1
|
de Lima LG, Guarracino A, Koren S, Potapova T, McKinney S, Rhie A, Solar SJ, Seidel C, Fagen B, Walenz BP, Bouffard GG, Brooks SY, Peterson M, Hall K, Crawford J, Young AC, Pickett BD, Garrison E, Phillippy AM, Gerton JL. The formation and propagation of human Robertsonian chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614821. [PMID: 39386535 PMCID: PMC11463614 DOI: 10.1101/2024.09.24.614821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Robertsonian chromosomes are a type of variant chromosome found commonly in nature. Present in one in 800 humans, these chromosomes can underlie infertility, trisomies, and increased cancer incidence. Recognized cytogenetically for more than a century, their origins have remained mysterious. Recent advances in genomics allowed us to assemble three human Robertsonian chromosomes completely. We identify a common breakpoint and epigenetic changes in centromeres that provide insight into the formation and propagation of common Robertsonian translocations. Further investigation of the assembled genomes of chimpanzee and bonobo highlights the structural features of the human genome that uniquely enable the specific crossover event that creates these chromosomes. Resolving the structure and epigenetic features of human Robertsonian chromosomes at a molecular level paves the way to understanding how chromosomal structural variation occurs more generally, and how chromosomes evolve.
Collapse
Affiliation(s)
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven J Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Brandon Fagen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Brian P Walenz
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gerard G Bouffard
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shelise Y Brooks
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Juyun Crawford
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alice C Young
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon D Pickett
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adam M Phillippy
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
2
|
Bernegossi AM, Galindo DJ, Peres PHF, Vozdova M, Cernohorska H, Kubickova S, Kadlcikova D, Rubes J, Duarte JMB. Comparative karyotype analysis of the red brocket deer (M. americana sensu lato and M. rufa) complex: evidence of drastic chromosomal evolution and implications on speciation process. J Appl Genet 2024; 65:601-614. [PMID: 38662189 DOI: 10.1007/s13353-024-00861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/14/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Chromosomal rearrangements are often associated with playing a role in the speciation process. However, the underlying mechanism that favors the genetic isolation associated with chromosomal changes remains elusive. In this sense, the genus Mazama is recognized by its high level of karyotype diversity among species with similar morphology. A cryptic species complex has been identified within the genus, with the red brocket deer (Mazama americana and Mazama rufa) being the most impressive example. The chromosome variation was clustered in cytotypes with diploid numbers ranging from 42 to 53 and was correlated with geographical location. We conducted an analysis of chromosome evolution of the red brocket deer complex using comparative chromosome painting and Bacterial Artificial Chromosome (BAC) clones among different cytotypes. The aim was to deepen our understanding of the karyotypic relationships within the red brocket, thereby elucidating the significant chromosome variation among closely related species. This underscores the significance of chromosome changes as a key evolutionary process shaping their genomes. The results revealed the presence of three distinct cytogenetic lineages characterized by significant karyotypic divergence, suggesting the existence of efficient post-zygotic barriers. Tandem fusions constitute the main mechanism driving karyotype evolution, following a few centric fusions, inversion X-autosomal fusions. The BAC mapping has improved our comprehension of the karyotypic relationships within the red brocket deer complex, prompting questions regarding the role of these changes in the speciation process. We propose the red brocket as a model group to investigate how chromosomal changes contribute to isolation and explore the implications of these changes in taxonomy and conservation.
Collapse
Affiliation(s)
- Agda Maria Bernegossi
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, 14884-900, Brazil
| | - David Javier Galindo
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, 14884-900, Brazil.
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, National University of San Marcos, San Borja, 15021, Lima, Peru.
| | - Pedro Henrique Faria Peres
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, 14884-900, Brazil
| | - Miluse Vozdova
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - Halina Cernohorska
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - Svatava Kubickova
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - Dita Kadlcikova
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - Jiri Rubes
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - José Maurício Barbanti Duarte
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, 14884-900, Brazil.
| |
Collapse
|
3
|
Zhang CZ, Pellman D. Chromosome breakage-replication/fusion enables rapid DNA amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608415. [PMID: 39229211 PMCID: PMC11370323 DOI: 10.1101/2024.08.17.608415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
DNA rearrangements are thought to arise from two classes of processes. The first class involves DNA breakage and fusion ("cut-and-paste") without net DNA gain or loss. The second class involves aberrant DNA replication ("copy-and-paste") and can produce either net DNA gain or loss. We previously demonstrated that the partitioning of chromosomes into aberrant structures of the nucleus, micronuclei or chromosome bridges, can generate cut-and-paste rearrangements by chromosome fragmentation and ligation. Surprisingly, in the progeny clones of single cells that have undergone chromosome bridge breakage, we identified large segmental duplications and short sequence insertions that are commonly attributed to copy-and-paste processes. Here, we demonstrate that both large duplications and short insertions are inherent outcomes of the replication and fusion of unligated DNA ends, a process we term breakage-replication/fusion (B-R/F). We propose that B-R/F provides a unifying explanation for complex rearrangement patterns including chromothripsis and chromoanasynthesis and enables rapid DNA amplification after chromosome fragmentation.
Collapse
|
4
|
Bailey SM, Kunkel SR, Bedford JS, Cornforth MN. The Central Role of Cytogenetics in Radiation Biology. Radiat Res 2024; 202:227-259. [PMID: 38981612 DOI: 10.1667/rade-24-00038.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/23/2024] [Indexed: 07/11/2024]
Abstract
Radiation cytogenetics has a rich history seldom appreciated by those outside the field. Early radiobiology was dominated by physics and biophysical concepts that borrowed heavily from the study of radiation-induced chromosome aberrations. From such studies, quantitative relationships between biological effect and changes in absorbed dose, dose rate and ionization density were codified into key concepts of radiobiological theory that have persisted for nearly a century. This review aims to provide a historical perspective of some of these concepts, including evidence supporting the contention that chromosome aberrations underlie development of many, if not most, of the biological effects of concern for humans exposed to ionizing radiations including cancer induction, on the one hand, and tumor eradication on the other. The significance of discoveries originating from these studies has widened and extended far beyond their original scope. Chromosome structural rearrangements viewed in mitotic cells were first attributed to the production of breaks by the radiations during interphase, followed by the rejoining or mis-rejoining among ends of other nearby breaks. These relatively modest beginnings eventually led to the discovery and characterization of DNA repair of double-strand breaks by non-homologous end joining, whose importance to various biological processes is now widely appreciated. Two examples, among many, are V(D)J recombination and speciation. Rapid technological advancements in cytogenetics, the burgeoning fields of molecular radiobiology and third-generation sequencing served as a point of confluence between the old and new. As a result, the emergent field of "cytogenomics" now becomes uniquely positioned for the purpose of more fully understanding mechanisms underlying the biological effects of ionizing radiation exposure.
Collapse
Affiliation(s)
- Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Stephen R Kunkel
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas
| | - Joel S Bedford
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Michael N Cornforth
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
5
|
Kuzmin E, Baker TM, Van Loo P, Glass L. Dynamics of karyotype evolution. CHAOS (WOODBURY, N.Y.) 2024; 34:051502. [PMID: 38717409 PMCID: PMC11068413 DOI: 10.1063/5.0206011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
In the evolution of species, the karyotype changes with a timescale of tens to hundreds of thousand years. In the development of cancer, the karyotype often is modified in cancerous cells over the lifetime of an individual. Characterizing these changes and understanding the mechanisms leading to them has been of interest in a broad range of disciplines including evolution, cytogenetics, and cancer genetics. A central issue relates to the relative roles of random vs deterministic mechanisms in shaping the changes. Although it is possible that all changes result from random events followed by selection, many results point to other non-random factors that play a role in karyotype evolution. In cancer, chromosomal instability leads to characteristic changes in the karyotype, in which different individuals with a specific type of cancer display similar changes in karyotype structure over time. Statistical analyses of chromosome lengths in different species indicate that the length distribution of chromosomes is not consistent with models in which the lengths of chromosomes are random or evolve solely by simple random processes. A better understanding of the mechanisms underlying karyotype evolution should enable the development of quantitative theoretical models that combine the random and deterministic processes that can be compared to experimental determinations of the karyotype in diverse settings.
Collapse
Affiliation(s)
| | - Toby M. Baker
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | | | - Leon Glass
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
6
|
Gerton JL. A working model for the formation of Robertsonian chromosomes. J Cell Sci 2024; 137:jcs261912. [PMID: 38606789 PMCID: PMC11057876 DOI: 10.1242/jcs.261912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Robertsonian chromosomes form by fusion of two chromosomes that have centromeres located near their ends, known as acrocentric or telocentric chromosomes. This fusion creates a new metacentric chromosome and is a major mechanism of karyotype evolution and speciation. Robertsonian chromosomes are common in nature and were first described in grasshoppers by the zoologist W. R. B. Robertson more than 100 years ago. They have since been observed in many species, including catfish, sheep, butterflies, bats, bovids, rodents and humans, and are the most common chromosomal change in mammals. Robertsonian translocations are particularly rampant in the house mouse, Mus musculus domesticus, where they exhibit meiotic drive and create reproductive isolation. Recent progress has been made in understanding how Robertsonian chromosomes form in the human genome, highlighting some of the fundamental principles of how and why these types of fusion events occur so frequently. Consequences of these fusions include infertility and Down's syndrome. In this Hypothesis, I postulate that the conditions that allow these fusions to form are threefold: (1) sequence homology on non-homologous chromosomes, often in the form of repetitive DNA; (2) recombination initiation during meiosis; and (3) physical proximity of the homologous sequences in three-dimensional space. This Hypothesis highlights the latest progress in understanding human Robertsonian translocations within the context of the broader literature on Robertsonian chromosomes.
Collapse
|
7
|
Xu M, Guo H, Wang Y, Zhou B. Identification of chromosomes by fluorescence in situ hybridization in Gossypium hirsutum via developing oligonucleotide probes. Genome 2024; 67:64-77. [PMID: 37922519 DOI: 10.1139/gen-2023-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Discrimination of chromosome is essential for chromosome manipulation or visual chromosome characterization. Oligonucleotide probes can be employed to simplify the procedures of chromosome identification in molecular cytogenetics due to its simplicity, fastness, cost-effectiveness, and high efficiency. So far, however, visual identification of cotton chromosomes remains unsolved. Here, we developed 16 oligonucleotide probes for rapid and accurate identification of chromosomes in Gossypium hirsutum: 9 probes, of which each is able to distinguish individually one pair of chromosomes, and seven probes, of which each distinguishes multiple pairs of chromosomes. Besides the identification of Chrs. A09 and D09, we first find Chr. D08, which carries both 45S and 5S rDNA sequences. Interestingly, we also find Chr. A07 has a small 45S rDNA size, suggesting that the size of this site on Chr. A07 may have reduced during evolution. By the combination of 45S and 5S rDNA sequences and oligonucleotide probes developed, 10 chromosomes (Chrs. 3-7, and 9-13) in A subgenome and 7 (Chrs. 1-2, 4-5, and 7-9) in D subgenome of cotton are able to be recognized. This study establishes cotton oligonucleotide fluorescence in situ hybridization technology for discrimination of chromosomes, which supports and guides for sequence assembling, particularly, for tandem repeat sequences in cotton.
Collapse
Affiliation(s)
- Min Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyue Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Yingying Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
O’Connor RE, Kretschmer R, Romanov MN, Griffin DK. A Bird's-Eye View of Chromosomic Evolution in the Class Aves. Cells 2024; 13:310. [PMID: 38391923 PMCID: PMC10886771 DOI: 10.3390/cells13040310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Birds (Aves) are the most speciose of terrestrial vertebrates, displaying Class-specific characteristics yet incredible external phenotypic diversity. Critical to agriculture and as model organisms, birds have adapted to many habitats. The only extant examples of dinosaurs, birds emerged ~150 mya and >10% are currently threatened with extinction. This review is a comprehensive overview of avian genome ("chromosomic") organization research based mostly on chromosome painting and BAC-based studies. We discuss traditional and contemporary tools for reliably generating chromosome-level assemblies and analyzing multiple species at a higher resolution and wider phylogenetic distance than previously possible. These results permit more detailed investigations into inter- and intrachromosomal rearrangements, providing unique insights into evolution and speciation mechanisms. The 'signature' avian karyotype likely arose ~250 mya and remained largely unchanged in most groups including extinct dinosaurs. Exceptions include Psittaciformes, Falconiformes, Caprimulgiformes, Cuculiformes, Suliformes, occasional Passeriformes, Ciconiiformes, and Pelecaniformes. The reasons for this remarkable conservation may be the greater diploid chromosome number generating variation (the driver of natural selection) through a greater possible combination of gametes and/or an increase in recombination rate. A deeper understanding of avian genomic structure permits the exploration of fundamental biological questions pertaining to the role of evolutionary breakpoint regions and homologous synteny blocks.
Collapse
Affiliation(s)
- Rebecca E. O’Connor
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Campus Universitário Capão do Leão, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil;
| | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, 142132 Podolsk, Moscow Oblast, Russia
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
| |
Collapse
|
9
|
Heydenrych MJ, Budd AM, Mayne B, Jarman S. A genomic predictor for age at sexual maturity for mammalian species. Evol Appl 2024; 17:e13635. [PMID: 38343778 PMCID: PMC10853647 DOI: 10.1111/eva.13635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 10/28/2024] Open
Abstract
Age at sexual maturity is a key life history trait that can be used to predict population growth rates and develop life history models. In many wild animal species, the age at sexual maturity is not accurately quantified. This results in a reduced ability to accurately model demography of wild populations. Recent studies have indicated the potential for CpG density within gene promoters to be predictive of other life history traits, specifically maximum lifespan. Here, we have developed a machine learning model using gene promoter CpG density to predict the mean age at sexual maturity in mammalian species. In total, 91 genomes were used to identify 101 unique gene promoters predictive of age at sexual maturity across males and females. We found these gene promoters to be most predictive of age at sexual maturity in females (R 2 = 0.881) compared to males (R 2 = 0.758). The median absolute error rate was also found to be lower in females (0.427 years) compared to males (0.785 years). This model provides a novel method for species-level age at sexual maturity prediction without the need for long-term monitoring. This study also highlights a potential epigenetic mechanism for the onset of sexual maturity, indicating the possibility of using epigenetic biomarkers for this important life history trait.
Collapse
Affiliation(s)
- Matthew J. Heydenrych
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Alyssa M. Budd
- Environomics Future Science Platform, Indian Ocean Marine Research CentreCommonwealth Scientific and Industrial Research Organisation (CSIRO)CrawleyWestern AustraliaAustralia
| | - Benjamin Mayne
- Environomics Future Science Platform, Indian Ocean Marine Research CentreCommonwealth Scientific and Industrial Research Organisation (CSIRO)CrawleyWestern AustraliaAustralia
| | - Simon Jarman
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
10
|
Dias S, de Oliveira Bustamante F, do Vale Martins L, da Costa VA, Montenegro C, Oliveira ARDS, de Lima GS, Braz GT, Jiang J, da Costa AF, Benko-Iseppon AM, Brasileiro-Vidal AC. Translocations and inversions: major chromosomal rearrangements during Vigna (Leguminosae) evolution. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:29. [PMID: 38261028 DOI: 10.1007/s00122-024-04546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
KEY MESSAGE Inversions and translocations are the major chromosomal rearrangements involved in Vigna subgenera evolution, being Vigna vexillata the most divergent species. Centromeric repositioning seems to be frequent within the genus. Oligonucleotide-based fluorescence in situ hybridization (Oligo-FISH) provides a powerful chromosome identification system for inferring plant chromosomal evolution. Aiming to understand macrosynteny, chromosomal diversity, and the evolution of bean species from five Vigna subgenera, we constructed cytogenetic maps for eight taxa using oligo-FISH-based chromosome identification. We used oligopainting probes from chromosomes 2 and 3 of Phaseolus vulgaris L. and two barcode probes designed from V. unguiculata (L.) Walp. genome. Additionally, we analyzed genomic blocks among the Ancestral Phaseoleae Karyotype (APK), two V. unguiculata subspecies (V. subg. Vigna), and V. angularis (Willd.) Ohwi & Ohashi (V. subg. Ceratotropis). We observed macrosynteny for chromosomes 2, 3, 4, 6, 7, 8, 9, and 10 in all investigated taxa except for V. vexillata (L.) A. Rich (V. subg. Plectrotropis), in which only chromosomes 4, 7, and 9 were unambiguously identified. Collinearity breaks involved with chromosomes 2 and 3 were revealed. We identified minor differences in the painting pattern among the subgenera, in addition to multiple intra- and interblock inversions and intrachromosomal translocations. Other rearrangements included a pericentric inversion in chromosome 4 (V. subg. Vigna), a reciprocal translocation between chromosomes 1 and 5 (V. subg. Ceratotropis), a potential deletion in chromosome 11 of V. radiata (L.) Wilczek, as well as multiple intrablock inversions and centromere repositioning via genomic blocks. Our study allowed the visualization of karyotypic patterns in each subgenus, revealing important information for understanding intrageneric karyotypic evolution, and suggesting V. vexillata as the most karyotypically divergent species.
Collapse
Affiliation(s)
- Sibelle Dias
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Fernanda de Oliveira Bustamante
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Universidade do Estado de Minas Gerais, Unidade Divinópolis, Divinópolis, MG, Brazil
| | - Lívia do Vale Martins
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Universidade Federal do Piauí, Floriano, PI, Brazil
| | | | - Claudio Montenegro
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Geyse Santos de Lima
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Guilherme Tomaz Braz
- Departamento de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | | | | | | |
Collapse
|
11
|
Bredeson JV, Mudd AB, Medina-Ruiz S, Mitros T, Smith OK, Miller KE, Lyons JB, Batra SS, Park J, Berkoff KC, Plott C, Grimwood J, Schmutz J, Aguirre-Figueroa G, Khokha MK, Lane M, Philipp I, Laslo M, Hanken J, Kerdivel G, Buisine N, Sachs LM, Buchholz DR, Kwon T, Smith-Parker H, Gridi-Papp M, Ryan MJ, Denton RD, Malone JH, Wallingford JB, Straight AF, Heald R, Hockemeyer D, Harland RM, Rokhsar DS. Conserved chromatin and repetitive patterns reveal slow genome evolution in frogs. Nat Commun 2024; 15:579. [PMID: 38233380 PMCID: PMC10794172 DOI: 10.1038/s41467-023-43012-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/27/2023] [Indexed: 01/19/2024] Open
Abstract
Frogs are an ecologically diverse and phylogenetically ancient group of anuran amphibians that include important vertebrate cell and developmental model systems, notably the genus Xenopus. Here we report a high-quality reference genome sequence for the western clawed frog, Xenopus tropicalis, along with draft chromosome-scale sequences of three distantly related emerging model frog species, Eleutherodactylus coqui, Engystomops pustulosus, and Hymenochirus boettgeri. Frog chromosomes have remained remarkably stable since the Mesozoic Era, with limited Robertsonian (i.e., arm-preserving) translocations and end-to-end fusions found among the smaller chromosomes. Conservation of synteny includes conservation of centromere locations, marked by centromeric tandem repeats associated with Cenp-a binding surrounded by pericentromeric LINE/L1 elements. This work explores the structure of chromosomes across frogs, using a dense meiotic linkage map for X. tropicalis and chromatin conformation capture (Hi-C) data for all species. Abundant satellite repeats occupy the unusually long (~20 megabase) terminal regions of each chromosome that coincide with high rates of recombination. Both embryonic and differentiated cells show reproducible associations of centromeric chromatin and of telomeres, reflecting a Rabl-like configuration. Our comparative analyses reveal 13 conserved ancestral anuran chromosomes from which contemporary frog genomes were constructed.
Collapse
Affiliation(s)
- Jessen V Bredeson
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
- DOE-Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Austin B Mudd
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Sofia Medina-Ruiz
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Therese Mitros
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Owen Kabnick Smith
- Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive, Beckman Center 409, Stanford, CA, 94305-5307, USA
| | - Kelly E Miller
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Jessica B Lyons
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Sanjit S Batra
- Computer Science Division, University of California Berkeley, 2626 Hearst Avenue, Berkeley, CA, 94720, USA
| | - Joseph Park
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Kodiak C Berkoff
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Christopher Plott
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jane Grimwood
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jeremy Schmutz
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Guadalupe Aguirre-Figueroa
- Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive, Beckman Center 409, Stanford, CA, 94305-5307, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Maura Lane
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Isabelle Philipp
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Mara Laslo
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Gwenneg Kerdivel
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Nicolas Buisine
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Laurent M Sachs
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Heidi Smith-Parker
- Department of Integrative Biology, Patterson Labs, 2401 Speedway, University of Texas, Austin, TX, 78712, USA
| | - Marcos Gridi-Papp
- Department of Biological Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA, 95211, USA
| | - Michael J Ryan
- Department of Integrative Biology, Patterson Labs, 2401 Speedway, University of Texas, Austin, TX, 78712, USA
| | - Robert D Denton
- Department of Molecular and Cell Biology and Institute of Systems Genomics, University of Connecticut, 181 Auditorium Road, Unit 3197, Storrs, CT, 06269, USA
| | - John H Malone
- Department of Molecular and Cell Biology and Institute of Systems Genomics, University of Connecticut, 181 Auditorium Road, Unit 3197, Storrs, CT, 06269, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Patterson Labs, 2401 Speedway, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive, Beckman Center 409, Stanford, CA, 94305-5307, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Chan-Zuckerberg BioHub, 499 Illinois Street, San Francisco, CA, 94158, USA
| | - Richard M Harland
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Daniel S Rokhsar
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA.
- DOE-Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA.
- Chan-Zuckerberg BioHub, 499 Illinois Street, San Francisco, CA, 94158, USA.
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 9040495, Japan.
| |
Collapse
|
12
|
Oliveira da Silva W, Malcher SM, Ferguson-Smith MA, O'Brien PCM, Rossi RV, Geise L, Pieczarka JC, Nagamachi CY. Chromosomal rearrangements played an important role in the speciation of rice rats of genus Cerradomys (Rodentia, Sigmodontinae, Oryzomyini). Sci Rep 2024; 14:545. [PMID: 38177653 PMCID: PMC10766967 DOI: 10.1038/s41598-023-50861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
Rodents of the genus Cerradomys belong to tribe Oryzomyini, one of the most diverse and speciose groups in Sigmodontinae (Rodentia, Cricetidae). The speciation process in Cerradomys is associated with chromosomal rearrangements and biogeographic dynamics in South America during the Pleistocene era. As the morphological, molecular and karyotypic aspects of Myomorpha rodents do not evolve at the same rate, we strategically employed karyotypic characters for the construction of chromosomal phylogeny to investigate whether phylogenetic relationships using chromosomal data corroborate the radiation of Cerradomys taxa recovered by molecular phylogeny. Comparative chromosome painting using Hylaeamys megacephalus (HME) whole chromosome probes in C. langguthi (CLA), Cerradomys scotii (CSC), C. subflavus (CSU) and C. vivoi (CVI) shows that karyotypic variability is due to 16 fusion events, 2 fission events, 10 pericentric inversions and 1 centromeric repositioning, plus amplification of constitutive heterochromatin in the short arms of the X chromosomes of CSC and CLA. The chromosomal phylogeny obtained by Maximum Parsimony analysis retrieved Cerradomys as a monophyletic group with 97% support (bootstrap), with CSC as the sister to the other species, followed by a ramification into two clades (69% of branch support), the first comprising CLA and the other branch including CVI and CSU. We integrated the chromosome painting analysis of Eumuroida rodents investigated by HME and Mus musculus (MMU) probes and identified several syntenic blocks shared among representatives of Cricetidae and Muridae. The Cerradomys genus underwent an extensive karyotypic evolutionary process, with multiple rearrangements that shaped extant karyotypes. The chromosomal phylogeny corroborates the phylogenetic relationships proposed by molecular analysis and indicates that karyotypic diversity is associated with species radiation. Three syntenic blocks were identified as part of the ancestral Eumuroida karyotype (AEK): MMU 7/19 (AEK 1), MMU 14 (AEK 10) and MMU 12 (AEK 11). Besides, MMU 5/10 (HME 18/2/24) and MMU 8/13 (HME 22/5/11) should be considered as signatures for Cricetidae, while MMU 5/9/14, 5/7/19, 5 and 8/17 for Sigmodontinae.
Collapse
Affiliation(s)
- Willam Oliveira da Silva
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Stella Miranda Malcher
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Malcolm Andrew Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Patricia Caroline Mary O'Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Rogério Vieira Rossi
- Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal do Mato Grosso (UFMT), Mato Grosso, Brazil
| | - Lena Geise
- Departamento de Zoologia, Laboratório de Mastozoologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil.
| |
Collapse
|
13
|
Jehangir M, Ahmad SF, Singchat W, Panthum T, Thong T, Aramsirirujiwet P, Lisachov A, Muangmai N, Han K, Koga A, Duengkae P, Srikulnath K. Hi-C sequencing unravels dynamic three-dimensional chromatin interactions in muntjac lineage: insights from chromosome fusions in Fea's muntjac genome. Chromosome Res 2023; 31:34. [PMID: 38017297 DOI: 10.1007/s10577-023-09744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/08/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Abstract
Eukaryotes have varying numbers and structures of characteristic chromosomes across lineages or species. The evolutionary trajectory of species may have been affected by spontaneous genome rearrangements. Chromosome fusion drastically alters karyotypes. However, the mechanisms and consequences of chromosome fusions, particularly in muntjac species, are poorly understood. Recent research-based advancements in three-dimensional (3D) genomics, particularly high-throughput chromatin conformation capture (Hi-C) sequencing, have allowed for the identification of chromosome fusions and provided mechanistic insights into three muntjac species: Muntiacus muntjak, M. reevesi, and M. crinifrons. This study aimed to uncover potential genome rearrangement patterns in the threatened species Fea's muntjac (Muntiacus feae), which have not been previously examined for such characteristics. Deep Hi-C sequencing (31.42 × coverage) was performed to reveal the 3D chromatin architecture of the Fea's muntjac genome. Patterns of repeated chromosome fusions that were potentially mediated by high-abundance transposable elements were identified. Comparative Hi-C maps demonstrated linkage homology between the sex chromosomes in Fea's muntjac and autosomes in M. reevesi, indicating that fusions may have played a crucial role in the evolution of the sex chromosomes of the lineage. The species-level dynamics of topologically associated domains (TADs) suggest that TAD organization could be altered by differential chromosome interactions owing to repeated chromosome fusions. However, research on the effect of TADs on muntjac genome evolution is insufficient. This study generated Hi-C data for the Fea's muntjac, providing a genomic resource for future investigations of the evolutionary patterns of chromatin conformation at the chromosomal level.
Collapse
Affiliation(s)
- Maryam Jehangir
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Thanyapat Thong
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Pakpoom Aramsirirujiwet
- Deparment of National Park, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Bangkok, 10900, Thailand
| | - Artem Lisachov
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Narongrit Muangmai
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Kyudong Han
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Microbiology, Dankook University, Cheonan, 31116, Korea
- Bio-Medical Engineering Core Facility Research Center, Dankook University, Cheonan, 31116, Korea
| | - Akihiko Koga
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Prateep Duengkae
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
14
|
Romanenko SA, Kliver SF, Serdyukova NA, Perelman PL, Trifonov VA, Seluanov A, Gorbunova V, Azpurua J, Pereira JC, Ferguson-Smith MA, Graphodatsky AS. Integration of fluorescence in situ hybridization and chromosome-length genome assemblies revealed synteny map for guinea pig, naked mole-rat, and human. Sci Rep 2023; 13:21055. [PMID: 38030702 PMCID: PMC10687270 DOI: 10.1038/s41598-023-46595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Descriptions of karyotypes of many animal species are currently available. In addition, there has been a significant increase in the number of sequenced genomes and an ever-improving quality of genome assembly. To close the gap between genomic and cytogenetic data we applied fluorescent in situ hybridization (FISH) and Hi-C technology to make the first full chromosome-level genome comparison of the guinea pig (Cavia porcellus), naked mole-rat (Heterocephalus glaber), and human. Comparative chromosome maps obtained by FISH with chromosome-specific probes link genomic scaffolds to individual chromosomes and orient them relative to centromeres and heterochromatic blocks. Hi-C assembly made it possible to close all gaps on the comparative maps and to reveal additional rearrangements that distinguish the karyotypes of the three species. As a result, we integrated the bioinformatic and cytogenetic data and adjusted the previous comparative maps and genome assemblies of the guinea pig, naked mole-rat, and human. Syntenic associations in the two hystricomorphs indicate features of their putative ancestral karyotype. We postulate that the two approaches applied in this study complement one another and provide complete information about the organization of these genomes at the chromosome level.
Collapse
Affiliation(s)
- Svetlana A Romanenko
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia.
| | - Sergei F Kliver
- Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, Copenhagen, Denmark
| | - Natalia A Serdyukova
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Vladimir A Trifonov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jorge Azpurua
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Jorge C Pereira
- Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| |
Collapse
|
15
|
Lucek K, Giménez MD, Joron M, Rafajlović M, Searle JB, Walden N, Westram AM, Faria R. The Impact of Chromosomal Rearrangements in Speciation: From Micro- to Macroevolution. Cold Spring Harb Perspect Biol 2023; 15:a041447. [PMID: 37604585 PMCID: PMC10626258 DOI: 10.1101/cshperspect.a041447] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Chromosomal rearrangements (CRs) have been known since almost the beginning of genetics. While an important role for CRs in speciation has been suggested, evidence primarily stems from theoretical and empirical studies focusing on the microevolutionary level (i.e., on taxon pairs where speciation is often incomplete). Although the role of CRs in eukaryotic speciation at a macroevolutionary level has been supported by associations between species diversity and rates of evolution of CRs across phylogenies, these findings are limited to a restricted range of CRs and taxa. Now that more broadly applicable and precise CR detection approaches have become available, we address the challenges in filling some of the conceptual and empirical gaps between micro- and macroevolutionary studies on the role of CRs in speciation. We synthesize what is known about the macroevolutionary impact of CRs and suggest new research avenues to overcome the pitfalls of previous studies to gain a more comprehensive understanding of the evolutionary significance of CRs in speciation across the tree of life.
Collapse
Affiliation(s)
- Kay Lucek
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Mabel D Giménez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Genética Humana de Misiones (IGeHM), Parque de la Salud de la Provincia de Misiones "Dr. Ramón Madariaga," N3300KAZ Posadas, Misiones, Argentina
- Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, N3300LQH Posadas, Misiones, Argentina
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Marina Rafajlović
- Department of Marine Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- Centre for Marine Evolutionary Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA
| | - Nora Walden
- Centre for Organismal Studies, University of Heidelberg, 69117 Heidelberg, Germany
| | - Anja Marie Westram
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado;
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| |
Collapse
|
16
|
Sales-Oliveira V, Altmanová M, Gvoždík V, Kretschmer R, Ezaz T, Liehr T, Padutsch N, Badjedjea G, Utsunomia R, Tanomtong A, Cioffi M. Cross-species chromosome painting and repetitive DNA mapping illuminate the karyotype evolution in true crocodiles (Crocodylidae). Chromosoma 2023; 132:289-303. [PMID: 37493806 DOI: 10.1007/s00412-023-00806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Crocodilians have maintained very similar karyotype structures and diploid chromosome numbers for around 100 million years, with only minor variations in collinearity. Why this karyotype structure has largely stayed unaltered for so long is unclear. In this study, we analyzed the karyotypes of six species belonging to the genera Crocodylus and Osteolaemus (Crocodylidae, true crocodiles), among which the Congolian endemic O. osborni was included and investigated. We utilized various techniques (differential staining, fluorescence in situ hybridization with repetitive DNA and rDNA probes, whole chromosome painting, and comparative genomic hybridization) to better understand how crocodile chromosomes evolved. We studied representatives of three of the four main diploid chromosome numbers found in crocodiles (2n = 30/32/38). Our data provided new information about the species studied, including the identification of four major chromosomal rearrangements that occurred during the karyotype diversification process in crocodiles. These changes led to the current diploid chromosome numbers of 2n = 30 (fusion) and 2n = 38 (fissions), derived from the ancestral state of 2n = 32. The conserved cytogenetic tendency in crocodilians, where extant species keep near-ancestral state, contrasts with the more dynamic karyotype evolution seen in other major reptile groups.
Collapse
Affiliation(s)
- Vanessa Sales-Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Marie Altmanová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, 12844, Prague, Czech Republic
| | - Václav Gvoždík
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Zoology, National Museum of the Czech Republic, Prague, Czech Republic
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Niklas Padutsch
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Gabriel Badjedjea
- Department of Aquatic Ecology, Biodiversity Monitoring Center, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | | | - Alongklod Tanomtong
- Department of Biology Faculty of Science, Khon Kaen University, Muang, Khon Kaen, 40002, Thailand
| | - Marcelo Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil.
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
17
|
Uno Y, Matsubara K, Inoue J, Inazawa J, Shinohara A, Koshimoto C, Ichiyanagi K, Matsuda Y. Diversity and Evolution of Highly Repetitive DNA Sequences Constituting Chromosome Site-Specific Heterochromatin in Two Gerbillinae Species. Cytogenet Genome Res 2023; 163:42-51. [PMID: 37708873 DOI: 10.1159/000533716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Constitutive heterochromatin, consisting of repetitive sequences, diverges very rapidly; therefore, its nucleotide sequences and chromosomal distributions are often largely different, even between closely related species. The chromosome C-banding patterns of two Gerbillinae species, Meriones unguiculatus and Gerbillus perpallidus, vary greatly, even though they belong to the same subfamily. To understand the evolution of C-positive heterochromatin in these species, we isolated highly repetitive sequences, determined their nucleotide sequences, and characterized them using chromosomal and filter hybridization. We obtained a centromeric repeat (MUN-HaeIII) and a chromosome 13-specific repeat (MUN-EcoRI) from M. unguiculatus. We also isolated a centromeric/pericentromeric repeat (GPE-MBD) and an interspersed-type repeat that was predominantly amplified in the X and Y chromosomes (GPE-EcoRI) from G. perpallidus. GPE-MBD was found to contain a 17-bp motif that is essential for binding to the centromere-associated protein CENP-B. This indicates that it may play a role in the formation of a specified structure and/or function of centromeres. The nucleotide sequences of the three sequence families, except GPE-EcoRI, were conserved only in Gerbillinae. GPE-EcoRI was derived from the long interspersed nuclear elements 1 retrotransposon and showed sequence homology throughout Muridae and Cricetidae species, indicating that the repeat sequence occurred at least in the common ancestor of Muridae and Cricetidae. Due to a lack of assembly data of highly repetitive sequences constituting heterochromatin in whole-genome sequences of vertebrate species published to date, the knowledge obtained in this study provides useful information for a deep understanding of the evolution of repetitive sequences in not only rodents but also in mammals.
Collapse
Affiliation(s)
- Yoshinobu Uno
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazumi Matsubara
- Department of Environmental Biology, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Jun Inoue
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akio Shinohara
- Department of Biotechnology, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Chihiro Koshimoto
- Department of Biotechnology, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Kenji Ichiyanagi
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoichi Matsuda
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
18
|
Dutrillaux B, Dutrillaux AM, Salazar K, Boucher S. Multiple Chromosome Fissions, Including That of the X Chromosome, in Aulacocyclus tricuspis Kaup (Coleoptera, Passalidae) from New Caledonia: Characterization of a Rare but Recurrent Pathway of Chromosome Evolution in Animals. Genes (Basel) 2023; 14:1487. [PMID: 37510391 PMCID: PMC10379777 DOI: 10.3390/genes14071487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The male karyotype of Aulacocyclus tricuspis Kaup 1868 (Coleoptera, Scarabaeoidea, Passalidae, Aulacocyclinae) from New Caledonia contains an exceptionally high number of chromosomes, almost all of which are acrocentric (53,X1X2Y). Unlike the karyotypes of other species of the pantropical family Passalidae, which are principally composed of metacentric chromosomes, this karyotype is derived by fissions involving almost all the autosomes after breakage in their centromere region. This presupposes the duplication of the centromeres. More surprising is the X chromosome fragmentation. The rarity of X chromosome fission during evolution may be explained by the deleterious effects of alterations to the mechanisms of gene dosage compensation (resulting from the over-expression of the unique X chromosome in male insects). Herein, we propose that its occurrence and persistence were facilitated by (1) the presence of amplified heterochromatin in the X chromosome of Passalidae ancestor, and (2) the capacity of heterochromatin to modulate the regulation of gene expression. In A. tricuspis, we suggest that the portion containing the X proper genes and either a gene-free heterochromatin fragment or a fragment containing a few genes insulated from the peculiar regulation of the X by surrounding heterochromatin were separated by fission. Finally, we show that similar karyotypes with multiple acrocentric autosomes and unusual sex chromosomes rarely occur in species of Coleoptera belonging to the families Vesperidae, Tenebrionidae, and Chrysomelidae. Unlike classical Robertsonian evolution by centric fusion, this pathway of chromosome evolution involving the centric fission of autosomes has rarely been documented in animals.
Collapse
Affiliation(s)
- Bernard Dutrillaux
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, CP 50 Entomologie, CEDEX 05, 75231 Paris, France
| | - Anne-Marie Dutrillaux
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, CP 50 Entomologie, CEDEX 05, 75231 Paris, France
| | - Karen Salazar
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, CP 50 Entomologie, CEDEX 05, 75231 Paris, France
| | - Stéphane Boucher
- Muséum National d'Histoire Naturelle, MECADEV UMR 7179 MNHN/CNRS, CP 50 Entomologie, CEDEX 05, 75231 Paris, France
| |
Collapse
|
19
|
Pazhenkova EA, Lukhtanov VA. Chromosomal conservatism vs chromosomal megaevolution: enigma of karyotypic evolution in Lepidoptera. Chromosome Res 2023; 31:16. [PMID: 37300756 DOI: 10.1007/s10577-023-09725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
In the evolution of many organisms, periods of slow genome reorganization (= chromosomal conservatism) are interrupted by bursts of numerous chromosomal changes (= chromosomal megaevolution). Using comparative analysis of chromosome-level genome assemblies, we investigated these processes in blue butterflies (Lycaenidae). We demonstrate that the phase of chromosome number conservatism is characterized by the stability of most autosomes and dynamic evolution of the sex chromosome Z, resulting in multiple variants of NeoZ chromosomes due to autosome-sex chromosome fusions. In contrast during the phase of rapid chromosomal evolution, the explosive increase in chromosome number occurs mainly through simple chromosomal fissions. We show that chromosomal megaevolution is a highly non-random canalized process, and in two phylogenetically independent Lysandra lineages, the drastic parallel increase in number of fragmented chromosomes was achieved, at least partially, through reuse of the same ancestral chromosomal breakpoints. In species showing chromosome number doubling, we found no blocks of duplicated sequences or duplicated chromosomes, thus refuting the hypothesis of polyploidy. In the studied taxa, long blocks of interstitial telomere sequences (ITSs) consist of (TTAGG)n arrays interspersed with telomere-specific retrotransposons. ITSs are sporadically present in rapidly evolving Lysandra karyotypes, but not in the species with ancestral chromosome number. Therefore, we hypothesize that the transposition of telomeric sequences may be triggers of the rapid chromosome number increase. Finally, we discuss the hypothetical genomic and population mechanisms of chromosomal megaevolution and argue that the disproportionally high evolutionary role of the Z sex chromosome can be additionally reinforced by sex chromosome-autosome fusions and Z-chromosome inversions.
Collapse
Affiliation(s)
- Elena A Pazhenkova
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, 1000, Ljubljana, Slovenia.
| | - Vladimir A Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya Nab. 1, 199034, St. Petersburg, Russia.
| |
Collapse
|
20
|
Wang B, Li C, Ming J, Wu L, Fang S, Huang Y, Lin L, Liu H, Kuang J, Zhao C, Huang X, Feng H, Guo J, Yang X, Guo L, Zhang X, Chen J, Liu J, Zhu P, Pei D. The NuRD complex cooperates with SALL4 to orchestrate reprogramming. Nat Commun 2023; 14:2846. [PMID: 37208322 DOI: 10.1038/s41467-023-38543-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Cell fate decision involves rewiring of the genome, but remains poorly understood at the chromatin level. Here, we report that chromatin remodeling complex NuRD participates in closing open chromatin in the early phase of somatic reprogramming. Sall4, Jdp2, Glis1 and Esrrb can reprogram MEFs to iPSCs efficiently, but only Sall4 is indispensable capable of recruiting endogenous components of NuRD. Yet knocking down NuRD components only reduces reprogramming modestly, in contrast to disrupting the known Sall4-NuRD interaction by mutating or deleting the NuRD interacting motif at its N-terminus that renders Sall4 inept to reprogram. Remarkably, these defects can be partially rescured by grafting NuRD interacting motif onto Jdp2. Further analysis of chromatin accessibility dynamics demonstrates that the Sall4-NuRD axis plays a critical role in closing the open chromatin in the early phase of reprogramming. Among the chromatin loci closed by Sall4-NuRD encode genes resistant to reprogramming. These results identify a previously unrecognized role of NuRD in reprogramming, and may further illuminate chromatin closing as a critical step in cell fate control.
Collapse
Affiliation(s)
- Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chen Li
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin Ming
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Wu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shicai Fang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Joint School of Life Science, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Huang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Joint School of Life Science, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lihui Lin
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Guangzhou Branch of the Supercomputing Center of Chinese Academy of Sciences, Guangzhou, China
| | - He Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Guangzhou Branch of the Supercomputing Center of Chinese Academy of Sciences, Guangzhou, China
| | - Chengchen Zhao
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xingnan Huang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huijian Feng
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Guo
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Xuejie Yang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Liman Guo
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xiaofei Zhang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Jiekai Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Jing Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
| |
Collapse
|
21
|
Bikchurina T, Pavlenko M, Kizilova E, Rubtsova D, Sheremetyeva I, Kartavtseva I, Torgasheva A, Borodin P. Chromosome Asynapsis Is the Main Cause of Male Sterility in the Interspecies Hybrids of East Asian Voles ( Alexandromys, Rodentia, Arvicolinae). Genes (Basel) 2023; 14:genes14051022. [PMID: 37239382 DOI: 10.3390/genes14051022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Closely related mammalian species often have differences in chromosome number and morphology, but there is still a debate about how these differences relate to reproductive isolation. To study the role of chromosome rearrangements in speciation, we used the gray voles in the Alexandromys genus as a model. These voles have a high level of chromosome polymorphism and substantial karyotypic divergence. We investigated testis histology and meiotic chromosome behavior in the captive-bred colonies of Alexandromys maximowiczii, Alexandromys mujanensis, two chromosome races of Alexandromys evoronensis, and their interracial and interspecies hybrids, to explore the relationship between karyotypic differences and male hybrid sterility. We found that the seminiferous tubules of the males of the parental species and the interracial hybrids, which were simple heterozygotes for one or more chromosome rearrangements, contained germ cells at all stages of spermatogenesis, indicating their potential fertility. Their meiotic cells displayed orderly chromosome synapsis and recombination. In contrast, all interspecies male hybrids, which were complex heterozygotes for a series of chromosome rearrangements, showed signs of complete sterility. Their spermatogenesis was mainly arrested at the zygotene- or pachytene-like stages due to the formation of complex multivalent chains, which caused extended chromosome asynapsis. The asynapsis led to the silencing of unsynapsed chromatin. We suggest that chromosome asynapsis is the main cause of meiotic arrest and male sterility in the interspecies hybrids of East Asian voles.
Collapse
Affiliation(s)
- Tatiana Bikchurina
- Department of Cytology and Genetics, Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Marina Pavlenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Elena Kizilova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Daria Rubtsova
- Department of Cytology and Genetics, Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Irina Sheremetyeva
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Irina Kartavtseva
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Anna Torgasheva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Pavel Borodin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
22
|
Reconstruction of hundreds of reference ancestral genomes across the eukaryotic kingdom. Nat Ecol Evol 2023; 7:355-366. [PMID: 36646945 PMCID: PMC9998269 DOI: 10.1038/s41559-022-01956-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/22/2022] [Indexed: 01/18/2023]
Abstract
Ancestral sequence reconstruction is a fundamental aspect of molecular evolution studies and can trace small-scale sequence modifications through the evolution of genomes and species. In contrast, fine-grained reconstructions of ancestral genome organizations are still in their infancy, limiting our ability to draw comprehensive views of genome and karyotype evolution. Here we reconstruct the detailed gene contents and organizations of 624 ancestral vertebrate, plant, fungi, metazoan and protist genomes, 183 of which are near-complete chromosomal gene order reconstructions. Reconstructed ancestral genomes are similar to their descendants in terms of gene content as expected and agree precisely with reference cytogenetic and in silico reconstructions when available. By comparing successive ancestral genomes along the phylogenetic tree, we estimate the intra- and interchromosomal rearrangement history of all major vertebrate clades at high resolution. This freely available resource introduces the possibility to follow evolutionary processes at genomic scales in chronological order, across multiple clades and without relying on a single extant species as reference.
Collapse
|
23
|
Tavares FDS, Oliveira da Silva W, Ferguson-Smith MA, Klautau AGCDM, Oliveira JM, Rodrigues ALF, Melo-Santos G, Pieczarka JC, Nagamachi CY, Noronha RCR. Ancestral chromosomal signatures of Paenungulata (Afroteria) reveal the karyotype of Amazonian manatee (Trichechus inunguis, Sirenia: Trichechidae) as the oldest among American manatees. BMC Genomics 2023; 24:38. [PMID: 36694120 PMCID: PMC9872332 DOI: 10.1186/s12864-023-09129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Chromosomal painting in manatees has clarified questions about the rapid evolution of sirenians within the Paenungulata clade. Further cytogenetic studies in Afrotherian species may provide information about their evolutionary dynamics, revealing important insights into the ancestral karyotype in the clade representatives. The karyotype of Trichechus inunguis (TIN, Amazonian manatee) was investigated by chromosome painting, using probes from Trichechus manatus latirostris (TML, Florida manatee) to analyze the homeologies between these sirenians. RESULTS A high similarity was found between these species, with 31 homologous segments in TIN, nineteen of which are whole autosomes, besides the X and Y sex chromosomes. Four chromosomes from TML (4, 6, 8, and 9) resulted in two hybridization signals, totaling eight acrocentrics in the TIN karyotype. This study confirmed in TIN the chromosomal associations of Homo sapiens (HSA) shared in Afrotheria, such as the 5/21 synteny, and in the Paenungulata clade with the syntenies HSA 2/3, 8/22, and 18/19, in addition to the absence of HSA 4/8 common in eutherian ancestral karyotype (EAK). CONCLUSIONS TIN shares more conserved chromosomal signals with the Paenungulata Ancestral Karyotype (APK, 2n = 58) than Procavia capensis (Hyracoidea), Loxodonta africana (Proboscidea) and TML (Sirenia), where TML presents less conserved signals with APK, demonstrating that its karyotype is the most derived among the representatives of Paenungulata. The chromosomal changes that evolved from APK to the T. manatus and T. inunguis karyotypes (7 and 4 changes, respectively) are more substantial within the Trichechus genus compared to other paenungulates. Among these species, T. inunguis presents conserved traits of APK in the American manatee genus. Consequently, the karyotype of T. manatus is more derived than that of T. inunguis.
Collapse
Affiliation(s)
- Flávia Dos Santos Tavares
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará (UFPA), Pará, Belém, Brazil
| | - Willam Oliveira da Silva
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará (UFPA), Pará, Belém, Brazil
| | - Malcolm Andrew Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Jairo Moura Oliveira
- Zoological Park of Santarém - Universidade da Amazônia (ZOOUNAMA), Pará, Santarém, Brazil
| | - Angélica Lúcia Figueiredo Rodrigues
- Instituto de Biologia e Conservação de Mamíferos Aquáticos da Amazônia, Universidade Federal Rural da Amazônia (UFRA), Pará, Belém, Brazil
- Secretaria de Educação Do Estado Do Pará (SEDUC-PA), Belém, Brazil
| | - Gabriel Melo-Santos
- Instituto de Biologia e Conservação de Mamíferos Aquáticos da Amazônia, Universidade Federal Rural da Amazônia (UFRA), Pará, Belém, Brazil
- Laboratório de Ecologia Marinha e Conservação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Ecologia de Aves e Comportamento Animal, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará (UFPA), Pará, Belém, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará (UFPA), Pará, Belém, Brazil
| | - Renata Coelho Rodrigues Noronha
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará (UFPA), Pará, Belém, Brazil.
| |
Collapse
|
24
|
Chrostek G, Domaradzka A, Yurchenko A, Kratochvíl L, Mazzoleni S, Rovatsos M. Cytogenetic Analysis of Seven Species of Gekkonid and Phyllodactylid Geckos. Genes (Basel) 2023; 14:178. [PMID: 36672918 PMCID: PMC9859368 DOI: 10.3390/genes14010178] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Geckos (Gekkota), the species-rich clade of reptiles with more than 2200 currently recognized species, demonstrate a remarkable variability in diploid chromosome numbers (2n = 16-48) and mode of sex determination. However, only a small fraction of gekkotan species have been studied with cytogenetic methods. Here, we applied both conventional (karyotype reconstruction and C-banding) and molecular (fluorescence in situ hybridization with probes for rDNA loci and telomeric repeats) cytogenetic analyses in seven species of geckos, namely Blaesodactylus boivini, Chondrodactylus laevigatus, Gekko badenii, Gekko cf. lionotum, Hemidactylus sahgali, Homopholis wahlbergii (Gekkonidae) and Ptyodactylus togoensis (Phyllodactylidae), in order to provide further insights into the evolution of karyotypes in geckos. Our analysis revealed the presence of interstitial telomeric repeats in four species, but we were not able to conclude if they are remnants of previous chromosome rearrangements or were formed by an accumulation of telomeric-like satellite motifs. Even though sex chromosomes were previously identified in several species from the genera Hemidactylus and Gekko by cytogenetic and/or genomic methods, they were not detected by us in any examined species. Our examined species either have poorly differentiated sex chromosomes or, possibly, environmental sex determination. Future studies should explore the effect of temperature and conduct genome-wide analyses in order to identify the mode of sex determination in these species.
Collapse
Affiliation(s)
| | | | | | | | | | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic
| |
Collapse
|
25
|
da Silva NKN, Nagamachi CY, Rodrigues LRR, O’Brien PCM, Yang F, Ferguson-Smith MA, Pieczarka JC. Chromosome painting and phylogenetic analysis suggest that the genus Lophostoma (Chiroptera, Phyllostomidae) is paraphyletic. Sci Rep 2022; 12:19514. [PMID: 36376355 PMCID: PMC9663435 DOI: 10.1038/s41598-022-21391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022] Open
Abstract
The subfamily Phyllostominae (Chiroptera, Phyllostomidae) comprises 10 genera of Microchiroptera bats from the Neotropics. The taxonomy of this group is controversial due to incongruities in the phylogenetic relationships evident from different datasets. The genus Lophostoma currently includes eight species whose phylogenetic relationships have not been resolved. Integrative analyzes including morphological, molecular and chromosomal data are powerful tools to investigate the phylogenetics of organisms, particularly if obtained by chromosomal painting. In the present work we performed comparative genomic mapping of three species of Lophostoma (L. brasiliense 2n = 30, L. carrikeri 2n = 26 and L. schulzi 2n = 26), by chromosome painting using whole chromosome probes from Phyllostomus hastatus and Carollia brevicauda; this included mapping interstitial telomeric sites. The karyotype of L. schulzi (LSC) is a new cytotype. The species L. brasiliense and L. carrikeri showed interstitial telomeric sequences that probably resulted from expansions of repetitive sequences near pericentromeric regions. The addition of chromosomal painting data from other species of Phyllostominae allowed phylogeny construction by maximum parsimony, and the determination that the genera of this subfamily are monophyletic, and that the genus Lophostoma is paraphyletic. Additionally, a review of the taxonomic status of LSC is suggested to determine if this species should be reclassified as part of the genus Tonatia.
Collapse
Affiliation(s)
- Natalia Karina Nascimento da Silva
- grid.271300.70000 0001 2171 5249Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará Brazil ,grid.442052.5Departamento de Morfofuncional, Universidade do Estado do Pará, Tucuruí, Pará Brazil
| | - Cleusa Yoshiko Nagamachi
- grid.271300.70000 0001 2171 5249Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará Brazil
| | - Luis Reginaldo Ribeiro Rodrigues
- grid.448725.80000 0004 0509 0076Laboratório de Genética & Biodiversidade, Instituto de Ciências da Educação, Universidade Federal do Oeste do Pará, Santarém, Pará Brazil
| | - Patricia Caroline Mary O’Brien
- grid.5335.00000000121885934Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, UK
| | - Fengtang Yang
- grid.10306.340000 0004 0606 5382Cytogenetics Facility, Wellcome Trust Sanger Institute, Hinxton, UK ,grid.27255.370000 0004 1761 1174School of Life Sciences and Medicine, Shandong University, Jinan, China
| | - Malcolm Andrew Ferguson-Smith
- grid.5335.00000000121885934Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, UK
| | - Julio Cesar Pieczarka
- grid.271300.70000 0001 2171 5249Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará Brazil
| |
Collapse
|
26
|
Wang LB, Li ZK, Wang LY, Xu K, Ji TT, Mao YH, Ma SN, Liu T, Tu CF, Zhao Q, Fan XN, Liu C, Wang LY, Shu YJ, Yang N, Zhou Q, Li W. A sustainable mouse karyotype created by programmed chromosome fusion. Science 2022; 377:967-975. [PMID: 36007034 DOI: 10.1126/science.abm1964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chromosome engineering has been attempted successfully in yeast but remains challenging in higher eukaryotes, including mammals. Here, we report programmed chromosome ligation in mice that resulted in the creation of new karyotypes in the lab. Using haploid embryonic stem cells and gene editing, we fused the two largest mouse chromosomes, chromosomes 1 and 2, and two medium-size chromosomes, chromosomes 4 and 5. Chromatin conformation and stem cell differentiation were minimally affected. However, karyotypes carrying fused chromosomes 1 and 2 resulted in arrested mitosis, polyploidization, and embryonic lethality, whereas a smaller fused chromosome composed of chromosomes 4 and 5 was able to be passed on to homozygous offspring. Our results suggest the feasibility of chromosome-level engineering in mammals.
Collapse
Affiliation(s)
- Li-Bin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhi-Kun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Le-Yun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Kai Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tian-Tian Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Huan Mao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Si-Nan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tao Liu
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Cheng-Fang Tu
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Qian Zhao
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Xu-Ning Fan
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Li-Ying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - You-Jia Shu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
27
|
Genomic Organization of Microsatellites and LINE-1-like Retrotransposons: Evolutionary Implications for Ctenomys minutus (Rodentia: Ctenomyidae) Cytotypes. Animals (Basel) 2022; 12:ani12162091. [PMID: 36009681 PMCID: PMC9405301 DOI: 10.3390/ani12162091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/28/2022] [Accepted: 08/13/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary In animals, several species contain substantial chromosomal and genomic variation among their populations, but as to what could have driven such diversification is still a puzzle for most cases. Here, we used molecular cytogenetic analysis to expose the main genomic elements involved in the population variation observed in the Neotropical underground rodents of the genus Ctenomys (Rodentia: Ctenomyidae), which harbor the most significant chromosomal variation among mammals (2n = 10 to 2n = 70). These data provide evidence for a correlation between repetitive genomic content and localization of evolutionary breakpoint regions (EBRs) and highlight their direct impact in promoting chromosomal rearrangements. Abstract The Neotropical underground rodents of the genus Ctenomys (Rodentia: Ctenomyidae) comprise about 65 species, which harbor the most significant chromosomal variation among mammals (2n = 10 to 2n = 70). Among them, C. minutus stands out with 45 different cytotypes already identified, among which, seven parental ones, named A to G, are parapatrically distributed in the coastal plains of Southern Brazil. Looking for possible causes that led to such extensive karyotype diversification, we performed chromosomal mapping of different repetitive DNAs, including microsatellites and long interspersed element-1 (LINE-1) retrotransposons in the seven parental cytotypes. Although microsatellites were found mainly in the centromeric and telomeric regions of the chromosomes, different patterns occur for each cytotype, thus revealing specific features. Likewise, the LINE-1-like retrotransposons also showed a differential distribution for each cytotype, which may be linked to stochastic loss of LINE-1 in some populations. Here, microsatellite motifs (A)30, (C)30, (CA)15, (CAC)10, (CAG)10, (CGG)10, (GA)15, and (GAG)10 could be mapped to fusion of chromosomes 20/17, fission and inversion in the short arm of chromosome 2, fusion of chromosomes 23/19, and different combinations of centric and tandem fusions of chromosomes 22/24/16. These data provide evidence for a correlation between repetitive genomic content and localization of evolutionary breakpoints and highlight their direct impact in promoting chromosomal rearrangements.
Collapse
|
28
|
Cryptic Diversity of the European Blind Mole Rat Nannospalax leucodon Species Complex: Implications for Conservation. Animals (Basel) 2022; 12:ani12091097. [PMID: 35565523 PMCID: PMC9105853 DOI: 10.3390/ani12091097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
We explored the cryptic speciation of the Nannospalax leucodon species complex, characterised by intense karyotype evolution and reduced phenotypic variability that has produced different lineages, out of which 25 are described as chromosomal forms (CFs), so many cryptic species remain unnoticed. Although some of them should be classified as threatened, they lack the official nomenclature necessary to be involved in conservation strategies. Reproductive isolation between seven CFs has previously been demonstrated. To investigate the amount and dynamics of genetic discrepancy that follows chromosomal changes, infer speciation levels, and obtain phylogenetic patterns, we analysed mitochondrial 16S rRNA and MT-CYTB nucleotide polymorphism among 17 CFs—the highest number studied so far. Phylogenetic trees delineated 11 CFs as separate clades. Evolutionary divergence values overlapped with acknowledged higher taxonomic categories, or sometimes exceeded them. The fact that CFs with higher 2n are evolutionary older corresponds to the fusion hypothesis of Nannospalax karyotype evolution. To participate in conservation strategies, N. leucodon classification should follow the biological species concept, and proposed cryptic species should be formally named, despite a lack of classical morphometric discrepancy. We draw attention towards the syrmiensis and montanosyrmiensis CFs, estimated to be endangered/critically endangered, and emphasise the need for detailed monitoring and population survey for other cryptic species.
Collapse
|
29
|
|
30
|
Abstract
Organisms mount the cellular stress response whenever environmental parameters exceed the range that is conducive to maintaining homeostasis. This response is critical for survival in emergency situations because it protects macromolecular integrity and, therefore, cell/organismal function. From an evolutionary perspective, the cellular stress response counteracts severe stress by accelerating adaptation via a process called stress-induced evolution. In this Review, we summarize five key physiological mechanisms of stress-induced evolution. Namely, these are stress-induced changes in: (1) mutation rates, (2) histone post-translational modifications, (3) DNA methylation, (4) chromoanagenesis and (5) transposable element activity. Through each of these mechanisms, organisms rapidly generate heritable phenotypes that may be adaptive, maladaptive or neutral in specific contexts. Regardless of their consequences to individual fitness, these mechanisms produce phenotypic variation at the population level. Because variation fuels natural selection, the physiological mechanisms of stress-induced evolution increase the likelihood that populations can avoid extirpation and instead adapt under the stress of new environmental conditions.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| | - Dietmar Kültz
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| |
Collapse
|
31
|
Farias JC, Santos N, Bezerra DP, Sotero-Caio CG. Chromosome Painting in Lonchorhina aurita Sheds Light onto the Controversial Phylogenetic Position of Sword-Nosed Bats (Chiroptera, Phyllostomidae). Cytogenet Genome Res 2022; 161:569-577. [PMID: 35093945 DOI: 10.1159/000520969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/16/2021] [Indexed: 04/13/2024] Open
Abstract
The subfamily Lonchorhininae encompasses 6 species of sword-nosed bats (Lonchorhina) and is one of the most problematic lineages in the Neotropical leaf-nosed bats (Phyllostomidae) phylogeny. There are at least 5 different hypotheses to explain when the subfamily diverged from the remaining phyllostomids, but none with robust statistical support. Here, we generated a chromosome painting homology map of Lonchorhina aurita karyotype (2n = 32 and FN = 60) using whole-chromosome probes of Macrotus californicus (MCA; 2n = 40 and FN = 60). We placed the karyotype changes of L. aurita in a phylogenetic context to discuss the most likely branching position of Lonchorhininae based on karyotypic evolution. We show that L. aurita has a derived karyotype with 24 segments homologous to the 20 MCA chromosomes used as probes. Comparative analyses between 7 published painted bats species across 4 phyllostomid subfamilies (Macrotinae, Phyllostominae, Glossophaginae, and Lonchophyllinae) revealed that one inversion (MCA 4inv) and one fusion (MCA 17 + 18) are shared derived features between the karyotypes of L. aurita and species of Phyllostominae not yet observed in other bats. Our data show that chromosomal homology maps may contribute with new insights into a long-standing phylogenetic debate that has endured for decades.
Collapse
Affiliation(s)
- João C Farias
- Departamento de Genética, Centro de Biociências, UFPE- Universidade Federal de Pernambuco, Recife, Brazil
| | - Neide Santos
- Departamento de Genética, Centro de Biociências, UFPE- Universidade Federal de Pernambuco, Recife, Brazil
| | - Darlene P Bezerra
- Departamento de Genética, Centro de Biociências, UFPE- Universidade Federal de Pernambuco, Recife, Brazil
| | - Cibele G Sotero-Caio
- Departamento de Genética, Centro de Biociências, UFPE- Universidade Federal de Pernambuco, Recife, Brazil
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| |
Collapse
|
32
|
Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer. Nat Commun 2021; 12:6858. [PMID: 34824214 PMCID: PMC8617201 DOI: 10.1038/s41467-021-27091-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/25/2021] [Indexed: 01/23/2023] Open
Abstract
Muntjac deer have experienced drastic karyotype changes during their speciation, making it an ideal model for studying mechanisms and functional consequences of mammalian chromosome evolution. Here we generated chromosome-level genomes for Hydropotes inermis (2n = 70), Muntiacus reevesi (2n = 46), female and male M. crinifrons (2n = 8/9) and a contig-level genome for M. gongshanensis (2n = 8/9). These high-quality genomes combined with Hi-C data allowed us to reveal the evolution of 3D chromatin architectures during mammalian chromosome evolution. We find that the chromosome fusion events of muntjac species did not alter the A/B compartment structure and topologically associated domains near the fusion sites, but new chromatin interactions were gradually established across the fusion sites. The recently borne neo-Y chromosome of M. crinifrons, which underwent male-specific inversions, has dramatically restructured chromatin compartments, recapitulating the early evolution of canonical mammalian Y chromosomes. We also reveal that a complex structure containing unique centromeric satellite, truncated telomeric and palindrome repeats might have mediated muntjacs' recurrent chromosome fusions. These results provide insights into the recurrent chromosome tandem fusion in muntjacs, early evolution of mammalian sex chromosomes, and reveal how chromosome rearrangements can reshape the 3D chromatin regulatory conformations during species evolution.
Collapse
|
33
|
Kartavtseva IV, Sheremetyeva IN, Pavlenko MV. Intraspecies multiple chromosomal variations including rare tandem fusion in the Russian Far Eastern endemic evoron vole Alexandromysevoronensis (Rodentia, Arvicolinae). COMPARATIVE CYTOGENETICS 2021; 15:393-411. [PMID: 34900116 PMCID: PMC8629904 DOI: 10.3897/compcytogen.v15.i4.67112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/23/2021] [Indexed: 06/01/2023]
Abstract
The vole Alexandromysevoronensis (Kovalskaya et Sokolov, 1980) with its two chromosomal races, "Evoron" (2n = 38-41, NF = 54-59) and "Argi" (2n = 34, 36, 37, NF = 51-56) is the endemic vole found in the Russian Far East. For the "Argi" chromosomal race, individuals from two isolated populations in mountain regions were investigated here for the first time using GTG-, GTC-, NOR methods. In the area under study, 8 new karyotype variants have been registered. The karyotype with 2n = 34 has a rare tandem fusion of three autosomes: two biarmed (Mev6 and Mev7) and one acrocentric (Mev14) to form a large biarmed chromosome (Mev6/7/14), all of which reveal a heterozygous state. For A.evoronensis, the variation in the number of chromosomes exceeded the known estimate of 2n = 34, 36 and amounted to 2n = 34, 36, 38-41. The combination of all the variations of chromosomes for the species made it possible to describe 20 variants of the A.evoronensis karyotype, with 11 chromosomes being involved in multiple structural rearrangements. In the "Evoron" chromosomal race 4 chromosomes (Mev1, Mev4, Mev17, and Mev18) and in the "Argi" chromosomal race 9 chromosomes (Mev6, Mev7, Mev14, Mev13, Mev11, Mev15, Mev17, Mev18, and Mev19) were observed. Tandem and Robertsonian rearrangements (Mev17/18 and Mev17.18) were revealed in both chromosomal races "Evoron" and "Argi".
Collapse
Affiliation(s)
- Irina V. Kartavtseva
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Irina N. Sheremetyeva
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Marina V. Pavlenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|
34
|
Nagaki K, Furuta T, Yamaji N, Kuniyoshi D, Ishihara M, Kishima Y, Murata M, Hoshino A, Takatsuka H. Effectiveness of Create ML in microscopy image classifications: a simple and inexpensive deep learning pipeline for non-data scientists. Chromosome Res 2021; 29:361-371. [PMID: 34648121 DOI: 10.1007/s10577-021-09676-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 11/29/2022]
Abstract
Observing chromosomes is a time-consuming and labor-intensive process, and chromosomes have been analyzed manually for many years. In the last decade, automated acquisition systems for microscopic images have advanced dramatically due to advances in their controlling computer systems, and nowadays, it is possible to automatically acquire sets of tiling-images consisting of large number, more than 1000, of images from large areas of specimens. However, there has been no simple and inexpensive system to efficiently select images containing mitotic cells among these images. In this paper, a classification system of chromosomal images by deep learning artificial intelligence (AI) that can be easily handled by non-data scientists was applied. With this system, models suitable for our own samples could be easily built on a Macintosh computer with Create ML. As examples, models constructed by learning using chromosome images derived from various plant species were able to classify images containing mitotic cells among samples from plant species not used for learning in addition to samples from the species used. The system also worked for cells in tissue sections and tetrads. Since this system is inexpensive and can be easily trained via deep learning using scientists' own samples, it can be used not only for chromosomal image analysis but also for analysis of other biology-related images.
Collapse
Affiliation(s)
- Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan.
| | - Tomoyuki Furuta
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Daichi Kuniyoshi
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Megumi Ishihara
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yuji Kishima
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Minoru Murata
- Department of Agricultural and Food Science, Universiti Tunku Abdul Rahman, 31900, Kampar, Perak, Malaysia
| | - Atsushi Hoshino
- National Institute for Basic Biology, Okazaki, 444-8585, Japan.,Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Hirotomo Takatsuka
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.,School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
35
|
Paixão VDS, Suárez P, Oliveira da Silva W, Geise L, Ferguson-Smith MA, O’Brien PCM, Mendes-Oliveira AC, Rossi RV, Pieczarka JC, Nagamachi CY. Comparative genomic mapping reveals mechanisms of chromosome diversification in Rhipidomys species (Rodentia, Thomasomyini) and syntenic relationship between species of Sigmodontinae. PLoS One 2021; 16:e0258474. [PMID: 34634084 PMCID: PMC8504764 DOI: 10.1371/journal.pone.0258474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Rhipidomys (Sigmodontinae, Thomasomyini) has 25 recognized species, with a wide distribution ranging from eastern Panama to northern Argentina. Cytogenetic data has been described for 13 species with 12 of them having 2n = 44 with a high level of autosomal fundamental number (FN) variation, ranging from 46 to 80, assigned to pericentric inversions. The species are grouped in groups with low FN (46-52) and high FN (72-80). In this work the karyotypes of Rhipidomys emiliae (2n = 44, FN = 50) and Rhipidomys mastacalis (2n = 44, FN = 74), were studied by classical cytogenetics and by fluorescence in situ hybridization using telomeric and whole chromosome probes (chromosome painting) of Hylaeamys megacephalus (HME). Chromosome painting revealed homology between 36 segments of REM and 37 of RMA. We tested the hypothesis that pericentric inversions are the predominant chromosomal rearrangements responsible for karyotypic divergence between these species, as proposed in literature. Our results show that the genomic diversification between the karyotypes of the two species resulted from translocations, centromeric repositioning and pericentric inversions. The chromosomal evolution in Rhipidomys was associated with karyotypical orthoselection. The HME probes revealed that seven syntenic probably ancestral blocks for Sigmodontinae are present in Rhipidomys. An additional syntenic block described here is suggested as part of the subfamily ancestral karyotype. We also define five synapomorphies that can be used as chromosomal signatures for Rhipidomys.
Collapse
Affiliation(s)
- Vergiana dos Santos Paixão
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Pablo Suárez
- Instituto de Biologia Subtropical (CONICET-UNAM), Puerto Iguazú, Misiones, Argentina
| | - Willam Oliveira da Silva
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Lena Geise
- Laboratório de Mastozoologia, Departamento de Zoologia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Malcolm Andrew Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Patricia Caroline Mary O’Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ana Cristina Mendes-Oliveira
- Laboratório de Zoologia e Ecologia de Vertebrados, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Rogério Vieira Rossi
- Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal do Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| |
Collapse
|
36
|
Meng Z, Wang Q, Khurshid H, Raza G, Han J, Wang B, Wang K. Chromosome Painting Provides Insights Into the Genome Structure and Evolution of Sugarcane. FRONTIERS IN PLANT SCIENCE 2021; 12:731664. [PMID: 34512706 PMCID: PMC8429501 DOI: 10.3389/fpls.2021.731664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The genus Saccharum is composed of species with high polyploidy and highly varied chromosome numbers, laying a challenge for uncovering its genomic structure and evolution. We developed a chromosome 2 painting (CP2) probe by designing oligonucleotides covering chromosome 2 of Saccharum spontaneum (2n = 8x = 64). Fluorescence in situ hybridization (FISH) using this CP2 probe revealed six types of ploidies from twenty S. spontaneum clones, including 6x, 8x, 10x, 11x, 12x, and 13x clones. The finding of S. spontaneum clones with uneven of ploid suggested that certain S. spontaneum clones come from hybridization. It renews our knowledge that S. spontaneum is derived from autopolyploidization. Combined with a S. spontaneum-specific probe, chromosome 2-derived chromosome or fragments from either S. spontaneum or Saccharum officinarum can be identified in sugarcane modern cultivars. We revealed unexpected high level of interspecific recombination from introgressive S. spontaneum chromosomes (>50.0%) in cultivars ROC22 and ZZ1, indicating frequent chromosome exchange in cultivars. Intriguingly, we observed interspecific recombination recurring among either homoeologous or non-homoeologous chromosomes in sugarcane cultivars. These results demonstrated that chromosome painting FISH is a powerful tool in the genome dissection of sugarcane and provide new insights into the genome structure and evolution of the complex genus Saccharum.
Collapse
Affiliation(s)
- Zhuang Meng
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinnan Wang
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Haris Khurshid
- Oilseeds Research Program, National Agricultural Research Centre, Islamabad, Pakistan
| | - Ghulam Raza
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
37
|
Srikulnath K, Ahmad SF, Singchat W, Panthum T. Why Do Some Vertebrates Have Microchromosomes? Cells 2021; 10:2182. [PMID: 34571831 PMCID: PMC8466491 DOI: 10.3390/cells10092182] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
With more than 70,000 living species, vertebrates have a huge impact on the field of biology and research, including karyotype evolution. One prominent aspect of many vertebrate karyotypes is the enigmatic occurrence of tiny and often cytogenetically indistinguishable microchromosomes, which possess distinctive features compared to macrochromosomes. Why certain vertebrate species carry these microchromosomes in some lineages while others do not, and how they evolve remain open questions. New studies have shown that microchromosomes exhibit certain unique characteristics of genome structure and organization, such as high gene densities, low heterochromatin levels, and high rates of recombination. Our review focuses on recent concepts to expand current knowledge on the dynamic nature of karyotype evolution in vertebrates, raising important questions regarding the evolutionary origins and ramifications of microchromosomes. We introduce the basic karyotypic features to clarify the size, shape, and morphology of macro- and microchromosomes and report their distribution across different lineages. Finally, we characterize the mechanisms of different evolutionary forces underlying the origin and evolution of microchromosomes.
Collapse
Affiliation(s)
- Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
38
|
Angus RB, Sadílek D, Shaarawi F, Dollimore H, Liu HC, Seidel M, Sýkora V, Fikáček M. Karyotypes of water scavenger beetles (Coleoptera: Hydrophilidae): new data and review of published records. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlaa105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
This study summarizes available data on karyotypes of water scavenger beetles (Coleoptera: Hydrophiloidea: Hydrophilidae), based on newly acquired data of 23 genera and 64 species. We combine these data with previously published data, which we review. In total, karyotypes are available for 33 genera and 95 species, covering all subfamilies and tribes. Available data indicate that most groups of the Hydrophilidae are diploid and sexually reproducing, with XY (♂) and XX (♀) sex chromosomes; the Y chromosome is always minute and does not recombine with X during meiosis. Exceptions are known in Anacaena, with parthenogenetic diploid or triploid populations in some species and sex chromosomes fused with autosomes in others. The diploid number of chromosomes is 2n = 18 in the subfamilies Acidocerinae, Chaetarthriinae, Enochrinae and Hydrophilinae. Variations are known in species of Anacaena and Berosus (both usually with 2n = 18) and in Hydrochara and Hydrophilus with an increased number of chromosomes (2n = 30). The number of chromosomes is increased in the subfamily Cylominae (2n = 24–30) and in all subclades of the subfamily Sphaeridiinae (2n = 22–32). We summarize protocols for obtaining chromosome slides used for this study and provide step-by-step guidelines to facilitate future cytogenetic studies.
Collapse
Affiliation(s)
- Robert B Angus
- Department of Life Sciences (Insects), Natural History Museum, London, UK
| | - David Sadílek
- Faculty of Science, Charles University, Viničná, Praha, Czech Republic
| | - Fatma Shaarawi
- Department of Entomology, Ain Shams University, Abbassia, Cairo, Egypt
| | | | - Hsing-Che Liu
- Department of Environmental Engineering and Management, Chaoyang University of TechnologyTaichung City, Taiwan
| | - Matthias Seidel
- Centrum für Naturkunde, University of Hamburg, Martin-Luther-King Platz, Hamburg, Germany
| | - Vít Sýkora
- Faculty of Science, Charles University, Viničná, Praha, Czech Republic
| | - Martin Fikáček
- Faculty of Science, Charles University, Viničná, Praha, Czech Republic
- Department of Entomology, National Museum, Cirkusová, Praha, Czech Republic
| |
Collapse
|
39
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
40
|
Abstract
Recombination increases the local GC-content in genomic regions through GC-biased gene conversion (gBGC). The recent discovery of a large genomic region with extreme GC-content in the fat sand rat Psammomys obesus provides a model to study the effects of gBGC on chromosome evolution. Here, we compare the GC-content and GC-to-AT substitution patterns across protein-coding genes of four gerbil species and two murine rodents (mouse and rat). We find that the known high-GC region is present in all the gerbils, and is characterized by high substitution rates for all mutational categories (AT-to-GC, GC-to-AT, and GC-conservative) both at synonymous and nonsynonymous sites. A higher AT-to-GC than GC-to-AT rate is consistent with the high GC-content. Additionally, we find more than 300 genes outside the known region with outlying values of AT-to-GC synonymous substitution rates in gerbils. Of these, over 30% are organized into at least 17 large clusters observable at the megabase-scale. The unusual GC-skewed substitution pattern suggests the evolution of genomic regions with very high recombination rates in the gerbil lineage, which can lead to a runaway increase in GC-content. Our results imply that rapid evolution of GC-content is possible in mammals, with gerbil species providing a powerful model to study the mechanisms of gBGC.
Collapse
Affiliation(s)
- Rodrigo Pracana
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - John F Mulley
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | | |
Collapse
|
41
|
Karyotype Evolution in 10 Pinniped Species: Variability of Heterochromatin versus High Conservatism of Euchromatin as Revealed by Comparative Molecular Cytogenetics. Genes (Basel) 2020; 11:genes11121485. [PMID: 33321928 PMCID: PMC7763226 DOI: 10.3390/genes11121485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 11/19/2022] Open
Abstract
Pinnipedia karyotype evolution was studied here using human, domestic dog, and stone marten whole-chromosome painting probes to obtain comparative chromosome maps among species of Odobenidae (Odobenus rosmarus), Phocidae (Phoca vitulina, Phoca largha, Phoca hispida, Pusa sibirica, Erignathus barbatus), and Otariidae (Eumetopias jubatus, Callorhinus ursinus, Phocarctos hookeri, and Arctocephalus forsteri). Structural and functional chromosomal features were assessed with telomere repeat and ribosomal-DNA probes and by CBG (C-bands revealed by barium hydroxide treatment followed by Giemsa staining) and CDAG (Chromomycin A3-DAPI after G-banding) methods. We demonstrated diversity of heterochromatin among pinniped karyotypes in terms of localization, size, and nucleotide composition. For the first time, an intrachromosomal rearrangement common for Otariidae and Odobenidae was revealed. We postulate that the order of evolutionarily conserved segments in the analyzed pinnipeds is the same as the order proposed for the ancestral Carnivora karyotype (2n = 38). The evolution of conserved genomes of pinnipeds has been accompanied by few fusion events (less than one rearrangement per 10 million years) and by novel intrachromosomal changes including the emergence of new centromeres and pericentric inversion/centromere repositioning. The observed interspecific diversity of pinniped karyotypes driven by constitutive heterochromatin variation likely has played an important role in karyotype evolution of pinnipeds, thereby contributing to the differences of pinnipeds’ chromosome sets.
Collapse
|
42
|
Karyotype evolution and preliminary molecular assessment of genera in the family Scorpiopidae (Arachnida: Scorpiones). ZOOLOGY 2020; 144:125882. [PMID: 33278760 DOI: 10.1016/j.zool.2020.125882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 11/20/2022]
Abstract
The scorpions represent an ancient and morphologically conserved order of arachnids. Despite that, their karyotypes may differ considerably even among closely related species. In this study, we identify the trends of the karyotype evolution in the family Scorpiopidae based on integrating cytogenetic data and multi-locus molecular phylogenetic approaches. We detected considerable variability in diploid numbers of chromosomes (from 48 to 147), 18S rRNA gene cluster positions (from terminal to pericentromeric) at the interspecific level. Moreover, we identified independent fusions, fissions and inversions in the evolution of the family Scorpiopidae, leading to a remarkable diversification of the karyotypes. The dynamic system of the karyotype changes in this group is further documented by the presence of interstitial telomeric sequences (ITS) in two species. The cytogenetic differences observed among the analyzed species highlight the potential of this type of data for species-level taxonomy in scorpion lineages with monocentric chromosomes. Additionally, the results of our phylogenetic analyses support the monophyly of the family Scorpiopidae, but rendered several genera para- or polyphyletic.
Collapse
|
43
|
Cherezov RO, Vorontsova JE, Simonova OB. TBP-Related Factor 2 as a Trigger for Robertsonian Translocations and Speciation. Int J Mol Sci 2020; 21:E8871. [PMID: 33238614 PMCID: PMC7700478 DOI: 10.3390/ijms21228871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022] Open
Abstract
Robertsonian (centric-fusion) translocation is the form of chromosomal translocation in which two long arms of acrocentric chromosomes are fused to form one metacentric. These translocations reduce the number of chromosomes while preserving existing genes and are considered to contribute to speciation. We asked whether hypomorphic mutations in genes that disrupt the formation of pericentromeric regions could lead to centric fusion. TBP-related factor 2 (Trf2) encodes an alternative general transcription factor. A decrease of TRF2 expression disrupts the structure of the pericentromeric regions and prevents their association into chromocenter. We revealed several centric fusions in two lines of Drosophila melanogaster with weak Trf2 alleles in genetic experiments. We performed an RNAi-mediated knock-down of Trf2 in Drosophila and S2 cells and demonstrated that Trf2 upregulates expression of D1-one of the major genes responsible for chromocenter formation and nuclear integrity in Drosophila. Our data, for the first time, indicate that Trf2 may be involved in transcription program responsible for structuring of pericentromeric regions and may contribute to new karyotypes formation in particular by promoting centric fusion. Insight into the molecular mechanisms of Trf2 function and its new targets in different tissues will contribute to our understanding of its phenomenon.
Collapse
Affiliation(s)
| | | | - Olga B. Simonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, 119991 Moscow, Russia; (R.O.C.); (J.E.V.)
| |
Collapse
|
44
|
Abstract
The study of chromosome evolution is undergoing a resurgence of interest owing to advances in DNA sequencing technology that facilitate the production of chromosome-scale whole-genome assemblies de novo. This review focuses on the history, methods, discoveries, and current challenges facing the field, with an emphasis on vertebrate genomes. A detailed examination of the literature on the biology of chromosome rearrangements is presented, specifically the relationship between chromosome rearrangements and phenotypic evolution, adaptation, and speciation. A critical review of the methods for identifying, characterizing, and visualizing chromosome rearrangements and computationally reconstructing ancestral karyotypes is presented. We conclude by looking to the future, identifying the enormous technical and scientific challenges presented by the accumulation of hundreds and eventually thousands of chromosome-scale assemblies.
Collapse
Affiliation(s)
- Joana Damas
- The Genome Center, University of California, Davis, California 95616, USA; , ,
| | - Marco Corbo
- The Genome Center, University of California, Davis, California 95616, USA; , ,
| | - Harris A Lewin
- The Genome Center, University of California, Davis, California 95616, USA; , , .,Department of Evolution and Ecology, College of Biological Sciences, University of California, Davis, California 95616, USA
| |
Collapse
|
45
|
Chromosomal abnormality, laboratory techniques, tools and databases in molecular Cytogenetics. Mol Biol Rep 2020; 47:9055-9073. [DOI: 10.1007/s11033-020-05895-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/03/2020] [Indexed: 11/30/2022]
|
46
|
Deakin JE, Potter S. Marsupial chromosomics: bridging the gap between genomes and chromosomes. Reprod Fertil Dev 2020; 31:1189-1202. [PMID: 30630589 DOI: 10.1071/rd18201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Marsupials have unique features that make them particularly interesting to study, and sequencing of marsupial genomes is helping to understand their evolution. A decade ago, it was a huge feat to sequence the first marsupial genome. Now, the advances in sequencing technology have made the sequencing of many more marsupial genomes possible. However, the DNA sequence is only one component of the structures it is packaged into: chromosomes. Knowing the arrangement of the DNA sequence on each chromosome is essential for a genome assembly to be used to its full potential. The importance of combining sequence information with cytogenetics has previously been demonstrated for rapidly evolving regions of the genome, such as the sex chromosomes, as well as for reconstructing the ancestral marsupial karyotype and understanding the chromosome rearrangements involved in the Tasmanian devil facial tumour disease. Despite the recent advances in sequencing technology assisting in genome assembly, physical anchoring of the sequence to chromosomes is required to achieve a chromosome-level assembly. Once chromosome-level assemblies are achieved for more marsupials, we will be able to investigate changes in the packaging and interactions between chromosomes to gain an understanding of the role genome architecture has played during marsupial evolution.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia
| | - Sally Potter
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
47
|
del Priore L, Pigozzi MI. MLH1 focus mapping in the guinea fowl (Numida meleagris) give insights into the crossover landscapes in birds. PLoS One 2020; 15:e0240245. [PMID: 33017431 PMCID: PMC7535058 DOI: 10.1371/journal.pone.0240245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Crossover rates and localization are not homogeneous throughout the genomes. Along the chromosomes of almost all species, domains with high crossover rates alternate with domains where crossover rates are significantly lower than the genome-wide average. The distribution of crossovers along chromosomes constitutes the recombination landscape of a given species and can be analyzed at broadscale using immunostaining of the MLH1 protein, a component of mature recombination nodules found on synaptonemal complexes during pachytene. We scored the MLH1 foci in oocytes of the chicken and the guinea fowl and compared their frequencies in the largest bivalents. The average autosomal number of foci is 62 in the chicken and 44 in the guinea fowl. The lower number in the guinea fowl responds to the occurrence of fewer crossovers in the six largest bivalents, where most MLH1 foci occur within one-fifth of the chromosome length with high polarization towards opposite ends. The skewed distribution of foci in the guinea fowl contrast with the more uniform distribution of numerous foci in the chicken, especially in the four largest bivalents. The crossover distribution observed in the guinea fowl is unusual among Galloanserae and also differs from other, more distantly related birds. We discussed the current evidence showing that the shift towards crossover localization, as observed in the guinea fowl, was not a unique event but also occurred at different moments of bird evolution. A comparative analysis of genome-wide average recombination rates in birds shows variations within narrower limits compared to mammals and the absence of a phylogenetic trend.
Collapse
Affiliation(s)
- Lucía del Priore
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Inés Pigozzi
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
48
|
Zadesenets KS, Rubtsov NB. Generation of microdissected DNA probes from metaphase chromosomes when chromosome identification by routine staining is impossible. Vavilovskii Zhurnal Genet Selektsii 2020; 24:519-524. [PMID: 33659836 PMCID: PMC7716545 DOI: 10.18699/vj20.46-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Application of microdissected DNA libraries and DNA probes in numerous and various modern molecular
cytogenetic studies showed them as an efficient and reliable tool in the analysis of chromosome reorganization
during karyotypic evolution and in the diagnosis of human chromosome pathology. An important advantage of
DNA probe generation by metaphase chromosome microdissection followed by sequence-independent polymerase
chain reaction in comparison with the method of DNA probe generation using chromosome sorting is the
possibility of DNA probe preparation from chromosomes of an individual sample without cell line establishment
for the production of a large number of metaphase chromosomes. One of the main requirements for successful
application of this technique is a possibility for identification of the chromosome of interest during its dissection
and collection of its material from metaphase plates spread on the coverslip. In the present study, we developed
and applied a technique for generation of microdissected DNA probes in the case when chromosome identification
during microdissection appeared to be impossible. The technique was used for generation of two sets of Whole
Chromosome Paints (WCPs) from all chromosomes of two species of free-living flatworms in the genus Macrostomum,
M. mirumnovem and M. cliftonensis. The single-copy chromosome technique including separate collection
of all chromosomes from one metaphase plate allowed us to generate WCPs that painted specifically the original
chromosome by Chromosome In Situ Suppression Hybridization (CISS-Hybridization). CISS-Hybridization allowed
identifying the original chromosome(s) used for DNA probe generation. Pooled WCPs derived from homologous
chromosomes increased the intensity and specificity of chromosome painting provided by CISS-Hybridization.
In the result, the obtained DNA probes appeared to be good enough for application in our studies devoted to analysis
of karyotypic evolution in the genus Macrostomum and for analysis of chromosome rearrangements among
the worms of laboratory cultures of M. mirumnovem.
Collapse
Affiliation(s)
- K S Zadesenets
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N B Rubtsov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
49
|
Bulatova N. Notable homologous variation in chromosomal races of the common shrew. COMPARATIVE CYTOGENETICS 2020; 14:313-318. [PMID: 32754304 PMCID: PMC7381428 DOI: 10.3897/compcytogen.v14i3.54526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/10/2020] [Indexed: 05/31/2023]
Abstract
This paper is a review of the rare phenomenon of chromosome intraspecies variation manifested in monobrachial homology series in the comprehensively investigated karyotype of the common shrew Sorex araneus Linnaeus, 1758 (Eulipotyphla, Mammalia). The detailed dataset on the account of this mammalian species was drawn from the recently published monograph by Searle et al. (2019) "Shrews, Chromosomes and Speciation". The parallels to the law of homologous series in variation by Nikolai Vavilov are discussed.
Collapse
Affiliation(s)
- Nina Bulatova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, RussiaA.N. Severtsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| |
Collapse
|
50
|
Bi Y, Zhao Q, Yan W, Li M, Liu Y, Cheng C, Zhang L, Yu X, Li J, Qian C, Wu Y, Chen J, Lou Q. Flexible chromosome painting based on multiplex PCR of oligonucleotides and its application for comparative chromosome analyses in Cucumis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:178-186. [PMID: 31692131 DOI: 10.1111/tpj.14600] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 05/07/2023]
Abstract
Chromosome painting is a powerful technique for chromosome and genome studies. We developed a flexible chromosome painting technique based on multiplex PCR of a synthetic oligonucleotide (oligo) library in cucumber (Cucumis sativus L., 2n = 14). Each oligo in the library was associated with a universal as well as nested specific primers for amplification, which allow the generation of different probes from the same oligo library. We were also able to generate double-stranded labelled oligos, which produced much stronger signals than single-stranded labelled oligos, by amplification using fluorophore-conjugated primer pairs. Oligos covering cucumber chromosome 1 (Chr1) and chromosome 4 (Chr4) consisting of eight segments were synthesized in one library. Different oligo probes generated from the library painted the corresponding chromosomes/segments unambiguously, especially on pachytene chromosomes. This technique was then applied to study the homoeologous relationships among cucumber, C. hystrix and C. melo chromosomes based on cross-species chromosome painting using Chr4 probes. We demonstrated that the probe was feasible to detect interspecies chromosome homoeologous relationships and chromosomal rearrangement events. Based on its advantages and great convenience, we anticipate that this flexible oligo-painting technique has great potential for the studies of the structure, organization, and evolution of chromosomes in any species with a sequenced genome.
Collapse
Affiliation(s)
- Yunfei Bi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinzheng Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenkai Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengxue Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuxi Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuntao Qian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|