxidation [BioEssays (2014) 36, 634–643]. Recent data regarding peroxisome evolution and their relationships with mitochondria, ROS formation by Complex I during ischaemia/reperfusion injury, and supercomplex formation adjustment to F/N ratios strongly support the model. I will further discuss the model in the light of experimental findings regarding mitochondrial ROS formation.
Collapse
|
49
|
López-García P, Eme L, Moreira D. Symbiosis in eukaryotic evolution. J Theor Biol 2017; 434:20-33. [PMID: 28254477 DOI: 10.1016/j.jtbi.2017.02.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/19/2017] [Accepted: 02/25/2017] [Indexed: 01/27/2023]
Abstract
Fifty years ago, Lynn Margulis, inspiring in early twentieth-century ideas that put forward a symbiotic origin for some eukaryotic organelles, proposed a unified theory for the origin of the eukaryotic cell based on symbiosis as evolutionary mechanism. Margulis was profoundly aware of the importance of symbiosis in the natural microbial world and anticipated the evolutionary significance that integrated cooperative interactions might have as mechanism to increase cellular complexity. Today, we have started fully appreciating the vast extent of microbial diversity and the importance of syntrophic metabolic cooperation in natural ecosystems, especially in sediments and microbial mats. Also, not only the symbiogenetic origin of mitochondria and chloroplasts has been clearly demonstrated, but improvement in phylogenomic methods combined with recent discoveries of archaeal lineages more closely related to eukaryotes further support the symbiogenetic origin of the eukaryotic cell. Margulis left us in legacy the idea of 'eukaryogenesis by symbiogenesis'. Although this has been largely verified, when, where, and specifically how eukaryotic cells evolved are yet unclear. Here, we shortly review current knowledge about symbiotic interactions in the microbial world and their evolutionary impact, the status of eukaryogenetic models and the current challenges and perspectives ahead to reconstruct the evolutionary path to eukaryotes.
Collapse
Affiliation(s)
- Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France.
| | - Laura Eme
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada NS B3H 4R2
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| |
Collapse
|
50
|
Vega-Cabrera LA, Pardo-López L. Membrane remodeling and organization: Elements common to prokaryotes and eukaryotes. IUBMB Life 2017; 69:55-62. [DOI: 10.1002/iub.1604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/15/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Luz A. Vega-Cabrera
- Instituto de Biotecnología, Universidad Nacional Autónoma de México; Apdo. Postal 510-3 Cuernavaca Morelos México
| | - Liliana Pardo-López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México; Apdo. Postal 510-3 Cuernavaca Morelos México
| |
Collapse
|