1
|
Sánchez-Serna G, Badia-Ramentol J, Bujosa P, Ferrández-Roldán A, Torres-Águila NP, Fabregà-Torrus M, Wibisana JN, Mansfield MJ, Plessy C, Luscombe NM, Albalat R, Cañestro C. Less, but More: New Insights From Appendicularians on Chordate Fgf Evolution and the Divergence of Tunicate Lifestyles. Mol Biol Evol 2025; 42:msae260. [PMID: 39686543 PMCID: PMC11733497 DOI: 10.1093/molbev/msae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The impact of gene loss on the diversification of taxa and the emergence of evolutionary innovations remains poorly understood. Here, our investigation on the evolution of the Fibroblast Growth Factors (FGFs) in appendicularian tunicates as a case study reveals a scenario of "less, but more" characterized by massive losses of all Fgf gene subfamilies, except for the Fgf9/16/20 and Fgf11/12/13/14, which in turn underwent two bursts of duplications. Through phylogenetic analysis, synteny conservation, and gene and protein structure, we reconstruct the history of appendicularian Fgf genes, highlighting their paracrine and intracellular functions. An exhaustive analysis of developmental Fgf expression in Oikopleura dioica allows us to identify four associated evolutionary patterns characterizing the "less, but more" conceptual framework: conservation of ancestral functions; function shuffling between paralogs linked to gene losses; innovation of new functions after the duplication bursts; and function extinctions linked to gene losses. Our findings allow us to formulate novel hypotheses about the impact of Fgf losses and duplications on the transition from an ancestral ascidian-like biphasic lifestyle to the fully free-living appendicularians. These hypotheses include massive co-options of Fgfs for the development of the oikoblast and the tail fin; recruitment of Fgf11/12/13/14s into the evolution of a new mouth, and their role modulating neuronal excitability; the evolutionary innovation of an anterior tail FGF signaling source upon the loss of retinoic acid signaling; and the potential link between the loss of Fgf7/10/22 and Fgf8/17/18 and the loss of drastic metamorphosis and tail absorption in appendicularians, in contrast to ascidians.
Collapse
Affiliation(s)
- Gaspar Sánchez-Serna
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Jordi Badia-Ramentol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Paula Bujosa
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Alfonso Ferrández-Roldán
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Nuria P Torres-Águila
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marc Fabregà-Torrus
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Johannes N Wibisana
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
2
|
Healey HM, Penn HB, Small CM, Bassham S, Goyal V, Woods MA, Cresko WA. Single Cell Sequencing Provides Clues about the Developmental Genetic Basis of Evolutionary Adaptations in Syngnathid Fishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588518. [PMID: 38645265 PMCID: PMC11030337 DOI: 10.1101/2024.04.08.588518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provide the opportunity for detailed genetic analyses. We created a single cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how their novelties evolved.
Collapse
Affiliation(s)
- Hope M Healey
- Institute of Ecology and Evolution, University of Oregon
| | - Hayden B Penn
- Institute of Ecology and Evolution, University of Oregon
| | - Clayton M Small
- Institute of Ecology and Evolution, University of Oregon
- School of Computer and Data Science, University of Oregon
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon
| | - Vithika Goyal
- Institute of Ecology and Evolution, University of Oregon
| | - Micah A Woods
- Institute of Ecology and Evolution, University of Oregon
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon
- Knight Campus for Accelerating Scientific Impact, University of Oregon
| |
Collapse
|
3
|
Wen L, Man X, Luan J, Zhang S, Zhao C, Bao Y, Liu C, Feng X. Early-life exposure to five biodegradable plastics impairs eye development and visually-mediated behavior through disturbing hypothalamus-pituitary-thyroid (HPT) axis in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109981. [PMID: 39033795 DOI: 10.1016/j.cbpc.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Biodegradable plastics have been commonly developed and applied as an alternative to traditional plastics, which cause environmental plastic pollution. However, biodegradable plastics still present limitations such as stringent degradation conditions and slow degradation rate, and may cause harm to the environment and organisms. Consequently, in this study, zebrafish was used to evaluate the effects of five biodegradable microplastics (MPs), polyglycolic acid (PGA), polylactic acid (PLA), polybutylene succinate (PBS), polyhydroxyalkanoate (PHA) and polybutylene adipate terephthalate (PBAT) exposure on the early development, retina morphology, visually-mediated behavior, and thyroid signaling at concentrations of 1 mg/L and 100 mg/L. The results indicated that all MPs induced decreased survival rate, reduced body length, smaller eyes, and smaller heads, affecting the early development of zebrafish larvae. Moreover, the thickness of retinal layers, including inner plexiform layer (IPL), outer nuclear layer (ONL), and retinal ganglion layer (RGL) was decreased, and the expression of key genes related to eye and retinal development was abnormally altered after all MPs exposure. Exposure to PBS and PBAT led to abnormal visually-mediated behavior, indicating likely affected the visual function. All MPs could also cause thyroid system disorders, among which alterations in the thyroid hormone receptors (TRs) genes could affect the retinal development of zebrafish larvae. In summary, biodegradable MPs exhibited eye developmental toxicity and likely impaired the visual function in zebrafish larvae. This provided new evidence for revealing the effects of biodegradable plastics on aquatic organism development and environmental risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Liang Wen
- China Shenhua Coal to Liquid and Chemical CO., LTD. of China Energy, Beijing 100011, China
| | - Xiaoting Man
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Chengtian Zhao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yehua Bao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Congzhi Liu
- China Shenhua Coal to Liquid and Chemical CO., LTD. of China Energy, Beijing 100011, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Zhang Q, Wu R, Zheng S, Luo C, Huang W, Shi X, Wu K. Exposure of male adult zebrafish (Danio rerio) to triphenyl phosphate (TPhP) induces eye development disorders and disrupts neurotransmitter system-mediated abnormal locomotor behavior in larval offspring. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133332. [PMID: 38147758 DOI: 10.1016/j.jhazmat.2023.133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Triphenyl phosphate (TPhP) is a widely used organophosphorus flame retardant, which has become ubiquitous in the environment. However, little information is available regarding its transgenerational effects. This study aimed to investigate the developmental toxicity of TPhP on F1 larvae offspring of adult male zebrafish exposed to various concentrations of TPhP for 28 or 60 days. The findings revealed significant morphological changes, alterations in locomotor behavior, variations in neurotransmitter, histopathological changes, oxidative stress levels, and disruption of Retinoic Acid (RA) signaling in the F1 larvae. After 28 and 60 days of TPhP exposure, the F1 larvae exhibited a myopia-like phenotype with pathological alterations in the lens and retina. The genes involved in the RA signaling pathway were down-regulated following parental TPhP exposure. Swimming speed and total distance of F1 larvae were significantly reduced by TPhP exposure, and long-term exposure to environmental levels of TPhP had more pronounced effects on locomotor behavior and neurotransmitter levels. In conclusion, TPhP induced histological and morphological alterations in the eyes of F1 larvae, leading to visual dysfunction, disruption of RA signaling and neurotransmitter systems, and ultimately resulting in neurobehavioral abnormalities. These findings highlight the importance of considering the impact of TPhP on the survival and population reproduction of wild larvae.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
5
|
Tinoco A, Mitchison-Field L, Bradford J, Renicke C, Perrin D, Bay L, Pringle J, Cleves P. Role of the bicarbonate transporter SLC4γ in stony-coral skeleton formation and evolution. Proc Natl Acad Sci U S A 2023; 120:e2216144120. [PMID: 37276409 PMCID: PMC10268325 DOI: 10.1073/pnas.2216144120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/26/2023] [Indexed: 06/07/2023] Open
Abstract
Coral reefs are highly diverse ecosystems of immense ecological, economic, and aesthetic importance built on the calcium-carbonate-based skeletons of stony corals. The formation of these skeletons is threatened by increasing ocean temperatures and acidification, and a deeper understanding of the molecular mechanisms involved may assist efforts to mitigate the effects of such anthropogenic stressors. In this study, we focused on the role of the predicted bicarbonate transporter SLC4γ, which was suggested in previous studies to be a product of gene duplication and to have a role in coral-skeleton formation. Our comparative-genomics study using 30 coral species and 15 outgroups indicates that SLC4γ is present throughout the stony corals, but not in their non-skeleton-forming relatives, and apparently arose by gene duplication at the onset of stony-coral evolution. Our expression studies show that SLC4γ, but not the closely related and apparently ancestral SLC4β, is highly upregulated during coral development coincident with the onset of skeleton deposition. Moreover, we show that juvenile coral polyps carrying CRISPR/Cas9-induced mutations in SLC4γ are defective in skeleton formation, with the severity of the defect in individual animals correlated with their frequencies of SLC4γ mutations. Taken together, the results suggest that the evolution of the stony corals involved the neofunctionalization of the newly arisen SLC4γ for a unique role in the provision of concentrated bicarbonate for calcium-carbonate deposition. The results also demonstrate the feasibility of reverse-genetic studies of ecologically important traits in adult corals.
Collapse
Affiliation(s)
- Amanda I. Tinoco
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD21218
- Applied BioSciences, Macquarie University, Sydney, NSW2109, Australia
| | - Lorna M. Y. Mitchison-Field
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD21218
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Jacob Bradford
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD4001, Australia
- School of Computer Science, Queensland University of Technology, Brisbane, QLD4001, Australia
| | - Christian Renicke
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Dimitri Perrin
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD4001, Australia
- School of Computer Science, Queensland University of Technology, Brisbane, QLD4001, Australia
| | - Line K. Bay
- Australian Institute of Marine Science, Townsville, QLD4810, Australia
| | - John R. Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Phillip A. Cleves
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD21218
- Applied BioSciences, Macquarie University, Sydney, NSW2109, Australia
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
6
|
An T, Lu L, Li G. Daily exposure to low concentrations Tetrabromobisphenol A interferes with the thyroid hormone pathway in HepG2 cells. FUNDAMENTAL RESEARCH 2023; 3:384-391. [PMID: 38933766 PMCID: PMC11197689 DOI: 10.1016/j.fmre.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 01/31/2023] Open
Abstract
Tetrabromobisphenol A (TBBPA) is a flame retardant that adversely affects the environment and human health. The present study exposed HepG2 cells to low concentrations of TBBPA daily to investigate the changes in gene regulation, mainly related to pathways associated with the endocrine system. The quantitative polymerase chain reaction (qPCR) confirmed that prolonged exposure gradually activated the thyroid hormone and parathyroid hormone signaling pathways. The expression levels of genes related to the thyroid hormone signaling pathway were upregulated (1.15-8.54 times) after five generations of exposure to 1 and 81 nM TBBPA. Furthermore, co-exposure to 81 nM TBBPA and 0.5 nM thyroid hormone receptor antagonist for five generations significantly reduced the expression of thyroid hormone and parathyroid hormone receptors. Meanwhile, 81 nM TBBPA inhibited the activation of the Ras pathway and downregulated Ras gene expression level (3.7 times), indicating the association between the toxic effect and thyroid hormone receptors. Additionally, our experiments revealed that the thyroid hormone pathway regulated the induction of the Ras signaling pathway by TBBPA. The study thus proves that daily exposure to TBBPA interferes with the thyroid hormone signaling pathway and subsequently the endocrine system.
Collapse
Affiliation(s)
- Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Lirong Lu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Spadafora C. The epigenetic basis of evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:57-69. [PMID: 36720315 DOI: 10.1016/j.pbiomolbio.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/17/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
An increasing body of data are revealing key roles of epigenetics in evolutionary processes. The scope of this manuscript is to assemble in a coherent frame experimental evidence supporting a role of epigenetic factors and networks, active during embryogenesis, in orchestrating variation-inducing phenomena underlying evolution, seen as a global process. This process unfolds over two crucial levels: i) a flow of RNA-based information - predominantly small regulatory RNAs released from somatic cells exposed to environmental stimuli - taken up by spermatozoa and delivered to oocytes at fertilization and ii) the highly permissive and variation-prone environments offered by zygotes and totipotent early embryos. Totipotent embryos provide a variety of biological tools favouring the emergence of evolutionarily significant phenotypic novelties driven by RNA information. Under this light, neither random genomic mutations, nor the sieving role of natural selection are required, as the sperm-delivered RNA cargo conveys specific information and acts as "phenotypic-inducer" of defined environmentally acquired traits.
Collapse
Affiliation(s)
- Corrado Spadafora
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy.
| |
Collapse
|
8
|
Hnf1b renal expression directed by a distal enhancer responsive to Pax8. Sci Rep 2022; 12:19921. [PMID: 36402859 PMCID: PMC9675860 DOI: 10.1038/s41598-022-21171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Xenopus provides a simple and efficient model system to study nephrogenesis and explore the mechanisms causing renal developmental defects in human. Hnf1b (hepatocyte nuclear factor 1 homeobox b), a gene whose mutations are the most commonly identified genetic cause of developmental kidney disease, is required for the acquisition of a proximo-intermediate nephron segment in Xenopus as well as in mouse. Genetic networks involved in Hnf1b expression during kidney development remain poorly understood. We decided to explore the transcriptional regulation of Hnf1b in the developing Xenopus pronephros and mammalian renal cells. Using phylogenetic footprinting, we identified an evolutionary conserved sequence (CNS1) located several kilobases (kb) upstream the Hnf1b transcription start and harboring epigenomic marks characteristics of a distal enhancer in embryonic and adult renal cells in mammals. By means of functional expression assays in Xenopus and mammalian renal cell lines we showed that CNS1 displays enhancer activity in renal tissue. Using CRISPR/cas9 editing in Xenopus tropicalis, we demonstrated the in vivo functional relevance of CNS1 in driving hnf1b expression in the pronephros. We further showed the importance of Pax8-CNS1 interaction for CNS1 enhancer activity allowing us to conclude that Hnf1b is a direct target of Pax8. Our work identified for the first time a Hnf1b renal specific enhancer and may open important perspectives into the diagnosis for congenital kidney anomalies in human, as well as modeling HNF1B-related diseases.
Collapse
|
9
|
Small CM, Healey HM, Currey MC, Beck EA, Catchen J, Lin ASP, Cresko WA, Bassham S. Leafy and weedy seadragon genomes connect genic and repetitive DNA features to the extravagant biology of syngnathid fishes. Proc Natl Acad Sci U S A 2022; 119:e2119602119. [PMID: 35733255 PMCID: PMC9245644 DOI: 10.1073/pnas.2119602119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
Seadragons are a remarkable lineage of teleost fishes in the family Syngnathidae, renowned for having evolved male pregnancy. Comprising three known species, seadragons are widely recognized and admired for their fantastical body forms and coloration, and their specific habitat requirements have made them flagship representatives for marine conservation and natural history interests. Until recently, a gap has been the lack of significant genomic resources for seadragons. We have produced gene-annotated, chromosome-scale genome models for the leafy and weedy seadragon to advance investigations of evolutionary innovation and elaboration of morphological traits in seadragons as well as their pipefish and seahorse relatives. We identified several interesting features specific to seadragon genomes, including divergent noncoding regions near a developmental gene important for integumentary outgrowth, a high genome-wide density of repetitive DNA, and recent expansions of transposable elements and a vesicular trafficking gene family. Surprisingly, comparative analyses leveraging the seadragon genomes and additional syngnathid and outgroup genomes revealed striking, syngnathid-specific losses in the family of fibroblast growth factors (FGFs), which likely involve reorganization of highly conserved gene regulatory networks in ways that have not previously been documented in natural populations. The resources presented here serve as important tools for future evolutionary studies of developmental processes in syngnathids and hold value for conservation of the extravagant seadragons and their relatives.
Collapse
Affiliation(s)
- Clayton M. Small
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Hope M. Healey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| | - Mark C. Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| | - Emily A. Beck
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Julian Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Angela S. P. Lin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403
| | - William A. Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| |
Collapse
|
10
|
Wu L, Dang Y, Liang LX, Gong YC, Zeeshan M, Qian Z, Geiger SD, Vaughn MG, Zhou Y, Li QQ, Chu C, Tan YW, Lin LZ, Liu RQ, Hu LW, Yang BY, Zeng XW, Yu Y, Dong GH. Perfluorooctane sulfonates induces neurobehavioral changes and increases dopamine neurotransmitter levels in zebrafish larvae. CHEMOSPHERE 2022; 297:134234. [PMID: 35259355 DOI: 10.1016/j.chemosphere.2022.134234] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
It has been reported that exposure to perfluorooctane sulfonates (PFOS) causes behavioral abnormalities in zebrafish larvae, but the possible mechanisms underlying these changes remain unexplored. In this study, zebrafish embryos (2 h postfertilization, 2-hpf) were exposed to PFOS at different concentrations (0, 0.032, 0.32 and 3.2 mg/L) for 120 h. Developmental endpoints and the locomotion behavior of larvae were evaluated. Reactive oxygen species (ROS) levels, dopamine contents, several genes and proteins related to neurodevelopment and dopamine signaling were examined. Our results indicate that increased ROS levels in the zebrafish larvae heads may be causally associated with neurodevelopment damage. Meanwhile, brain-derived neurotrophic factor (BDNF) and alpha1-Tubulin (α1-Tubulin) protein contents were significantly increased, which may be a compensatory mechanism for the impaired central nervous system. PFOS-induced locomotor hyperactivity was observed in the first light phase and dark phase at the 0.32 and 3.2 mg/L of PFOS. Upregulation of dopamine-related genes tyrosine hydroxylase (th) and dopamine transporter (dat) associated with increased dopamine contents in the 3.2 mg/L of PFOS. In addition, protein expression of TH and DAT were noted at the 0.32 and 3.2 mg/L of PFOS concentrations. Our results suggested that PFOS induces neurobehavioral changes in zebrafish larvae, possibly by perturbing a dopamine signaling pathway. In addition, PFOS induced development damage, such as increased malformation rate and shorter body length.
Collapse
Affiliation(s)
- Luyin Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Li-Xia Liang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan-Chen Gong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhengmin Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Sarah Dee Geiger
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Michael G Vaughn
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ya-Wen Tan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
11
|
Zhang X, Jacobs D. OUP accepted manuscript. Genome Biol Evol 2022; 14:6519162. [PMID: 35104341 PMCID: PMC8857923 DOI: 10.1093/gbe/evab284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 11/14/2022] Open
Abstract
DNA methylation, an important component of eukaryotic epigenetics, varies in pattern and function across Metazoa. Notably, bilaterian vertebrates and invertebrates differ dramatically in gene body methylation (GbM). Using the frequency of cytosine-phospho-guanines (CpGs), which are lost through mutation when methylated, we report the first broad survey of DNA methylation in Cnidaria, the ancient sister group to Bilateria. We find that: 1) GbM differentially relates to expression categories as it does in most bilaterian invertebrates, but distributions of GbM are less discretely bimodal. 2) Cnidarians generally have lower CpG frequencies on gene bodies than bilaterian invertebrates potentially suggesting a compensatory mechanism to replace CpG lost to mutation in Bilateria that is lacking in Cnidaria. 3) GbM patterns show some consistency within taxonomic groups such as the Scleractinian corals; however, GbM patterns variation across a range of taxonomic ranks in Cnidaria suggests active evolutionary change in GbM within Cnidaria. 4) Some but not all GbM variation is associated with life history change and genome expansion, whereas GbM loss is evident in endoparasitic cnidarians. 5) Cnidarian repetitive elements are less methylated than gene bodies, and methylation of both correlate with genome repeat content. 6) These observations reinforce claims that GbM evolved in stem Metazoa. Thus, this work supports overlap between DNA methylation processes in Cnidaria and Bilateria, provides a framework to compare methylation within and between Cnidaria and Bilateria, and demonstrates the previously unknown rapid evolution of cnidarian methylation.
Collapse
Affiliation(s)
- Xinhui Zhang
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - David Jacobs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Corresponding author: E-mail:
| |
Collapse
|
12
|
Yu Y, Hou Y, Dang Y, Zhu X, Li Z, Chen H, Xiang M, Li Z, Hu G. Exposure of adult zebrafish (Danio rerio) to Tetrabromobisphenol A causes neurotoxicity in larval offspring, an adverse transgenerational effect. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125408. [PMID: 33647619 DOI: 10.1016/j.jhazmat.2021.125408] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most extensively used brominated flame retardants and is universally detected in the environment. However, information related to its transgenerational toxicity is sparse. Using zebrafish as a study model, adult fish were exposed to TBBPA at different concentrations (0, 3, 30, or 300 μg/L) for 42 d and then, the exposed adults were spawned in TBBPA-free water. The neurobehavior of adults and larval offspring was evaluated, and the levels of thyroxine (T4), triiodothyronine (T3) and neurotransmitters (acetylcholine, dopamine and gamma-aminobutyric acid) were quantified in larvae and embryos. Our results showed that TBBPA was detected in embryo and the locomotor activity of larval offspring was significantly reduced, suggesting that TBBPA can transfer to offspring and result in neurotoxicity in larval offspring. Furthermore, a reduction in T3 levels was observed in both the larvae and embryos. We also found a significantly decreased content of dopamine in larval offspring, accompanied by downregulated mRNA expression of rdr2b and drd3. Our results demonstrated that TBBPA can be transferred to offspring embryos, and subsequently induce neurotoxicity in larval offspring by affecting the amount of T3 transferred from the parents to embryos and the production of dopamine in larvae.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Yunbo Hou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Xiaohui Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhenchi Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
13
|
Kausar S, Abbas MN, Cui H. A review on the DNA methyltransferase family of insects: Aspect and prospects. Int J Biol Macromol 2021; 186:289-302. [PMID: 34237376 DOI: 10.1016/j.ijbiomac.2021.06.205] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022]
Abstract
The DNA methyltransferase family contains a conserved set of DNA-modifying enzymatic proteins. They are responsible for epigenetic gene modulation, such as transcriptional silencing, transcription activation, and post-transcriptional modulation. Recent research has revealed that the canonical DNA methyltransferases (DNMTs) biological roles go beyond their traditional functions of establishing and maintaining DNA methylation patterns. Although a complete DNA methylation toolkit is absent in most insect orders, recent evidence indicates the de novo DNA methylation and maintenance function remain conserved. Studies using various molecular approaches provided evidence that DNMTs are multi-functional proteins. However, still in-depth studies on their biological role lack due to the least studied area in insects. Here, we review the DNA methylation toolkit of insects, focusing on recent research on various insect orders, which exhibit DNA methylation at different levels, and for which DNMTs functional studies have become available in recent years. We survey research on the potential roles of DNMTs in the regulation of gene transcription in insect species. DNMTs participate in different physiological processes by interacting with other epigenetic factors. Future studies on insect's DNMTs will benefit to understand developmental processes, responses to various stimuli, and adaptability of insects to different environmental conditions.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
14
|
Crowley-Perry M, Barberio AJ, Zeino J, Winston ER, Connaughton VP. Zebrafish Optomotor Response and Morphology Are Altered by Transient, Developmental Exposure to Bisphenol-A. J Dev Biol 2021; 9:jdb9020014. [PMID: 33918232 PMCID: PMC8167563 DOI: 10.3390/jdb9020014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Estrogen-specific endocrine disrupting compounds (EDCs) are potent modulators of neural and visual development and common environmental contaminants. Using zebrafish, we examined the long-term impact of abnormal estrogenic signaling by testing the effects of acute, early exposure to bisphenol-A (BPA), a weak estrogen agonist, on later visually guided behaviors. Zebrafish aged 24 h postfertilization (hpf), 72 hpf, and 7 days postfertilization (dpf) were exposed to 0.001 μM or 0.1 μM BPA for 24 h, and then allowed to recover for 1 or 2 weeks. Morphology and optomotor responses (OMRs) were assessed after 1 and 2 weeks of recovery for 24 hpf and 72 hpf exposure groups; 7 dpf exposure groups were additionally assessed immediately after exposure. Increased notochord length was seen in 0.001 μM exposed larvae and decreased in 0.1 μM exposed larvae across all age groups. Positive OMR was significantly increased at 1 and 2 weeks post-exposure in larvae exposed to 0.1 μM BPA when they were 72 hpf or 7 dpf, while positive OMR was increased after 2 weeks of recovery in larvae exposed to 0.001 μM BPA at 72 hpf. A time-delayed increase in eye diameter occurred in both BPA treatment groups at 72 hpf exposure; while a transient increase occurred in 7 dpf larvae exposed to 0.1 μM BPA. Overall, short-term developmental exposure to environmentally relevant BPA levels caused concentration- and age-dependent effects on zebrafish visual anatomy and function.
Collapse
Affiliation(s)
- Mikayla Crowley-Perry
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
- Department of Chemistry, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA
| | - Angelo J. Barberio
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
| | - Jude Zeino
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
| | - Erica R. Winston
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
| | - Victoria P. Connaughton
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
- Correspondence: ; Tel.: +1-202-885-2188
| |
Collapse
|
15
|
Bao R, Friedrich M. Genomic signatures of globally enhanced gene duplicate accumulation in the megadiverse higher Diptera fueling intralocus sexual conflict resolution. PeerJ 2020; 8:e10012. [PMID: 33083121 PMCID: PMC7560327 DOI: 10.7717/peerj.10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/31/2020] [Indexed: 12/03/2022] Open
Abstract
Gene duplication is an important source of evolutionary innovation. To explore the relative impact of gene duplication during the diversification of major insect model system lineages, we performed a comparative analysis of lineage-specific gene duplications in the fruit fly Drosophila melanogaster (Diptera: Brachycera), the mosquito Anopheles gambiae (Diptera: Culicomorpha), the red flour beetle Tribolium castaneum (Coleoptera), and the honeybee Apis mellifera (Hymenoptera). Focusing on close to 6,000 insect core gene families containing maximally six paralogs, we detected a conspicuously higher number of lineage-specific duplications in Drosophila (689) compared to Anopheles (315), Tribolium (386), and Apis (223). Based on analyses of sequence divergence, phylogenetic distribution, and gene ontology information, we present evidence that an increased background rate of gene duplicate accumulation played an exceptional role during the diversification of the higher Diptera (Brachycera), in part by providing enriched opportunities for intralocus sexual conflict resolution, which may have boosted speciation rates during the early radiation of the megadiverse brachyceran subclade Schizophora.
Collapse
Affiliation(s)
- Riyue Bao
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.,School of Medicine, Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
16
|
Zhu XY, Wu YY, Xia B, Dai MZ, Huang YF, Yang H, Li CQ, Li P. Fenobucarb-induced developmental neurotoxicity and mechanisms in zebrafish. Neurotoxicology 2020; 79:11-19. [PMID: 32247646 DOI: 10.1016/j.neuro.2020.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 11/18/2022]
Abstract
Fenobucarb (2-sec-butylphenyl methylcarbamate, BPMC) is an extensively used carbamate insecticide. Its developmental neurotoxicity and the underlying mechanisms have not been well investigated. In this study, zebrafish embryos were exposed to various concentrations of BPMC from 6 hpf (hours post fertilization, hpf) to 120 hpf. BPMC induced developmental toxicity with reduced motility in larval zebrafish. The spinal cord neutrophil infiltration, increased ROS production, caspase 3 and 9 activation, central nerve and peripheral motor neuron damage, axon and myelin degeneration were observed in zebrafish treated with BPMC generally in a dose-dependent manner. The expression of eight marker genes for nervous system function or development, namely, a1-tubulin, shha, elavl3, gap43, syn2a, gfap, mbp and manf, was significantly downregulated following BPMC exposure. AChE activity reduction and ache gene expression suppression was also found significantly in BPMC-treated zebrafish. These results indicate that BPMC is highly toxic to zebrafish and that BPMC induces zebrafish developmental neurotoxicity through pathways involved in inflammation, oxidative stress, degeneration and apoptosis.
Collapse
Affiliation(s)
- Xiao-Yu Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, PR China; Hunter Biotechnology, Inc, F1A, Building 5, No. 88 Jiangling Road, Binjiang, Zone, Hangzhou City, Zhejiang Province 310051, PR China
| | - Yu-Ying Wu
- Hunter Biotechnology, Inc, F1A, Building 5, No. 88 Jiangling Road, Binjiang, Zone, Hangzhou City, Zhejiang Province 310051, PR China
| | - Bo Xia
- Hunter Biotechnology, Inc, F1A, Building 5, No. 88 Jiangling Road, Binjiang, Zone, Hangzhou City, Zhejiang Province 310051, PR China
| | - Ming-Zhu Dai
- Hunter Biotechnology, Inc, F1A, Building 5, No. 88 Jiangling Road, Binjiang, Zone, Hangzhou City, Zhejiang Province 310051, PR China
| | - Yan-Feng Huang
- Hunter Biotechnology, Inc, F1A, Building 5, No. 88 Jiangling Road, Binjiang, Zone, Hangzhou City, Zhejiang Province 310051, PR China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, PR China
| | - Chun-Qi Li
- Hunter Biotechnology, Inc, F1A, Building 5, No. 88 Jiangling Road, Binjiang, Zone, Hangzhou City, Zhejiang Province 310051, PR China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, PR China.
| |
Collapse
|
17
|
Cima F. Spermatogenesis as a tool for staging gonad development in the gonochoric appendicularian Oikopleura dioica Fol 1872. Dev Biol 2019; 448:247-259. [PMID: 30213537 DOI: 10.1016/j.ydbio.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/02/2018] [Accepted: 09/05/2018] [Indexed: 01/23/2023]
Abstract
Oikopleura dioica, the only gonochoric species among appendicularians, has a spematozoon with a mid-piece and a conspicuous acrosome that, during fertilisation, undergoes a reaction forming an acrosomal process. To provide more insight into the spermatogenesis of a holoplanktonic tunicate species that completes its life cycle in three to five days, changes in the testis during individual growth have been examined. Spermatogenesis has been subdivided into seven stages based on ultrastructural features during the formation and organisation of the male gonad and the relationships between its macroscopic anatomy and the events of sperm differentiation. Gametes undergo highly synchronised differentiation due to the presence of widespread syncytial structures. Both meiosis and spermiogenesis are brief, and the passage from spermatocytes to spermatids involves a progressive segregation of the germ cells from the syncytial mass with the formation of large cytoplasmic bridges and volume reduction for nucleus compacting and cytoplasmic material changing. The nucleus is small and penetrated anteriorly by a complex acrosome and posteriorly by the distal centriole and part of the flagellum. In spermatids, the single, large mitochondrion appears laterally to the nucleus, and finally, in spermatozoa, it migrates into the mid-piece, wrapping the proximal portion of the axoneme. Because this mitochondrial position is reached only in the late phases of spermatogenesis, it suggests that appendicularians have derived oligopyrenic sperms in which the small nucleus results from adaptation to the assembly of numerous spermatozoa inside the narrow space of the testis compacted in the genital cavity. The formulation of a staging system of gonad development in a model tunicate species known for having the most compacted genome in chordates led to a comparison of histological observations with recent molecular data, improving the characterisation of its biology and life cycle in light of evolutionary implications.
Collapse
Affiliation(s)
- Francesca Cima
- Laboratory of Ascidian Biology, Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy.
| |
Collapse
|
18
|
Ferrández-Roldán A, Martí-Solans J, Cañestro C, Albalat R. Oikopleura dioica: An Emergent Chordate Model to Study the Impact of Gene Loss on the Evolution of the Mechanisms of Development. Results Probl Cell Differ 2019; 68:63-105. [PMID: 31598853 DOI: 10.1007/978-3-030-23459-1_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The urochordate Oikopleura dioica is emerging as a nonclassical animal model in the field of evolutionary developmental biology (a.k.a. evo-devo) especially attractive for investigating the impact of gene loss on the evolution of mechanisms of development. This is because this organism fulfills the requirements of an animal model (i.e., has a simple and accessible morphology, a short generation time and life span, and affordable culture in the laboratory and amenable experimental manipulation), but also because O. dioica occupies a key phylogenetic position to understand the diversification and origin of our own phylum, the chordates. During its evolution, O. dioica genome has suffered a drastic process of compaction, becoming the smallest known chordate genome, a process that has been accompanied by exacerbating amount of gene losses. Interestingly, however, despite the extensive gene losses, including entire regulatory pathways essential for the embryonic development of other chordates, O. dioica retains the typical chordate body plan. This unexpected situation led to the formulation of the so-called inverse paradox of evo-devo, that is, when a genetic diversity is able to maintain a phenotypic unity. This chapter reviews the biological features of O. dioica as a model animal, along with the current data on the evolution of its genes and genome. We pay special attention to the numerous examples of gene losses that have taken place during the evolution of this unique animal model, which is helping us to understand to which the limits of evo-devo can be pushed off.
Collapse
Affiliation(s)
- Alfonso Ferrández-Roldán
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Josep Martí-Solans
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cristian Cañestro
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ricard Albalat
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
19
|
Andreeßen C, Steinbüchel A. Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives. Appl Microbiol Biotechnol 2018; 103:143-157. [DOI: 10.1007/s00253-018-9483-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022]
|
20
|
Guo X, Zhang S, Lu S, Zheng B, Xie P, Chen J, Li G, Liu C, Wu Q, Cheng H, Sang N. Perfluorododecanoic acid exposure induced developmental neurotoxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:1018-1026. [PMID: 30029309 DOI: 10.1016/j.envpol.2018.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Perfluorododecanoic acid (PFDoA), an artificial perfluorochemical, has been widely distributed in different ambient media and has been reported to have the potential to cause developmental neurotoxicity. However, the specific mechanism is largely unknown. In the current study, zebrafish embryos were treated with 0, 0.24, 1.2, and 6 mg/L PFDoA for 120 h. Exposure to PFDoA causes serious decreases in hatching delay, body length, as well as decreased locomotor speed in zebrafish larvae. Additionally, the acetylcholine (ACh) content as well as acetylcholinesterase (AChE) activity were determined to be significantly downregulated in PFDoA treatment groups. The level of dopamine was upregulated significantly after treating with 1.2 and 6 mg/L of PFDoA. Gene expressions related to the nervous system development were also analyzed, with the exception of the gene mesencephalic astrocyte-derived neurotrophic factor (manf), which is upregulated in the 6 mg/L treatment group. All other genes were significantly downregulated in larvae in the PFDoA group in different degrees. In general, the results demonstrated that PFDoA exposure could result in the disruption of the cholinergic system, dopaminergic signaling, and the central nervous system.
Collapse
Affiliation(s)
- Xiaochun Guo
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Shengnan Zhang
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environment and Resource, Shanxi University, Taiyuan, 030006, China
| | - Shaoyong Lu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Binghui Zheng
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Houcheng Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
21
|
Torres-Águila NP, Martí-Solans J, Ferrández-Roldán A, Almazán A, Roncalli V, D'Aniello S, Romano G, Palumbo A, Albalat R, Cañestro C. Diatom bloom-derived biotoxins cause aberrant development and gene expression in the appendicularian chordate Oikopleura dioica. Commun Biol 2018; 1:121. [PMID: 30272001 PMCID: PMC6123688 DOI: 10.1038/s42003-018-0127-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
Investigating environmental hazards than could affect appendicularians is of prime ecological interest because they are among the most abundant components of the mesozooplankton. This work shows that embryo development of the appendicularian Oikopleura dioica is compromised by diatom bloom-derived biotoxins, even at concentrations in the same range as those measured after blooms. Developmental gene expression analysis of biotoxin-treated embryos uncovers an aberrant golf ball-like phenotype affecting morphogenesis, midline convergence, and tail elongation. Biotoxins induce a rapid upregulation of defensome genes, and considerable delay and silencing of zygotic transcription of developmental genes. Upon a possible future intensification of blooms associated with ocean warming and acidification, our work puts an alert on the potential impact that an increase of biotoxins may have on marine food webs, and points to defensome genes as molecular biosensors that marine ecologists could use to monitor the genetic stress of natural populations exposed to microalgal blooms.
Collapse
Affiliation(s)
- Nuria P Torres-Águila
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Josep Martí-Solans
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Alfonso Ferrández-Roldán
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Alba Almazán
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Vittoria Roncalli
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli, Italy
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli, Italy
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
22
|
Reporter Analyses Reveal Redundant Enhancers that Confer Robustness on Cis-Regulatory Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542081 DOI: 10.1007/978-981-10-7545-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Reporter analyses of Hox1 and Brachyury (Bra) genes have revealed examples of redundant enhancers that provide regulatory robustness. Retinoic acid (RA) activates through an RA-response element the transcription of Hox1 in the nerve cord of the ascidian Ciona intestinalis. We also found a weak RA-independent neural enhancer within the second intron of Hox1. The Hox1 gene in the larvacean Oikopleura dioica is also expressed in the nerve cord. The O. dioica genome, however, does not contain the RA receptor-encoding gene, and the expression of Hox1 has become independent of RA. We have found that the upstream sequence of the O. dioica Hox1 was able to activate reporter gene expression in the nerve cord of the C. intestinalis embryo, suggesting that an RA-independent regulatory system in the nerve cord might be common in larvaceans and ascidians. This RA-independent redundant regulatory system may have facilitated the Oikopleura ancestor losing RA signaling without an apparent impact on Hox1 expression domains. On the other hand, vertebrate Bra is expressed in the ventral mesoderm and notochord, whereas its ascidian ortholog is exclusively expressed in the notochord. Fibroblast growth factor (FGF) induces Bra in the ventral mesoderm in vertebrates, whereas it induces Bra in the notochord in ascidians. Disruption of the FGF signal does not completely silence Bra expression in ascidians, suggesting that FGF-dependent and independent enhancers might comprise a redundant regulatory system in ascidians. The existence of redundant enhancers, therefore, provides regulatory robustness that may facilitate the acquisition of new expression domains.
Collapse
|
23
|
Jiang L, Zhang M, Sang M, Ye M, Wu R. Evo-Devo-EpiR: a genome-wide search platform for epistatic control on the evolution of development. Brief Bioinform 2017; 18:754-760. [PMID: 27473062 DOI: 10.1093/bib/bbw062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 11/14/2022] Open
Abstract
Evo-devo is a theory proposed to study how phenotypes evolve by comparing the developmental processes of different organisms or the same organism experiencing changing environments. It has been recognized that nonallelic interactions at different genes or quantitative trait loci, known as epistasis, may play a pivotal role in the evolution of development, but it has proven difficult to quantify and elucidate this role into a coherent picture. We implement a high-dimensional genome-wide association study model into the evo-devo paradigm and pack it into the R-based Evo-Devo-EpiR, aimed at facilitating the genome-wide landscaping of epistasis for the diversification of phenotypic development. By analyzing a high-throughput assay of DNA markers and their pairs simultaneously, Evo-Devo-EpiR is equipped with a capacity to systematically characterize various epistatic interactions that impact on the pattern and timing of development and its evolution. Enabling a global search for all possible genetic interactions for developmental processes throughout the whole genome, Evo-Devo-EpiR provides a computational tool to illustrate a precise genotype-phenotype map at interface between epistasis, development and evolution.
Collapse
|
24
|
Ochi H, Kawaguchi A, Tanouchi M, Suzuki N, Kumada T, Iwata Y, Ogino H. Co-accumulation of cis-regulatory and coding mutations during the pseudogenization of the Xenopus laevis homoeologs six6.L and six6.S. Dev Biol 2017; 427:84-92. [PMID: 28501477 DOI: 10.1016/j.ydbio.2017.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 04/29/2017] [Accepted: 05/08/2017] [Indexed: 01/01/2023]
Abstract
Common models for the evolution of duplicated genes after genome duplication are subfunctionalization, neofunctionalization, and pseudogenization. Although the crucial roles of cis-regulatory mutations in subfunctionalization are well-documented, their involvement in pseudogenization and/or neofunctionalization remains unclear. We addressed this issue by investigating the evolution of duplicated homeobox genes, six6.L and six6.S, in the allotetraploid frog Xenopus laevis. Based on a comparative expression analysis, we observed similar eye-specific expression patterns for the two loci and their single ortholog in the ancestral-type diploid species Xenopus tropicalis. However, we detected lower levels of six6.S expression than six6.L expression. The six6.S enhancer sequence was more highly diverged from the orthologous enhancer of X. tropicalis than the six6.L enhancer, and showed weaker activity in a transgenic reporter assay. Based on a phylogenetic analysis of the protein sequences, we observed greater divergence between X. tropicalis Six6 and Six6.S than between X. tropicalis Six6 and Six6.L, and the observed mutations were reminiscent of a microphthalmia mutation in human SIX6. Misexpression experiments showed that six6.S has weaker eye-enlarging activity than six6.L, and targeted disruption of six6.L reduced the eye size more significantly than that of six6.S. These results suggest that enhancer attenuation stimulates the accumulation of hypomorphic coding mutations, or vice versa, in one duplicated gene copy and facilitates pseudogenization. We also underscore the value of the allotetraploid genome of X. laevis as a resource for studying latent pathogenic mutations.
Collapse
Affiliation(s)
- Haruki Ochi
- Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata Prefecture 990-9585, Japan
| | - Akane Kawaguchi
- Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Mikio Tanouchi
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Nanoka Suzuki
- Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata Prefecture 990-9585, Japan
| | - Tatsuki Kumada
- Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata Prefecture 990-9585, Japan
| | - Yui Iwata
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Hajime Ogino
- Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan; Amphibian Research Center, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
25
|
He X, Gao J, Dong T, Chen M, Zhou K, Chang C, Luo J, Wang C, Wang S, Chen D, Zhou Z, Tian Y, Xia Y, Wang X. Developmental Neurotoxicity of Methamidophos in the Embryo-Larval Stages of Zebrafish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 14:ijerph14010023. [PMID: 28036051 PMCID: PMC5295274 DOI: 10.3390/ijerph14010023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/20/2016] [Accepted: 12/26/2016] [Indexed: 12/02/2022]
Abstract
Methamidophos is a representative organophosphate insecticide. The knowledge of its developmental neurotoxicity is limited, especially for zebrafish in the early stages of their life. Four hour post-fertilization (hpf) zebrafish embryos were exposed to several environmentally relevant concentrations of methamidophos (0, 25, and 500 μg/L) for up to 72 hpf. Locomotor behavior was then studied in the zebrafish larvae at this timepoint. Acridine orange (AO) staining was carried out in the zebrafish larvae, and the mRNA levels of genes associated with neural development (mbp and syn2a) were analyzed by reverse transcription-polymerase chain reaction (RT-PCR). The number of escape responders for mechanical stimulation was significantly decreased in exposed groups. AO staining showed noticeable signs of apoptosis mainly in the brain. In addition, the mRNA levels of mbp and syn2a were both significantly down-regulated in exposed groups. Our study provides the first evidence that methamidophos exposure can cause developmental neurotoxicity in the early stages of zebrafish life, which may be caused by the effect of methamidophos on neurodevelopmental genes and the activation of cell apoptosis in the brain.
Collapse
Affiliation(s)
- Xiaowei He
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jiawei Gao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Tianyu Dong
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi 214002, China.
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Chunxin Chang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jia Luo
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Chao Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Shoulin Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Daozhen Chen
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi 214002, China.
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Ying Tian
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
26
|
Hensley MR, Chua RFM, Leung YF, Yang JY, Zhang G. Molecular Evolution of MDM1, a "Duplication-Resistant" Gene in Vertebrates. PLoS One 2016; 11:e0163229. [PMID: 27658201 PMCID: PMC5033493 DOI: 10.1371/journal.pone.0163229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 09/06/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The mouse double minute 1 (Mdm1) gene was first reported and cloned in mouse tumor cell lines as an oncogene candidate. Later, it was found that mutation of Mdm1 might cause age-related retinal degeneration 2 in mice by genetic linkage analysis. Additionally, the MDM1 protein was found to be expressed in the centrosomes, cilia, and the nucleus of multiciliated tracheal epithelial cells in mice. These observations suggest that MDM1 may have some basal functions in cell physiology. However, the evolutionary history of this gene and its expression during embryonic development remain largely unexplored. RESULTS Using molecular phylogenetic analysis, we found that the MDM1 gene encoded an evolutionarily conserved protein across all metazoans. We also found that the MDM1 gene was in a conserved synteny in vertebrates. In almost all the species that were analyzed, there was only one MDM1 gene based on current genome annotations. Since vertebrate genomes underwent two to three rounds of whole-genome duplications around the origin of the vertebrates, it is interesting that only one MDM1 ohnolog was retained. This observation implies that other MDM1 ohnologs were lost after the whole-genome duplications. Furthermore, using whole-mount in situ hybridization, we found that mdm1 was expressed in the forebrain, nephric ducts, and tail buds during zebrafish early embryonic development. CONCLUSION MDM1 is an evolutionary conserved gene, and its homologous genes can be traced back to basal metazoan lineages. In vertebrates, the MDM1 gene is in a conserved synteny and there is only one MDM1 ohnolog suggesting it is a "duplication-resistant" gene. Its expression patterns in early zebrafish embryos indicate that mdm1 may play important roles in the development of the central nervous system, kidneys, and hematopoietic system.
Collapse
Affiliation(s)
- Monica R. Hensley
- Department of Comparative Pathobiology, Purdue University. West Lafayette, Indiana, United States of America
| | - Rhys F. M. Chua
- Department of Comparative Pathobiology, Purdue University. West Lafayette, Indiana, United States of America
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University. West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University. West Lafayette, Indiana, United States of America
| | - Jer-Yen Yang
- Department of Basic Medical Sciences, Purdue University. West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research. West Lafayette, Indiana, United States of America
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University. West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University. West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research. West Lafayette, Indiana, United States of America
- Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University. West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
27
|
Novel O-GlcNAcylation on Ser(40) of canonical H2A isoforms specific to viviparity. Sci Rep 2016; 6:31785. [PMID: 27615797 PMCID: PMC5018834 DOI: 10.1038/srep31785] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Abstract
We report here newly discovered O-linked-N-acetylglucosamine (O-GlcNAc) modification of histone H2A at Ser40 (H2AS40Gc). The mouse genome contains 18 H2A isoforms, of which 13 have Ser40 and the other five have Ala40. The combination of production of monoclonal antibody and mass spectrometric analyses with reverse-phase (RP)-high performance liquid chromatography (HPLC) fractionation indicated that the O-GlcNAcylation is specific to the Ser40 isoforms. The H2AS40Gc site is in the L1 loop structure where two H2A molecules interact in the nucleosome. Targets of H2AS40Gc are distributed genome-wide and are dramatically changed during the process of differentiation in mouse trophoblast stem cells. In addition to the mouse, H2AS40Gc was also detected in humans, macaques and cows, whereas non-mammalian species possessing only the Ala40 isoforms, such as silkworms, zebrafish and Xenopus showed no signal. Genome database surveys revealed that Ser40 isoforms of H2A emerged in Marsupialia and persisted thereafter in mammals. We propose that the emergence of H2A Ser40 and its O-GlcNAcylation linked a genetic event to genome-wide epigenetic events that correlate with the evolution of placental animals.
Collapse
|
28
|
Martí-Solans J, Belyaeva OV, Torres-Aguila NP, Kedishvili NY, Albalat R, Cañestro C. Coelimination and Survival in Gene Network Evolution: Dismantling the RA-Signaling in a Chordate. Mol Biol Evol 2016; 33:2401-16. [PMID: 27406791 DOI: 10.1093/molbev/msw118] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The bloom of genomics is revealing gene loss as a pervasive evolutionary force generating genetic diversity that shapes the evolution of species. Outside bacteria and yeast, however, the understanding of the process of gene loss remains elusive, especially in the evolution of animal species. Here, using the dismantling of the retinoic acid metabolic gene network (RA-MGN) in the chordate Oikopleura dioica as a case study, we combine approaches of comparative genomics, phylogenetics, biochemistry, and developmental biology to investigate the mutational robustness associated to biased patterns of gene loss. We demonstrate the absence of alternative pathways for RA-synthesis in O. dioica, which suggests that gene losses of RA-MGN were not compensated by mutational robustness, but occurred in a scenario of regressive evolution. In addition, the lack of drastic phenotypic changes associated to the loss of RA-signaling provides an example of the inverse paradox of Evo-Devo. This work illustrates how the identification of patterns of gene coelimination-in our case five losses (Rdh10, Rdh16, Bco1, Aldh1a, and Cyp26)-is a useful strategy to recognize gene network modules associated to distinct functions. Our work also illustrates how the identification of survival genes helps to recognize neofunctionalization events and ancestral functions. Thus, the survival and extensive duplication of Cco and RdhE2 in O. dioica correlated with the acquisition of complex compartmentalization of expression domains in the digestive system and a process of enzymatic neofunctionalization of the Cco, while the surviving Aldh8 could be related to its ancestral housekeeping role against toxic aldehydes.
Collapse
Affiliation(s)
- Josep Martí-Solans
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama-Birmingham
| | - Nuria P Torres-Aguila
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama-Birmingham
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Abstract
The recent increase in genomic data is revealing an unexpected perspective of gene loss as a pervasive source of genetic variation that can cause adaptive phenotypic diversity. This novel perspective of gene loss is raising new fundamental questions. How relevant has gene loss been in the divergence of phyla? How do genes change from being essential to dispensable and finally to being lost? Is gene loss mostly neutral, or can it be an effective way of adaptation? These questions are addressed, and insights are discussed from genomic studies of gene loss in populations and their relevance in evolutionary biology and biomedicine.
Collapse
|
30
|
Ashapkin VV, Kutueva LI, Vanyushin BF. Dnmt2 is the most evolutionary conserved and enigmatic cytosine DNA methyltransferase in eukaryotes. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416030029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Yang KY, Chen Y, Zhang Z, Ng PKS, Zhou WJ, Zhang Y, Liu M, Chen J, Mao B, Tsui SKW. Transcriptome analysis of different developmental stages of amphioxus reveals dynamic changes of distinct classes of genes during development. Sci Rep 2016; 6:23195. [PMID: 26979494 PMCID: PMC4793263 DOI: 10.1038/srep23195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/29/2016] [Indexed: 01/05/2023] Open
Abstract
Vertebrates diverged from other chordates approximately 500 million years ago and have adopted several modifications of developmental processes. Amphioxus is widely used in evolutionary developmental biology research, such as on the basic patterning mechanisms involved in the chordate body plan and the origin of vertebrates. The fast development of next-generation sequencing has advanced knowledge of the genomic organization of amphioxus; however, many aspects of gene regulation during amphioxus development have not been fully characterized. In this study, we applied high-throughput sequencing on the transcriptomes of 13 developmental stages of Chinese amphioxus to gain a comprehensive understanding of transcriptional processes occurring from the fertilized egg to the adult stage. The expression levels of 3,423 genes were significantly changed (FDR ≤ 0.01). All of these genes were included in a clustering analysis, and enrichment of biological functions associated with these clusters was determined. Significant changes were observed in several important processes, including the down-regulation of the cell cycle and the up-regulation of translation. These results should build a foundation for identifying developmentally important genes, especially those regulatory factors involved in amphioxus development, and advance understanding of the developmental dynamics in vertebrates.
Collapse
Affiliation(s)
- Kevin Yi Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Chen
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina, USA
| | - Zuming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Patrick Kwok-Shing Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wayne Junwei Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yinfeng Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Minghua Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junyuan Chen
- Nanjing Institute of Paleontology and Geology, Chinese Academy of Sciences, Nanjing, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
32
|
Regeneration: Lessons from the Lizard. INNOVATIONS IN MOLECULAR MECHANISMS AND TISSUE ENGINEERING 2016. [DOI: 10.1007/978-3-319-44996-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Sadier A, Lambert E, Chevret P, Décimo D, Sémon M, Tohmé M, Ruggiero F, Ohlmann T, Pantalacci S, Laudet V. Tinkering signaling pathways by gain and loss of protein isoforms: the case of the EDA pathway regulator EDARADD. BMC Evol Biol 2015; 15:129. [PMID: 26134525 PMCID: PMC4489351 DOI: 10.1186/s12862-015-0395-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 05/29/2015] [Indexed: 11/19/2022] Open
Abstract
Background Only a handful of signaling pathways are major actors of development and responsible for both the conservation and the diversification of animal morphologies. To explain this twofold nature, gene duplication and enhancer evolution were predominantly put forth as tinkering mechanisms whereas the evolution of alternative isoforms has been, so far, overlooked. We investigate here the role of gain and loss of isoforms using Edaradd, a gene of the Ecodysplasin pathway, implicated in morphological evolution. A previous study had suggested a scenario of isoform gain and loss with an alternative isoform (A) newly gained in mammals but secondarily lost in mouse lineage. Results For a comprehensive view of A and B Edaradd isoforms history during mammal evolution, we obtained sequences for both isoforms in representative mammals and performed in vitro translations to support functional predictions. We showed that the ancestral B isoform is well conserved, whereas the mammal-specific A isoform was lost at least 7 times independently in terminal lineages throughout mammal phylogeny. Then, to gain insights into the functional relevance of this evolutionary pattern, we compared the biological function of these isoforms: i) In cellulo promoter assays showed that they are transcribed from two alternative promoters, only B exhibiting feedback regulation. ii) RT-PCR in various tissues and ENCODE data suggested that B isoform is systematically expressed whereas A isoform showed a more tissue-specific expression. iii) Both isoforms activated the NF-κB pathway in an in cellulo reporter assay, albeit at different levels and with different dynamics since A isoform exhibited feedback regulation at the protein level. Finally, only B isoform could rescue a zebrafish edaradd knockdown. Conclusions These results suggest that the newly evolved A isoform enables modulating EDA signaling in specific conditions and with different dynamics. We speculate that during mammal diversification, A isoform regulation may have evolved rapidly, accompanying and possibly supporting the diversity of ectodermal appendages, while B isoform may have ensured essential roles. This study makes the case to pay greater attention to mosaic loss of evolutionarily speaking “young” isoforms as an important mechanism underlying phenotypic diversity and not simply as a manifestation of neutral evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0395-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexa Sadier
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242 du CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| | - Elise Lambert
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242 du CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| | - Pascale Chevret
- Laboratoire de Biométrie et Biologie Évolutive, CNRS UMR5558, Université de Lyon, Universite Claude Bernard Lyon 1, Villeurbanne, France.
| | - Didier Décimo
- CIRI, International Center for Infectiology Research, Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France.
| | - Marie Sémon
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242 du CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| | - Marie Tohmé
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242 du CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242 du CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| | - Théophile Ohlmann
- CIRI, International Center for Infectiology Research, Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France.
| | - Sophie Pantalacci
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242 du CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242 du CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| |
Collapse
|
34
|
Lineage-specific loss of FGF17 within the avian orders Galliformes and Passeriformes. Gene 2015; 563:180-9. [PMID: 25791492 DOI: 10.1016/j.gene.2015.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 01/05/2023]
Abstract
The genomic and developmental complexity of vertebrates is commonly attributed to two rounds of whole genome duplications which occurred at the base of the vertebrate radiation. These duplications led to the rise of several, multi-gene families of developmental proteins like the fibroblast growth factors (FGFs); a signaling protein family which functions at various stages of embryonic development. One of the major FGF assemblages arising from these duplications is the FGF8 subfamily, which includes FGF8, FGF17, and FGF18 in tetrapods. While FGF8 and FGF18 are found in all tetrapods and are critical for embryonic survival, genomic analyses suggest putative loss of FGF17 in various lineages ranging from frogs and fish, to the chicken. This study utilizes 27 avian genomes in conjunction with molecular analyses of chicken embryos to confirm the loss of FGF17 in chicken as a true, biological occurrence. FGF17 is also missing in the turkey, black grouse, Japanese quail and northern bobwhite genomes. These species, along with chicken, form a monophyletic clade in the order Galliformes. Four additional species, members of the clade Passeroidea, within the order Passeriformes, are also missing FGF17. Additionally, analysis of intact FGF17 in other avian lineages reveals that it is still under strong purifying selection, despite being seemingly dispensable. Thus, FGF17 likely represents a molecular spandrel arising from a genome duplication event and due to its high connectivity with FGF8/FGF18, and potential for interference with their function, is retained under strong purifying selection, despite itself not having a strong selective advantage.
Collapse
|
35
|
How consistent are the transcriptome changes associated with cold acclimation in two species of the Drosophila virilis group? Heredity (Edinb) 2015; 115:13-21. [PMID: 25669607 DOI: 10.1038/hdy.2015.6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 01/21/2023] Open
Abstract
For many organisms the ability to cold acclimate with the onset of seasonal cold has major implications for their fitness. In insects, where this ability is widespread, the physiological changes associated with increased cold tolerance have been well studied. Despite this, little work has been done to trace changes in gene expression during cold acclimation that lead to an increase in cold tolerance. We used an RNA-Seq approach to investigate this in two species of the Drosophila virilis group. We found that the majority of genes that are differentially expressed during cold acclimation differ between the two species. Despite this, the biological processes associated with the differentially expressed genes were broadly similar in the two species. These included: metabolism, cell membrane composition, and circadian rhythms, which are largely consistent with previous work on cold acclimation/cold tolerance. In addition, we also found evidence of the involvement of the rhodopsin pathway in cold acclimation, a pathway that has been recently linked to thermotaxis. Interestingly, we found no evidence of differential expression of stress genes implying that long-term cold acclimation and short-term stress response may have a different physiological basis.
Collapse
|
36
|
Evidence of compositional and ultrastructural shifts during the development of calcareous tubes in the biofouling tubeworm, Hydroides elegans. J Struct Biol 2015; 189:230-7. [PMID: 25600412 DOI: 10.1016/j.jsb.2015.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 11/22/2022]
Abstract
The serpulid tubeworm, Hydroides elegans, is an ecologically and economically important species whose biology has been fairly well studied, especially in the context of larval development and settlement on man-made objects (biofouling). Nevertheless, ontogenetic changes associated with calcareous tube composition and structures have not yet been studied. Here, the ultrastructure and composition of the calcareous tubes built by H. elegans was examined in the three early calcifying juvenile stages and in the adult using XRD, FTIR, ICP-OES, SEM and Raman spectroscopy. Ontogenetic shifts in carbonate mineralogy were observed, for example, juvenile tubes contained more amorphous calcium carbonate and were predominantly aragonitic whereas adult tubes were bimineralic with considerably more calcite. The mineral composition gradually shifted during the tube development as shown by a decrease in Sr/Ca and an increase of Mg/Ca ratios with the tubeworm's age. The inner tube layer contained calcite, whereas the outer layer contained aragonite. Similarly, the tube complexity in terms of ultrastructure was associated with development. The sequential appearance of unoriented ultrastructures followed by oriented ultrastructures may reflect the evolutionary history of serpulid tube biominerals. As aragonitic structures are more susceptible to dissolution under ocean acidification (OA) conditions but are more difficult to be removed by anti-fouling treatments, the early developmental stages of the tubeworms may be vulnerable to OA but act as the important target for biofouling control.
Collapse
|
37
|
Evolutionary Developmental Biology and the Limits of Philosophical Accounts of Mechanistic Explanation. HISTORY, PHILOSOPHY AND THEORY OF THE LIFE SCIENCES 2015. [DOI: 10.1007/978-94-017-9822-8_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Vassalli QA, Anishchenko E, Caputi L, Sordino P, D'Aniello S, Locascio A. Regulatory elements retained during chordate evolution: Coming across tunicates. Genesis 2014; 53:66-81. [DOI: 10.1002/dvg.22838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Quirino Attilio Vassalli
- Cellular and Developmental Biology Laboratory; Stazione Zoologica Anton Dohrn; Villa Comunale Naples Italy
| | - Evgeniya Anishchenko
- Cellular and Developmental Biology Laboratory; Stazione Zoologica Anton Dohrn; Villa Comunale Naples Italy
| | - Luigi Caputi
- Cellular and Developmental Biology Laboratory; Stazione Zoologica Anton Dohrn; Villa Comunale Naples Italy
| | - Paolo Sordino
- Cellular and Developmental Biology Laboratory; Stazione Zoologica Anton Dohrn; Villa Comunale Naples Italy
- CNR ISAFOM, Institute for Agricultural and Forest Systems in the Mediterranean, Unitá organizzativa di supporto; Catania Italy
| | - Salvatore D'Aniello
- Cellular and Developmental Biology Laboratory; Stazione Zoologica Anton Dohrn; Villa Comunale Naples Italy
| | - Annamaria Locascio
- Cellular and Developmental Biology Laboratory; Stazione Zoologica Anton Dohrn; Villa Comunale Naples Italy
| |
Collapse
|
39
|
Pantalacci S, Sémon M. Transcriptomics of developing embryos and organs: A raising tool for evo-devo. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:363-71. [PMID: 25387424 DOI: 10.1002/jez.b.22595] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/19/2014] [Indexed: 12/12/2022]
Abstract
Comparative transcriptomics has become an important tool for revisiting many evo-devo questions and exploring new ones, and its importance is likely to increase in the near future, partly because RNA-seq data open many new possibilities. The aim of this opinion piece is twofold. In the first section, we discuss the particularities of transcriptomic studies in evo-devo, focusing mainly on RNA-seq data. The preliminary processing steps (getting coding sequences as well as expression levels) are challenging, because many studied species do not have a sequenced genome. The next step (interpreting expression differences) is also challenging, due to several issues with interpreting expression levels in complex tissues, managing developmental stages and species heterochronies, and the problem of conceptualizing expression differences. In the second section, we discuss some past and possible future applications of transcriptomic approaches (using microarray or RNA-seq) to three major themes in evo-devo: the evolution of the developmental toolkit, the genetic and developmental basis for phenotypic changes, and the general rules of the evolution of development. We believe that conceptual and technical tools are necessary in order to fully exploit the richness of multispecies transcriptomic time-series data.
Collapse
Affiliation(s)
- Sophie Pantalacci
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Université Lyon 1, CNRS, École Normale Supérieure de Lyon, Lyon, France
| | - Marie Sémon
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Université Lyon 1, CNRS, École Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
40
|
Martí-Solans J, Ferrández-Roldán A, Godoy-Marín H, Badia-Ramentol J, Torres-Aguila NP, Rodríguez-Marí A, Bouquet JM, Chourrout D, Thompson EM, Albalat R, Cañestro C. Oikopleura dioicaculturing made easy: A Low-Cost facility for an emerging animal model in EvoDevo. Genesis 2014; 53:183-93. [DOI: 10.1002/dvg.22800] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Josep Martí-Solans
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona 08028 Spain
| | - Alfonso Ferrández-Roldán
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona 08028 Spain
| | - Hector Godoy-Marín
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona 08028 Spain
| | - Jordi Badia-Ramentol
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona 08028 Spain
| | - Nuria P. Torres-Aguila
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona 08028 Spain
| | - Adriana Rodríguez-Marí
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona 08028 Spain
| | - Jean Marie Bouquet
- Sars International Centre for Marine Molecular Biology; University of Bergen; N-5008 Bergen Bergen Norway
- Department of Biology; University of Bergen; Postbox 7803 N-5020 Bergen Norway
| | - Daniel Chourrout
- Sars International Centre for Marine Molecular Biology; University of Bergen; N-5008 Bergen Bergen Norway
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology; University of Bergen; N-5008 Bergen Bergen Norway
- Department of Biology; University of Bergen; Postbox 7803 N-5020 Bergen Norway
| | - Ricard Albalat
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona 08028 Spain
| | - Cristian Cañestro
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona 08028 Spain
| |
Collapse
|
41
|
Sun L, Ye M, Hao H, Wang N, Wang Y, Cheng T, Zhang Q, Wu R. A model framework for identifying genes that guide the evolution of heterochrony. Mol Biol Evol 2014; 31:2238-47. [PMID: 24817546 DOI: 10.1093/molbev/msu156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heterochrony, the phylogenic change in the time of developmental events or rate of development, has been thought to play an important role in producing phenotypic novelty during evolution. Increasing evidence suggests that specific genes are implicated in heterochrony, guiding the process of developmental divergence, but no quantitative models have been instrumented to map such heterochrony genes. Here, we present a computational framework for genetic mapping by which to characterize and locate quantitative trait loci (QTLs) that govern heterochrony described by four parameters, the timing of the inflection point, the timing of maximum acceleration of growth, the timing of maximum deceleration of growth, and the length of linear growth. The framework was developed from functional mapping, a dynamic model derived to map QTLs for the overall process and pattern of development. By integrating an optimality algorithm, the framework allows the so-called heterochrony QTLs (hQTLs) to be tested and quantified. Specific pipelines are given for testing how hQTLs control the onset and offset of developmental events, the rate of development, and duration of a particular developmental stage. Computer simulation was performed to examine the statistical properties of the model and demonstrate its utility to characterize the effect of hQTLs on population diversification due to heterochrony. By analyzing a genetic mapping data in rice, the framework identified an hQTL that controls the timing of maximum growth rate and duration of linear growth stage in plant height growth. The framework provides a tool to study how genetic variation translates into phenotypic innovation, leading a lineage to evolve, through heterochrony.
Collapse
Affiliation(s)
- Lidan Sun
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Meixia Ye
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Han Hao
- Center for Statistical Genetics, The Pennsylvania State University
| | - Ningtao Wang
- Center for Statistical Genetics, The Pennsylvania State University
| | - Yaqun Wang
- Center for Statistical Genetics, The Pennsylvania State University
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, ChinaCenter for Statistical Genetics, The Pennsylvania State University
| |
Collapse
|
42
|
Hernández-Hernández V, Rueda D, Caballero L, Alvarez-Buylla ER, Benítez M. Mechanical forces as information: an integrated approach to plant and animal development. FRONTIERS IN PLANT SCIENCE 2014; 5:265. [PMID: 24959170 PMCID: PMC4051191 DOI: 10.3389/fpls.2014.00265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/21/2014] [Indexed: 05/04/2023]
Abstract
Mechanical forces such as tension and compression act throughout growth and development of multicellular organisms. These forces not only affect the size and shape of the cells and tissues but are capable of modifying the expression of genes and the localization of molecular components within the cell, in the plasma membrane, and in the plant cell wall. The magnitude and direction of these physical forces change with cellular and tissue properties such as elasticity. Thus, mechanical forces and the mesoscopic fields that emerge from their local action constitute important sources of positional information. Moreover, physical and biochemical processes interact in non-linear ways during tissue and organ growth in plants and animals. In this review we discuss how such mechanical forces are generated, transmitted, and sensed in these two lineages of multicellular organisms to yield long-range positional information. In order to do so we first outline a potentially common basis for studying patterning and mechanosensing that relies on the structural principle of tensegrity, and discuss how tensegral structures might arise in plants and animals. We then provide some examples of morphogenesis in which mechanical forces appear to act as positional information during development, offering a possible explanation for ubiquitous processes, such as the formation of periodic structures. Such examples, we argue, can be interpreted in terms of tensegral phenomena. Finally, we discuss the hypothesis of mechanically isotropic points as a potentially generic mechanism for the localization and maintenance of stem-cell niches in multicellular organisms. This comparative approach aims to help uncovering generic mechanisms of morphogenesis and thus reach a better understanding of the evolution and development of multicellular phenotypes, focusing on the role of physical forces in these processes.
Collapse
Affiliation(s)
- Valeria Hernández-Hernández
- Instituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Denisse Rueda
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Lorena Caballero
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Departamento de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Elena R. Alvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Mariana Benítez
- Instituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- *Correspondence: Mariana Benítez, Laboratorio Nacional de Ciencias de la Sostenibilidad, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, México City 04350, Mexico e-mail:
| |
Collapse
|
43
|
Wissler L, Gadau J, Simola DF, Helmkampf M, Bornberg-Bauer E. Mechanisms and dynamics of orphan gene emergence in insect genomes. Genome Biol Evol 2013; 5:439-55. [PMID: 23348040 PMCID: PMC3590893 DOI: 10.1093/gbe/evt009] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Orphan genes are defined as genes that lack detectable similarity to genes in other species and therefore no clear signals of common descent (i.e., homology) can be inferred. Orphans are an enigmatic portion of the genome because their origin and function are mostly unknown and they typically make up 10% to 30% of all genes in a genome. Several case studies demonstrated that orphans can contribute to lineage-specific adaptation. Here, we study orphan genes by comparing 30 arthropod genomes, focusing in particular on seven recently sequenced ant genomes. This setup allows analyzing a major metazoan taxon and a comparison between social Hymenoptera (ants and bees) and nonsocial Diptera (flies and mosquitoes). First, we find that recently split lineages undergo accelerated genomic reorganization, including the rapid gain of many orphan genes. Second, between the two insect orders Hymenoptera and Diptera, orphan genes are more abundant and emerge more rapidly in Hymenoptera, in particular, in leaf-cutter ants. With respect to intragenomic localization, we find that ant orphan genes show little clustering, which suggests that orphan genes in ants are scattered uniformly over the genome and between nonorphan genes. Finally, our results indicate that the genetic mechanisms creating orphan genes—such as gene duplication, frame-shift fixation, creation of overlapping genes, horizontal gene transfer, and exaptation of transposable elements—act at different rates in insects, primates, and plants. In Formicidae, the majority of orphan genes has their origin in intergenic regions, pointing to a high rate of de novo gene formation or generalized gene loss, and support a recently proposed dynamic model of frequent gene birth and death.
Collapse
Affiliation(s)
- Lothar Wissler
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | | | | | | | | |
Collapse
|
44
|
Aromatic L-amino acid decarboxylase (AADC) is crucial for brain development and motor functions. PLoS One 2013; 8:e71741. [PMID: 23940784 PMCID: PMC3734303 DOI: 10.1371/journal.pone.0071741] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/02/2013] [Indexed: 01/01/2023] Open
Abstract
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc), in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf) zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO) reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos). Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children.
Collapse
|
45
|
Chen L, Huang Y, Huang C, Hu B, Hu C, Zhou B. Acute exposure to DE-71 causes alterations in visual behavior in zebrafish larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1370-1375. [PMID: 23400899 DOI: 10.1002/etc.2168] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/28/2012] [Accepted: 01/03/2013] [Indexed: 06/01/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) cause neurobehavioral toxicity, but their effects on visual behavior remain unknown. In the present study, the impact of PBDEs on visual behavior was examined using optokinetic responses and phototaxis in zebrafish larvae. Zebrafish embryos were exposed to pentabrominated diphenyl ethers mixture (DE-71) at concentrations of 0, 0.32, 3.58, and 31.0 µg/L until 15 d postfertilization. The authors then assessed photoreceptor opsin expression, retinal histology, and visual behavior of the larvae. The results showed that the transcriptions of the opsin genes, zfrho and zfgr1, were significantly upregulated. Western blotting further demonstrated a significant increase in rhodopsin protein expression after exposure of the larvae to DE-71. Histological examination revealed the following morphological alterations in the retina: increased area of inner nuclear layer, decreased area of inner plexiform layer, and decreased density of ganglion cells. Tests of optokinetic and phototactic behavior showed hyperactive responses on exposure to DE-71, including increased saccadic eye movements and phototactic response. The present study is the first to demonstrate that the acute exposure of zebrafish larvae to DE-71 causes biochemical and structural changes in the eye that lead to behavioral alterations. Analysis of these visual behavioral paradigms may be useful in predicting the adverse effects of toxicants on visual function in fish.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | | | |
Collapse
|
46
|
Marinić M, Aktas T, Ruf S, Spitz F. An integrated holo-enhancer unit defines tissue and gene specificity of the Fgf8 regulatory landscape. Dev Cell 2013; 24:530-42. [PMID: 23453598 DOI: 10.1016/j.devcel.2013.01.025] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 11/26/2012] [Accepted: 01/31/2013] [Indexed: 12/26/2022]
Abstract
Fgf8 encodes a key signaling factor, and its precise regulation is essential for embryo patterning. Here, we identified the regulatory modules that control Fgf8 expression during mammalian embryogenesis. These enhancers are interspersed with unrelated genes along a large region of 220 kb; yet they act on Fgf8 only. Intriguingly, this region also contains additional genuine enhancer activities that are not transformed into gene expression. Using genomic engineering strategies, we showed that these multiple and distinct regulatory modules act as a coherent unit and influence genes depending on their position rather than on their promoter sequence. These findings highlight how the structure of a locus regulates the autonomous intrinsic activities of the regulatory elements it contains and contributes to their tissue and target specificities. We discuss the implications of such regulatory systems regarding the evolution of gene expression and the impact of human genomic structural variations.
Collapse
Affiliation(s)
- Mirna Marinić
- Developmental Biology Unit, EMBL, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | | | | | | |
Collapse
|
47
|
Cañestro C, Albalat R, Irimia M, Garcia-Fernàndez J. Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates. Semin Cell Dev Biol 2013; 24:83-94. [DOI: 10.1016/j.semcdb.2012.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/25/2012] [Indexed: 02/06/2023]
|
48
|
Becker TS, Rinkwitz S. Zebrafish as a genomics model for human neurological and polygenic disorders. Dev Neurobiol 2012; 72:415-28. [PMID: 21465670 DOI: 10.1002/dneu.20888] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Whole exome sequencing and, to a lesser extent, genome-wide association studies, have provided unprecedented advances in identifying genes and candidate genomic regions involved in the development of human disease. Further progress will come from sequencing the entire genome of multiple patients and normal controls to evaluate overall mutational burden and disease risk. A major challenge will be the interpretation of the resulting data and distinguishing true pathogenic mutations from rare benign variants.While in model organisms such as the zebrafish,mutants are sought that disrupt the function of individual genes, human mutations that cause, or are associated with, the development of disease, are often not acting in a Mendelian fashion, are frequently of small effect size, are late onset, and may reside in noncoding parts of the genome. The zebrafish model is uniquely poised for understanding human coding- and noncoding variants because of its sequenced genome, a large body of knowledge on gene expression and function, rapid generation time, and easy access to embryos. A critical advantage is the ease of zebrafish transgenesis, both for the testing of human regulatory DNA driving expression of fluorescent reporter proteins, and the expression of mutated disease-associated human proteins in specific neurons to rapidly model aspects of neurological disorders. The zebrafish affords progress both through its model genome and it is rapidly developing transparent model vertebrate embryo.
Collapse
Affiliation(s)
- Thomas S Becker
- Sydney Medical School, University of Sydney, Camperdown, Australia.
| | | |
Collapse
|
49
|
Chen L, Yu K, Huang C, Yu L, Zhu B, Lam PKS, Lam JCW, Zhou B. Prenatal transfer of polybrominated diphenyl ethers (PBDEs) results in developmental neurotoxicity in zebrafish larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9727-9734. [PMID: 22866812 DOI: 10.1021/es302119g] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Parental exposure to polybrominated diphenyl ethers (PBDEs) in animals has been found to be transferred to the offspring. The environmental health risk and toxicity to the offspring are still unclear. The objective of the present study was to identify environmentally relevant concentrations of PBDEs for parental exposure that would cause developmental neurotoxicity in the offspring. Adult zebrafish were exposed to environmentally relevant concentrations of DE-71 (0.16, 0.8, 4.0 μg/L) via water. The results showed that PBDE exposure did not affect larvae hatching, malformation, or survival. The residue of PBDEs was detected in F1 eggs upon parental exposure. Acetylcholinesterase (AChE) activity was significantly inhibited in F1 larvae. Genes of central nervous system development (e.g., myelin basic protein, synapsin IIa, α1-tubulin) were significantly downregulated in larvae. Protein levels of α1-tubulin and synapsin IIa were also reduced. Decreased locomotion activity was observed in the larvae. This study provides the first evidence that parental exposure to environmentally relevant concentrations of PBDEs could cause adverse effects on neurodevelopment in zebrafish offspring.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Escalante AE, Inouye S, Travisano M. A spectrum of pleiotropic consequences in development due to changes in a regulatory pathway. PLoS One 2012; 7:e43413. [PMID: 22937047 PMCID: PMC3427377 DOI: 10.1371/journal.pone.0043413] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/20/2012] [Indexed: 01/29/2023] Open
Abstract
Regulatory evolution has frequently been proposed as the primary mechanism driving morphological evolution. This is because regulatory changes may be less likely to cause deleterious pleiotropic effects than changes in protein structure, and consequently have a higher likelihood to be beneficial. We examined the potential for mutations in trans acting regulatory elements to drive phenotypic change, and the predictability of such change. We approach these questions by the study of the phenotypic scope and size of controlled alteration in the developmental network of the bacterium Myxococcus xanthus. We perturbed the expression of a key regulatory gene (fruA) by constructing independent in-frame deletions of four trans acting regulatory loci that modify its expression. While mutants retained developmental capability, the deletions caused changes in the expression of fruA and a dramatic shortening of time required for completion of development. We found phenotypic changes in the majority of traits measured, indicating pleiotropic effects of changes in regulation. The magnitude of the change for different traits was variable but the extent of differences between the mutants and parental type were consistent with changes in fruA expression. We conclude that changes in the expression of essential regulatory regions of developmental networks may simultaneously lead to modest as well as dramatic morphological changes upon which selection may subsequently act.
Collapse
Affiliation(s)
- Ana E Escalante
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America.
| | | | | |
Collapse
|