1
|
Nazmina G, Khan A, Jiang J, Miao Z, Khan SN, Khan MI, Shah AH, Shah AH, Khisroon M, Haack TB. Exome sequencing identifies homozygous variants in MBOAT7 associated with neurodevelopmental disorder. Clin Genet 2024; 105:423-429. [PMID: 38088234 DOI: 10.1111/cge.14469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024]
Abstract
Intellectual disability (ID) is a large group of neurodevelopmental disorders characterized by a congenital limitation in intellectual functioning (reasoning, learning, and problem solving), adaptive behavior (conceptual, social, and practical skills), originated at birth and manifested before the age of 18. By whole exome sequencing of five consanguineous Pakistani families presenting hallmark features of ID, global developmental delay, aggressive and self-injurious behaviors, microcephaly, febrile seizures and facial dysmorphic features, we identified three novel homozygous missense variants (NM_024298.5: c.588G > T; p.Trp196Cys, c.736 T > C; p.Tyr246His and c.524A > C; p. Asp175Ala) and one rare homozygous in-frame deletion variant (c.758_778del;p.Glu253_Ala259del) in membrane-bound O-acyltransferase family member 7 (MBOAT7) gene previously associated with autosomal recessive neurodevelopmental disorder. The segregation of the variants was validated by Sanger sequencing in all family members. In silico homology modeling of wild-type and mutated proteins revealed substantial changes in the structure of both proteins, indicating a possible effect on function. The identification and validation of new pathogenic MBOAT7 variants in five cases of autosomal recessive ID further highlight the importance of this genes in proper brain function and development.
Collapse
Affiliation(s)
- Gul Nazmina
- Department of Zoology, University of Peshawar, Peshawar, Pakistan
| | - Amjad Khan
- Faculty of Biological Sciences, Department of Zoology, University of Lakki Marwat, Khyber Pakhtunkhwa, Pakistan
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Alexander von Humboldt Fellowship Foundation, Berlin, Germany
| | - Jiuhong Jiang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Zhichao Miao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan
| | | | - Abdul Haleem Shah
- Institute of Biological sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Ayesha Haleem Shah
- Institute of Biological sciences, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Tobias B Haack
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Zhao S, Li J, Xia Q, Liu K, Dong Z. New perspectives for targeting therapy in ALK-positive human cancers. Oncogene 2023:10.1038/s41388-023-02712-8. [PMID: 37149665 DOI: 10.1038/s41388-023-02712-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Anaplastic lymphoma kinase (ALK) is a member of the insulin receptor protein-tyrosine kinase superfamily and was first discovered in anaplastic large-cell lymphoma (ALCL). ALK alterations, including fusions, over-expression and mutations, are highly associated with cancer initiation and progression. This kinase plays an important role in different cancers, from very rare to the more prevalent non-small cell lung cancers. Several ALK inhibitors have been developed and received Food and Drug Administration (FDA) approval. However, like other drugs used in targeted therapies, ALK inhibitors inevitably encounter cancer cell resistance. Therefore, monoclonal antibody screening based on extracellular domain or combination therapies may provide viable alternatives for treating ALK-positive tumors. In this review, we discuss the current understanding of wild-type ALK and fusion protein structures, the pathological functions of ALK, ALK target therapy, drug resistance and future therapeutic directions.
Collapse
Affiliation(s)
- Simin Zhao
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, PR China
| | - Jian Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, PR China
| | - Qingxin Xia
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, PR China.
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, PR China.
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, PR China.
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, PR China.
| | - Zigang Dong
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, PR China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, PR China.
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, PR China.
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
3
|
Screening of 22q11.2DS Using Multiplex Ligation-Dependent Probe Amplification as an Alternative Diagnostic Method. BIOMED RESEARCH INTERNATIONAL 2021; 2020:6945730. [PMID: 33062692 PMCID: PMC7539069 DOI: 10.1155/2020/6945730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/06/2020] [Indexed: 11/18/2022]
Abstract
Background The 22q11.2 deletion syndrome (22q11.2DS) is the most common form of deletion disorder in humans. Low copy repeats flanking the 22q11.2 region confers a substrate for nonallelic homologous recombination (NAHR) events leading to rearrangements which have been reported to be associated with highly variable and expansive phenotypes. The 22q11.2DS is reported as the most common genetic cause of congenital heart defects (CHDs). Methods A total of 42 patients with congenital heart defects, as confirmed by echocardiography, were recruited. Genetic molecular analysis using a fluorescence in situ hybridization (FISH) technique was conducted as part of routine 22q11.2DS screening, followed by multiplex ligation-dependent probe amplification (MLPA), which serves as a confirmatory test. Results Two of the 42 CHD cases (4.76%) indicated the presence of 22q11.2DS, and interestingly, both cases have conotruncal heart defects. In terms of concordance of techniques used, MLPA is superior since it can detect deletions within the 22q11.2 locus and outside of the typically deleted region (TDR) as well as duplications. Conclusion The incidence of 22q11.2DS among patients with CHD in the east coast of Malaysia is 0.047. MLPA is a scalable and affordable alternative molecular diagnostic method in the screening of 22q11.2DS and can be routinely applied for the diagnosis of deletion syndromes.
Collapse
|
4
|
Sun L, Khan A, Zhang H, Han S, Habulieti X, Wang R, Zhang X. Phenotypic Characterization of Intellectual Disability Caused by MBOAT7 Mutation in Two Consanguineous Pakistani Families. Front Pediatr 2020; 8:585053. [PMID: 33335874 PMCID: PMC7736038 DOI: 10.3389/fped.2020.585053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/04/2020] [Indexed: 11/26/2022] Open
Abstract
A homozygous in-frame deletion (c. 758_778del; p. Glu253_Ala259del) in membrane-bound O-acyltransferase family member 7 (MBOAT7), also known as lysophosphatidylinositol acyltransferase (LPIAT1), was previously reported to be the genetic cause of intellectual disability (ID) in consanguineous families from Pakistan. Here, we identified two additional Pakistani consanguineous families with severe ID individuals sharing the same homozygous variant. Thus, we provide further evidence to support this MBOAT7 mutation as a potential founder variant. To understand the genotype-phenotype relationships of the in-frame deletion in the MBOAT7 gene, we located the variant in the fifth transmembrane domain of the protein and determined that it causes steric hindrance to the formation of an α-helix and hydrogen bond, possibly influencing its effectiveness as a functional transmembrane protein. Moreover, extensive neuropsychological observations, clinical interviews and genetic analysis were performed on 6 patients from the 2 families. We characterized the phenotype of the patients and noted the serious outcome of severe paraplegia. Thus, optimal management for symptom alleviation and appropriate screening in these patients are crucial.
Collapse
Affiliation(s)
- Liwei Sun
- State Key Laboratory of Medical Molecular Biology, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Amjad Khan
- State Key Laboratory of Medical Molecular Biology, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Han Zhang
- State Key Laboratory of Medical Molecular Biology, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Shirui Han
- State Key Laboratory of Medical Molecular Biology, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaerbati Habulieti
- State Key Laboratory of Medical Molecular Biology, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Rongrong Wang
- State Key Laboratory of Medical Molecular Biology, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Zhang
- State Key Laboratory of Medical Molecular Biology, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Kuo CY, Signer R, Saitta SC. Immune and Genetic Features of the Chromosome 22q11.2 Deletion (DiGeorge Syndrome). Curr Allergy Asthma Rep 2018; 18:75. [PMID: 30377837 DOI: 10.1007/s11882-018-0823-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This review provides an update on the progress in identifying the range of immunological dysfunction seen in DiGeorge syndrome and on more recent diagnostic and treatment approaches. RECENT FINDINGS Clinically, the associated thymic hypoplasia/aplasia is well known and can have profound effects on T cell function. Further, the humoral arm of the immune system can be affected, with hypogammaglobulinemia and poor vaccine-specific antibody response. Additionally, genetic testing utilizing chromosomal microarray demonstrates a small but significant number of 22q11 deletions that are not detectable by standard FISH testing. The recent addition of a TREC assay to newborn screening can identify a subset of infants whose severe immune defects may result from 22q11 deletion. This initial presentation now also places the immunologist in the role of "first responder" with regard to diagnosis and management of these patients. DiGeorge syndrome reflects a clinical phenotype now recognized by its underlying genetic diagnosis, chromosome 22q11.2 deletion syndrome, which is associated with multisystem involvement and variable immune defects among patients. Updated genetic and molecular techniques now allow for earlier identification of immune defects and confirmatory diagnoses, in this disorder with life-long clinical issues.
Collapse
Affiliation(s)
- Caroline Y Kuo
- Department of Pediatrics, Division of Allergy and Immunology and Rheumatology, Mattel Children's Hospital, UCLA School of Medicine, Los Angeles, CA, USA
| | - Rebecca Signer
- Department of Pediatrics, Division of Medical Genetics, Mattel Children's Hospital, UCLA School of Medicine, Los Angeles, CA, USA
| | - Sulagna C Saitta
- Department of Pathology, Division of Genomic Medicine, Children's Hospital Los Angeles, USC Keck School of Medicine, 4650 Sunset Blvd, Los Angeles, CA, 90027, USA. .,Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Mattos VF, Carvalho LS, Carvalho MA, Schneider MC. Insights into the origin of the high variability of multivalent-meiotic associations in holocentric chromosomes of Tityus (Archaeotityus) scorpions. PLoS One 2018; 13:e0192070. [PMID: 29466400 PMCID: PMC5821447 DOI: 10.1371/journal.pone.0192070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
Scorpions represent an intriguing group of animals characterized by a high incidence of heterozygous chromosomal rearrangements. In this work, we examined six species of Tityus (Archaeotityus) from Brazilian fauna with a particular focus on elucidating the rearrangements responsible for the intraspecific variability of diploid number and the presence of long chromosomal chains in meiosis. To access any interpopulation diversity, we also studied individuals from four species representing distinct localities. Most species demonstrated intraspecific polymorphism in diploid number (2n = 19 and 2n = 20 in T. clathratus, T. mattogrossensis, and T. pusillus, 2n = 16, 2n = 17 and 2n = 18 in T. paraguayensis, and 2n = 16 and 2n = 24 in T. silvestris) and multi-chromosomal associations during meiosis I, which differed even among individuals with the same chromosome number. In some species, the heterozygous rearrangements were not fixed, resulting such as in Tityus clathatrus, in 11 different chromosomal configurations recognized within a same population. Based on meiotic chromosome behaviour, we suggested that independent rearrangements (fusion/fission and reciprocal translocations), occurring in different combinations, originated the multi-chromosomal chains. To evaluate the effects of these chromosome chains on meiotic segregation, we applied the chi-square test in metaphase II cells. The non-significant occurrence of aneuploid nuclei indicated that non-disjunction was negligible in specimens bearing heterozygous rearrangements. Finally, based on our analysis of many chromosome characteristics, e.g., holocentricity, achiasmate meiosis, endopolyploidy, ability to segregate heterosynaptic or unsynapsed chromosomes, (TTAGG)n sequence located in terminal regions of rearranged chromosomes, we suggest that the maintenance of multi-chromosomal associations may be evolutionarily advantageous for these species.
Collapse
Affiliation(s)
- Viviane Fagundes Mattos
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, UNESP, Departamento de Biologia, Rio Claro, São Paulo, Brazil
| | | | - Marcos André Carvalho
- Universidade Federal de Mato Grosso, UFMT, Departamento de Biologia e Zoologia, Cuiabá, Mato Grosso, Brazil
| | - Marielle Cristina Schneider
- Universidade Federal de São Paulo, UNIFESP, Departamento de Ecologia e Biologia Evolutiva, Diadema, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
7
|
Zanardo ÉA, Dutra RL, Piazzon FB, Dias AT, Novo-Filho GM, Nascimento AM, Montenegro MM, Damasceno JG, Madia FAR, da Costa TVMM, Melaragno MI, Kim CA, Kulikowski LD. Cytogenomic assessment of the diagnosis of 93 patients with developmental delay and multiple congenital abnormalities: The Brazilian experience. Clinics (Sao Paulo) 2017; 72:526-537. [PMID: 29069255 PMCID: PMC5629705 DOI: 10.6061/clinics/2017(09)02] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/04/2017] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE The human genome contains several types of variations, such as copy number variations, that can generate specific clinical abnormalities. Different techniques are used to detect these changes, and obtaining an unequivocal diagnosis is important to understand the physiopathology of the diseases. The objective of this study was to assess the diagnostic capacity of multiplex ligation-dependent probe amplification and array techniques for etiologic diagnosis of syndromic patients. METHODS We analyzed 93 patients with developmental delay and multiple congenital abnormalities using multiplex ligation-dependent probe amplifications and arrays. RESULTS Multiplex ligation-dependent probe amplification using different kits revealed several changes in approximately 33.3% of patients. The use of arrays with different platforms showed an approximately 53.75% detection rate for at least one pathogenic change and a 46.25% detection rate for patients with benign changes. A concomitant assessment of the two techniques showed an approximately 97.8% rate of concordance, although the results were not the same in all cases. In contrast with the array results, the MLPA technique detected ∼70.6% of pathogenic changes. CONCLUSION The obtained results corroborated data reported in the literature, but the overall detection rate was higher than the rates previously reported, due in part to the criteria used to select patients. Although arrays are the most efficient tool for diagnosis, they are not always suitable as a first-line diagnostic approach because of their high cost for large-scale use in developing countries. Thus, clinical and laboratory interactions with skilled technicians are required to target patients for the most effective and beneficial molecular diagnosis.
Collapse
Affiliation(s)
- Évelin Aline Zanardo
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Roberta Lelis Dutra
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Flavia Balbo Piazzon
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Alexandre Torchio Dias
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Gil Monteiro Novo-Filho
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Amom Mendes Nascimento
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Marília Moreira Montenegro
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Jullian Gabriel Damasceno
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Fabrícia Andreia Rosa Madia
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | | | - Maria Isabel Melaragno
- Departamento de Morfologia e Genetica, Universidade Federal de Sao Paulo, Sao Paulo, SP, BR
| | - Chong Ae Kim
- Unidade de Genetica, Departamento de Pediatria, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Leslie Domenici Kulikowski
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
8
|
Kent DG, Green AR. Order Matters: The Order of Somatic Mutations Influences Cancer Evolution. Cold Spring Harb Perspect Med 2017; 7:a027060. [PMID: 28096247 PMCID: PMC5378012 DOI: 10.1101/cshperspect.a027060] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cancers evolve as a consequence of multiple somatic lesions, with competition between subclones and sequential subclonal evolution. Some driver mutations arise either early or late in the evolution of different individual tumors, suggesting that the final malignant properties of a subclone reflect the sum of mutations acquired rather than the order in which they arose. However, very little is known about the cellular consequences of altering the order in which mutations are acquired. Recent studies of human myeloproliferative neoplasms show that the order in which individual mutations are acquired has a dramatic impact on the cell biological and molecular properties of tumor-initiating cells. Differences in clinical presentation, complications, and response to targeted therapy were all observed and implicate mutation order as an important player in cancer biology. These observations represent the first demonstration that the order of mutation acquisition influences stem and progenitor cell behavior and clonal evolution in any cancer. Thus far, the impact of different mutation orders has only been studied in hematological malignancies, and analogous studies of solid cancers are now required.
Collapse
Affiliation(s)
- David G Kent
- Wellcome Trust/MRC Stem Cell Institute, Hills Road, University of Cambridge, Cambridge CB2 0XY, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Anthony R Green
- Wellcome Trust/MRC Stem Cell Institute, Hills Road, University of Cambridge, Cambridge CB2 0XY, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, United Kingdom
- Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
9
|
Zhou JX, Yang X, Ning S, Wang L, Wang K, Zhang Y, Yuan F, Li F, Zhuo DD, Tang L, Zhuo D. Identification of KANSARL as the first cancer predisposition fusion gene specific to the population of European ancestry origin. Oncotarget 2017; 8:50594-50607. [PMID: 28881586 PMCID: PMC5584173 DOI: 10.18632/oncotarget.16385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/20/2017] [Indexed: 12/30/2022] Open
Abstract
Gene fusion is one of the hallmarks of cancer. Recent advances in RNA-seq of cancer transcriptomes have facilitated the discovery of fusion transcripts. In this study, we report identification of a surprisingly large number of fusion transcripts, including six KANSARL (KANSL1-ARL17A) transcripts that resulted from the fusion between the KANSL1 and ARL17A genes using a RNA splicingcode model. Five of these six KANSARL fusion transcripts are novel. By systematic analysis of RNA-seq data of glioblastoma, prostate cancer, lung cancer, breast cancer, and lymphoma from different regions of the World, we have found that KANSARL fusion transcripts were rarely detected in the tumors of individuals from Asia or Africa. In contrast, they exist in 30 - 52% of the tumors from North Americans cancer patients. Analysis of CEPH/Utah Pedigree 1463 has revealed that KANSARL is a familially-inherited fusion gene. Further analysis of RNA-seq datasets of the 1000 Genome Project has indicated that KANSARL fusion gene is specific to 28.9% of the population of European ancestry origin. In summary, we demonstrated that KANSARL is the first cancer predisposition fusion gene associated with genetic backgrounds of European ancestry origin.
Collapse
Affiliation(s)
- Jeff Xiwu Zhou
- Department of Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaoyan Yang
- SplicingCodes.com, Biotailor Inc., Palmetto Bay, FL, USA
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Kesheng Wang
- Department of Biostatistics and Epidemiology, East Tennessee State University, Johnson City, TN, USA
| | - Yanbin Zhang
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - Fenghua Yuan
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - Fengli Li
- Department of Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - David D Zhuo
- SplicingCodes.com, Biotailor Inc., Palmetto Bay, FL, USA
| | - Liren Tang
- SplicingCodes.com, Biotailor Inc., Palmetto Bay, FL, USA
| | - Degen Zhuo
- SplicingCodes.com, Biotailor Inc., Palmetto Bay, FL, USA
| |
Collapse
|
10
|
Leavitt K, Goldwaser T, Bhat G, Kalia I, Klugman SD, Dolan SM. Chromosomal microarray in prenatal diagnosis: case studies and clinical challenges. Per Med 2016; 13:249-255. [PMID: 29767605 DOI: 10.2217/pme-2015-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chromosomal microarray analysis (CMA) is a diagnostic tool used in the evaluation of pediatric patients with congenital anomalies or developmental and intellectual disability. In both the pediatric and prenatal patient population, CMA has been shown to have a higher detection rate of chromosomal abnormalities than conventional karyotype alone. Currently, the diagnostic yield of prenatal CMA is highest when applied to the evaluation of a fetus with multiple ultrasound anomalies. Challenges arise when CMA yields isolated findings not associated with a phenotype on ultrasound or variants of uncertain significance, which warrants evaluation of the risks, benefits, limitations and optimal incorporation of CMA into prenatal care. The clinical cases presented here will be used to illustrate these issues.
Collapse
Affiliation(s)
- Karla Leavitt
- Division of Reproductive Genetics, Department of Obstetrics & Gynecology & Women's Health, Montefiore Medical Center/Albert Einstein College of Medicine 1695 Eastchester Road Suite 301, Bronx, NY 10463, USA
| | - Tamar Goldwaser
- Division of Reproductive Genetics, Department of Obstetrics & Gynecology & Women's Health, Montefiore Medical Center/Albert Einstein College of Medicine 1695 Eastchester Road Suite 301, Bronx, NY 10463, USA
| | - Gifty Bhat
- Genetics Division, Department of Pediatrics, Montefiore Medical Center/Albert Einstein College of Medicine, The Children's Hospital at Montefiore, 3415 Bainbridge Ave., Bronx, NY 10467, USA
| | - Isha Kalia
- Division of Reproductive Genetics, Department of Obstetrics & Gynecology & Women's Health, Montefiore Medical Center/Albert Einstein College of Medicine 1695 Eastchester Road Suite 301, Bronx, NY 10463, USA
| | - Susan D Klugman
- Division of Reproductive Genetics, Department of Obstetrics & Gynecology & Women's Health, Montefiore Medical Center/Albert Einstein College of Medicine 1695 Eastchester Road Suite 301, Bronx, NY 10463, USA
| | - Siobhan M Dolan
- Division of Reproductive Genetics, Department of Obstetrics & Gynecology & Women's Health, Montefiore Medical Center/Albert Einstein College of Medicine 1695 Eastchester Road Suite 301, Bronx, NY 10463, USA
| |
Collapse
|
11
|
Abstract
Although prostate cancer is the most common malignancy to affect men in the Western world, the molecular mechanisms underlying its development and progression remain poorly understood. Like all cancers, prostate cancer is a genetic disease that is characterized by multiple genomic alterations, including point mutations, microsatellite variations, and chromosomal alterations such as translocations, insertions, duplications, and deletions. In prostate cancer, but not other carcinomas, these chromosome alterations result in a high frequency of gene fusion events. The development and application of novel high-resolution technologies has significantly accelerated the detection of genomic alterations, revealing the complex nature and heterogeneity of the disease. The clinical heterogeneity of prostate cancer can be partly explained by this underlying genetic heterogeneity, which has been observed between patients from different geographical and ethnic populations, different individuals within these populations, different tumour foci within the same patient, and different cells within the same tumour focus. The highly heterogeneous nature of prostate cancer provides a real challenge for clinical disease management and a detailed understanding of the genetic alterations in all cells, including small subpopulations, would be highly advantageous.
Collapse
|
12
|
Abstract
During meiosis, numerous DNA double-strand breaks (DSBs) are formed as part of the normal developmental program. This seemingly destructive behavior is necessary for successful meiosis, since repair of the DSBs through homologous recombination (HR) helps to produce physical links between the homologous chromosomes essential for correct chromosome segregation later in meiosis. However, DSB formation at such a massive scale also introduces opportunities to generate gross chromosomal rearrangements. In this review, we explore ways in which meiotic DSBs can result in such genomic alterations.
Collapse
|
13
|
Iyer J, Girirajan S. Gene discovery and functional assessment of rare copy-number variants in neurodevelopmental disorders. Brief Funct Genomics 2015; 14:315-28. [DOI: 10.1093/bfgp/elv018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
14
|
Lindgren V, McRae A, Dineen R, Saulsberry A, Hoganson G, Schrift M. Behavioral abnormalities are common and severe in patients with distal 22q11.2 microdeletions and microduplications. Mol Genet Genomic Med 2015; 3:346-53. [PMID: 26247050 PMCID: PMC4521969 DOI: 10.1002/mgg3.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 11/13/2022] Open
Abstract
We describe six individuals with microdeletions and microduplications in the distal 22q11.2 region detected by microarray. Five of the abnormalities have breakpoints in the low-copy repeats (LCR) in this region and one patient has an atypical rearrangement. Two of the six patients with abnormalities in the region between LCR22 D–E have hearing loss, which has previously been reported only once in association with these abnormalities. We especially note the behavioral/neuropsychiatric problems, including the severity and early onset, in patients with distal 22q11.2 rearrangements. Our patients add to the genotype–phenotype correlations which are still being generated for these chromosomal anomalies.
Collapse
Affiliation(s)
- Valerie Lindgren
- Department of Pathology, University of Illinois Chicago, Illinois
| | - Anne McRae
- Department of Pediatrics, University of Illinois Chicago, Illinois
| | - Richard Dineen
- Department of Pediatrics, University of Illinois Chicago, Illinois
| | | | - George Hoganson
- Department of Pediatrics, University of Illinois Chicago, Illinois
| | - Michael Schrift
- Department of Psychiatry, University of Illinois Chicago, Illinois
| |
Collapse
|
15
|
Uno N, Yanagihara K. Ligation-independent mechanism of multiplex ligation-dependent probe amplification. ANAL SCI 2015; 30:805-10. [PMID: 25109642 DOI: 10.2116/analsci.30.805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Multiplex ligation-dependent probe amplification (MLPA) is a widely used technique for detecting genomic structural variants. The technique is based on hybridization and ligation, followed by amplification of the ligation products. Therefore, ligation is considered a fundamental process that determines the feasibility and fidelity of MLPA. However, despite the widespread use of this technique, its reaction mechanism has not been fully analyzed. Herein, we describe a ligation-independent pathway for MLPA and introduce a ligation-independent probe amplification system that can be used to obtain amplified products without the hybridization and ligation processes. Fragment analysis revealed that the ligation-independent pathway is functional and that the capacity to discriminate single nucleotides with MLPA does not depend on ligation. These findings indicate that the feasibility and fidelity of MLPA do not rely on ligation.
Collapse
Affiliation(s)
- Naoki Uno
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences
| | | |
Collapse
|
16
|
Li YC, Chien SC, Setlur SR, Lin WD, Tsai FJ, Lin CC. Prenatal detection and characterization of a psu idic(8)(p23.3) which likely derived from nonallelic homologous recombination between two MYOM2-repeats. J Formos Med Assoc 2015; 114:81-7. [DOI: 10.1016/j.jfma.2011.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/28/2011] [Accepted: 05/16/2011] [Indexed: 01/30/2023] Open
|
17
|
Global patterns of apparent copy number variation in birds revealed by cross-species comparative genomic hybridization. Chromosome Res 2014; 22:59-70. [PMID: 24570127 DOI: 10.1007/s10577-014-9405-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There is a growing interest in copy number variation (CNV) and the recognition of its importance in phenotype, disease, adaptation and speciation. CNV data is usually ascertained by array-CGH within-species, but similar inter-species comparisons have also been made in primates, mice and domestic mammals. Here, we conducted a broad appraisal of putative cross-species CNVs in birds, 16 species in all, using the standard array-CGH approach. Using a chicken oligonucleotide microarray, we detected 790 apparent CNVs within 135 unique regions and developed a bioinformatic tool 'CNV Analyser' for analysing and visualising cross-species data sets. We successfully addressed four hypotheses as follows: (a) Cross-species CNVs (compared to chicken) are, as suggested from preliminary evidence, smaller and fewer in number than in mammals; this 'dogma' was rejected in the light of the new evidence. (b) CNVs in birds are likely to have a functional effect through an association with genes; a large proportion of detected regions (70 %) were indeed associated with genes (suggesting functional significance), however, not necessarily more so than in mammals. (c) There are more CNVs in birds with more rearranged karyotypes; this hypothesis was rejected. Indeed, Falco species contained fewer than most with relatively standard (chicken-like) karyotypes. (d) There are more CNVs per megabase on micro-chromosomes than macrochromosomes; this hypothesis was accepted. Indeed, in species with rearranged karyotypes characterised by chromosomal fusions, the fused former microchromosomes still 'behaved' as though they were their microchromosomal ancestors. Gene ontology analysis of CNVRs revealed enrichment in immune response and antigen presentation genes and five CNVRs were perfectly correlated with the unique loss of sexual dichromatism in one Galliformes species.
Collapse
|
18
|
Pires R, Pires LM, Vaz SO, Maciel P, Anjos R, Moniz R, Branco CC, Cabral R, Carreira IM, Mota-Vieira L. Screening of copy number variants in the 22q11.2 region of congenital heart disease patients from the São Miguel Island, Azores, revealed the second patient with a triplication. BMC Genet 2014; 15:115. [PMID: 25376777 PMCID: PMC4228150 DOI: 10.1186/s12863-014-0115-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/17/2014] [Indexed: 12/24/2022] Open
Abstract
Background The rearrangements in the 22q11.2 chromosomal region, responsible for the 22q11.2 deletion and microduplication syndromes, are frequently associated with congenital heart disease (CHD). The present work aimed to identify the genetic basis of CHD in 87 patients from the São Miguel Island, Azores, through the detection of copy number variants (CNVs) in the 22q11.2 region. These structural variants were searched using multiplex ligation-dependent probe amplification (MLPA). In patients with CNVs, we additionally performed fluorescent in situ hybridization (FISH) for the assessment of the exact number of 22q11.2 copies among each chromosome, and array comparative genomic hybridization (array-CGH) for the determination of the exact length of CNVs. Results We found that four patients (4.6%; A to D) carried CNVs. Patients A and D, both affected with a ventricular septal defect, carried a de novo 2.5 Mb deletion of the 22q11.2 region, which was probably originated by inter-chromosomal (inter-chromatid) non-allelic homologous recombination (NAHR) events in the regions containing low-copy repeats (LCRs). Patient C, with an atrial septal defect, carried a de novo 2.5 Mb duplication of 22q11.2 region, which could have been probably generated during gametogenesis by NAHR or by unequal crossing-over; additionally, this patient presented a benign 288 Kb duplication, which included the TOP3B gene inherited from her healthy mother. Finally, patient B showed a 3 Mb triplication associated with dysmorphic facial features, cognitive deficit and heart defects, a clinical feature not reported in the only case described so far in the literature. The evaluation of patient B’s parents revealed a 2.5 Mb duplication in her father, suggesting a paternal inheritance with an extra copy. Conclusions This report allowed the identification of rare deletion and microduplication syndromes in Azorean CHD patients. Moreover, we report the second patient with a 22q11.2 triplication, and we suggest that patients with triplications of chromosome 22q11.2, although they share some characteristic features with the deletion and microduplication syndromes, present a more severe phenotype probably due to the major dosage of implicated genes.
Collapse
Affiliation(s)
- Renato Pires
- Molecular Genetics and Pathology Unit, Hospital of Divino Espírito Santo of Ponta Delgada, EPE, Av. D. Manuel I, Ponta Delgada 9500-370, São Miguel Island, Azores, Portugal. .,Centre for Biodiversity, Functional and Integrative Genomics (BioFIG), Faculty of Sciences, University of Lisboa, Lisboa, 1749-016, Portugal.
| | - Luís M Pires
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, 3000-354, Portugal.
| | - Sara O Vaz
- Department of Paediatrics, Hospital of Divino Espírito Santo of Ponta Delgada, EPE, Av. D. Manuel I, Ponta Delgada 9500-370, São Miguel Island, Azores, Portugal.
| | - Paula Maciel
- Department of Paediatrics, Hospital of Divino Espírito Santo of Ponta Delgada, EPE, Av. D. Manuel I, Ponta Delgada 9500-370, São Miguel Island, Azores, Portugal.
| | - Rui Anjos
- Department of Paediatric Cardiology, Hospital of Santa Cruz, Av. Prof. Dr. Reinaldo dos Santos, Carnaxide, 2790-134, Portugal.
| | - Raquel Moniz
- Molecular Genetics and Pathology Unit, Hospital of Divino Espírito Santo of Ponta Delgada, EPE, Av. D. Manuel I, Ponta Delgada 9500-370, São Miguel Island, Azores, Portugal.
| | - Claudia C Branco
- Molecular Genetics and Pathology Unit, Hospital of Divino Espírito Santo of Ponta Delgada, EPE, Av. D. Manuel I, Ponta Delgada 9500-370, São Miguel Island, Azores, Portugal. .,Centre for Biodiversity, Functional and Integrative Genomics (BioFIG), Faculty of Sciences, University of Lisboa, Lisboa, 1749-016, Portugal. .,Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, Oeiras, 2780-156, Portugal.
| | - Rita Cabral
- Molecular Genetics and Pathology Unit, Hospital of Divino Espírito Santo of Ponta Delgada, EPE, Av. D. Manuel I, Ponta Delgada 9500-370, São Miguel Island, Azores, Portugal.
| | - Isabel M Carreira
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, 3000-354, Portugal.
| | - Luisa Mota-Vieira
- Molecular Genetics and Pathology Unit, Hospital of Divino Espírito Santo of Ponta Delgada, EPE, Av. D. Manuel I, Ponta Delgada 9500-370, São Miguel Island, Azores, Portugal. .,Centre for Biodiversity, Functional and Integrative Genomics (BioFIG), Faculty of Sciences, University of Lisboa, Lisboa, 1749-016, Portugal. .,Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, Oeiras, 2780-156, Portugal.
| |
Collapse
|
19
|
Rivera H, Vásquez-Velásquez AI. Concurrent psu dic(21)(q22.3) and t(13;17)(q14.1;p12) in a mosaic Down's syndrome patient: review of thirty-one similar dicentrics. J Genet 2014; 93:189-92. [PMID: 24840838 DOI: 10.1007/s12041-014-0329-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Horacio Rivera
- Division de Genetica, CIBO, Instituto Mexicano del Seguro Social, Guadalajara, CP 44340, Mexico.
| | | |
Collapse
|
20
|
Abu-Amero KK, Kondkar A, Hellani AM, Oystreck DT, Khan AO, Bosley TM. Nicotinic Receptor Mutation in a Mildly Dysmorphic Girl with Duane Retraction Syndrome. Ophthalmic Genet 2013; 36:99-104. [DOI: 10.3109/13816810.2013.835431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Khaled K Abu-Amero
- Department of Ophthalmology, College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | | | | | | | | | | |
Collapse
|
21
|
Diagnosis of copy number variation by Illumina next generation sequencing is comparable in performance to oligonucleotide array comparative genomic hybridisation. Genomics 2013; 102:174-81. [DOI: 10.1016/j.ygeno.2013.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 11/20/2022]
|
22
|
Abu-Amero KK, Kondkar AA, Al Otaibi A, Alorainy IA, Khan AO, Hellani AM, Oystreck DT, Bosley TM. Partial duplication of chromosome 19 associated with syndromic duane retraction syndrome. Ophthalmic Genet 2013; 36:14-20. [PMID: 23952617 DOI: 10.3109/13816810.2013.827218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND To evaluate possible monogenic and chromosomal anomalies in a patient with unilateral Duane retraction syndrome, modest dysmorphism, cerebral white matter abnormalities, and normal cognitive function. MATERIALS AND METHODS Performing high-resolution array comparative genomic hybridization (array CGH) and sequencing of HOXA1, KIF21A, SALL4, and CHN1 genes. RESULTS The proband had unilateral Duane retraction syndrome (DRS) type III on the right with low-set ears, prominent forehead, clinodactyly, and a history of frequent infections during early childhood. Motor development and cognitive function were normal. Parents were not related, and no other family member was similarly affected. MRI revealed multiple small areas of high signal on T2 weighted images in cerebral white matter oriented along white matter tracts. Sequencing of HOXA1, KIF21A, SALL4, and CHN1 did not reveal any mutation(s). Array CGH showed a 95 Kb de novo duplication on chromosome 19q13.4 encompassing four killer cell immunoglobulin-like receptor (KIR) genes. Conclusions. KIR genes have not previously been linked to a developmental syndrome, although they are known to be expressed in the human brain and brainstem and to be associated with certain infections and autoimmune diseases, including some affecting the nervous system. DRS and brain neuroimaging abnormalities may imply a central and peripheral oligodendrocyte abnormality related in some fashion to an immunomodulatory disturbance.
Collapse
Affiliation(s)
- Khaled K Abu-Amero
- Department of Ophthalmology, College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
A dynamic database of microarray-characterized cell lines with various cytogenetic and genomic backgrounds. G3-GENES GENOMES GENETICS 2013; 3:1143-9. [PMID: 23665875 PMCID: PMC3704242 DOI: 10.1534/g3.113.006577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Human Genetic Cell Repository sponsored by the National Institute of General Medical Sciences (NIGMS) contains more than 11,000 cell lines and DNA samples collected from numerous individuals. All of these cell lines and DNA samples are categorized into several collections representing a variety of disease states, chromosomal abnormalities, heritable diseases, distinct human populations, and apparently healthy individuals. Many of these cell lines have previously been studied with detailed conventional cytogenetic analyses, including G-banded karyotyping and fluorescence in situ hybridization. This work was conducted by investigators at submitting institutions and scientists at Coriell Institute for Medical Research, where the NIGMS Repository is hosted. Recently, approximately 900 cell lines, mostly chosen from the Chromosomal Aberrations and Heritable Diseases collections, have been further characterized in detail at the Coriell Institute using the Affymetrix Genome-Wide Human SNP Array 6.0 to detect copy number variations and copy number neutral loss of heterozygosity. A database containing detailed cytogenetic and genomic information for these cell lines has been constructed and is freely available through several sources, such as the NIGMS Repository website and the University of California at Santa Cruz Genome Browser. As additional cell lines are analyzed and subsequently added into it, the database will be maintained dynamically.
Collapse
|
24
|
Fiorentino F, Napoletano S, Caiazzo F, Sessa M, Bono S, Spizzichino L, Gordon A, Nuccitelli A, Rizzo G, Baldi M. Chromosomal microarray analysis as a first-line test in pregnancies with a priori low risk for the detection of submicroscopic chromosomal abnormalities. Eur J Hum Genet 2013; 21:725-30. [PMID: 23211699 PMCID: PMC3722951 DOI: 10.1038/ejhg.2012.253] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this study, we aimed to explore the utility of chromosomal microarray analysis (CMA) in groups of pregnancies with a priori low risk for detection of submicroscopic chromosome abnormalities, usually not considered an indication for testing, in order to assess whether CMA improves the detection rate of prenatal chromosomal aberrations. A total of 3000 prenatal samples were processed in parallel using both whole-genome CMA and conventional karyotyping. The indications for prenatal testing included: advanced maternal age, maternal serum screening test abnormality, abnormal ultrasound findings, known abnormal fetal karyotype, parental anxiety, family history of a genetic condition and cell culture failure. The use of CMA resulted in an increased detection rate regardless of the indication for analysis. This was evident in high risk groups (abnormal ultrasound findings and abnormal fetal karyotype), in which the percentage of detection was 5.8% (7/120), and also in low risk groups, such as advanced maternal age (6/1118, 0.5%), and parental anxiety (11/1674, 0.7%). A total of 24 (0.8%) fetal conditions would have remained undiagnosed if only a standard karyotype had been performed. Importantly, 17 (0.6%) of such findings would have otherwise been overlooked if CMA was offered only to high risk pregnancies.The results of this study suggest that more widespread CMA testing of fetuses would result in a higher detection of clinically relevant chromosome abnormalities, even in low risk pregnancies. Our findings provide substantial evidence for the introduction of CMA as a first-line diagnostic test for all pregnant women undergoing invasive prenatal testing, regardless of risk factors.
Collapse
|
25
|
|
26
|
Iourov IY, Vorsanova SG, Kurinnaia OS, Zelenova MA, Silvanovich AP, Yurov YB. Molecular karyotyping by array CGH in a Russian cohort of children with intellectual disability, autism, epilepsy and congenital anomalies. Mol Cytogenet 2012; 5:46. [PMID: 23272938 PMCID: PMC3547809 DOI: 10.1186/1755-8166-5-46] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 01/28/2023] Open
Abstract
Background Array comparative genomic hybridization (CGH) has been repeatedly shown to be a successful tool for the identification of genomic variations in a clinical population. During the last decade, the implementation of array CGH has resulted in the identification of new causative submicroscopic chromosome imbalances and copy number variations (CNVs) in neuropsychiatric (neurobehavioral) diseases. Currently, array-CGH-based technologies have become an integral part of molecular diagnosis and research in individuals with neuropsychiatric disorders and children with intellectual disability (mental retardation) and congenital anomalies. Here, we introduce the Russian cohort of children with intellectual disability, autism, epilepsy and congenital anomalies analyzed by BAC array CGH and a novel bioinformatic strategy. Results Among 54 individuals highly selected according to clinical criteria and molecular and cytogenetic data (from 2426 patients evaluated cytogenetically and molecularly between November 2007 and May 2012), chromosomal imbalances were detected in 26 individuals (48%). In two patients (4%), a previously undescribed condition was observed. The latter has been designated as meiotic (constitutional) genomic instability resulted in multiple submicroscopic rearrangements (including CNVs). Using bioinformatic strategy, we were able to identify clinically relevant CNVs in 15 individuals (28%). Selected cases were confirmed by molecular cytogenetic and molecular genetic methods. Eight out of 26 chromosomal imbalances (31%) have not been previously reported. Among them, three cases were co-occurrence of subtle chromosome 9 and 21 deletions. Conclusions We conducted an array CGH study of Russian patients suffering from intellectual disability, autism, epilepsy and congenital anomalies. In total, phenotypic manifestations of clinically relevant genomic variations were found to result from genomic rearrangements affecting 1247 disease-causing and pathway-involved genes. Obviously, a significantly lesser part of them are true candidates for intellectual disability, autism or epilepsy. The success of our preliminary array CGH and bioinformatic study allows us to expand the cohort. According to the available literature, this is the first comprehensive array CGH evaluation of a Russian cohort of children with neuropsychiatric disorders and congenital anomalies.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Mental Health Research Center, Russian Academy of Medical Sciences, 119152, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
27
|
Jakubek YA, Cutler DJ. A model of binding on DNA microarrays: understanding the combined effect of probe synthesis failure, cross-hybridization, DNA fragmentation and other experimental details of affymetrix arrays. BMC Genomics 2012; 13:737. [PMID: 23270536 PMCID: PMC3548757 DOI: 10.1186/1471-2164-13-737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 12/16/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA microarrays are used both for research and for diagnostics. In research, Affymetrix arrays are commonly used for genome wide association studies, resequencing, and for gene expression analysis. These arrays provide large amounts of data. This data is analyzed using statistical methods that quite often discard a large portion of the information. Most of the information that is lost comes from probes that systematically fail across chips and from batch effects. The aim of this study was to develop a comprehensive model for hybridization that predicts probe intensities for Affymetrix arrays and that could provide a basis for improved microarray analysis and probe development. The first part of the model calculates probe binding affinities to all the possible targets in the hybridization solution using the Langmuir isotherm. In the second part of the model we integrate details that are specific to each experiment and contribute to the differences between hybridization in solution and on the microarray. These details include fragmentation, wash stringency, temperature, salt concentration, and scanner settings. Furthermore, the model fits probe synthesis efficiency and target concentration parameters directly to the data. All the parameters used in the model have a well-established physical origin. RESULTS For the 302 chips that were analyzed the mean correlation between expected and observed probe intensities was 0.701 with a range of 0.88 to 0.55. All available chips were included in the analysis regardless of the data quality. Our results show that batch effects arise from differences in probe synthesis, scanner settings, wash strength, and target fragmentation. We also show that probe synthesis efficiencies for different nucleotides are not uniform. CONCLUSIONS To date this is the most complete model for binding on microarrays. This is the first model that includes both probe synthesis efficiency and hybridization kinetics/cross-hybridization. These two factors are sequence dependent and have a large impact on probe intensity. The results presented here provide novel insight into the effect of probe synthesis errors on Affymetrix microarrays; furthermore, the algorithms developed in this work provide useful tools for the analysis of cross-hybridization, probe synthesis efficiency, fragmentation, wash stringency, temperature, and salt concentration on microarray intensities.
Collapse
Affiliation(s)
- Yasminka A Jakubek
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
28
|
Li G, Liu Y, He NN, Hu LL, Zhang YL, Wang Y, Dong FL, Guo YH, Su YC, Sun YP. Molecular karyotype single nucleotide polymorphism analysis of early fetal demise. Syst Biol Reprod Med 2012; 59:227-31. [PMID: 23244176 DOI: 10.3109/19396368.2012.750696] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We explored the application of single nucleotide polymorphism microarray (SNP array) in molecular karyotype analysis for early spontaneous abortion detection in assisted reproductive technology (ART). SNP array was performed in 81 cases. Of the 81 cases, 16 experienced natural conception (NC) and 65 were pregnant by ART. Of the 65 cases, 4 underwent artificial insemination (AI), 32 fresh in vitro fertilization-embryo transfer (IVF-ET), 9 fresh intracytoplasmic sperm injection (ICSI), and 20 thawed embryo transfer. In the 81 cases examined 69.1% displayed an abnormal molecular karyotype. In the subjects greater than 35 years of age, the abnormal molecular karyotype rate was 87.5% higher compared to 61.4% in younger individuals (P < 0.05). There was no significant difference in the abnormal molecular karyotype rate or type between ART (64.6%) and NC (87.5%). Compared with traditional cytogenetic diagnosis, the SNP array can identify a greater number of abnormal karyotypes.
Collapse
Affiliation(s)
- Gang Li
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abu-Amero KK, Kondkar AA, Salih MAM, Alorainy IA, Khan AO, Oystreck DT, Bosley TM. Partial chromosome 7 duplication with a phenotype mimicking the HOXA1 spectrum disorder. Ophthalmic Genet 2012; 34:90-6. [DOI: 10.3109/13816810.2012.718850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Querejeta ME, Nieva B, Navajas J, Cigudosa JC, Suela J. Diagnóstico prenatal y array-CGH II: gestaciones de bajo riesgo. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.diapre.2012.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Mori MDLÁ, Mansilla E, García-Santiago F, Vallespín E, Palomares M, Martín R, Rodríguez R, Martínez-Payo C, Gil-Fournier B, Ramiro S, Lapunzina P, Nevado J. Diagnóstico prenatal y array-hibridación genómica comparada (CGH) (I). Gestaciones de elevado riesgo. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.diapre.2012.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Fiorentino F, Caiazzo F, Napolitano S, Spizzichino L, Bono S, Sessa M, Nuccitelli A, Biricik A, Gordon A, Rizzo G, Baldi M. Introducing array comparative genomic hybridization into routine prenatal diagnosis practice: a prospective study on over 1000 consecutive clinical cases. Prenat Diagn 2011; 31:1270-82. [PMID: 22034057 DOI: 10.1002/pd.2884] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/28/2011] [Accepted: 09/06/2011] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To assess the feasibility of offering array-based comparative genomic hybridization testing for prenatal diagnosis as a first-line test, a prospective study was performed, comparing the results achieved from array comparative genomic hybridization (aCGH) with those obtained from conventional karyotype. METHOD Women undergoing amniocentesis or chorionic villus sampling were offered aCGH analysis. A total of 1037 prenatal samples were processed in parallel using both aCGH and G-banding for standard karyotyping. Specimen types included amniotic fluid (89.0%), chorionic villus sampling (9.5%) and cultured amniocytes (1.5%). RESULTS Chromosomal abnormalities were identified in 34 (3.3%) samples; in 9 out of 34 cases (26.5%) aCGH detected pathogenic copy number variations that would not have been found if only a standard karyotype had been performed. aCGH was also able to detect chromosomal mosaicism at as low as a 10% level. There was complete concordance between the conventional karyotyping and aCGH results, except for 2 cases that were only correctly diagnosed by aCGH. CONCLUSIONS This study demonstrates that aCGH represents an improved diagnostic tool for prenatal detection of chromosomal abnormalities. Although larger studies are needed, our results provide further evidence on the feasibility of introducing aCGH as a first-line diagnostic test in routine prenatal diagnosis practice.
Collapse
|
33
|
Aleixandre Blanquer F, Manchón Trives I, Forniés Arnau MJ, Alcaraz Mas LA, Picó Alfonso N, Galán Sánchez F. [3q29 microduplication syndrome]. An Pediatr (Barc) 2011; 75:409-12. [PMID: 21982553 DOI: 10.1016/j.anpedi.2011.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/25/2011] [Accepted: 08/01/2011] [Indexed: 10/16/2022] Open
Abstract
3q29 microduplication (MIM 611936) is rare syndrome characterized by moderate mental retardation, craniofacial dysmorphic features and musculoskeletal anomalies. The size of the minimal critical region is about 1.73 Mb. It is flanked by repetitive sequences and it is similar in size to the reciprocal 3q29 microdeletion, suggesting a non-allelic homologous recombination event (NAHR) at flanking LCR sequences as its aetiological mechanism. We describe a new familial case with variable expressivity.
Collapse
|
34
|
Vorsanova SG, Yurov YB, Soloviev IV, Iourov IY. Molecular cytogenetic diagnosis and somatic genome variations. Curr Genomics 2011; 11:440-6. [PMID: 21358989 PMCID: PMC3018725 DOI: 10.2174/138920210793176010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/26/2010] [Accepted: 06/01/2010] [Indexed: 12/22/2022] Open
Abstract
Human molecular cytogenetics integrates the knowledge on chromosome and genome organization at the molecular and cellular levels in health and disease. Molecular cytogenetic diagnosis is an integral part of current genomic medicine and is the standard of care in medical genetics and cytogenetics, reproductive medicine, pediatrics, neuropsychiatry and oncology. Regardless numerous advances in this field made throughout the last two decades, researchers and practitioners who apply molecular cytogenetic techniques may encounter several problems that are extremely difficult to solve. One of them is undoubtedly the occurrence of somatic genome and chromosome variations, leading to genomic and chromosomal mosaicism, which are related but not limited to technological and evaluative limitations as well as multiplicity of interpretations. More dramatically, current biomedical literature almost lacks descriptions, guidelines or solutions of these problems. The present article overviews all these problems and gathers those exclusive data acquired from studies of genome and chromosome instability that is relevant to identification and interpretations of this fairly common cause of somatic genomic variations and chromosomal mosaicism. Although the way to define pathogenic value of all the intercellular variations of the human genome is far from being completely understood, it is possible to propose recommendations on molecular cytogenetic diagnosis and management of somatic genome variations in clinical population.
Collapse
Affiliation(s)
- S G Vorsanova
- Institute of Pediatrics and Children Surgery, Rosmedtechnologii
| | | | | | | |
Collapse
|
35
|
Iourov IY, Vorsanova SG, Yurov YB. Molecular cytogenetics and cytogenomics of brain diseases. Curr Genomics 2011; 9:452-65. [PMID: 19506734 PMCID: PMC2691674 DOI: 10.2174/138920208786241216] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/06/2008] [Accepted: 07/09/2008] [Indexed: 01/08/2023] Open
Abstract
Molecular cytogenetics is a promising field of biomedical research that has recently revolutionized our thinking on genome structure and behavior. This is in part due to discoveries of human genomic variations and their contribution to biodiversity and disease. Since these studies were primarily targeted at variation of the genome structure, it appears apposite to cover them by molecular cytogenomics. Human brain diseases, which encompass pathogenic conditions from severe neurodegenerative diseases and major psychiatric disorders to brain tumors, are a heavy burden for the patients and their relatives. It has been suggested that most of them, if not all, are of genetic nature and several recent studies have supported the hypothesis assuming them to be associated with genomic instabilities (i.e. single-gene mutations, gross and subtle chromosome imbalances, aneuploidy). The present review is focused on the intriguing relationship between genomic instability and human brain diseases. Looking through the data, we were able to conclude that both interindividual and intercellular genomic variations could be pathogenic representing, therefore, a possible mechanism for human brain malfunctioning. Nevertheless, there are still numerous gaps in our knowledge concerning the link between genomic variations and brain diseases, which, hopefully, will be filled by forthcoming studies. In this light, the present review considers perspectives of this dynamically developing field of neurogenetics and genomics.
Collapse
Affiliation(s)
- I Y Iourov
- National Research Center of Mental Health, Russian Academy of Medical Sciences
| | | | | |
Collapse
|
36
|
CAMPBELL JOSHUAD, SPIRA AVRUM, LENBURG MARCE. Applying gene expression microarrays to pulmonary disease. Respirology 2011; 16:407-18. [DOI: 10.1111/j.1440-1843.2011.01942.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Sempere Pérez A, Manchón Trives I, Palazón Azorín I, Alcaraz Más L, Pérez Lledó E, Galán Sánchez F. [15Q11.2 (BP1-BP2) microdeletion, a new syndrome with variable expressivity]. An Pediatr (Barc) 2011; 75:58-62. [PMID: 21419731 DOI: 10.1016/j.anpedi.2011.01.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/31/2011] [Indexed: 11/19/2022] Open
Abstract
The case of a boy with psychomotor retardation and dysmorphic features is presented. He has a 1.5 Mb 15q11.2 microdeletion of paternal origin diagnosed by aCGH. The deletion is located between breakpoints BP1 and BP2 of the Prader-Willi/Angelman syndromes critical region. Clinical features in our patient fit well with those described in ten cases of pure BP1-BP2 deletion published to date.
Collapse
Affiliation(s)
- A Sempere Pérez
- Neuropediatría, Hospital General Universitario, Alicante, España
| | | | | | | | | | | |
Collapse
|
38
|
Obenauf AC, Schwarzbraun T, Auer M, Hoffmann EM, Waldispuehl-Geigl J, Ulz P, Günther B, Duba HC, Speicher MR, Geigl JB. Mapping of balanced chromosome translocation breakpoints to the basepair level from microdissected chromosomes. J Cell Mol Med 2011; 14:2078-84. [PMID: 20597996 PMCID: PMC3822999 DOI: 10.1111/j.1582-4934.2010.01116.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The analysis of structural variants associated with specific phenotypic features is promising for the elucidation of the function of involved genes. There is, however, at present no approach allowing the rapid mapping of chromosomal translocation breakpoints to the basepair level from a single chromosome. Here we demonstrate that we have advanced both the microdissection and the subsequent unbiased amplification to an extent that breakpoint mapping to the basepair level has become possible. As a case in point we analysed the two breakpoints of a t(7;13) translocation observed in a patient with split hand/foot malformation (SHFM1). The amplification products of the der(7) and of the der(13) were hybridized to custom-made arrays, enabling us to define primers at flanking breakpoint regions and thus to fine-map the breakpoints to the basepair level. Consequently, our results will also contribute to a further delineation of causative mechanisms underlying SHFM1 which are currently unknown.
Collapse
Affiliation(s)
- Anna C Obenauf
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Busse T, Graham JM, Feldman G, Perin J, Catherwood A, Knowlton R, Rappaport EF, Emanuel B, Driscoll DA, Saitta SC. High-Resolution genomic arrays identify CNVs that phenocopy the chromosome 22q11.2 deletion syndrome. Hum Mutat 2010; 32:91-7. [DOI: 10.1002/humu.21395] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Wang LS, Hranilovic D, Wang K, Lindquist IE, Yurcaba L, Petkovic ZB, Gidaya N, Jernej B, Hakonarson H, Bucan M. Population-based study of genetic variation in individuals with autism spectrum disorders from Croatia. BMC MEDICAL GENETICS 2010; 11:134. [PMID: 20858243 PMCID: PMC2954843 DOI: 10.1186/1471-2350-11-134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 09/21/2010] [Indexed: 12/21/2022]
Abstract
Background Genome-wide studies on autism spectrum disorders (ASDs) have mostly focused on large-scale population samples, but examination of rare variations in isolated populations may provide additional insights into the disease pathogenesis. Methods As a first step in the genetic analysis of ASD in Croatia, we characterized genetic variation in a sample of 103 subjects with ASD and 203 control individuals, who were genotyped using the Illumina HumanHap550 BeadChip. We analyzed the genetic diversity of the Croatian population and its relationship to other populations, the degree of relatedness via Runs of Homozygosity (ROHs), and the distribution of large (>500 Kb) copy number variations. Results Combining the Croatian cohort with several previously published populations in the FastME analysis (an alternative to Neighbor Joining) revealed that Croatian subjects cluster, as expected, with Southern Europeans; in addition, individuals from the same geographic region within Europe cluster together. Whereas Croatian subjects could be separated from a sample of healthy control subjects of European origin from North America, Croatian ASD cases and controls are well mixed. A comparison of runs of homozygosity indicated that the number and the median length of regions of homozygosity are higher for ASD subjects than for controls (p = 6 × 10-3). Furthermore, analysis of copy number variants found a higher frequency of large chromosomal rearrangements (>2 Mb) in ASD cases (5/103) than in ethnically matched control subjects (1/197, p = 0.019). Conclusions Our findings illustrate the remarkable utility of high-density genotype data for subjects from a limited geographic area in dissecting genetic heterogeneity with respect to population and disease related variation.
Collapse
Affiliation(s)
- Li-San Wang
- Department of Pathology, Laboratory Medicine, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
de Klein A, Tibboel D. Genetics. Semin Pediatr Surg 2010; 19:234-9. [PMID: 20610197 DOI: 10.1053/j.sempedsurg.2010.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For many years karyotyping has been a successful tool to identify chromosome aberrations in congenital malformations. It has proven to be a highly reliable technique for identifying numerical chromosome changes and structural chromosomal rearrangements, such as deletions, duplications, translocations, or inversions. However, karyotyping has limited resolution of 5-10 Mb and depends on the availability of metaphases. In the last decade, we have experienced the implementation of molecular cytogenetic techniques, resulting in the identification of chromosomal aberrations smaller than 5 Mbp. Because DNA is used as starting material also analysis of paraffin or frozen biopsies is possible. Several genes and loci have been identified, and careful genotype phenotype correlation has lead to the recognition of new syndromes. A further characterization of these new genes and loci involved in the etiology of congenital anomalies will lead to a better understanding of the underlying developmental pathways.
Collapse
Affiliation(s)
- Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands.
| | | |
Collapse
|
42
|
Shimojima K, Sugiura C, Takahashi H, Ikegami M, Takahashi Y, Ohno K, Matsuo M, Saito K, Yamamoto T. Genomic copy number variations at 17p13.3 and epileptogenesis. Epilepsy Res 2010; 89:303-9. [PMID: 20227246 DOI: 10.1016/j.eplepsyres.2010.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/04/2010] [Accepted: 02/11/2010] [Indexed: 12/22/2022]
Abstract
Deletion of the terminal end of 17p is responsible for Miller-Dieker syndrome (MDS), which is characterized by lissencephaly, distinctive facial features, growth deficiency, and intractable seizures. Using microarray-based comparative genomic hybridization, 3 patients with epilepsy were revealed to have genomic copy number aberrations at 17p13.3: a partial LIS1 deletion in a patient with isolated lissencephaly and epilepsy, a triplication of LIS1 in a patient with symptomatic West syndrome, and a terminal deletion of 17p including YWHAE and CRK but not LIS1 in a patient with intractable epilepsy associated with distinctive facial features and growth retardation. In this study, it was suggested that the identified gain or loss of genomic copy numbers within 17p13.3 result in epileptogenesis and that triplication of LIS1 can cause symptomatic West syndrome.
Collapse
Affiliation(s)
- Keiko Shimojima
- International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
During the past five years, copy number variation (CNV) has emerged as a highly prevalent form of genomic variation, bridging the interval between long-recognised microscopic chromosomal alterations and single-nucleotide changes. These genomic segmental differences among humans reflect the dynamic nature of genomes, and account for both normal variations among us and variations that predispose to conditions of medical consequence. Here, we place CNVs into their historical and medical contexts, focusing on how these variations can be recognised, documented, characterised and interpreted in clinical diagnostics. We also discuss how they can cause disease or influence adaptation to an environment. Various clinical exemplars are drawn out to illustrate salient characteristics and residual enigmas of CNVs, particularly the complexity of the data and information associated with CNVs relative to that of single-nucleotide variation. The potential is immense for CNVs to explain and predict disorders and traits that have long resisted understanding. However, creative solutions are needed to manage the sudden and overwhelming burden of expectation for laboratories and clinicians to assay and interpret these complex genomic variations as awareness permeates medical practice. Challenges remain for understanding the relationship between genomic changes and the phenotypes that might be predicted and prevented by such knowledge.
Collapse
|
44
|
Harewood L, Schütz F, Boyle S, Perry P, Delorenzi M, Bickmore WA, Reymond A. The effect of translocation-induced nuclear reorganization on gene expression. Genome Res 2010; 20:554-64. [PMID: 20212020 DOI: 10.1101/gr.103622.109] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Translocations are known to affect the expression of genes at the breakpoints and, in the case of unbalanced translocations, alter the gene copy number. However, a comprehensive understanding of the functional impact of this class of variation is lacking. Here, we have studied the effect of balanced chromosomal rearrangements on gene expression by comparing the transcriptomes of cell lines from controls and individuals with the t(11;22)(q23;q11) translocation. The number of differentially expressed transcripts between translocation-carrying and control cohorts is significantly higher than that observed between control samples alone, suggesting that balanced rearrangements have a greater effect on gene expression than normal variation. Many of the affected genes are located along the length of the derived chromosome 11. We show that this chromosome is concomitantly altered in its spatial organization, occupying a more central position in the nucleus than its nonrearranged counterpart. Derivative 22-mapping chromosome 22 genes, on the other hand, remain in their usual environment. Our results are consistent with recent studies that experimentally altered nuclear organization, and indicated that nuclear position plays a functional role in regulating the expression of some genes in mammalian cells. Our study suggests that chromosomal translocations can result in hitherto unforeseen, large-scale changes in gene expression that are the consequence of alterations in normal chromosome territory positioning. This has consequences for the patterns of gene expression change seen during tumorigenesis-associated genome instability and during the karyotype changes that lead to speciation.
Collapse
Affiliation(s)
- Louise Harewood
- Center for Integrative Genomics, University of Lausanne, Lausanne CH-1015, Switzerland
| | | | | | | | | | | | | |
Collapse
|
45
|
Komoike Y, Shimojima K, Liang JS, Fujii H, Maegaki Y, Osawa M, Fujii S, Higashinakagawa T, Yamamoto T. A functional analysis of GABARAP on 17p13.1 by knockdown zebrafish. J Hum Genet 2010; 55:155-62. [PMID: 20111057 DOI: 10.1038/jhg.2010.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Array-based comparative genomic hybridization identified a 2.3-Mb microdeletion of 17p13.2p13.1 in a boy presenting with moderate mental retardation, intractable epilepsy and dysmorphic features. This deletion region was overlapped with the previously proposed shortest region overlapped for microdeletion of 17p13.1 in patients with mental retardation, microcephaly, microretrognathia and abnormal magnetic resonance imaging (MRI) findings of cerebral white matter, in which at least 17 known genes are included. Among them, DLG4/PSD95, GPS2, GABARAP and KCTD11 have a function in neuronal development. Because of the functional importance, we paid attention to DLG4/PSD95 and GABARAP, and analyzed zebrafish in which the zebrafish homolog of human DLG4/PSD95 and GABARAP was knocked down and found that gabarap knockdown resulted in small head and hypoplastic mandible. This finding would be similar to the common findings of the patients with 17p13.1 deletions. Although there were no pathogenic mutations in DLG4/PSD95 or GABARAP in a cohort study with 142 patients with idiopathic developmental delay with/without epilepsy, further studies would be required for genes included in this region.
Collapse
Affiliation(s)
- Yuta Komoike
- International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Vorsanova SG, Yurov YB, Iourov IY. Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol Cytogenet 2010; 3:1. [PMID: 20180947 PMCID: PMC2830939 DOI: 10.1186/1755-8166-3-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 01/11/2010] [Indexed: 01/05/2023] Open
Abstract
Human karyotype is usually studied by classical cytogenetic (banding) techniques. To perform it, one has to obtain metaphase chromosomes of mitotic cells. This leads to the impossibility of analyzing all the cell types, to moderate cell scoring, and to the extrapolation of cytogenetic data retrieved from a couple of tens of mitotic cells to the whole organism, suggesting that all the remaining cells possess these genomes. However, this is far from being the case inasmuch as chromosome abnormalities can occur in any cell along ontogeny. Since somatic cells of eukaryotes are more likely to be in interphase, the solution of the problem concerning studying postmitotic cells and larger cell populations is interphase cytogenetics, which has become more or less applicable for specific biomedical tasks due to achievements in molecular cytogenetics (i.e. developments of fluorescence in situ hybridization -- FISH, and multicolor banding -- MCB). Numerous interphase molecular cytogenetic approaches are restricted to studying specific genomic loci (regions) being, however, useful for identification of chromosome abnormalities (aneuploidy, polyploidy, deletions, inversions, duplications, translocations). Moreover, these techniques are the unique possibility to establish biological role and patterns of nuclear genome organization at suprachromosomal level in a given cell. Here, it is to note that this issue is incompletely worked out due to technical limitations. Nonetheless, a number of state-of-the-art molecular cytogenetic techniques (i.e multicolor interphase FISH or interpahase chromosome-specific MCB) allow visualization of interphase chromosomes in their integrity at molecular resolutions. Thus, regardless numerous difficulties encountered during studying human interphase chromosomes, molecular cytogenetics does provide for high-resolution single-cell analysis of genome organization, structure and behavior at all stages of cell cycle.
Collapse
Affiliation(s)
- Svetlana G Vorsanova
- Institute of Pediatrics and Children Surgery, Rosmedtechnologii, Moscow, 127412, Russia
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow 119152, Russia
| | - Yuri B Yurov
- Institute of Pediatrics and Children Surgery, Rosmedtechnologii, Moscow, 127412, Russia
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow 119152, Russia
| | - Ivan Y Iourov
- Institute of Pediatrics and Children Surgery, Rosmedtechnologii, Moscow, 127412, Russia
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow 119152, Russia
| |
Collapse
|
47
|
Barnes MR, Breen G. A short primer on the functional analysis of copy number variation for biomedical scientists. Methods Mol Biol 2010; 628:119-35. [PMID: 20238079 DOI: 10.1007/978-1-60327-367-1_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recent studies have highlighted the potential prevalence of copy number variation (CNV) in mammalian genomes, including the human genome. These studies suggest that CNVs may play a potentially important role in human phenotypic diversity and disease susceptibility. Here, we consider some of the in silico challenges of characterizing genomic structural variants. While the phenotypic impact of the vast majority of CNVs is likely to be neutral, some CNVs will clearly impact phenotype. Here, we review some of the key databases hosting CNV data and discuss some of the caveats in the analysis of CNV data. The task is now to translate some of the initial associations between CNVs and disease into causal variants.
Collapse
Affiliation(s)
- Michael R Barnes
- Medicines Research Centre, GlaxoSmithKline Research & Development Limited, Stevenage, Hertfordshire, UK
| | | |
Collapse
|
48
|
High-resolution SNP arrays in mental retardation diagnostics: how much do we gain? Eur J Hum Genet 2009; 18:178-85. [PMID: 19809473 DOI: 10.1038/ejhg.2009.154] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We used Affymetrix 6.0 GeneChip SNP arrays to characterize copy number variations (CNVs) in a cohort of 70 patients previously characterized on lower-density oligonucleotide arrays affected by idiopathic mental retardation and dysmorphic features. The SNP array platform includes approximately 900,000 SNP probes and 900,000 non-SNP oligonucleotide probes at an average distance of 0.7 Kb, which facilitates coverage of the whole genome, including coding and noncoding regions. The high density of probes is critical for detecting small CNVs, but it can lead to data interpretation problems. To reduce the number of false positives, parameters were set to consider only imbalances >75 Kb encompassing at least 80 probe sets. The higher resolution of the SNP array platform confirmed the increased ability to detect small CNVs, although more than 80% of these CNVs overlapped to copy number 'neutral' polymorphism regions and 4.4% of them did not contain known genes. In our cohort of 70 patients, of the 51 previously evaluated as 'normal' on the Agilent 44K array, the SNP array platform disclosed six additional CNV changes, including three in three patients, which may be pathogenic. This suggests that about 6% of individuals classified as 'normal' using the lower-density oligonucleotide array could be found to be affected by a genomic disorder when evaluated with the higher-density microarray platforms.
Collapse
|
49
|
Coppinger J, Alliman S, Lamb AN, Torchia BS, Bejjani BA, Shaffer LG. Whole-genome microarray analysis in prenatal specimens identifies clinically significant chromosome alterations without increase in results of unclear significance compared to targeted microarray. Prenat Diagn 2009; 29:1156-66. [PMID: 19795450 DOI: 10.1002/pd.2371] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Zarlenga DS, Gasbarre LC. From parasite genomes to one healthy world: Are we having fun yet? Vet Parasitol 2009; 163:235-49. [PMID: 19560277 DOI: 10.1016/j.vetpar.2009.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In 1990, the Human Genome Sequencing Project was established. This laid the ground work for an explosion of sequence data that has since followed. As a result of this effort, the first complete genome of an animal, Caenorhabditis elegans was published in 1998. The sequence of Drosophila melanogaster was made available in March, 2000 and in the following year, working drafts of the human genome were generated with the completed sequence (92%) being released in 2003. Recent advancements and next-generation technologies have made sequencing common place and have infiltrated every aspect of biological research, including parasitology. To date, sequencing of 32 apicomplexa and 24 nematode genomes are either in progress or near completion, and over 600k nematode EST and 200k apicomplexa EST submissions fill the databases. However, the winds have shifted and efforts are now refocusing on how best to store, mine and apply these data to problem solving. Herein we tend not to summarize existing X-omics datasets or present new technological advances that promise future benefits. Rather, the information to follow condenses up-to-date-applications of existing technologies to problem solving as it relates to parasite research. Advancements in non-parasite systems are also presented with the proviso that applications to parasite research are in the making.
Collapse
Affiliation(s)
- Dante S Zarlenga
- USDA, ARS, ANRI Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA.
| | | |
Collapse
|