1
|
Bates SA, Budowle B, Baker L, Mittelman K, Mittelman D. A molecular framework for enhancing quality control and sample integrity in forensic genome sequencing. Forensic Sci Int Genet 2025; 75:103179. [PMID: 39579652 DOI: 10.1016/j.fsigen.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
DNA typing is essential for identifying crime scene evidence and missing and unknown persons. Molecular tags historically have been incorporated into DNA typing reactions to improve result interpretation. Molecular tags like barcodes and unique identifiers are integral to MPS, aiding in sample tracking and error detection. However, these tags do not fully leverage sequence variation to enhance quality control. To address this need, molecular etches, which are synthetic oligonucleotides that serve as an internal molecular information management system, are introduced. Molecular etches encode detailed sample information improving sample workflow history, tracking, contamination detection, and authenticity verification. Validation studies demonstrate the robustness of molecular etches in genomic sequencing, making them a valuable quality tool for forensic DNA analysis.
Collapse
Affiliation(s)
| | - Bruce Budowle
- Othram Inc., The Woodlands, TX, USA; Department of Forensic Medicine, University of Helsinki, Finland; Forensic Science Institute, Radford University, Radford, VA, USA
| | | | | | | |
Collapse
|
2
|
Ouerghi F, Krane DE, Edge MD. On forensic likelihood ratios from low-coverage sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595821. [PMID: 38854110 PMCID: PMC11160658 DOI: 10.1101/2024.05.24.595821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Advances in sequencing technology are allowing forensic scientists to access genetic information from increasingly challenging samples. A recently published computational approach, IBDGem, analyzes sequencing reads, including from low-coverage samples, in order to arrive at likelihood ratios for human identification. Here, we show that likelihood ratios produced by IBDGem are best interpreted as testing a null hypothesis different from the traditional one used in a forensic genetics context. In particular, rather than testing the hypothesis that the sample comes from a person unrelated to the person of interest, IBDGem tests the hypothesis that the sample comes from an individual who is included in the reference database used to run the method. This null hypothesis is not generally of forensic interest, because the defense hypothesis is not typically that the evidence comes from an individual included in a reference database. Moreover, the computed likelihood ratios can be much larger than likelihood ratios computed for the standard forensic null hypothesis, often by many orders of magnitude, thus potentially creating an impression of stronger evidence for identity than is warranted. We lay out this result and illustrate it with examples, giving suggestions for directions that might lead to likelihood ratios that test the typical defense hypothesis.
Collapse
Affiliation(s)
- Feriel Ouerghi
- Department of Quantitative and Computational Biology, University of Southern California
| | - Dan E. Krane
- Department of Biological Sciences, Wright State University
| | - Michael D. Edge
- Department of Quantitative and Computational Biology, University of Southern California
| |
Collapse
|
3
|
Zhang X, Ji X, Wang L, Chi L, Li C, Wen S, Chen H. STRsensor: a computationally efficient method for STR allele-typing from massively parallel sequencing data. Brief Bioinform 2024; 26:bbae637. [PMID: 39665493 PMCID: PMC11635639 DOI: 10.1093/bib/bbae637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/16/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024] Open
Abstract
Short tandem repeats (STRs) represent one of the most polymorphic variations in the human genome, finding extensive applications in forensics, population genetics and medical genetics. In contrast to the traditional capillary electrophoresis (CE) method, genotyping STRs using massive parallel sequencing technology offers enhanced sensitivity and accuracy. However, current methods are mainly designed for target sequencing with higher coverage for a specific STR locus, thereby constraining the utility of STRs in low- and medium-coverage whole genome sequencing (WGS) data. Here, we introduce STRsensor, a method designed to type STR alleles in low-coverage WGS data and target sequencing data, achieving a significant high detection ratio and accuracy. STRsensor employs two methods for STR allele-typing: the Kmers-based method and the CIGAR-based method. Furthermore, by incorporating a model for PCR stutters, STRsensor greatly enhances the accuracy of STR allele typing. With simulation data, we demonstrate that STRsensor achieves a detection ratio of 100$\%$ and an accuracy of 99.37$\%$ for a 30$\times $ WGS data, outperforming the existing methods, such as STRait Razor, STRinNGS, and HipSTR. When applied to real target sequencing data from 687 individuals, STRsensor achieves a detection ratio of 99.64$\%$ and an accuracy of 99.99$\%$. Moreover, STRsensor is a computationally efficient method that runs 79 times faster than HipSTR and 10 000 times faster than STRinNGS. STRsensor is freely available on GitHub: https://github.com/ChenHuaLab/STRsensor.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianchao Ji
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingxiang Wang
- Institute of Archaeological Science, Fudan University, Shanghai 200032, China
| | - Lianjiang Chi
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Chengtao Li
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai 200032, China
| | - Hua Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650023, China
| |
Collapse
|
4
|
Armstrong EE, Mooney JA, Solari KA, Kim BY, Barsh GS, Grant VB, Greenbaum G, Kaelin CB, Panchenko K, Pickrell JK, Rosenberg N, Ryder OA, Yokoyama T, Ramakrishnan U, Petrov DA, Hadly EA. Unraveling the genomic diversity and admixture history of captive tigers in the United States. Proc Natl Acad Sci U S A 2024; 121:e2402924121. [PMID: 39298482 PMCID: PMC11441546 DOI: 10.1073/pnas.2402924121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/09/2024] [Indexed: 09/21/2024] Open
Abstract
Genomic studies of endangered species have primarily focused on describing diversity patterns and resolving phylogenetic relationships, with the overarching goal of informing conservation efforts. However, few studies have investigated genomic diversity housed in captive populations. For tigers (Panthera tigris), captive individuals vastly outnumber those in the wild, but their diversity remains largely unexplored. Privately owned captive tiger populations have remained an enigma in the conservation community, with some believing that these individuals are severely inbred, while others believe they may be a source of now-extinct diversity. Here, we present a large-scale genetic study of the private (non-zoo) captive tiger population in the United States, also known as "Generic" tigers. We find that the Generic tiger population has an admixture fingerprint comprising all six extant wild tiger subspecies. Of the 138 Generic individuals sequenced for the purpose of this study, no individual had ancestry from only one subspecies. We show that the Generic tiger population has a comparable amount of genetic diversity relative to most wild subspecies, few private variants, and fewer deleterious mutations. We observe inbreeding coefficients similar to wild populations, although there are some individuals within both the Generic and wild populations that are substantially inbred. Additionally, we develop a reference panel for tigers that can be used with imputation to accurately distinguish individuals and assign ancestry with ultralow coverage (0.25×) data. By providing a cost-effective alternative to whole-genome sequencing (WGS), the reference panel provides a resource to assist in tiger conservation efforts for both ex- and in situ populations.
Collapse
Affiliation(s)
| | - Jazlyn A Mooney
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | | | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Gregory S Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806
- Department of Genetics, School of Medine, Stanford University, Stanford, CA 94305
| | | | - Gili Greenbaum
- Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - Christopher B Kaelin
- Department of Genetics, School of Medine, Stanford University, Stanford, CA 94305
| | - Katya Panchenko
- Department of Biology, Stanford University, Stanford, CA 94305
| | | | - Noah Rosenberg
- Department of Biology, Stanford University, Stanford, CA 94305
| | | | - Tsuya Yokoyama
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA 94305
- Chan Zuckerberg BioHub, San Francisco, CA 94158
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Elizabeth A Hadly
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Earth System Science, Stanford University, Stanford, CA 94305
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305
- Center for Innovation in Global Health, Stanford University, Stanford, CA 94305
| |
Collapse
|
5
|
Ren Z, Zhang J, Zhang Y, Yang T, Sun P, Xue J, Bo X, Zhou B, Yan J, Ni M. NASTRA: accurate analysis of short tandem repeat markers by nanopore sequencing with repeat-structure-aware algorithm. Brief Bioinform 2024; 25:bbae472. [PMID: 39322627 PMCID: PMC11424183 DOI: 10.1093/bib/bbae472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
Short-tandem repeats (STRs) are the type of genetic markers extensively utilized in biomedical and forensic applications. Due to sequencing noise in nanopore sequencing, accurate analysis methods are lacking. We developed NASTRA, an innovative tool for Nanopore Autosomal Short Tandem Repeat Analysis, which overcomes traditional database-based methods' limitations and provides a precise germline analysis of STR genetic markers without the need for allele sequence reference. Demonstrating high accuracy in cell line authentication testing and paternity testing, NASTRA significantly surpasses existing methods in both speed and accuracy. This advancement makes it a promising solution for rapid cell line authentication and kinship testing, highlighting the potential of nanopore sequencing for in-field applications.
Collapse
Affiliation(s)
- Zilin Ren
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, No. 573 Yujinxiang Street, Jingyue District, Changchun 130012, China
- School of Information Science and Technology, Northeast Normal University, No. 2555 Jingyue Street, Jingyue District, Changchun 130117, China
| | - Jiarong Zhang
- School of Forensic Medicine, Shanxi Medical University, No. 55 Wenhua Street, Yuci District, Taiyuan 030001, China
| | - Yixiang Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, No. 573 Yujinxiang Street, Jingyue District, Changchun 130012, China
- School of Information Science and Technology, Northeast Normal University, No. 2555 Jingyue Street, Jingyue District, Changchun 130117, China
| | - Tingting Yang
- School of Forensic Medicine, Shanxi Medical University, No. 55 Wenhua Street, Yuci District, Taiyuan 030001, China
| | - Pingping Sun
- School of Information Science and Technology, Northeast Normal University, No. 2555 Jingyue Street, Jingyue District, Changchun 130117, China
| | - Jiguo Xue
- Advanced & Interdisciplinary Biotechnology, Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Xiaochen Bo
- Advanced & Interdisciplinary Biotechnology, Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Bo Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, No. 573 Yujinxiang Street, Jingyue District, Changchun 130012, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, No. 55 Wenhua Street, Yuci District, Taiyuan 030001, China
| | - Ming Ni
- Advanced & Interdisciplinary Biotechnology, Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| |
Collapse
|
6
|
Chen YC, Lin WD, Liu TY, Tsai FJ. Identification of the efficacy of parentage testing based on bi-allelic autosomal single nucleotide polymorphism markers in Taiwanese population. Forensic Sci Med Pathol 2024; 20:801-809. [PMID: 38347317 DOI: 10.1007/s12024-024-00790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 11/01/2024]
Abstract
Parentage testing is crucial for forensic DNA analysis, using short tandem repeats (STRs). Single nucleotide polymorphisms (SNPs) with high minor allele frequency (MAF) are promising for human identification. This study aimed to develop SNP markers for parentage testing in the Taiwanese population and compare their accuracy with STRs. The TPMv1 SNP microarray (714,457 SNPs) was used to screen 180,000 Taiwanese individuals and analyze the SNP data using PLINK. After quality control, allelic distribution, and MAF considerations, a set of SNPs with significant inheritance information was selected. Parentage testing was conducted on 355 single parent-child pairs using both STRs and SNPs, employing three kinship algorithms: identity by descent, kinship-based inference for genome-wide association studies, and the combined paternity index/probability of paternity (CPI/PP). An Affymetrix signature probe for kinship testing (ASP) was also used. Based on the quality control and selection criteria, 176 SNPs with MAF > 0.4995 were selected from the Taiwanese population. The CPI/PP results calculated using SNPs were consistent with the STR results. The accuracy of the SNPs used in the single-parent-child parentage testing was > 99.99%. The set of 176 SNPs had a higher identification rate in the single parent-child parentage test than in the ASP. The CPI/PP value calculated using 176 SNPs was also more accurate than that calculated using ASP. Our findings suggest that these 176 SNPs could be used for single-parent-child parentage identification in the Taiwanese population.
Collapse
Affiliation(s)
- Yu-Chia Chen
- Department of Medical Research, China Medical University Hospital, North District, No. 2, Yude Road, Taichung, 40447, Taiwan
| | - Wei-De Lin
- Department of Medical Research, China Medical University Hospital, North District, No. 2, Yude Road, Taichung, 40447, Taiwan
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung, 40447, Taiwan
| | - Ting-Yuan Liu
- Department of Medical Research, China Medical University Hospital, North District, No. 2, Yude Road, Taichung, 40447, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, North District, No. 2, Yude Road, Taichung, 40447, Taiwan.
- Department of Medical Genetics, China , Medical University Hospital, Taichung, 40447, Taiwan.
- Division of Genetics and Metabolism, China Medical University Children's Hospital, Taichung, 40447, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
7
|
Sequeira JJ, Panda M, Dixit S, Kumawat R, Mustak MS, Sharma AN, Chaubey G, Shrivastava P. Forensic Characterization, Genomic Variability and Ancestry Analysis of Six Populations from Odisha Using mtDNA SNPs and Autosomal STRs. Biochem Genet 2024:10.1007/s10528-024-10887-2. [PMID: 39039324 DOI: 10.1007/s10528-024-10887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Located on India's eastern coast, Odisha is known for its diverse tribes and castes. In the early days of genome sequencing technology, researchers primarily studied the Austroasiatic communities inhabiting this region to reconstruct the ancient origins and dispersal of this broad linguistic group. However, current research has shifted towards identifying population and individual-specific genome variation for forensic applications. This study aims to analyze the forensic efficiency and ancestry of six populations from Odisha. We assessed the SF mtDNA-SNP60™ PCR Amplification Kit by comparing it with PowerPlex® Fusion 6C System, a widely used autosomal STR (aSTR) kit, in an Indian cohort. Although the mtDNA SNP kit showed low discriminating power for individuals of a diverse population, it could identify deep lineage divergence. Also, we utilized mitochondrial and autosomal variation information to analyze the ancestry of six endogamous ethnic groups in Odisha. We observe two extremities-populations with higher West Asian affinity and those with East Asian affinity. This observation is in congruence with the existing information of their tribal and non-tribal affiliation. When compared with neighbouring populations from Central and Eastern India, multivariate analysis showed that the Brahmins clustered separately or with the Gopala, Kaibarta appeared as an intermediate, Pana and Kandha clustered with the Gonds, and Savara with the Munda tribes. Our findings indicate significant deep lineage stratification in the ethnic populations of Odisha and a gene flow from West and East Asia. The artefacts of unique deep lineage in such a diverse population will help in improving forensic identification. In addition, we conclude that the SF mtDNA-SNP60 PCR Amplification Kit may be used only as a supplementary tool for forensic analysis.
Collapse
Affiliation(s)
- Jaison Jeevan Sequeira
- Department of Applied Zoology, Mangalore University, Mangalagangothri, Mangalore, 574199, India
| | - Muktikanta Panda
- Department of Anthropology, Model Degree College, Malkangiri, Odisha, 764045, India
- Department of Anthropology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Shivani Dixit
- DNA Division, Central Forensic Science Laboratory, Chandigarh, 160036, India
| | - Ramkishan Kumawat
- DNA Division, State Forensic Science Laboratory, Jaipur, Rajasthan, India
| | - Mohammed S Mustak
- Department of Applied Zoology, Mangalore University, Mangalagangothri, Mangalore, 574199, India
| | - Awdhesh Narayan Sharma
- Department of Anthropology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Gyaneshwer Chaubey
- DNA Division, Central Forensic Science Laboratory, Chandigarh, 160036, India
- Department of Zoology, Banaras Hindu University (BHU), Varanasi, India
| | - Pankaj Shrivastava
- Department of Anthropology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India.
- Regional Forensic Science Laboratory, Government of MP, Gwalior, Madhya Pradesh, India.
| |
Collapse
|
8
|
Bukayev A, Gorin I, Aidarov B, Darmenov A, Balanovska E, Zhabagin M. Predictive accuracy of genetic variants for eye color in a Kazakh population using the IrisPlex system. BMC Res Notes 2024; 17:187. [PMID: 38970104 PMCID: PMC11227171 DOI: 10.1186/s13104-024-06856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
OBJECTIVE This study assesses the accuracy of the IrisPlex system, a genetic eye color prediction tool for forensic analysis, in the Kazakh population. The study compares previously published genotypes of 515 Kazakh individuals from varied geographical and ethnohistorical contexts with phenotypic data on their eye color, introduced for the first time in this research. RESULTS The IrisPlex panel's effectiveness in predicting eye color in the Kazakh population was validated. It exhibited slightly lower accuracy than in Western European populations but was higher than in Siberian populations. The sensitivity was notably high for brown-eyed individuals (0.99), but further research is needed for blue and intermediate eye colors. This study establishes IrisPlex as a useful predictive tool in the Kazakh population and provides a basis for future investigations into the genetic basis of phenotypic variations in this diverse population.
Collapse
Affiliation(s)
- Alizhan Bukayev
- National Center for Biotechnology, Astana, 010000, Kazakhstan
| | - Igor Gorin
- Research Centre for Medical Genetics, Moscow, 115522, Russia
| | - Baglan Aidarov
- National Center for Biotechnology, Astana, 010000, Kazakhstan
| | - Akynkali Darmenov
- Karaganda Academy of the Ministry of Internal Affairs of the Republic of Kazakhstan named after Barimbek Beisenov, Karaganda, 100000, Kazakhstan
| | | | - Maxat Zhabagin
- National Center for Biotechnology, Astana, 010000, Kazakhstan.
| |
Collapse
|
9
|
Kulhankova L, Bindels E, Kayser M, Mulugeta E. Deconvoluting multi-person biological mixtures and accurate characterization and identification of separated contributors using non-targeted single-cell DNA sequencing. Forensic Sci Int Genet 2024; 71:103030. [PMID: 38513339 DOI: 10.1016/j.fsigen.2024.103030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
The genetic characterization and identification of individuals who contributed to biological mixtures are complex and mostly unresolved tasks. These tasks are relevant in various fields, particularly in forensic investigations, which frequently encounters crime scene stains generated by more than one person. Currently, forensic mixture deconvolution is mostly performed subsequent to forensic DNA profiling at the level of the mixed DNA profiles, which comes with several limitations. Some previous studies attempted at separating single cells prior to forensic DNA profiling. However, these approaches are biased at selection of the cells and, due to their targeted DNA analysis on low template DNA, provide incomplete and unreliable forensic DNA profiles. We recently demonstrated the feasibility of performing mixture deconvolution prior to forensic DNA profiling through the utilization of a non-targeted single-cell transcriptome sequencing (scRNA-seq). In addition to individual-specific mixture deconvolution, this approach also allowed accurate characterisation of biological sex, biogeographic ancestry and individual identification of the separated mixture contributors. However, RNA has the forensic disadvantage of being prone to degradation, and sequencing RNA - focussing on coding regions - limits the number of single nucleotide polymorphisms (SNPs) utilized for genetic mixture deconvolution, characterization, and identification. These limitations can be overcome by performing single-cell sequencing on the level of DNA instead of RNA. Here, for the first time, we applied non-targeted single-cell DNA sequencing (scDNA-seq) by applying the scATAC-seq (Assay for Transposase-Accessible Chromatin with sequencing) technique to address the challenges of mixture deconvolution in the forensic context. We demonstrated that scATAC-seq, together with our recently developed De-goulash data analysis pipeline, is capable of deconvoluting complex blood mixtures of five individuals from both sexes with varying biogeographic ancestries. We further showed that our approach achieved correct genetic characterization of the biological sex and the biogeographic ancestry of each of the separated mixture contributors and established their identity. Furthermore, by analysing in-silico generated scATAC-seq data mixtures, we demonstrated successful individual-specific mixture deconvolution of i) highly complex mixtures of 11 individuals, ii) balanced mixtures containing as few as 20 cells (10 per each individual), and iii) imbalanced mixtures with a ratio as low as 1:80. Overall, our proof-of-principle study demonstrates the general feasibility of scDNA-seq in general, and scATAC-seq in particular, for mixture deconvolution, genetic characterization and individual identification of the separated mixture contributors. Furthermore, it shows that compared to scRNA-seq, scDNA-seq detects more SNPs from fewer cells, providing higher sensitivity, that is valuable in forensic genetics.
Collapse
Affiliation(s)
- Lucie Kulhankova
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Eric Bindels
- Department of Haematology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Eskeatnaf Mulugeta
- Department of Cell Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
10
|
Zhang H, Yang M, Zhang H, Ren Z, Wang Q, Liu Y, Jin X, Ji J, Feng Y, Cai C, Ran Q, Li C, Huang J. Forensic features and phylogenetic structure survey of four populations from southwest China via the autosomal insertion/deletion markers. Forensic Sci Res 2024; 9:owad052. [PMID: 38765700 PMCID: PMC11102079 DOI: 10.1093/fsr/owad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/09/2023] [Indexed: 05/22/2024] Open
Abstract
Insertion/Deletion (InDel) polymorphisms, characterized by their smaller amplicons, reduced mutation rates, and compatibility with the prevalent capillary electrophoresis (CE) platforms in forensic laboratories, significantly contribute to the advancement and application of genetic analysis. Guizhou province in China serves as an important region for investigating the genetic structure, ethnic group origins, and human evolution. However, DNA data and the sampling of present-day populations are lacking, especially about the InDel markers. Here, we reported data on 47 autosomal InDels from 592 individuals from four populations in Guizhou (Han, Dong, Yi, and Chuanqing). Genotyping was performed with the AGCU InDel 50 kit to evaluate their utility for forensic purposes and to explore the population genetic structure. Our findings showed no significant deviations from Hardy-Weinberg and linkage equilibriums. The combined power of discrimination (CPD) and the combined power of exclusion (CPE) for each population demonstrated that the kit could be applied to forensic individual identification and was an effective supplement for parentage testing. Genetic structure analyses, including principal component analysis, multidimensional scaling, genetic distance calculation, STRUCTURE, and phylogenetic analysis, highlighted that the genetic proximity of the studied populations correlates with linguistic, geographical, and cultural factors. The observed genetic variances within four research populations were less pronounced than those discerned between populations across different regions. Notably, the Guizhou Han, Dong, and Chuanqing populations showed closer genetic affiliations with linguistically similar groups than the Guizhou Yi. These results underscore the potential of InDel markers in forensic science and provide insights into the genetic landscape and human evolution in multi-ethnic regions like Guizhou. Key points InDel markers show promise for forensic individual identification and parentage testing via the AGCU InDel 50 kit.Genetic analysis of Guizhou populations reveals correlations with linguistic, geographical, and cultural factors.Guizhou Han, Dong, and Chuanqing populations showed closer genetic affiliations with linguistically similar groups than the Guizhou Yi.
Collapse
Affiliation(s)
- Han Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Institute of Forensic Science, Fudan University, Shanghai, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaoye Jin
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuhang Feng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Changsheng Cai
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qianchong Ran
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chengtao Li
- Institute of Forensic Science, Fudan University, Shanghai, China
| | - Jiang Huang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
11
|
Filoglu G, Duvenci A, Tas S, Karadayi H, Asicioglu F, Bulbul O. Development of a multiplex panel with 36 insertion/deletion markers (InDel) for individual identification. Forensic Sci Med Pathol 2024; 20:400-411. [PMID: 37266863 DOI: 10.1007/s12024-023-00652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
In recent years, the insertion/deletion (InDel) polymorphism has become a preferred genetic marker in forensic genetics due to its low mutation rates and small amplicon sizes. In this study, a 36-InDelplex identification panel, consisting of autosomal 34 InDel loci, 1 Y InDel locus, and amelogenin, was developed, and gene frequencies in the Turkish population were determined. The loci of the InDel panel with global minimum allele frequencies (MAF) ≥ 0.4 were selected from the 1000 Genomes Project Phase 3 data. The amplicon sizes of the loci were designed in the range of 69-252 bp. In the validation study of the developed panel, analysis threshold, dynamic range, sensitivity, stochastic threshold, inhibitor tolerance, and reproducibility parameters were studied by following the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines. The sensitivity studies indicated that complete and reliable InDel profiles could be obtained with 0.25 ng of DNA. A population study was evaluated using 250 samples from Turkey. The mean observed heterozygosity ratio (Ho) of all loci was 0.48. The combined discrimination power (CPD) is 0.999999999990867 and the combined exclusion probability (CPE) was 0.9930. The population comparison was also made using Turkish and the five major populations from the 1000 Genomes Phase 3 populations' data (Africa, Europe, East Asia, South Asia, and America). In conclusion, the results showed that the 36-InDelplex panel is a reliable, sensitive, and accurate system that is suitable for human identification and population genetics purposes.
Collapse
Affiliation(s)
- Gonul Filoglu
- Institute of Forensic Science and Legal Medicine, Istanbul University- Cerrahpasa, 34500, Istanbul, Turkey
| | - Arzu Duvenci
- Institute of Forensic Science and Legal Medicine, Istanbul University- Cerrahpasa, 34500, Istanbul, Turkey
| | - Sebahat Tas
- Institute of Forensic Science and Legal Medicine, Istanbul University- Cerrahpasa, 34500, Istanbul, Turkey
| | - Huseyin Karadayi
- Institute of Forensic Science and Legal Medicine, Istanbul University- Cerrahpasa, 34500, Istanbul, Turkey
| | - Faruk Asicioglu
- Institute of Forensic Science and Legal Medicine, Istanbul University- Cerrahpasa, 34500, Istanbul, Turkey
| | - Ozlem Bulbul
- Institute of Forensic Science and Legal Medicine, Istanbul University- Cerrahpasa, 34500, Istanbul, Turkey.
| |
Collapse
|
12
|
Zou X, Nie Q, Li W, Chen Y, Song T, Zhang P. Genetic variation and phylogenetic analysis of 23 STR in Chinese Han population from Hainan, Southern China. Medicine (Baltimore) 2024; 103:e38428. [PMID: 39259071 PMCID: PMC11142786 DOI: 10.1097/md.0000000000038428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 05/10/2024] [Indexed: 09/12/2024] Open
Abstract
The forensic characteristics and genetic relationships of Hainan Han population are still not fully understood. The aim of this study was to investigate the forensic features and genetic variations of 23 short tandem repeat (STR) included in the HuaxiaTM Platinum system in Hainan Han and analyze the population genetic relationships between Hainan Han and other adjacent Chinese populations. The genetic polymorphisms of 23 STR loci included in the HuaxiaTM Platinum kit were evaluated from 2971 Hainan Han individuals. Comprehensive comparisons were conducted based on genetic distance, phylogenetic tree, multidimensional scaling and principal component analysis (PCA) to explore inter-population genetic relationship. The combined power of discrimination (CPD) and the combined power of exclusion (CPE) of the 23 STR loci was 0.999 999 999 999 999 999 999 999 999 819 and 0.999 999 999 625 408, respectively. The investigated Hainan Han population has high genetic similarity with geographically close Han populations, while great genetic difference with other ethnic minorities, prominently in Yunnan Miao, Xinjiang Uygurs, Xinjiang Kazakh, and Tibetans. Our study found the 23 STR loci were highly polymorphic and suitable for forensic personal identification and paternity testing in Hainan Han population. Genetic similarity widely existed among Han populations from different regions, and significant genetic divergence existed between Han populations and some ethnic minorities. The populations genetic diversity and similarity were closely associated with ethnic origin and geographical distribution.
Collapse
Affiliation(s)
- Xing Zou
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Province Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, China
| | - Qianyun Nie
- Department of Pathology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenhui Li
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Province Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, China
| | - Yinyu Chen
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Province Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, China
| | - Tao Song
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Province Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, China
| | - Peng Zhang
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Province Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, China
| |
Collapse
|
13
|
Sessa F, Salerno M. Special Issue "Molecular Biology in Forensic Science: Past, Present and Future". Int J Mol Sci 2024; 25:2883. [PMID: 38474130 DOI: 10.3390/ijms25052883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Molecular biology has always represented an enviable tool in the fields of biosciences, diagnostics, and forensic sciences [...].
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy
| |
Collapse
|
14
|
Bukayev A, Aidarov B, Fesenko D, Saidamarova V, Ivanovsky I, Maltseva E, Naizabayeva D, Bukayeva A, Faizov B, Pylev V, Darmenov A, Skiba Y, Balanovska E, Zhabagin M. Genotype data for 60 SNP genetic markers associated with eye, hair, skin color, ABO blood group, sex, core Y-chromosome haplogroups in Kazakh population. BMC Res Notes 2024; 17:51. [PMID: 38369539 PMCID: PMC10874529 DOI: 10.1186/s13104-024-06712-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
OBJECTIVES The collection of genotype data was conducted as an essential part of a pivotal research project with the goal of examining the genetic variability of skin, hair, and iris color among the Kazakh population. The data has practical application in the field of forensic DNA phenotyping (FDA). Due to the limited size of forensic databases from Central Asia (Kazakhstan), it is practically impossible to obtain an individual identification result based on forensic profiling of short tandem repeats (STRs). However, the pervasive use of the FDA necessitates validation of the currently employed set of genetic markers in a variety of global populations. No such data existed for the Kazakhs. The Phenotype Expert kit (DNA Research Center, LLC, Russia) was used for the first time in this study to collect data. DATA DESCRIPTION The present study provides genotype data for a total of 60 SNP genetic markers, which were analyzed in a sample of 515 ethnic Kazakhs. The dataset comprises a total of 41 single nucleotide polymorphisms (SNPs) obtained from the HIrisPlex-S panel. Additionally, there are 4 SNPs specifically related to the AB0 gene, 1 marker associated with the AMELX/Y genes, and 14 SNPs corresponding to the primary haplogroups of the Y chromosome. The aforementioned data could prove valuable to researchers with an interest in investigating genetic variability and making predictions about phenotype based on eye color, hair color, skin color, AB0 blood group, gender, and biogeographic origin within the male lineage.
Collapse
Affiliation(s)
- Alizhan Bukayev
- National Center for Biotechnology, Astana, 010000, Republic of Kazakhstan
| | - Baglan Aidarov
- National Center for Biotechnology, Astana, 010000, Republic of Kazakhstan
| | - Denis Fesenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Viktoriya Saidamarova
- Karaganda Academy of the Ministry of Internal Affairs of the Republic of Kazakhstan Named After Barimbek Beisenov, Karaganda, 100000, Republic of Kazakhstan
| | | | - Elina Maltseva
- Almaty Branch of the National Center for Biotechnology, Almaty, 050054, Kazakhstan
- Tethys Scientific Society, Almaty, 050063, Kazakhstan
| | - Dinara Naizabayeva
- Almaty Branch of the National Center for Biotechnology, Almaty, 050054, Kazakhstan
| | - Ayagoz Bukayeva
- National Center for Biotechnology, Astana, 010000, Republic of Kazakhstan
| | - Bekzhan Faizov
- National Center for Biotechnology, Astana, 010000, Republic of Kazakhstan
| | - Vladimir Pylev
- Bochkov Research Centre of Medical Genetics, Moscow, 115522, Russia
| | - Akynkali Darmenov
- Karaganda Academy of the Ministry of Internal Affairs of the Republic of Kazakhstan Named After Barimbek Beisenov, Karaganda, 100000, Republic of Kazakhstan
| | - Yuriy Skiba
- Almaty Branch of the National Center for Biotechnology, Almaty, 050054, Kazakhstan
| | - Elena Balanovska
- Bochkov Research Centre of Medical Genetics, Moscow, 115522, Russia
| | - Maxat Zhabagin
- National Center for Biotechnology, Astana, 010000, Republic of Kazakhstan.
| |
Collapse
|
15
|
Ve K, R R, Cac P, A K, E T, Cc S, Ab O. Single Nucleotide Polymorphism (SNP) and Antibody-based Cell Sorting (SNACS): A tool for demultiplexing single-cell DNA sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579345. [PMID: 38370638 PMCID: PMC10871358 DOI: 10.1101/2024.02.07.579345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Motivation Recently, single-cell DNA sequencing (scDNA-seq) and multi-modal profiling with the addition of cell-surface antibodies (scDAb-seq) have provided key insights into cancer heterogeneity. Scaling these technologies across large patient cohorts, however, is cost and time prohibitive. Multiplexing, in which cells from unique patients are pooled into a single experiment, offers a possible solution. While multiplexing methods exist for scRNAseq, accurate demultiplexing in scDNAseq remains an unmet need. Results Here, we introduce SNACS: Single-Nucleotide Polymorphism (SNP) and Antibody-based Cell Sorting. SNACS relies on a combination of patient-level cell-surface identifiers and natural variation in genetic polymorphisms to demultiplex scDNAseq data. We demonstrated the performance of SNACS on a dataset consisting of multi-sample experiments from patients with leukemia where we knew truth from single-sample experiments from the same patients. Using SNACS, accuracy ranged from 0.948 - 0.991 vs 0.552 - 0.934 using demultiplexing methods from the single-cell literature.
Collapse
Affiliation(s)
- Kennedy Ve
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA, 94143
| | - Roy R
- Hellen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA, 94143
| | - Peretz Cac
- Hellen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA, 94143
- Division of Hematology and Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA, 94143
| | - Koh A
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA, 94143
| | - Tran E
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA, 94143
| | - Smith Cc
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA, 94143
- Hellen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA, 94143
| | - Olshen Ab
- Hellen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA, 94143
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA, 94143
| |
Collapse
|
16
|
Qiao H, Tan J, Wen S, Zhang M, Xu S, Jin L. De Novo Dissecting the Three-Dimensional Facial Morphology of 2379 Han Chinese Individuals. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:1-12. [PMID: 38605903 PMCID: PMC11003940 DOI: 10.1007/s43657-023-00109-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/13/2024]
Abstract
Phenotypic diversity, especially that of facial morphology, has not been fully investigated in the Han Chinese, which is the largest ethnic group in the world. In this study, we systematically analyzed a total of 14,838 facial traits representing 15 categories with both a large-scale three-dimensional (3D) manual landmarking database and computer-aided facial segmented phenotyping in 2379 Han Chinese individuals. Our results illustrate that homogeneous and heterogeneous facial morphological traits exist among Han Chinese populations across the three geographical regions: Zhengzhou, Taizhou, and Nanning. We identified 1560 shared features from extracted phenotypes, which characterized well the basic facial morphology of the Han Chinese. In particular, heterogeneous phenotypes showing population structures corresponded to geographical subpopulations. The greatest facial variation among these geographical populations was the angle of glabella, left subalare, and right cheilion (p = 3.4 × 10-161). Interestingly, we found that Han Chinese populations could be classified into northern Han, central Han, and southern Han at the phenotypic level, and the facial morphological variation pattern of central Han Chinese was between the typical differentiation of northern and southern Han Chinese. This result was highly consistent with the results revealed by the genetic data. These findings provide new insights into the analysis of multidimensional phenotypes as well as a valuable resource for further facial phenotype-genotype association studies in Han Chinese and East Asian populations. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00109-x.
Collapse
Affiliation(s)
- Hui Qiao
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 201203 China
| | - Jingze Tan
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 201203 China
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai, 200433 China
| | - Menghan Zhang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 201203 China
- Institute of Modern Languages and Linguistics, Fudan University, Shanghai, 200433 China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 201203 China
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 201203 China
| |
Collapse
|
17
|
Watson J, McNevin D, Grisedale K, Spiden M, Seddon S, Ward J. Operationalisation of the ForenSeq® Kintelligence Kit for Australian unidentified and missing persons casework. Forensic Sci Int Genet 2024; 68:102972. [PMID: 37918284 DOI: 10.1016/j.fsigen.2023.102972] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Single nucleotide polymorphism (SNP) genotyping technologies can generate investigative leads for human remains identification, including estimation of biological sex, biogeographical ancestry (BGA), externally visible characteristics (EVCs), identity, uniparental lineage and extended kinship. The ForenSeq® Kintelligence Kit provides forensic laboratories with the ability to apply this suite of genetic tools to forensic samples using one panel targeting 10,230 SNPs (including 56 ancestry-informative, 24 phenotype-informative, 94 identity-informative, 106 X chromosome, 85 Y chromosome and 9867 kinship-informative SNPs) sequenced on the MiSeq FGx® Sequencing System. The ForenSeq® Kintelligence Kit has been internally validated, optimised and operationalised by the Australian Federal Police National DNA Program for Unidentified and Missing Persons (AFP Program) for coronial casework. The internal validation was conducted according to the Scientific Working Group on DNA Analysis Methods guidelines (excluding mixture analysis), focussing on sample types typically encountered in human remains identification casework, such as bones, teeth, nail, blood and hair. The workflow was optimised for a high throughput library preparation and sequencing workflow, and additional analytical thresholds were developed to improve genotyping accuracy for low DNA input samples. Additionally, the genetic intelligence generated from the kit was compared to the self-declared biological sex, EVCs and BGA of the DNA donors to assess concordance. The kit was able to produce high quality SNP profiles from 1.0 ng down to 0.1 ng of DNA, with high repeatability and reproducibility, and minimal background noise. The prediction accuracy for biological sex (95%), hair colour (58%), eye colour (74%) and BGA inferences (consistent: 74%; partially consistent: 10%; inconclusive: 16%) was determined based on self-declared data. Additionally, SNP profiles from a volunteer family group of ten related individuals were uploaded to GEDmatch PRO™ to assess kinship accuracy. The kit was capable of detecting (97%) and accurately classifying (90%) genetic relationships spanning from first to fifth degree. The Kintelligence Kit provides the AFP Program with a robust and reliable genetic intelligence tool for unidentified and missing persons investigations, which has been designed to sequence multiple challenging samples in a single multiplexed assay using existing laboratory instrumentation.
Collapse
Affiliation(s)
- Jessica Watson
- Australian Federal Police National DNA Program for Unidentified and Missing Persons, Australia; Centre for Forensic Science, School of Mathematical & Physical Sciences, Faculty of Science, University of Technology Sydney, Australia.
| | - Dennis McNevin
- Australian Federal Police National DNA Program for Unidentified and Missing Persons, Australia; Centre for Forensic Science, School of Mathematical & Physical Sciences, Faculty of Science, University of Technology Sydney, Australia
| | - Kelly Grisedale
- Australian Federal Police National DNA Program for Unidentified and Missing Persons, Australia
| | - Michelle Spiden
- Australian Federal Police National DNA Program for Unidentified and Missing Persons, Australia
| | - Shelley Seddon
- Australian Federal Police National DNA Program for Unidentified and Missing Persons, Australia
| | - Jodie Ward
- Australian Federal Police National DNA Program for Unidentified and Missing Persons, Australia; Centre for Forensic Science, School of Mathematical & Physical Sciences, Faculty of Science, University of Technology Sydney, Australia
| |
Collapse
|
18
|
Liu J, Li S, Su Y, Wen Y, Qin L, Zhao M, Hui M, Jiang L, Chen X, Hou Y, Wang Z. A proof-of-principle study: The potential application of MiniHap biomarkers in ancestry inference based on the QNome nanopore sequencing. Forensic Sci Int Genet 2024; 68:102947. [PMID: 37862770 DOI: 10.1016/j.fsigen.2023.102947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Haplotyped SNPs convey forensic-related information, and microhaplotypes (MHs), as the most representative of this kind of marker, have proved the potential value for human forensics. In recent years, nanopore sequencing technology has developed rapidly, with its outstanding ability to sequence long continuous DNA fragments and obtain phase information, making the detection of longer haplotype marker possible. In this proof-of-principle study, we proposed a new type of forensic marker, MiniHap, based on five or more SNPs within a molecular distance less than 800 bp, and investigated the haplotype data of 56 selected MiniHaps in five Chinese populations using the QNome nanopore sequencing. The sequencing performance, allele (haplotype) frequencies, forensic parameters, effective number of alleles (Ae), and informativeness (In) were subsequently calculated. In addition, we performed principal component analysis (PCA), phylogenetic tree, and structure analysis to investigate the population genetic relationships and ancestry components among the five investigated populations and 26 worldwide populations. MiniHap-04 exhibited remarkable forensic efficacy, with 148 haplotypes reported and the Ae was 66.9268. In addition, the power of discrimination (PD) was 0.9934, the probability of exclusion (PE) was 0.9898, and the In value was 0.7893. Of the 56 loci, 85.71% had PD values above 0.85, 66.07% had PE values above 0.54, 67.86% had Ae values over 7.0%, and 55.36% were with In values above 0.2 across all samples, indicating that most of the MiniHaps are suitable for individual identification, paternity testing, mixture deconvolution, and ancestry inference. Moreover, the results of PCA, phylogenetic tree and structure analysis demonstrated that this MiniHap panel had the competency in continental population ancestry inference, but the differentiation within intracontinental/linguistically restricted subpopulations was not ideal. Such findings suggested that the QNome device for MiniHap detection was feasible and this novel marker has the potential in ancestry inference. Yet, the establishment of a more comprehensive database with sufficient reference population data remains necessary to screen more suitable MiniHaps.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Suyu Li
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yonglin Su
- Department of Rehabilitation Medicine, West China Hospital Sichuan University, Chengdu 610041, China
| | - Yufeng Wen
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Liu Qin
- Qitan Technology Ltd., Chengdu 610044, China
| | - Mengyao Zhao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Minxiao Hui
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Lirong Jiang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiacan Chen
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
19
|
Becher D, Jmel H, Kheriji N, Sarno S, Kefi R. Genetic landscape of forensic DNA phenotyping markers among Mediterranean populations. Forensic Sci Int 2024; 354:111906. [PMID: 38128201 DOI: 10.1016/j.forsciint.2023.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Forensic DNA Phenotyping can reveal the appearance of an unknown individual by predicting the External Visible Characteristics (EVC) from DNA obtained at the crime scene. Our aim is to characterize the genetic landscape of Human identification markers responsible for EVC among Mediterranean populations compared to other worldwide groups. We conducted an exhaustive search for genes involved in EVC variation. Then, variants located on these genes were extracted from public genotypic data of Mediterranean, American, African and East Asiatic populations. The genetic landscape of these Human identification markers, their allelic distribution and admixture analyses, were determined using plink, R and ADMIXTURE softwares. Our results showed that the Mediterranean populations appear close to the Mexican populations and distinguished from sub Saharan African populations living in the USA and from East Asiatic populations. We highlighted a total of 103454 common variants shared between the studied populations and among them, 25 common variants associated with EVC. Interestingly, genotype frequencies results showed that the rs17646946, rs13016869, rs977588, rs1805008 and rs2240751 variants located respectively in the TCHH, PRKCE, OCA2, MC1R and MFSD12 genes are significantly different between the Mediterranean and Asiatic populations. The genotype frequencies of the variants rs977589 and rs7179994 located in the OCA2 gene, and of rs12913832 and rs2240751 located respectively in HERC2 and MFSD12 genes are significantly different between the Mediterranean and American populations. Our work generates a large number of EVC variants that could be a valuable resource for future studies in the forensic field.
Collapse
Affiliation(s)
- Dorra Becher
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; Directorate of Technical and Scientific Police, Sub-Directorate of Forensic and Scientific Laboratories, Tunis,Tunisia; University of Carthage, National Institute of Applied Science and Technology, Tunis, Tunisia
| | - Haifa Jmel
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; Genetic Typing Service, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; University of Tunis El Manar, 2092 El Manar I, Tunis, Tunisia
| | - Nadia Kheriji
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; University of Tunis El Manar, 2092 El Manar I, Tunis, Tunisia
| | - Stefania Sarno
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; Genetic Typing Service, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; University of Tunis El Manar, 2092 El Manar I, Tunis, Tunisia.
| |
Collapse
|
20
|
Wasti QZ, Sabar MF, Farooq A, Khan MU. Stepping towards pollen DNA metabarcoding: A breakthrough in forensic sciences. Forensic Sci Med Pathol 2023:10.1007/s12024-023-00770-8. [PMID: 38147285 DOI: 10.1007/s12024-023-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
This review is engaged in determining the capability of plant pollen as a significant source of evidence for the linkage between suspects and crime location in forensic sciences. Research and review articles were collected from Google Scholar, the Web of Science, and PubMed. Articles were searched using specific keywords such as "Forensic Palynology," "Pollen metabarcoding," "Plant forensics," and "Pollen" AND "criminal investigation." Boolean logic was also utilized to narrow the articles to be included in this review article. Through the literature and exploratory research, it has been observed in the current study that with advancements in technology, forensic palynology has found its application in creating an association between the crime scene and suspected individuals to have a link to it, as pollen DNA is a long-lasting investigative tool that can effectively help forensic investigations. Moreover, the literature shows that the DNA of pollen and spores has helped forensic scientists link suspects to crime scenes, and the introduction of pollen DNA metabarcoding tools has eased the efforts of palynologists to analyze pollen DNA. The introduction of DNA metabarcoding techniques to analyze pollen from plants has helped identify the geological locations of the plants and ultimately identify the culprit.
Collapse
Affiliation(s)
- Qandeel Zaineb Wasti
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Abeera Farooq
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| |
Collapse
|
21
|
Granja R, Machado H. Forensic DNA phenotyping and its politics of legitimation and contestation: Views of forensic geneticists in Europe. SOCIAL STUDIES OF SCIENCE 2023; 53:850-868. [PMID: 32729409 PMCID: PMC10696903 DOI: 10.1177/0306312720945033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Forensic DNA Phenotyping (FDP) is a set of techniques that aim to infer externally visible characteristics in humans - such as eye, hair and skin color - and biogeographical ancestry of an unknown person, based on biological material. FDP has been applied in various jurisdictions in a limited number of high-profile cases to provide intelligence for criminal investigations. There are on-going controversies about the reliability and validity of FDP, which come together with debates about the ethical challenges emerging from the use of this technology in the criminal justice system. Our study explores how, in the context of complex politics of legitimation of and contestation over the use of FDP, forensic geneticists in Europe perceive this technology's potential applications, utility and risks. Forensic geneticists perform several forms of discursive boundary work, making distinctions between science and the criminal justice system, experts and non-experts, and good and bad science. Such forms of boundary work reconstruct the complex positioning vis-à-vis legal and scientific realities. In particular, while mobilizing interest in FDP, forensic geneticists simultaneously carve out notions of risk, accountability and scientific conduct that perform distance from FDP' implications in the criminal justice system.
Collapse
|
22
|
Sessa F, Pomara C, Esposito M, Grassi P, Cocimano G, Salerno M. Indirect DNA Transfer and Forensic Implications: A Literature Review. Genes (Basel) 2023; 14:2153. [PMID: 38136975 PMCID: PMC10742555 DOI: 10.3390/genes14122153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Progress in DNA profiling techniques has made it possible to detect even the minimum amount of DNA at a crime scene (i.e., a complete DNA profile can be produced using as little as 100 pg of DNA, equivalent to only 15-20 human cells), leading to new defense strategies. While the evidence of a DNA trace is seldom challenged in court by a defendant's legal team, concerns are often raised about how the DNA was transferred to the location of the crime. This review aims to provide an up-to-date overview of the experimental work carried out focusing on indirect DNA transfer, analyzing each selected paper, the experimental method, the sampling technique, the extraction protocol, and the main results. Scopus and Web of Science databases were used as the search engines, including 49 papers. Based on the results of this review, one of the factors that influence secondary transfer is the amount of DNA shed by different individuals. Another factor is the type and duration of contact between individuals or objects (generally, more intimate or prolonged contact results in more DNA transfer). A third factor is the nature and quality of the DNA source. However, there are exceptions and variations depending on individual characteristics and environmental conditions. Considering that secondary transfer depends on multiple factors that interact with each other in unpredictable ways, it should be considered a complex and dynamic phenomenon that can affect forensic investigation in various ways, for example, placing a subject at a crime scene who has never been there. Correct methods and protocols are required to detect and prevent secondary transfer from compromising forensic evidence, as well as the correct interpretation through Bayesian networks. In this context, the definition of well-designed experimental studies combined with the use of new forensic techniques could improve our knowledge in this challenging field, reinforcing the value of DNA evidence in criminal trials.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy; (C.P.); (M.S.)
| | - Cristoforo Pomara
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy; (C.P.); (M.S.)
| | | | - Patrizia Grassi
- “Vittorio Emanuele” Hospital, University of Catania, 95121 Catania, Italy;
| | - Giuseppe Cocimano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Vanvitelli”, 80121 Napoli, Italy;
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy; (C.P.); (M.S.)
| |
Collapse
|
23
|
Delomas TA, Willis SC. Estimating microhaplotype allele frequencies from low-coverage or pooled sequencing data. BMC Bioinformatics 2023; 24:415. [PMID: 37923981 PMCID: PMC10623847 DOI: 10.1186/s12859-023-05554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Microhaplotypes have the potential to be more cost-effective than SNPs for applications that require genetic panels of highly variable loci. However, development of microhaplotype panels is hindered by a lack of methods for estimating microhaplotype allele frequency from low-coverage whole genome sequencing or pooled sequencing (pool-seq) data. RESULTS We developed new methods for estimating microhaplotype allele frequency from low-coverage whole genome sequence and pool-seq data. We validated these methods using datasets from three non-model organisms. These methods allowed estimation of allele frequency and expected heterozygosity at depths routinely achieved from pooled sequencing. CONCLUSIONS These new methods will allow microhaplotype panels to be designed using low-coverage WGS and pool-seq data to discover and evaluate candidate loci. The python script implementing the two methods and documentation are available at https://www.github.com/delomast/mhFromLowDepSeq .
Collapse
Affiliation(s)
- Thomas A Delomas
- Agricultural Research Service, United States Department of Agriculture, National Cold Water Marine Aquaculture Center, 483 CBLS, 120 Flagg Road, Kingston, RI, 02881, USA.
| | - Stuart C Willis
- Hagerman Genetics Laboratory, Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| |
Collapse
|
24
|
Naumann N, Walpurgis K, Rubio A, Thomas A, Paßreiter A, Thevis M. Detection of doping control sample substitutions via single nucleotide polymorphism-based ID typing. Drug Test Anal 2023; 15:1521-1533. [PMID: 37946680 DOI: 10.1002/dta.3597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
The authenticity of a doping control sample is a key element of sports drug testing programmes. Doping control sample manipulation by providing another individual's urine or blood (instead of the tested athlete's sample) has been observed in the past and is an unequivocal violation of the World Anti-Doping Agency anti-doping rules. To determine attempts of manipulations by sample swapping, the utility of a single nucleotide polymorphism (SNP)-based sample authentication with a multi-target SNP panel was assessed. The panel comprises detection assays for 44 different SNPs, 3 gender markers and 5 quality control markers for DNA-profile determination. Sample analysis is based on a multiplex polymerase chain reaction step followed by a multiplex single base extension (SBE) reaction and subsequent SBE-product detection by MALDI-TOF MS. Panel performance was evaluated for urine and dried blood spot (DBS) samples. Urine (8 ml) and DBS (20 μl) test samples were reliably typed and matched to whole blood reference samples, while efficient typing of urine samples correlated with sample quality and input amounts. Robust profiling of urine doping control specimens was confirmed with an assay input of 12 ml. Samples can be processed in a high-throughput format with an overall assay turnaround time of approximately 11 h. SNP-based DNA typing via MALDI-TOF MS thus represents a high throughput-capable possibility for doping control sample authentication. SNP profiling of samples could offer the opportunity to complement existing steroid profile analytics to substantiate sample manipulations and to support quality control processes in high throughput routine settings.
Collapse
Affiliation(s)
- Nana Naumann
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Katja Walpurgis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Ana Rubio
- Laboratory Medicine, Hospital Universitario Son Espases, Palma, Spain
| | - Andreas Thomas
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Alina Paßreiter
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
25
|
Link V, Zavaleta YJA, Reyes RJ, Ding L, Wang J, Rohlfs RV, Edge MD. Microsatellites used in forensics are in regions enriched for trait-associated variants. iScience 2023; 26:107992. [PMID: 37841589 PMCID: PMC10570123 DOI: 10.1016/j.isci.2023.107992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
The 20 short tandem repeat (STR) loci of the combined DNA index system (CODIS) are the basis of the vast majority of forensic genetics in the United States. One argument for permissive rules about the collection of CODIS genotypes is that the CODIS loci are thought to contain little information about ancestry or traits. However, in the past 20 years, a growing field has identified hundreds of thousands of genotype-trait associations. Here, we conduct a survey of the landscape of such associations surrounding the CODIS loci as compared with non-CODIS STRs. Although this study cannot establish or quantify associations between CODIS genotypes and phenotypes, we find that the regions around the CODIS loci are enriched for both known pathogenic variants (> 90th percentile) and for trait-associated SNPs identified in genome-wide association studies (GWAS) (≥ 95th percentile in 10kb and 100kb flanking regions), compared with other random sets of autosomal tetranucleotide-repeat STRs.
Collapse
Affiliation(s)
- Vivian Link
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | | | - Rochelle-Jan Reyes
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Linda Ding
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Judy Wang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Rori V. Rohlfs
- Department of Biology, San Francisco State University, San Francisco, CA, USA
- Department of Data Science and Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Michael D. Edge
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
26
|
Wen Y, Liu J, Su Y, Chen X, Hou Y, Liao L, Wang Z. Forensic biogeographical ancestry inference: recent insights and current trends. Genes Genomics 2023; 45:1229-1238. [PMID: 37081293 DOI: 10.1007/s13258-023-01387-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND As a powerful complement to the paradigmatic DNA profiling strategy, biogeographical ancestry inference (BGAI) plays a significant part in human forensic investigation especially when a database hit or eyewitness testimony are not available. It indicates one's biogeographical profile based on known population-specific genetic variations, and thus is crucial for guiding authority investigations to find unknown individuals. Forensic biogeographical ancestry testing exploits much of the recent advances in the understanding of human genomic variation and improving of molecular biology. OBJECTIVE In this review, recent development of prospective ancestry informative markers (AIMs) and the statistical approaches of inferring biogeographic ancestry from AIMs are elucidated and discussed. METHODS We highlight the research progress of three potential AIMs (i.e., single nucleotide polymorphisms, microhaplotypes, and Y or mtDNA uniparental markers) and discuss the prospects and challenges of two methods that are commonly used in BGAI. CONCLUSION While BGAI for forensic purposes has been thriving in recent years, important challenges, such as ethics and responsibilities, data completeness, and ununified standards for evaluation, remain for the use of biogeographical ancestry information in human forensic investigations. To address these issues and fully realize the value of BGAI in forensic investigation, efforts should be made not only by labs/institutions around the world independently, but also by inter-lab/institution collaborations.
Collapse
Affiliation(s)
- Yufeng Wen
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, 100088, China
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yonglin Su
- Department of Rehabilitation Medicine, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Xiacan Chen
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Linchuan Liao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Zheng Wang
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, 100088, China.
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
27
|
Zupanič Pajnič I, Leskovar T, Črešnar M. Eye and hair color prediction of an early medieval adult and subadult skeleton using massive parallel sequencing technology. Int J Legal Med 2023; 137:1629-1638. [PMID: 37284851 PMCID: PMC10421759 DOI: 10.1007/s00414-023-03032-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
Phenotypic trait prediction in ancient DNA analysis can provide information about the external appearance of individuals from past human populations. Some studies predicting eye and hair color in ancient adult skeletons have been published, but not for ancient subadult skeletons, which are more prone to decay. In this study, eye and hair color were predicted for an early medieval adult skeleton and a subadult skeleton that was anthropologically characterized as a middle-aged man and a subadult of unknown sex about 6 years old. When processing the petrous bones, precautions were taken to prevent contamination with modern DNA. The MillMix tissue homogenizer was used for grinding, 0.5 g of bone powder was decalcified, and DNA was purified in Biorobot EZ1. The PowerQuant System was used for quantification and a customized version of the HIrisPlex panel for massive parallel sequencing (MPS) analysis. Library preparation and templating were performed on the HID Ion Chef Instrument and sequencing on the Ion GeneStudio S5 System. Up to 21 ng DNA/g of powder was obtained from ancient petrous bones. Clean negative controls and no matches with elimination database profiles confirmed no contamination issue. Brown eyes and dark brown or black hair were predicted for the adult skeleton and blue eyes and brown or dark brown hair for the subadult skeleton. The MPS analysis results obtained proved that it is possible to predict hair and eye color not only for an adult from the Early Middle Ages, but also for a subadult skeleton dating to this period.
Collapse
Affiliation(s)
- Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Tamara Leskovar
- Centre for Interdisciplinary Research in Archaeology, Department of Archaeology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Matija Črešnar
- Centre for Interdisciplinary Research in Archaeology, Department of Archaeology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
28
|
Gausterer C, Birnbaumer G, Ondrovics W, Stein C. Effects of solvent-based adhesive removal on the subsequent dual analysis of fingerprint and DNA. Int J Legal Med 2023; 137:1373-1394. [PMID: 37402011 PMCID: PMC10421768 DOI: 10.1007/s00414-023-03042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
The combined approach of classical fingerprinting and DNA profiling is a powerful tool in forensic investigations of latent "touch" traces. However, little attention has been paid to the organic solvents frequently used in dactyloscopic laboratories to facilitate the separation of adhesive evidence prior to fingerprint development and downstream effects on subsequent DNA profiling. In the present study, we tested a selection of adhesive removers (n = 9) and assessed their potential impact on DNA recovery and amplification by PCR. Thereby, we identified and characterized novel PCR inhibitors. All investigated chemicals contain volatile organic compounds that evaporate under normal indoor atmospheric conditions. Exposure to certain solvents resulted in increased DNA degradation, but only if evaporation was prevented. A series of adhesive-removal experiments were conducted with prepared mock evidence (self-adhesive postage stamps affixed to paper envelope) to investigate the impact of treatment time and the location of applied traces on DNA recovery and dactyloscopy, respectively. Due to the early onset of print decomposition, we found that only a short treatment time was compatible with the development of fingerprints on the adhesive side of a stamp. Solvents also removed DNA from the adhesive surface, thus resulting in a marked shift in the substrate distribution of recovered DNA from the stamp to the envelope, but not in the reverse direction. Furthermore, we observed that treatment with conventional fingerprint reagents lead to a significant reduction in the amounts of DNA recovered from stamps, while the additional use of adhesive removers did not significantly enhance this effect.
Collapse
Affiliation(s)
- Christian Gausterer
- FDZ-Forensisches DNA Zentrallabor GmbH, Medical University of Vienna, Sensengasse 2, 1090 Vienna, Austria
| | - Gerald Birnbaumer
- Criminal Intelligence Service Austria, Department II/BK/6 Forensics, Unit II/BK/6.3.1 – Dactyloscopic Reference Laboratory, Josef-Holaubek-Platz 1, 1090 Vienna, Austria
| | - Wolfgang Ondrovics
- Criminal Intelligence Service Austria, Department II/BK/6 Forensics, Sub Department II/BK/6.3 – Crime Scene, Roßauer Lände 5, 1090 Vienna, Austria
| | - Christina Stein
- FDZ-Forensisches DNA Zentrallabor GmbH, Medical University of Vienna, Sensengasse 2, 1090 Vienna, Austria
| |
Collapse
|
29
|
Inkret J, Zupanc T, Zupanič Pajnič I. A Multisample Approach in Forensic Phenotyping of Chronological Old Skeletal Remains Using Massive Parallel Sequencing (MPS) Technology. Genes (Basel) 2023; 14:1449. [PMID: 37510353 PMCID: PMC10379588 DOI: 10.3390/genes14071449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
It is very important to generate phenotypic results that are reliable when processing chronological old skeletal remains for cases involving the identification of missing persons. To improve the success of pigmentation prediction in Second World War victims, three bones from each of the eight skeletons analyzed were included in the study, which makes it possible to generate a consensus profile. The PowerQuant System was used for quantification, the ESI 17 Fast System was used for STR typing, and a customized version of the HIrisPlex panel was used for PCR-MPS. The HID Ion Chef Instrument was used for library preparation and templating. Sequencing was performed with the Ion GeneStudio S5 System. Identical full profiles and identical hair and eye color predictions were achieved from three bones analyzed per skeleton. Blue eye color was predicted in five skeletons and brown in three skeletons. Blond hair color was predicted in one skeleton, blond to dark blond in three skeletons, brown to dark brown in two skeletons, and dark brown to black in two skeletons. The reproducibility and reliability of the results proved the multisample analysis method to be beneficial for phenotyping chronological old skeletons because differences in DNA yields in different bone types provide a greater possibility of obtaining a better-quality consensus profile.
Collapse
Affiliation(s)
- Jezerka Inkret
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Tomaž Zupanc
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
30
|
Aguilar-Velázquez JA, Llamas-de-Dios BJ, Córdova-Mercado MF, Coronado-Ávila CE, Salas-Salas O, López-Quintero A, Ramos-González B, Rangel-Villalobos H. Accuracy of Eye and Hair Color Prediction in Mexican Mestizos from Monterrey City Based on ForenSeq TM DNA Signature Prep. Genes (Basel) 2023; 14:genes14051120. [PMID: 37239480 DOI: 10.3390/genes14051120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Forensic genomic systems allow simultaneously analyzing identity informative (iiSNPs), ancestry informative (aiSNPs), and phenotype informative (piSNPs) genetic markers. Among these kits, the ForenSeq DNA Signature prep (Verogen) analyzes identity STRs and SNPs as well as 24 piSNPs from the HIrisPlex system to predict the hair and eye color. We report herein these 24 piSNPs in 88 samples from Monterrey City (Northeast, Mexico) based on the ForenSeq DNA Signature prep. Phenotypes were predicted by genotype results with both Universal Analysis Software (UAS) and the web tool of the Erasmus Medical Center (EMC). We observed predominantly brown eyes (96.5%) and black hair (75%) phenotypes, whereas blue eyes, and blond and red hair were not observed. Both UAS and EMC showed high performance in eye color prediction (p ≥ 96.6%), but a lower accuracy was observed for hair color prediction. Overall, UAS hair color predictions showed better performance and robustness than those obtained with the EMC web tool (when hair shade is excluded). Although we employed a threshold (p > 70%), we suggest using the EMC enhanced approach to avoid the exclusion of a high number of samples. Finally, although our results are helpful to employ these genomic tools to predict eye color, caution is suggested for hair color prediction in Latin American (admixed) populations such as those studied herein, principally when no black color is predicted.
Collapse
Affiliation(s)
- José Alonso Aguilar-Velázquez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (CUCS-UdeG), Guadalajara 44340, Jalisco, Mexico
- Departamento de Morfología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (CUCS-UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Blanca Jeannete Llamas-de-Dios
- Licenciatura en Ciencias Forenses, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (CUCS-UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Miranda Fabiola Córdova-Mercado
- Instituto de Criminalística y Servicios Periciales, Fiscalía General de Justicia del Estado de Nuevo León (FGJNL), Monterrey 64720, Nuevo León, Mexico
| | - Carolina Elena Coronado-Ávila
- Instituto de Criminalística y Servicios Periciales, Fiscalía General de Justicia del Estado de Nuevo León (FGJNL), Monterrey 64720, Nuevo León, Mexico
| | - Orlando Salas-Salas
- Instituto de Criminalística y Servicios Periciales, Fiscalía General de Justicia del Estado de Nuevo León (FGJNL), Monterrey 64720, Nuevo León, Mexico
| | - Andrés López-Quintero
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (CUCS-UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Benito Ramos-González
- Instituto de Criminalística y Servicios Periciales, Fiscalía General de Justicia del Estado de Nuevo León (FGJNL), Monterrey 64720, Nuevo León, Mexico
| | - Héctor Rangel-Villalobos
- Instituto de Investigación en Genética Molecular, Centro Universitario de la Ciénega, Universidad de Guadalajara (CUCI-UdeG), Ocotlán 47820, Jalisco, Mexico
| |
Collapse
|
31
|
Kayser M, Branicki W, Parson W, Phillips C. Recent advances in Forensic DNA Phenotyping of appearance, ancestry and age. Forensic Sci Int Genet 2023; 65:102870. [PMID: 37084623 DOI: 10.1016/j.fsigen.2023.102870] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Forensic DNA Phenotyping (FDP) comprises the prediction of a person's externally visible characteristics regarding appearance, biogeographic ancestry and age from DNA of crime scene samples, to provide investigative leads to help find unknown perpetrators that cannot be identified with forensic STR-profiling. In recent years, FDP has advanced considerably in all of its three components, which we summarize in this review article. Appearance prediction from DNA has broadened beyond eye, hair and skin color to additionally comprise other traits such as eyebrow color, freckles, hair structure, hair loss in men, and tall stature. Biogeographic ancestry inference from DNA has progressed from continental ancestry to sub-continental ancestry detection and the resolving of co-ancestry patterns in genetically admixed individuals. Age estimation from DNA has widened beyond blood to more somatic tissues such as saliva and bones as well as new markers and tools for semen. Technological progress has allowed forensically suitable DNA technology with largely increased multiplex capacity for the simultaneous analysis of hundreds of DNA predictors with targeted massively parallel sequencing (MPS). Forensically validated MPS-based FDP tools for predicting from crime scene DNA i) several appearance traits, ii) multi-regional ancestry, iii) several appearance traits together with multi-regional ancestry, and iv) age from different tissue types, are already available. Despite recent advances that will likely increase the impact of FDP in criminal casework in the near future, moving reliable appearance, ancestry and age prediction from crime scene DNA to the level of detail and accuracy police investigators may desire, requires further intensified scientific research together with technical developments and forensic validations as well as the necessary funding.
Collapse
Affiliation(s)
- Manfred Kayser
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Wojciech Branicki
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland,; Institute of Forensic Research, Kraków, Poland
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, PA, USA
| | - Christopher Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| |
Collapse
|
32
|
Link V, Zavaleta YJA, Reyes RJ, Ding L, Wang J, Rohlfs RV, Edge MD. Microsatellites used in forensics are located in regions unusually rich in trait-associated variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531629. [PMID: 36945578 PMCID: PMC10028909 DOI: 10.1101/2023.03.07.531629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The 20 short tandem repeat (STR) markers of the combined DNA index system (CODIS) are the basis of the vast majority of forensic genetics in the United States. One argument for permissive rules about the collection of CODIS genotypes is that the CODIS markers are thought to contain information relevant to identification only (such as a human fingerprint would), with little information about ancestry or traits. However, in the past 20 years, a quickly growing field has identified hundreds of thousands of genotype-trait associations. Here we conduct a survey of the landscape of such associations surrounding the CODIS loci as compared with non-CODIS STRs. We find that the regions around the CODIS markers are enriched for both known pathogenic variants (>90th percentile) and for SNPs identified as trait-associated in genome-wide association studies (GWAS) (≥95th percentile in 10kb and 100kb flanking regions), compared with other random sets of autosomal tetranucleotide-repeat STRs. Although it is not obvious how much phenotypic information CODIS would need to convey to strain the "DNA fingerprint" analogy, the CODIS markers, considered as a set, are in regions unusually dense with variants with known phenotypic associations.
Collapse
Affiliation(s)
- Vivian Link
- Department of Quantitative and Computational Biology, University of Southern California
| | | | | | - Linda Ding
- Department of Quantitative and Computational Biology, University of Southern California
| | - Judy Wang
- Department of Quantitative and Computational Biology, University of Southern California
| | - Rori V. Rohlfs
- Department of Biology, San Francisco State University
- Department of Computer Science and Institute of Ecology and Evolution, University of Oregon
| | - Michael D. Edge
- Department of Quantitative and Computational Biology, University of Southern California
| |
Collapse
|
33
|
Stasi A, Mir TUG, Pellegrino A, Wani AK, Shukla S. Forty years of research and development on forensic genetics: A bibliometric analysis. Forensic Sci Int Genet 2023; 63:102826. [PMID: 36640637 DOI: 10.1016/j.fsigen.2023.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
The current study aims to investigate the research publication trends in the field of forensic genetics using Bibliometric analysis. An extensive search of the Scopus database was conducted to identify scholarly articles on forensic genetics published between 1977 and 2022, and a data set comprising 2945 articles was obtained. The analysis was carried out using VOSviewer, RStudio, MS Excel and MS Access to investigate the annual publication trend, most productive journals, organizations/authors/countries, authorship and citation patterns, most cited documents/articles and co-occurrence of keywords. The results revealed the first article in the field of forensic genetics was published in 1977. By the end of 1999, only 15 articles were published. Since then, there has been a considerable increase in the yearly number of publications and post-2006, there were more than 100 yearly published articles. USA, China, Spain, Germany and United Kingdom were found to be the most productive countries. Among various organizations, the Institute of Legal Medicine, Innsbruck Medical University, Austria was found to be the most productive organization. In terms of the number of publications and citations, Morling N. was found to be the most prolific author. The highest number of articles were published in Forensic Science International: Genetics, contributing about 34% of the total articles published in different sources/journals. The document with the highest number of citations was "HOMER N, 2008, PLOS GENET", with a total of 750 citations. The most frequent keywords were forensic genetics and forensic science, followed by STR, population genetics, DNA, mt-DNA and DNA-typing. The results also revealed that there had been collaborative research among countries, organizations and authors, which helps in the exchange of ideas across disciplines, developing new skills, getting access to financial resources and generating quality results.
Collapse
Affiliation(s)
- Alessandro Stasi
- Mahidol University International College, 999 Phutthamonthon Sai 4 Rd, Salaya, Phutthamonthon District, Nakhon Pathom 73170, Thailand.
| | - Tahir Ul Gani Mir
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Alfonso Pellegrino
- Sasin School of Management, Chulalongkorn University, Chula soi 12, Wang Mai, Pathum Wan, Bangkok 10330, Thailand.
| | - Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Saurabh Shukla
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| |
Collapse
|
34
|
Lutz Í, Miranda J, Santana P, Martins T, Ferreira C, Sampaio I, Vallinoto M, Gomes GE. Quality analysis of genomic DNA and authentication of fisheries products based on distinct methods of DNA extraction. PLoS One 2023; 18:e0282369. [PMID: 36854012 PMCID: PMC9974130 DOI: 10.1371/journal.pone.0282369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Molecular genetic techniques are an effective monitoring tool, but high-quality DNA samples are usually required. In this study, we compared three different protocols of DNA extraction: NaCl (saline); phenol-chloroform and commercial kit (Promega)-from three biological tissues of five individuals of Lutjanus purpureus under two methods of storage. The evaluated items included DNA concentration and purity, processing time and cost, as well as the obtaining of functional sequences. The highest average values of DNA concentration were obtained using the saline procedure and the commercial kit. Pure DNA was only obtained using the saline protocol, evaluated by the ratio of 260/280. The saline and phenol-chloroform protocols were the least expensive methods. The commercial kit costs are counterbalanced by the short time required. The procedure based on phenol-chloroform presented the worst results regarding DNA yield and the time required to perform all steps. The saline and commercial kit protocols showed similar results concerning the amount and quality of extracted DNA. Therefore, the final choice should be based on the available financial resources and the available time for carrying out each procedure of DNA extraction.
Collapse
Affiliation(s)
- Ítalo Lutz
- Laboratório de Genética Aplicada, Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Pará, Brazil
| | - Josy Miranda
- Laboratório de Genética Aplicada, Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Pará, Brazil
| | - Paula Santana
- Laboratório de Genética Aplicada, Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Pará, Brazil
| | - Thais Martins
- Laboratório de Genética Aplicada, Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Pará, Brazil
| | - Charles Ferreira
- Laboratório de Genética Aplicada, Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Pará, Brazil
| | - Iracilda Sampaio
- Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Pará, Brazil
| | - Marcelo Vallinoto
- Laboratório de Evolução, Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Pará, Brazil
| | - Grazielle Evangelista Gomes
- Laboratório de Genética Aplicada, Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Pará, Brazil
| |
Collapse
|
35
|
Single-cell transcriptome sequencing allows genetic separation, characterization and identification of individuals in multi-person biological mixtures. Commun Biol 2023; 6:201. [PMID: 36805025 PMCID: PMC9941516 DOI: 10.1038/s42003-023-04557-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Identifying individuals from biological mixtures to which they contributed is highly relevant in crime scene investigation and various biomedical research fields, but despite previous attempts, remains nearly impossible. Here we investigated the potential of using single-cell transcriptome sequencing (scRNA-seq), coupled with a dedicated bioinformatics pipeline (De-goulash), to solve this long-standing problem. We developed a novel approach and tested it with scRNA-seq data that we de-novo generated from multi-person blood mixtures, and also in-silico mixtures we assembled from public single individual scRNA-seq datasets, involving different numbers, ratios, and bio-geographic ancestries of contributors. For all 2 up to 9-person balanced and imbalanced blood mixtures with ratios up to 1:60, we achieved a clear single-cell separation according to the contributing individuals. For all separated mixture contributors, sex and bio-geographic ancestry (maternal, paternal, and bi-parental) were correctly determined. All separated contributors were correctly individually identified with court-acceptable statistical certainty using de-novo generated whole exome sequencing reference data. In this proof-of-concept study, we demonstrate the feasibility of single-cell approaches to deconvolute biological mixtures and subsequently genetically characterise, and individually identify the separated mixture contributors. With further optimisation and implementation, this approach may eventually allow moving to challenging biological mixtures, including those found at crime scenes.
Collapse
|
36
|
Felkl AB, Avila E, Gastaldo AZ, Lindholz CG, Dorn M, Alho CS. Ancestry resolution of South Brazilians by forensic 165 ancestry-informative SNPs panel. Forensic Sci Int Genet 2023; 64:102838. [PMID: 36736201 DOI: 10.1016/j.fsigen.2023.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
Forensic DNA phenotyping (FDP) includes biogeographic ancestry (BGA) inference and externally visible characteristics (EVCs) prediction directly from an evidential DNA sample as alternatives to provide valuable intelligence when conventional DNA profiling fails to achieve identification. In this context, the application of Massively Parallel Sequencing (MPS) methodologies, which enables simultaneous typing of multiple samples and hundreds of forensic markers, has been gradually implemented in forensic genetic casework. The Precision ID Ancestry Panel (Thermo Fisher Scientific, Waltham, USA) is a forensic multiplex assay consisting of 165 autosomal SNPs designed to provide biogeographic ancestry information. In this work, a sample of 250 individuals from Rio Grande do Sul (RS) State, southern Brazil, apportioned into four main population groups (African-, European-, Amerindian-, and Admixed-derived Gauchos), was evaluated with this panel, to assess the feasibility of this approach in a highly heterogeneous population. Forensic descriptive parameters estimated for each population group revealed that this panel has enough polymorphic and informative SNPs to be used as a supplementary instrument in forensic individual identification and kinship testing regardless of ethnicity. No statistically significant deviation from Hardy-Weinberg equilibrium was observed after Bonferroni correction. However, seven loci pairs displayed linkage disequilibrium in pairwise LD testing (p < 3.70 × 10-6). Interpopulation comparisons by FST analysis, MDS plot, and STRUCTURE analysis among the four RS population groups apart and along with 89 reference worldwide populations demonstrated that Admixed- and African-derived Gauchos present the highest levels of admixture and population stratification, whereas European- and Amerindian-derived exhibit a more homogeneous genetic conformation.
Collapse
Affiliation(s)
- Aline Brugnera Felkl
- Forensic Genetics Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institute of Science and Technology - Forensic Science, Porto Alegre, RS, Brazil.
| | - Eduardo Avila
- Forensic Genetics Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Technical Scientific Section, Federal Police Department in Rio Grande do Sul State, Porto Alegre, RS, Brazil; National Institute of Science and Technology - Forensic Science, Porto Alegre, RS, Brazil
| | - André Zoratto Gastaldo
- Forensic Genetics Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institute of Science and Technology - Forensic Science, Porto Alegre, RS, Brazil
| | - Catieli Gobetti Lindholz
- Forensic Genetics Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Márcio Dorn
- Forensic Genetics Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institute of Science and Technology - Forensic Science, Porto Alegre, RS, Brazil; Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Clarice Sampaio Alho
- Forensic Genetics Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institute of Science and Technology - Forensic Science, Porto Alegre, RS, Brazil
| |
Collapse
|
37
|
Guanglin H, Lan-Hai W, Mengge W. Editorial: Forensic investigative genetic genealogy and fine-scale structure of human populations. Front Genet 2023; 13:1067865. [PMID: 36685813 PMCID: PMC9849385 DOI: 10.3389/fgene.2022.1067865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- He Guanglin
- 1Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, China,*Correspondence: He Guanglin, ; Wang Mengge,
| | - Wei Lan-Hai
- 2School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, China
| | - Wang Mengge
- 3Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China,*Correspondence: He Guanglin, ; Wang Mengge,
| |
Collapse
|
38
|
Sari O I, Simsek SZ, Filoglu G, Bulbul O. Predicting Eye and Hair Color in a Turkish Population Using the HIrisPlex System. Genes (Basel) 2022; 13:2094. [PMID: 36421769 PMCID: PMC9690125 DOI: 10.3390/genes13112094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Forensic DNA Phenotyping (FDP) can reveal the appearance of an unknown individual by predicting the ancestry, phenotype (i.e., hair, eye, skin color), and age from DNA obtained at the crime scene. The HIrisPlex system has been developed to simultaneously predict eye and hair color. However, the prediction accuracy of the system needs to be assessed for the tested population before implementing FDP in casework. In this study, we evaluated the performance of the HIrisPlex system on 149 individuals from the Turkish population. We applied the single-based extension (SNaPshot chemistry) method and used the HIrisPlex online tool to test the prediction of the eye and hair colors. The accuracy of the HIrisPlex system was assessed through the calculation of the area under the receiver characteristic operating curves (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The results showed that the proposed method successfully predicted the eye and hair color, especially for blue (100%) and brown (95.60%) eye and black (95.23) and brown (98.94) hair colors. As observed in previous studies, the system failed to predict intermediate eye color, representing 25% in our cohort. The majority of incorrect predictions were observed for blond hair color (40.7%). Previous HIrisPlex studies have also noted difficulties with these phenotypes. Our study shows that the HIrisPlex system can be applied to forensic casework in Turkey with careful interpretation of the data, particularly intermediate eye color and blond hair color.
Collapse
Affiliation(s)
- Ilksen Sari O
- Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Services, Istanbul Gelisim University, 34310 Istanbul, Turkey
| | - Sumeyye Zulal Simsek
- Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
| | - Gonul Filoglu
- Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
| | - Ozlem Bulbul
- Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
| |
Collapse
|
39
|
Liu J, Du W, Jiang L, Liu C, Chen L, Zheng Y, Hou Y, Liu C, Wang Z. Development and validation of a forensic multiplex InDel assay: The AGCU InDel 60 kit. Electrophoresis 2022; 43:1871-1881. [PMID: 35859229 DOI: 10.1002/elps.202100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/14/2022]
Abstract
Marker sets based on insertion/deletion polymorphisms (InDels) combine the characteristics of both short tandem repeats (STRs) and single nucleotide polymorphisms and have served as effective complementary or stand-alone systems for human identification in forensics. We developed a novel multiplex amplification detection system, designated the AGCU InDel 60 kit, containing 57 autosomal InDels, 2 Y-chromosomal InDels, and the amelogenin locus and validated the kit in a series of studies, which included tests of the PCR conditions; tests for sensitivity, species specificity, reproducibility, stability, and mock case samples; degradation studies; and a population study. The results indicated that the AGCU InDel 60 kit was accurate, specific, reproducible, stable, and robust. Complete DNA profiles were obtained even with 125 pg of human DNA. In tests of artificially degraded samples, we found that the number of alleles detected by the validated kit was considerably greater than that detected by the STR-based AGCU 21+1 kit, even as the degree of degradation increased. Additionally, 564 unrelated individuals from three Han groups were investigated using this novel system, and the values of combined power of discrimination and combined power of exclusion were not less than 1-4.9026 × 10-24 and 1-3.1123 × 10-5 , respectively. Thus, the results indicated that the novel kit was more powerful than the previous version of the InDel kit (the AGCU InDel 50 kit). Our results suggest that the AGCU InDel 60 kit can serve as an efficient tool for human forensics and a supplementary kit for population genetics research.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Weian Du
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China.,AGCU ScienTech Incorporation, Wuxi, P. R. China
| | - Lirong Jiang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Changhui Liu
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China.,AGCU ScienTech Incorporation, Wuxi, P. R. China
| | - Ling Chen
- AGCU ScienTech Incorporation, Wuxi, P. R. China
| | - Yangyang Zheng
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China.,Guangdong Province Key Laboratory of Forensic Genetics, Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Chao Liu
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China.,Guangdong Province Key Laboratory of Forensic Genetics, Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
40
|
Carratto TMT, Moraes VMS, Recalde TSF, Oliveira MLGD, Teixeira Mendes-Junior C. Applications of massively parallel sequencing in forensic genetics. Genet Mol Biol 2022; 45:e20220077. [PMID: 36121926 PMCID: PMC9514793 DOI: 10.1590/1678-4685-gmb-2022-0077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
Massively parallel sequencing, also referred to as next-generation sequencing, has positively changed DNA analysis, allowing further advances in genetics. Its capability of dealing with low quantity/damaged samples makes it an interesting instrument for forensics. The main advantage of MPS is the possibility of analyzing simultaneously thousands of genetic markers, generating high-resolution data. Its detailed sequence information allowed the discovery of variations in core forensic short tandem repeat loci, as well as the identification of previous unknown polymorphisms. Furthermore, different types of markers can be sequenced in a single run, enabling the emergence of DIP-STRs, SNP-STR haplotypes, and microhaplotypes, which can be very useful in mixture deconvolution cases. In addition, the multiplex analysis of different single nucleotide polymorphisms can provide valuable information about identity, biogeographic ancestry, paternity, or phenotype. DNA methylation patterns, mitochondrial DNA, mRNA, and microRNA profiling can also be analyzed for different purposes, such as age inference, maternal lineage analysis, body-fluid identification, and monozygotic twin discrimination. MPS technology also empowers the study of metagenomics, which analyzes genetic material from a microbial community to obtain information about individual identification, post-mortem interval estimation, geolocation inference, and substrate analysis. This review aims to discuss the main applications of MPS in forensic genetics.
Collapse
Affiliation(s)
- Thássia Mayra Telles Carratto
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Ribeirão Preto, SP, Brazil
| | - Vitor Matheus Soares Moraes
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Ribeirão Preto, SP, Brazil
| | | | | | - Celso Teixeira Mendes-Junior
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Ribeirão Preto, SP, Brazil
| |
Collapse
|
41
|
Dierig L, Bamberg M, Brommer A, Klein-Unseld R, Kunz SN, Schwender M, Wiegand P. Development of a multiplex assay for detection of autosomal and Y-chromosomal STRs, assessment of the degradation state of mitochondrial DNA and presence of mitochondrial length heteroplasmies. Forensic Sci Int Genet 2022; 61:102775. [PMID: 36137414 DOI: 10.1016/j.fsigen.2022.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/04/2022]
Abstract
The current focus in most routine forensic casework is detection of autosomal or gonosomal Short Tandem Repeats (STRs). With increasing degradation, STR analysis tends to be less successful up to complete failure. For challenging samples such as telogen hair roots and shafts, touch DNA samples or skeletal remains, mitochondrial DNA (mtDNA) analysis provides a powerful tool. Determination of DNA quantity is an important part in the casework workflow. Several ready-to-use kits are commercially available for nuclear DNA targets. However, quantification of mtDNA targets requires the establishment of an in-house method. Some assays even contain assessment of degradation, which alleviates the choice of target enrichment for sequencing through medium or small amplicons. As Sanger-type Sequencing (STS) still remains the golden standard in many laboratories, identification of heteroplasmies in C-tract regions prior to the sequencing reaction is advantageous. Firstly, primer selection can be expanded with primers binding near the C-tract and secondly, determination of the dominant variant is straightforward. All those quantity (nuclear and mtDNA) and quality (degradation and length heteroplasmies) evaluations usually require at least two separate reactions. Therefore, the aim of this project was the combination of all these targets in one multiplex assay using capillary electrophoresis to spare valuable sample extract. Amplification of representative autosomal and Y-chromosomal STRs allows estimate of success of (Y-)STR analysis. Simultaneously, five length heteroplasmies in the mitochondrial control region are targeted as well as three conservative regions of differing fragment lengths for assessment of the mitochondrial degradation state. Based on the outcome of this assay, forensic examiners can decide if STR analysis may be suitable. In case of absent STR peaks, appropriate proceeding of mtDNA sequencing can be determined.
Collapse
Affiliation(s)
- Lisa Dierig
- University Ulm, Institute of Legal Medicine, Albert-Einstein-Allee 23, Ulm 89081, Germany.
| | - Malte Bamberg
- University Ulm, Institute of Legal Medicine, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Arthur Brommer
- Ludwig-Maximilians University Munich, Geschwister-Scholl-Platz 1, München 80539, Germany
| | - Rachel Klein-Unseld
- University Ulm, Institute of Legal Medicine, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Sebastian N Kunz
- University Ulm, Institute of Legal Medicine, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Max Schwender
- University Ulm, Institute of Legal Medicine, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Peter Wiegand
- University Ulm, Institute of Legal Medicine, Albert-Einstein-Allee 23, Ulm 89081, Germany
| |
Collapse
|
42
|
Naqvi S, Hoskens H, Wilke F, Weinberg SM, Shaffer JR, Walsh S, Shriver MD, Wysocka J, Claes P. Decoding the Human Face: Progress and Challenges in Understanding the Genetics of Craniofacial Morphology. Annu Rev Genomics Hum Genet 2022; 23:383-412. [PMID: 35483406 PMCID: PMC9482780 DOI: 10.1146/annurev-genom-120121-102607] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Variations in the form of the human face, which plays a role in our individual identities and societal interactions, have fascinated scientists and artists alike. Here, we review our current understanding of the genetics underlying variation in craniofacial morphology and disease-associated dysmorphology, synthesizing decades of progress on Mendelian syndromes in addition to more recent results from genome-wide association studies of human facial shape and disease risk. We also discuss the various approaches used to phenotype and quantify facial shape, which are of particular importance due to the complex, multipartite nature of the craniofacial form. We close by discussing how experimental studies have contributed and will further contribute to our understanding of human genetic variation and then proposing future directions and applications for the field.
Collapse
Affiliation(s)
- Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA; ,
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Hanne Hoskens
- Center for Processing Speech and Images, Department of Electrical Engineering, KU Leuven, Leuven, Belgium; ,
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
| | - Franziska Wilke
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA; ,
| | - Seth M Weinberg
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John R Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Susan Walsh
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA; ,
| | - Mark D Shriver
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA; ,
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Peter Claes
- Center for Processing Speech and Images, Department of Electrical Engineering, KU Leuven, Leuven, Belgium; ,
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Wang P, Sun X, Miao Q, Mi H, Cao M, Zhao S, Wang Y, Shu Y, Li W, Xu H, Bai D, Zhang Y. Novel genetic associations with five aesthetic facial traits: A genome-wide association study in the Chinese population. Front Genet 2022; 13:967684. [PMID: 36035146 PMCID: PMC9411802 DOI: 10.3389/fgene.2022.967684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The aesthetic facial traits are closely related to life quality and strongly influenced by genetic factors, but the genetic predispositions in the Chinese population remain poorly understood. Methods: A genome-wide association studies (GWAS) and subsequent validations were performed in 26,806 Chinese on five facial traits: widow’s peak, unibrow, double eyelid, earlobe attachment, and freckles. Functional annotation was performed based on the expression quantitative trait loci (eQTL) variants, genome-wide polygenic scores (GPSs) were developed to represent the combined polygenic effects, and single nucleotide polymorphism (SNP) heritability was presented to evaluate the contributions of the variants. Results: In total, 21 genetic associations were identified, of which ten were novel: GMDS-AS1 (rs4959669, p = 1.29 × 10−49) and SPRED2 (rs13423753, p = 2.99 × 10−14) for widow’s peak, a previously unreported trait; FARSB (rs36015125, p = 1.96 × 10−21) for unibrow; KIF26B (rs7549180, p = 2.41 × 10−15), CASC2 (rs79852633, p = 4.78 × 10−11), RPGRIP1L (rs6499632, p = 9.15 × 10−11), and PAX1 (rs147581439, p = 3.07 × 10−8) for double eyelid; ZFHX3 (rs74030209, p = 9.77 × 10−14) and LINC01107 (rs10211400, p = 6.25 × 10−10) for earlobe attachment; and SPATA33 (rs35415928, p = 1.08 × 10−8) for freckles. Functionally, seven identified SNPs tag the missense variants and six may function as eQTLs. The combined polygenic effect of the associations was represented by GPSs and contributions of the variants were evaluated using SNP heritability. Conclusion: These identifications may facilitate a better understanding of the genetic basis of features in the Chinese population and hopefully inspire further genetic research on facial development.
Collapse
Affiliation(s)
- Peiqi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinghan Sun
- Genomic & Phenomic Data Center, Chengdu 23Mofang Biotechnology Co., Ltd, Chengdu, China
- Department of Biobank, Chengdu 23Mofang Biotechnology Co., Ltd, Chengdu, China
| | - Qiang Miao
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Mi
- Department of Biobank, Chengdu 23Mofang Biotechnology Co., Ltd, Chengdu, China
| | - Minyuan Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yiyi Wang
- Department of Dermatology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Li
- Department of Dermatology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ding Bai, ; Yan Zhang,
| | - Yan Zhang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ding Bai, ; Yan Zhang,
| |
Collapse
|
44
|
Paparazzo E, Gozalishvili A, Lagani V, Geracitano S, Bauleo A, Falcone E, Passarino G, Montesanto A. A new approach to broaden the range of eye colour identifiable by IrisPlex in DNA phenotyping. Sci Rep 2022; 12:12803. [PMID: 35896692 PMCID: PMC9329466 DOI: 10.1038/s41598-022-17208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
IrisPlex system represents the most popular model for eye colour prediction. Based on six polymorphisms this model provides very accurate predictions that strongly depend on the definition of eye colour phenotypes. The aim of the present study was to introduce a new approach to improve eye colour prediction using the well-validated IrisPlex system. A sample of 238 individuals from a Southern Italian population was collected and for each of them a high-resolution image of eye was obtained. By quantifying eye colour variation into CIELAB space several clustering algorithms were applied for eye colour classification. Predictions with the IrisPlex model were obtained using eye colour categories defined by both visual inspection and clustering algorithms. IrisPlex system predicted blue and brown eye colour with high accuracy while it was inefficient in the prediction of intermediate eye colour. Clustering-based eye colour resulted in a significantly increased accuracy of the model especially for brown eyes. Our results confirm the validity of the IrisPlex system for forensic purposes. Although the quantitative approach here proposed for eye colour definition slightly improves its prediction accuracy, further research is still required to improve the model particularly for the intermediate eye colour prediction.
Collapse
Affiliation(s)
- Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy
| | - Anzor Gozalishvili
- Toptal, LLC, 2810 N. Church St. #36879, Wilmington, DE, 19802-4447, USA.,Ivane Javakhishvili Tbilisi State University, 0162, Tbilisi, Georgia
| | - Vincenzo Lagani
- Institute of Chemical Biology, Ilia State University, 0162, Tbilisi, Georgia.,Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal, 23952, Saudi Arabia
| | - Silvana Geracitano
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy
| | - Alessia Bauleo
- BIOGENET, Medical and Forensic Genetics Laboratory, 87100, Cosenza, ASP, Italy
| | - Elena Falcone
- BIOGENET, Medical and Forensic Genetics Laboratory, 87100, Cosenza, ASP, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
45
|
Wan Z, Hazel JW, Clayton EW, Vorobeychik Y, Kantarcioglu M, Malin BA. Sociotechnical safeguards for genomic data privacy. Nat Rev Genet 2022; 23:429-445. [PMID: 35246669 PMCID: PMC8896074 DOI: 10.1038/s41576-022-00455-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/21/2022]
Abstract
Recent developments in a variety of sectors, including health care, research and the direct-to-consumer industry, have led to a dramatic increase in the amount of genomic data that are collected, used and shared. This state of affairs raises new and challenging concerns for personal privacy, both legally and technically. This Review appraises existing and emerging threats to genomic data privacy and discusses how well current legal frameworks and technical safeguards mitigate these concerns. It concludes with a discussion of remaining and emerging challenges and illustrates possible solutions that can balance protecting privacy and realizing the benefits that result from the sharing of genetic information.
Collapse
Affiliation(s)
- Zhiyu Wan
- Center for Genetic Privacy and Identity in Community Settings, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James W Hazel
- Center for Genetic Privacy and Identity in Community Settings, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Biomedical Ethics and Society, Vanderbilt University, Nashville, TN, USA
| | - Ellen Wright Clayton
- Center for Genetic Privacy and Identity in Community Settings, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Biomedical Ethics and Society, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Law School, Nashville, TN, USA
| | - Yevgeniy Vorobeychik
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Murat Kantarcioglu
- Department of Computer Science, University of Texas at Dallas, Richardson, TX, USA
| | - Bradley A Malin
- Center for Genetic Privacy and Identity in Community Settings, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA.
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
46
|
de Knijff P. On the Forensic Use of Y-Chromosome Polymorphisms. Genes (Basel) 2022; 13:genes13050898. [PMID: 35627283 PMCID: PMC9141910 DOI: 10.3390/genes13050898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Nowadays, the use of Y-chromosome polymorphisms forms an essential part of many forensic DNA investigations. However, this was not always the case. Only since 1992 have we seen that some forensic scientists started to have an interest in this chromosome. In this review, I will sketch a brief history focusing on the forensic use of Y-chromosome polymorphisms. Before describing the various applications of short-tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) on the Y-chromosome, I will discuss a few often ignored aspects influencing proper use and interpretation of Y-chromosome information: (i) genotyping Y-SNPs and Y-STRs, (ii) Y-STR haplotypes shared identical by state (IBS) or identical by descent (IBD), and (iii) Y-haplotype database frequencies.
Collapse
Affiliation(s)
- Peter de Knijff
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
47
|
Zou X, He G, Liu J, Jiang L, Wang M, Chen P, Hou Y, Wang Z. Screening and selection of 21 novel microhaplotype markers for ancestry inference in ten Chinese subpopulations. Forensic Sci Int Genet 2022; 58:102687. [DOI: 10.1016/j.fsigen.2022.102687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/20/2022] [Accepted: 03/11/2022] [Indexed: 11/04/2022]
|
48
|
Evaluation of the VISAGE basic tool for appearance and ancestry inference using ForenSeq® chemistry on the MiSeq FGx® system. Forensic Sci Int Genet 2022; 58:102675. [DOI: 10.1016/j.fsigen.2022.102675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/13/2022] [Accepted: 02/01/2022] [Indexed: 11/04/2022]
|
49
|
Raymond PW, Velie BD, Wade CM. Forensic DNA phenotyping: Canis familiaris breed classification and skeletal phenotype prediction using functionally significant skeletal SNPs and indels. Anim Genet 2021; 53:247-263. [PMID: 34963196 DOI: 10.1111/age.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 11/29/2022]
Abstract
This review highlights a novel application of breed identification and prediction of skeletal traits in forensic investigations using canine DNA evidence. Currently, genotyping methods used for canine breed classification involve the application of highly polymorphic short tandem repeats in addition to larger commercially available SNP arrays. Both applications face technical challenges. An additional approach to breed identification could be through genotyping SNPs and indels that characterise the array of skeletal differences displayed across domestic dog populations. Research has shown that a small number of genetic variants of large effect drive differences in skeletal phenotypes among domestic dog breeds. This feature makes functionally significant canine skeletal variants a cost-effective target for forensic investigators to classify individuals according to their breed. Further analysis of these skeletal variants would enable the prediction of external appearance. To date, functionally significant genes with genetic variants associated with differences in size, bulk, skull shape, ear shape, limb length, digit type, and tail morphology have been uncovered. Recommendations of a cost-effective genotyping method that can be readily designed and applied by forensic investigators have been given. Further advances to improve the field of canine skeletal forensic DNA phenotyping include the refinement of phenotyping methods, further biological validation of the skeletal genetic variants and establishing a publicly available database for storage of allele frequencies of the skeletal genetic variants in the wider domestic dog population.
Collapse
Affiliation(s)
- Patrick W Raymond
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Brandon D Velie
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Claire M Wade
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
50
|
Wang Z, Qin L, Liu J, Jiang L, Zou X, Chen X, Song F, Dai H, Hou Y. Forensic nanopore sequencing of microhaplotype markers using QitanTech's QNome. Forensic Sci Int Genet 2021; 57:102657. [PMID: 34973558 DOI: 10.1016/j.fsigen.2021.102657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/20/2022]
Abstract
In recent years, extraordinary progress has been made in genome sequencing technologies, which has led to a decrease in cost and an increase in the diversity of sequenced genomes. Nanopore sequencing is one of the latest genome sequencing technologies. It aims to sequence longer contiguous pieces of DNA, which are essential for resolving structurally complex regions, and provides a new approach for forensic genetics to detect longer markers in real time. To date, multiple studies have been conducted to sequence forensic markers using MinION from Oxford Nanopore Technologies (ONT), and the results indicate that nanopore sequencing holds promise for forensic applications. Qitan Technology (QitanTech) recently launched its first commercial nanopore genome sequencer, QNome. It could achieve a read length of more than 150 kbp, and could generate approximately 500 Mb of data in 8 h. In this pilot study, we explored and validated this alternative nanopore sequencing device for microhaplotype (MH) profiling using a custom set of 15 MH loci. Seventy single-contributor samples were divided into 7 batches, each of which included 10 samples and control DNA 9947A and was sequenced by QNome. MH genotypes generated from QNome were compared to those from Ion Torrent sequencing (Ion S5XL system) to evaluate the accuracy and stability. Twelve samples randomly selected from the last three batches and Control DNA 9947A were also subjected to ONT MinION sequencing (with R9.4 flow cell) for parallel comparison. Based on MHtyper, a bioinformatics workflow developed for automated MH designation, all MH loci can be genotyped and reliably phased using the QNome data, with an overall accuracy of 99.83% (4 errors among 2310 genotypes). Three occurred near or in the region of homopolymer sequences, and one existed within 50 bp of the start of the sequencing reaction. In the last 15 samples (12 individual samples and 3 replicates of control DNA 9947A), two SNPs located at 4-mer homopolymers failed to obtain reliable genotypes on the MinION data. This study shows the potential of state-of-the-art nanopore sequencing methods to analyze forensic MH markers. Given the rapid pace of change, sporadic and nonrepetitive errors presented in this study are expected to be resolved by further developments of nanopore technologies and analysis tools.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Liu Qin
- Qitan Technology Ltd., Chengdu 610044, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Lirong Jiang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xing Zou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiameng Chen
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Feng Song
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hao Dai
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|