1
|
Bartolić P, Morgan EJ, Padilla-García N, Kolář F. Ploidy as a leaky reproductive barrier: mechanisms, rates and evolutionary significance of interploidy gene flow. ANNALS OF BOTANY 2024; 134:537-550. [PMID: 38868992 PMCID: PMC11523636 DOI: 10.1093/aob/mcae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Whole-genome duplication (polyploidization) is a dominant force in sympatric speciation, particularly in plants. Genome doubling instantly poses a barrier to gene flow owing to the strong crossing incompatibilities between individuals differing in ploidy. The strength of the barrier, however, varies from species to species and recent genetic investigations revealed cases of rampant interploidy introgression in multiple ploidy-variable species. SCOPE Here, we review novel insights into the frequency of interploidy gene flow in natural systems and summarize the underlying mechanisms promoting interploidy gene flow. Field surveys, occasionally complemented by crossing experiments, suggest frequent opportunities for interploidy gene flow, particularly in the direction from diploid to tetraploid, and between (higher) polyploids. However, a scarcity of accompanying population genetic evidence and a virtual lack of integration of these approaches leave the underlying mechanisms and levels of realized interploidy gene flow in nature largely unknown. Finally, we discuss potential consequences of interploidy genome permeability on polyploid speciation and adaptation and highlight novel avenues that have just recently been opened by the very first genomic studies of ploidy-variable species. Standing in stark contrast with rapidly accumulating evidence for evolutionary importance of homoploid introgression, similar cases in ploidy-variable systems are yet to be documented. CONCLUSIONS The genomics era provides novel opportunity to re-evaluate the role of interploidy introgression in speciation and adaptation. To achieve this goal, interdisciplinary studies bordering ecology and population genetics and genomics are needed.
Collapse
Affiliation(s)
- Paolo Bartolić
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| | - Emma J Morgan
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| | - Nélida Padilla-García
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
- Departamento de Botánica y Fisiología Vegetal, University of Salamanca, 37007 Salamanca, Spain
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| |
Collapse
|
2
|
Meng Z, Zheng Q, Shi S, Wang W, Wang F, Xie Q, Chen X, Shen H, Xiao G, Li H. Whole-chromosome oligo-painting in licorice unveils interspecific chromosomal evolutionary relationships and possible origin of triploid genome species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39453890 DOI: 10.1111/tpj.17102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/27/2024]
Abstract
Licorice is one of the most extensively studied medicinal plants in the world, whose roots and rhizomes have long been used as both a sweetener and an essential component in numerous herbal preparations. However, the genus Glycyrrhiza has a complex composition, and the interspecies chromosomal relationships, origin, and evolution are still largely unclear. Here, we develop a set of whole-chromosome painting probes that allowed identification of all eight chromosomes of licorice on same metaphase chromosomes. Comparative chromosome painting analyses in seven different Glycyrrhiza species revealed that the genus Glycyrrhiza maintained extraordinarily conserved chromosomal synteny after about 3-12 million years of divergence. No cytologically visible inter-chromosomal rearrangements were identified in any species. By comparative chromosomal karyotype analyses, we revealed interspecific chromosome evolutionary relationships and dramatic variable chromosomal karyotype after independent divergence and demonstrated that G. prostrate was the most closely related to the ancestral type among the seven Glycyrrhiza species. Furthermore, we also discovered a G. glandulosa seed with distinct triploid-genome for the first time in China, suggesting the existence of a polyploid evolutionary pathway in the genus Glycyrrhiza, which challenges the previous notion that only diploids of licorice existed in nature. This study expands our knowledge of the chromosome evolution of licorice and will lay an important foundation for the genome origin and evolution studies in the genus Glycyrrhiza.
Collapse
Affiliation(s)
- Zhuang Meng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Qian Zheng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Shandang Shi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Wei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xifeng Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Guanghui Xiao
- College of Life Sciences, Shanxi Normal University, Xi'an, 710062, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
3
|
Greenway R, De-Kayne R, Brown AP, Camarillo H, Delich C, McGowan KL, Nelson J, Arias-Rodriguez L, Kelley JL, Tobler M. Integrative analyses of convergent adaptation in sympatric extremophile fishes. Curr Biol 2024:S0960-9822(24)01238-7. [PMID: 39395416 DOI: 10.1016/j.cub.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/18/2024] [Accepted: 09/11/2024] [Indexed: 10/14/2024]
Abstract
The evolution of independent lineages along replicated environmental transitions frequently results in convergent adaptation, yet the degree to which convergence is present across multiple levels of biological organization is often unclear. Additionally, inherent biases associated with shared ancestry and variation in selective regimes across geographic replicates often pose challenges for confidently identifying patterns of convergence. We investigated a system in which three species of poeciliid fishes sympatrically occur in a toxic spring rich in hydrogen sulfide (H2S) and an adjacent nonsulfidic stream to examine patterns of adaptive evolution across levels of biological organization. We found convergence in morphological and physiological traits and genome-wide patterns of gene expression among all three species. In addition, there were shared signatures of selection on genes encoding H2S toxicity targets in the mitochondrial genomes of each species. However, analyses of nuclear genomes revealed neither evidence for substantial genomic islands of divergence around genes involved in H2S toxicity and detoxification nor substantial congruence of strongly differentiated regions across population pairs. These non-convergent, heterogeneous patterns of genomic divergence may indicate that sulfide tolerance is highly polygenic, with shared allele frequency shifts present at many loci with small effects along the genome. Alternatively, H2S tolerance may involve substantial genetic redundancy, with non-convergent, lineage-specific variation at multiple loci along the genome underpinning similar changes in phenotypes and gene expression. Overall, we demonstrate variability in the extent of convergence across organizational levels and highlight the challenges of linking patterns of convergence across scales.
Collapse
Affiliation(s)
- Ryan Greenway
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Rishi De-Kayne
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Anthony P Brown
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Henry Camarillo
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Cassandra Delich
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Kerry L McGowan
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Joel Nelson
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Lenin Arias-Rodriguez
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, Carretera Villahermosa-Cárdenas Km. 0.5 S/N, Entronque a Bosques de Saloya, 86150 Villahermosa, Tabasco, Mexico
| | - Joanna L Kelley
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Michael Tobler
- University of Missouri, St. Louis, Department of Biology, 1 University Boulevard, St. Louis, MO 63121, USA; University of Missouri, St. Louis, Whitney R. Harris World Ecology Center, 1 University Boulevard, St. Louis, MO 63121, USA; Saint Louis Zoo, WildCare Institute, 1 Government Drive, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Valencia-Montoya WA, Pierce NE, Bellono NW. Evolution of Sensory Receptors. Annu Rev Cell Dev Biol 2024; 40:353-379. [PMID: 38985841 PMCID: PMC11526382 DOI: 10.1146/annurev-cellbio-120123-112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Sensory receptors are at the interface between an organism and its environment and thus represent key sites for biological innovation. Here, we survey major sensory receptor families to uncover emerging evolutionary patterns. Receptors for touch, temperature, and light constitute part of the ancestral sensory toolkit of animals, often predating the evolution of multicellularity and the nervous system. In contrast, chemoreceptors exhibit a dynamic history of lineage-specific expansions and contractions correlated with the disparate complexity of chemical environments. A recurring theme includes independent transitions from neurotransmitter receptors to sensory receptors of diverse stimuli from the outside world. We then provide an overview of the evolutionary mechanisms underlying sensory receptor diversification and highlight examples where signatures of natural selection are used to identify novel sensory adaptations. Finally, we discuss sensory receptors as evolutionary hotspots driving reproductive isolation and speciation, thereby contributing to the stunning diversity of animals.
Collapse
Affiliation(s)
- Wendy A Valencia-Montoya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; ,
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; ,
| |
Collapse
|
5
|
Wang Z, Wang W, He Y, Xie X, Yang Z, Zhang X, Niu J, Peng H, Yao Y, Xie C, Xin M, Hu Z, Sun Q, Ni Z, Guo W. On the evolution and genetic diversity of the bread wheat D genome. MOLECULAR PLANT 2024:S1674-2052(24)00296-X. [PMID: 39318095 DOI: 10.1016/j.molp.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/05/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Bread wheat (Triticum aestivum) became a globally dominant crop after incorporating the D genome from the donor species Aegilops tauschii, but the evolutionary history that shaped the D genome during this process remains to be clarified. Here, we propose a renewed evolutionary model linking Ae. tauschii and the hexaploid wheat D genome by constructing an ancestral haplotype map covering 762 Ae. tauschii and hexaploid wheat accessions. We dissected the evolutionary trajectories of Ae. tauschii lineages and reported a few independent intermediate accessions, demonstrating that low-frequency inter-sublineage gene flow had enriched the diversity of Ae. tauschii. We discovered that the D genome of hexaploid wheat was inherited from a unified ancestral template, but with a mosaic composition that was highly mixed and derived mainly from three Ae. tauschii L2 sublineages located in the Caspian coastal region. This result suggests that early agricultural activities facilitated innovations in D-genome composition and finalized the success of hexaploidization. We found that the majority (51.4%) of genetic diversity was attributed to novel mutations absent in Ae. tauschii, and we identified large Ae. tauschii introgressions from various lineages, which expanded the diversity of the wheat D genome and introduced beneficial alleles. This work sheds light on the process of wheat hexaploidization and highlights the evolutionary significance of the multi-layered genetic diversity of the bread wheat D genome.
Collapse
Affiliation(s)
- Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yachao He
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Jianxia Niu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Kobmoo N, Mongkolsamrit S, Khonsanit A, Cedeño-Sanchez M, Arnamnart N, Noisripoom W, Kwantong P, Sonthirod C, Pootakham W, Amnuaykanjanasin A, Charria-Girón E, Stadler M, Luangsa-Ard JJ. Integrative taxonomy of Metarhizium anisopliae species complex, based on phylogenomics combined with morphometrics, metabolomics, and virulence data. IMA Fungus 2024; 15:30. [PMID: 39261927 PMCID: PMC11389511 DOI: 10.1186/s43008-024-00154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/09/2024] [Indexed: 09/13/2024] Open
Abstract
Metarhizium anisopliae (Clavicipitaceae, Hypocreales) is a globally distributed entomopathogenic fungus, which has been largely studied and used in agriculture for its potent entomopathogenicity. Since its taxonomic establishment as a member of Metarhizium, many closely related taxa have been described with highly similar morphology (cryptic species). A holotype specimen of M. anisopliae is not extant, and the ex-neotype strain (CBS 130.71) does not form a monophyletic clade with other strains, up to now, recognized as M. anisopliae sensu stricto. In this study, we have conducted an integrative taxonomic treatment of M. anisopliae sensu lato by including the ex-neotype strain of M. anisopliae, other unknown strains from our collections identified as M. anisopliae s. lat., as well as other known species that have been previously delimited as closely related but distinct to M. anisopliae. By including whole-genome sequencing, morphometric analysis, LC-MS based metabolomics, and virulence assays, we have demonstrated that M. anisopliae s. str. should also include M. lepidiotae (synonym), and that M. anisopliae s. str. differentiates from the other species of the complex by its metabolome and less severe entomopathogenicity. New taxa, namely M. hybridum, M. neoanisopliae and M. parapingshaense spp. nov., are proposed. The novel taxa proposed here have strong phylogenomics support, corroborated by fine-scale differences in the length/width of conidia/phialides, while the metabolomics and virulence data still largely overlap. We have also demonstrated via population genomics data the existence of local clonal lineages, particularly the one corresponding to the persistence of a biocontrol candidate strain that has been used in the field application for three years. This study showcases the utility of combining various data sources for accurate delimitation of species within an important group of fungal biocontrol agents against pest insects.
Collapse
Affiliation(s)
- Noppol Kobmoo
- Integrative Crop Biotechnology and Management Research Group, Plant-Microbe Interaction Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand.
| | - Suchada Mongkolsamrit
- Integrative Crop Biotechnology and Management Research Group, Plant-Microbe Interaction Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Artit Khonsanit
- Integrative Crop Biotechnology and Management Research Group, Plant-Microbe Interaction Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Marjorie Cedeño-Sanchez
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 6 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraβe 7, Braunschweig, 38106, Germany
| | - Nuntanat Arnamnart
- Integrative Crop Biotechnology and Management Research Group, Plant-Microbe Interaction Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wasana Noisripoom
- Integrative Crop Biotechnology and Management Research Group, Plant-Microbe Interaction Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Papichaya Kwantong
- Integrative Crop Biotechnology and Management Research Group, Plant-Microbe Interaction Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chutima Sonthirod
- Genomics Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wirulda Pootakham
- Genomics Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Alongkorn Amnuaykanjanasin
- Biorefinery and Bioproduct Technology Research Group, Biocontrol Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Esteban Charria-Girón
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 6 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraβe 7, Braunschweig, 38106, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 6 38124, Braunschweig, Germany
| | - Janet Jennifer Luangsa-Ard
- Integrative Crop Biotechnology and Management Research Group, Plant-Microbe Interaction Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
7
|
Bromham L. Combining Molecular, Macroevolutionary, and Macroecological Perspectives on the Generation of Diversity. Cold Spring Harb Perspect Biol 2024; 16:a041453. [PMID: 38503506 PMCID: PMC11368193 DOI: 10.1101/cshperspect.a041453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Charles Darwin presented a unified process of diversification driven by the gradual accumulation of heritable variation. The growth in DNA databases and the increase in genomic sequencing, combined with advances in molecular phylogenetic analyses, gives us an opportunity to realize Darwin's vision, connecting the generation of variation to the diversification of lineages. The rate of molecular evolution is correlated with the rate of diversification across animals and plants, but the relationship between genome change and speciation is complex: Mutation rates evolve in response to life history and niche; substitution rates are influenced by mutation, selection, and population size; rates of acquisition of reproductive isolation vary between populations; and traits, niches, and distribution can influence diversification rates. The connection between mutation rate and diversification rate is one part of the complex and varied story of speciation, which has theoretical importance for understanding the generation of biodiversity and also practical impacts on the use of DNA to understand the dynamics of speciation over macroevolutionary timescales.
Collapse
Affiliation(s)
- Lindell Bromham
- Macroevolution and Macroecology, Research School of Biology, Australian National University, ACT 0200, Australia
| |
Collapse
|
8
|
Augustijnen H, Lucek K. Beyond gene flow: (non)-parallelism of secondary contact in a pair of highly differentiated sibling species. Mol Ecol 2024; 33:e17488. [PMID: 39119885 DOI: 10.1111/mec.17488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Replicated secondary contact zones can provide insights into the barriers to gene flow that are important during speciation and can reveal to which degree secondary contact may result in similar evolutionary outcomes. Here, we studied two secondary contact zones between highly differentiated Alpine butterflies of the genus Erebia using whole-genome resequencing data. We assessed the genomic relationships between populations and species and found hybridization to be rare, with no to little current or historical introgression in either contact zone. There are large similarities between contact zones, consistent with an allopatric origin of interspecific differentiation, with no indications for ongoing reinforcing selection. Consistent with expected reduced effective population size, we further find that scaffolds related to the Z-chromosome show increased differentiation compared to the already high levels across the entire genome, which could also hint towards a contribution of the Z chromosome to species divergence in this system. Finally, we detected the presence of the endosymbiont Wolbachia, which can cause reproductive isolation between its hosts, in all E. cassioides, while it appears to be fully or largely absent in contact zone populations of E. tyndarus. We discuss how this rare pattern may have arisen and how it may have affected the dynamics of speciation upon secondary contact.
Collapse
Affiliation(s)
- Hannah Augustijnen
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Kay Lucek
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
9
|
Jackson TK, Rhode C. Comparative genomics of dusky kob (Argyrosomus japonicus, Sciaenidae) conspecifics: Evidence for speciation and the genetic mechanisms underlying traits. JOURNAL OF FISH BIOLOGY 2024; 105:841-857. [PMID: 38885946 DOI: 10.1111/jfb.15844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/17/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Dusky kob (Argyrosomus japonicus) is a commercially important finfish, indigenous to South Africa, Australia, and China. Previous studies highlighted differences in genetic composition, life history, and morphology of the species across geographic regions. A draft genome sequence of 0.742 Gb (N50 = 5.49 Mb; BUSCO completeness = 97.8%) and 22,438 predicted protein-coding genes was generated for the South African (SA) conspecific. A comparison with the Chinese (CN) conspecific revealed a core set of 32,068 orthologous protein clusters across both genomes. The SA genome exhibited 440 unique clusters compared to 1928 unique clusters in the CN genome. Transportation and immune response processes were overrepresented among the SA accessory genome, whereas the CN accessory genome was enriched for immune response, DNA transposition, and sensory detection (FDR-adjusted p < 0.01). These unique clusters may represent an adaptive component of the species' pangenome that could explain population divergence due to differential environmental specialisation. Furthermore, 700 single-copy orthologues (SCOs) displayed evidence of positive selection between the SA and CN genomes, and globally these genomes shared only 92% similarity, suggesting they might be distinct species. These genes primarily play roles in metabolism and digestion, illustrating the evolutionary pathways that differentiate the species. Understanding these genomic mechanisms underlying adaptation and evolution within and between species provides valuable insights into growth and maturation of kob, traits that are particularly relevant to commercial aquaculture.
Collapse
Affiliation(s)
- Tassin Kim Jackson
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
10
|
Lorioux-Chevalier U, Chouteau M, Roland AB. The importance of reproductive isolation in driving diversification and speciation within Peruvian mimetic poison frogs (Dendrobatidae). Sci Rep 2024; 14:19803. [PMID: 39191906 PMCID: PMC11349946 DOI: 10.1038/s41598-024-70744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
To explain how populations with distinct warning signals coexist in close parapatry, we experimentally assessed intrinsic mechanisms acting as reproductive barriers within three poison-frog species from the Peruvian Amazon belonging to a Müllerian mimetic ring (Ranitomeya variabilis, Ranitomeya imitator and Ranitomeya fantastica). We tested the role of prezygotic and postzygotic isolation barriers between phenotypically different ecotypes of each species, using no-choice mating experiments and offspring survival analysis. Our results show that prezygotic mating preference did not occur except for one specific ecotype of R. imitator, and that all three species were able to produce viable inter-population F1 hybrids. However, while R. variabilis and R. imitator hybrids were able to produce viable F2 generations, we found that for R. fantastica, every F1 hybrid males were sterile while females remained fertile. This unexpected result, echoing with Haldane's rule of speciation, validated phylogenetic studies which tentatively diagnose these populations of R. fantastica as two different species. Our work suggests that postzygotic genetic barriers likely participate in the extraordinary phenotypic diversity observed within Müllerian mimetic Ranitomeya populations, by maintaining species boundaries.
Collapse
Affiliation(s)
- Ugo Lorioux-Chevalier
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens, UAR 3456, CNRS, IFREMER, Université de Guyane, Cayenne, France.
| | - Mathieu Chouteau
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens, UAR 3456, CNRS, IFREMER, Université de Guyane, Cayenne, France
| | - Alexandre-Benoit Roland
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens, UAR 3456, CNRS, IFREMER, Université de Guyane, Cayenne, France.
| |
Collapse
|
11
|
Dopman EB, Shaw KL, Servedio MR, Butlin RK, Smadja CM. Coupling of Barriers to Gene Exchange: Causes and Consequences. Cold Spring Harb Perspect Biol 2024; 16:a041432. [PMID: 38191516 PMCID: PMC11293547 DOI: 10.1101/cshperspect.a041432] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Coupling has emerged as a concept to describe the transition from differentiated populations to newly evolved species through the strengthening of reproductive isolation. However, the term has been used in multiple ways, and relevant processes have sometimes not been clearly distinguished. Here, we synthesize existing uses of the concept of coupling and find three main perspectives: (1) coupling as the build-up of linkage disequilibrium among loci underlying barriers to gene exchange, (2) coupling as the build-up of genome-wide linkage disequilibrium, and (3) coupling as the process generating a coincidence of distinct barrier effects. We compare and contrast these views, show the diverse processes involved and the complexity of the relationships among recombination, linkage disequilibrium, and reproductive isolation, and, finally, we emphasize how each perspective can guide new directions in speciation research. Although the importance of coupling for evolutionary divergence and speciation is well established, many theoretical and empirical questions remain unanswered.
Collapse
Affiliation(s)
- Erik B Dopman
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | - Maria R Servedio
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Roger K Butlin
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
- Department of Marine Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Carole M Smadja
- Institut des Sciences de l'Evolution de Montpellier ISEM, Universite de Montpellier, CNRS, IRD, Montpellier 34095, France
| |
Collapse
|
12
|
Liu A, Geraldes A, Taylor EB. Historical and contemporary processes driving the origin and structure of an admixed population within a contact zone between subspecies of a north temperate diadromous fish. Mol Ecol 2024; 33:e17459. [PMID: 38994921 DOI: 10.1111/mec.17459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 07/13/2024]
Abstract
Hybridization between divergent lineages can result in losses of distinct evolutionary taxa. Alternatively, hybridization can lead to increased genetic variability that may fuel local adaptation and the generation of novel traits and/or taxa. Here, we examined single-nucleotide polymorphisms generated using genotyping-by-sequencing in a population of Dolly Varden char (Pisces: Salmonidae) that is highly admixed within a contact zone between two subspecies (Salvelinus malma malma, Northern Dolly Varden [NDV] and S. m. lordi, Southern Dolly Varden [SDV]) in southwestern Alaska to assess the spatial distribution of hybrids and to test hypotheses on the origin of the admixed population. Ancestry analysis revealed that this admixed population is composed of advanced generation hybrids between NDV and SDV or advanced backcrosses to SDV; no F1 hybrids were detected. Coalescent-based demographic modelling supported the origin of this population about 55,000 years ago by secondary contact between NDV and SDV with low levels of contemporary gene flow. Ancestry in NDV and SDV varies within the watershed and ancestry in NDV was positively associated with distance upstream from the sea, contingent on habitat-type sampled, and negatively associated with the number of migrations that individual fish made to the sea. Our results suggest that divergence between subspecies over hundreds of thousands of years may not be associated with significant reproductive isolation, but that elevated diversity owing to hybridization may have contributed to adaptive divergence in habitat use and life history.
Collapse
Affiliation(s)
- Amy Liu
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Armando Geraldes
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric B Taylor
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Beaty Biodiversity Museum, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Liu Y, Liu J, Huang Z, Fan K, Guo X, Xing L, Cao A. Phenotypic characterization and gene mapping of hybrid necrosis in Triticum durum-Haynaldia villosa amphiploids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:185. [PMID: 39009774 PMCID: PMC11249415 DOI: 10.1007/s00122-024-04691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
KEY MESSAGE Phenotypical, physiological and genetic characterization was carried out on the hybrid necrosis gene from Haynaldia villosa, and the related gene Ne-V was mapped to chromosome arm 2VL. Introducing genetic variation from wild relatives into common wheat through wide crosses is a vital strategy for enriching genetic diversity and promoting wheat breeding. However, hybrid necrosis, a genetic autoimmunity syndrome, often occurs in the offspring of interspecific or intraspecific crosses, restricting both the selection of hybrid parents and the pyramiding of beneficial genes. To utilize the germplasms of Haynaldia villosa (2n = 2x = 14, VV), we conducted wide hybridization between durum wheat (2n = 4x = 28, AABB) and multiple H. villosa accessions to synthesize the amphiploids (2n = 6x = 42, AABBVV). This study revealed that 61.5% of amphiploids derived from the above crosses exhibited hybrid necrosis, with some amphiploids even dying before reaching maturity. However, the initiation time and severity of necrosis varied dramatically among the progenies, suggesting that there were multiple genetic loci or multiple alleles in the same genetic locus conferring to hybrid necrosis in H. villosa accessions. Genetic analysis was performed on the F2 and derived F2:3 populations, which were constructed between amphiploid STH59-1 with normal leaves and amphiploid STH59-2 with necrotic leaves. A semidominant hybrid necrosis-related gene, Ne-V, was mapped to an 11.8-cM genetic interval on the long arm of chromosome 2V, representing a novel genetic locus identified in Triticum-related species. In addition, the hybrid necrosis was correlated with enhanced H2O2 accumulation and cell death, and it was influenced by the temperature and light. Our findings provide a foundation for cloning the Ne-V gene and exploring its molecular mechanism.
Collapse
Affiliation(s)
- Yangqi Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Jinhong Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Zhenpu Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Kaiwen Fan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Xinshuo Guo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Liping Xing
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China.
| | - Aizhong Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China.
| |
Collapse
|
14
|
Boughman JW, Brand JA, Brooks RC, Bonduriansky R, Wong BBM. Sexual selection and speciation in the Anthropocene. Trends Ecol Evol 2024; 39:654-665. [PMID: 38503640 DOI: 10.1016/j.tree.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Anthropogenic change threatens global biodiversity by causing severe ecological disturbance and extinction. Here, we consider the effects of anthropogenic change on one process that generates biodiversity. Sexual selection (a potent evolutionary force and driver of speciation) is highly sensitive to the environment and, thus, vulnerable to anthropogenic ecological change. Anthropogenic alterations to sexual display and mate preference can make it harder to distinguish between conspecific and heterospecific mates or can weaken divergence via sexual selection, leading to higher rates of hybridization and biodiversity loss. Occasionally, anthropogenically altered sexual selection can abet diversification, but this appears less likely than biodiversity loss. In our rapidly changing world, a full understanding of sexual selection and speciation requires a global change perspective.
Collapse
Affiliation(s)
- Janette W Boughman
- Department of Integrative Biology & Evolution, Ecology and Behavior Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Västerbotten, SE-907 36, Sweden
| | - Robert C Brooks
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
15
|
Elshafei AA, Ibrahim EI, Abdellatif KF, Salem AEAK, Moustafa KA, Al-Doss AA, Migdadi HM, Hussien AM, Soufan W, Abd El Rahman T, Eldemery SM. Molecular and agro-morphological characterization of new barley genotypes in arid environments. BMC Biotechnol 2024; 24:41. [PMID: 38862994 PMCID: PMC11167802 DOI: 10.1186/s12896-024-00861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Genetic diversity, population structure, agro-morphological traits, and molecular characteristics, are crucial for either preserving genetic resources or developing new cultivars. Due to climate change, water availability for agricultural use is progressively diminishing. This study used 100 molecular markers (25 TRAP, 22 SRAP, 23 ISTR, and 30 SSR). Additionally, 15 morphological characteristics were utilized to evaluate the optimal agronomic traits of 12 different barley genotypes under arid conditions. RESULTS Substantial variations, ranging from significant to highly significant, were observed in the 15 agromorphological parameters evaluated among the 12 genotypes. The KSU-B101 barley genotype demonstrated superior performance in five specific traits: spike number per plant, 100-grain weight, spike number per square meter, harvest index, and grain yield. These results indicate its potential for achieving high yields in arid regions. The Sahrawy barley genotype exhibited the highest values across five parameters, namely leaf area, spike weight per plant, spike length, spike weight per square meter, and biological yield, making it a promising candidate for animal feed. The KSU-B105 genotype exhibited early maturity and a high grain count per spike, which reflects its early maturity and ability to produce a high number of grains per spike. This suggests its suitability for both animal feed and human food in arid areas. Based on marker data, the molecular study found that the similarity coefficients between the barley genotypes ranged from 0.48 to 0.80, with an average of 0.64. The dendrogram constructed from these data revealed three distinct clusters with a similarity coefficient of 0.80. Notably, the correlation between the dendrogram and its similarity matrix was high (0.903), indicating its accuracy in depicting the genetic relationships. The combined analysis revealed a moderate correlation between the morphological and molecular analysis, suggesting alignment between the two characterization methods. CONCLUSIONS The morphological and molecular analyses of the 12 barley genotypes in this study effectively revealed the varied genetic characteristics of their agro-performance in arid conditions. KSU-B101, Sahrawy, and KSU-B105 have emerged as promising candidates for different agricultural applications in arid regions. Further research on these genotypes could reveal their full potential for breeding programs.
Collapse
Affiliation(s)
- Adel A Elshafei
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Research Institute, National Research Center, Dokki, Giza, 12622, Egypt.
| | - Eid I Ibrahim
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Kamal F Abdellatif
- Plant Biotechnology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, Egypt
| | - Abd El-Azeem K Salem
- Field Crops Research Department, Agricultural and Biological Research Institute, National Research Center, Dokki, Giza, 12622, Egypt
| | - Khaled A Moustafa
- Barley Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Abdullah A Al-Doss
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Hussein M Migdadi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Amal M Hussien
- Genetic Resources Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Walid Soufan
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Taha Abd El Rahman
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Samah M Eldemery
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, Egypt
| |
Collapse
|
16
|
Martin CA, Sheppard EC, Ali HAA, Illera JC, Suh A, Spurgin LG, Richardson DS. Genomic landscapes of divergence among island bird populations: Evidence of parallel adaptation but at different loci? Mol Ecol 2024; 33:e17365. [PMID: 38733214 DOI: 10.1111/mec.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/01/2024] [Indexed: 05/13/2024]
Abstract
When populations colonise new environments, they may be exposed to novel selection pressures but also suffer from extensive genetic drift due to founder effects, small population sizes and limited interpopulation gene flow. Genomic approaches enable us to study how these factors drive divergence, and disentangle neutral effects from differentiation at specific loci due to selection. Here, we investigate patterns of genetic diversity and divergence using whole-genome resequencing (>22× coverage) in Berthelot's pipit (Anthus berthelotii), a passerine endemic to the islands of three north Atlantic archipelagos. Strong environmental gradients, including in pathogen pressure, across populations in the species range, make it an excellent system in which to explore traits important in adaptation and/or incipient speciation. First, we quantify how genomic divergence accumulates across the speciation continuum, that is, among Berthelot's pipit populations, between sub species across archipelagos, and between Berthelot's pipit and its mainland ancestor, the tawny pipit (Anthus campestris). Across these colonisation timeframes (2.1 million-ca. 8000 years ago), we identify highly differentiated loci within genomic islands of divergence and conclude that the observed distributions align with expectations for non-neutral divergence. Characteristic signatures of selection are identified in loci associated with craniofacial/bone and eye development, metabolism and immune response between population comparisons. Interestingly, we find limited evidence for repeated divergence of the same loci across the colonisation range but do identify different loci putatively associated with the same biological traits in different populations, likely due to parallel adaptation. Incipient speciation across these island populations, in which founder effects and selective pressures are strong, may therefore be repeatedly associated with morphology, metabolism and immune defence.
Collapse
Affiliation(s)
- Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Hisham A A Ali
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
17
|
Marcionetti A, Bertrand JAM, Cortesi F, Donati GFA, Heim S, Huyghe F, Kochzius M, Pellissier L, Salamin N. Recurrent gene flow events occurred during the diversification of clownfishes of the skunk complex. Mol Ecol 2024; 33:e17347. [PMID: 38624248 DOI: 10.1111/mec.17347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Clownfish (subfamily Amphiprioninae) are an iconic group of coral reef fish that evolved a mutualistic interaction with sea anemones, which triggered the adaptive radiation of the clade. Within clownfishes, the "skunk complex" is particularly interesting. Besides ecological speciation, interspecific gene flow and hybrid speciation are thought to have shaped the evolution of the group. We investigated the mechanisms characterizing the diversification of this complex. By taking advantage of their disjunct geographical distribution, we obtained whole-genome data of sympatric and allopatric populations of the three main species of the complex (Amphiprion akallopisos, A. perideraion and A. sandaracinos). We examined population structure, genomic divergence and introgression signals and performed demographic modelling to identify the most realistic diversification scenario. We excluded scenarios of strict isolation or hybrid origin of A. sandaracinos. We discovered moderate gene flow from A. perideraion to the ancestor of A. akallopisos + A. sandaracinos and weak gene flow between the species in the Indo-Australian Archipelago throughout the diversification of the group. We identified introgressed regions in A. sandaracinos and detected in A. perideraion two large regions of high divergence from the two other species. While we found that gene flow has occurred throughout the species' diversification, we also observed that recent admixture was less pervasive than initially thought, suggesting a role of host repartition or behavioural barriers in maintaining the genetic identity of the species in sympatry.
Collapse
Affiliation(s)
- Anna Marcionetti
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| | - Joris A M Bertrand
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
- Laboratoire Génome et Développement Des Plantes (UMR 5096 UPVD/CNRS), University of Perpignan via Domitia, Perpignan, France
| | - Fabio Cortesi
- School of the Environment and Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Giulia F A Donati
- EAWAG Swiss Federal Institute of Aquatic Science & Technology, Dübendorf, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Sara Heim
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| | - Filip Huyghe
- Marine Biology - Ecology, Evolution and Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | - Marc Kochzius
- Marine Biology - Ecology, Evolution and Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | - Loïc Pellissier
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Ecosystems and Landscape Evolution, Department of Environmental System Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Vangestel C, Swaegers J, De Corte Z, Dekoninck W, Gharbi K, Gillespie R, Vandekerckhove M, Van Belleghem SM, Hendrickx F. Chromosomal inversions from an initial ecotypic divergence drive a gradual repeated radiation of Galápagos beetles. SCIENCE ADVANCES 2024; 10:eadk7906. [PMID: 38820159 PMCID: PMC11141621 DOI: 10.1126/sciadv.adk7906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
Island faunas exhibit some of the most iconic examples where similar forms repeatedly evolve within different islands. Yet, whether these deterministic evolutionary trajectories within islands are driven by an initial, singular divergence and the subsequent exchange of individuals and adaptive genetic variation between islands remains unclear. Here, we study a gradual, repeated evolution of low-dispersive highland ecotypes from a dispersive lowland ecotype of Calosoma beetles along the island progression of the Galápagos. We show that repeated highland adaptation involved selection on multiple shared alleles within extensive chromosomal inversions that originated from an initial adaptation event on the oldest island. These highland inversions first spread through dispersal of highland individuals. Subsequent admixture with the lowland ecotype resulted in polymorphic dispersive populations from which the highland populations evolved on the youngest islands. Our findings emphasize the significance of an ancient divergence in driving repeated evolution and highlight how a mixed contribution of inter-island colonization and within-island evolution can shape parallel species communities.
Collapse
Affiliation(s)
- Carl Vangestel
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Gent, Belgium
| | - Janne Swaegers
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Ecology, Evolution and Conservation Biology, Biology Department, University of Leuven, Leuven, Belgium
| | - Zoë De Corte
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Gent, Belgium
| | | | - Karim Gharbi
- Earlham Institute, Norwich Research Park, Norfolk, United Kingdom
| | - Rosemary Gillespie
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Matthias Vandekerckhove
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Gent, Belgium
| | - Steven M. Van Belleghem
- Ecology, Evolution and Conservation Biology, Biology Department, University of Leuven, Leuven, Belgium
| | - Frederik Hendrickx
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Gent, Belgium
| |
Collapse
|
19
|
Kearney M, Lieberman BS, Strotz LC. Tangled Banks, Braided Rivers and Complex Hierarchies: Beyond Microevolution and Macroevolution. J Evol Biol 2024:voae065. [PMID: 38819079 DOI: 10.1093/jeb/voae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 06/01/2024]
Abstract
Ever since the Modern Synthesis, a debate about the relationship between microevolution and macroevolution has persisted - specifically, whether they are equivalent, distinct, or explain one another. How one answers this has become shorthand for a much broader set of theoretical debates in evolutionary biology. Here, we examine microevolution and macroevolution in the context of the vast proliferation of data, knowledge, and theory since the advent of the Modern Synthesis. We suggest that traditional views on microevolution and macroevolution are too binary and reductive. For example, patterns and processes are not confined to micro- and macro- domains; they are interconnected at various temporal and spatial scales and across hierarchical entities. Further, biological entities have variably fuzzy boundaries, and evolutionary processes that influence macroevolution occur at micro- and macro- levels. In addition, these conceptual advances in phylodynamics have yet to be fully integrated with contemporary macroevolutionary approaches. Finally, holding microevolution and macroevolution as distinct domains thwarts synthesis and collaboration on important research questions. We propose that the focal entities and processes considered by evolutionary studies be contextualized within the newfound complexity of the multidimensional, multi-modal, multi-level phylogenetic system.
Collapse
Affiliation(s)
- M Kearney
- Division of Environmental Biology, National Science Foundation, 2415 Eisenhower Avenue, Alexandria, Virginia, 22314 U.S.A
| | - B S Lieberman
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, 66045, U.S.A
- Biodiversity Institute, 1345 Jayhawk Blvd., University of Kansas, Lawrence, Kansas, 66045, U.S.A
| | - L C Strotz
- Biodiversity Institute, 1345 Jayhawk Blvd., University of Kansas, Lawrence, Kansas, 66045, U.S.A
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
- Department of Palaeontology, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
20
|
Ruan Z, Jiao J, Zhao J, Liu J, Liang C, Yang X, Sun Y, Tang G, Li P. Genome sequencing and comparative genomics reveal insights into pathogenicity and evolution of Fusarium zanthoxyli, the causal agent of stem canker in prickly ash. BMC Genomics 2024; 25:502. [PMID: 38773367 PMCID: PMC11110190 DOI: 10.1186/s12864-024-10424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Fusarium zanthoxyli is a destructive pathogen causing stem canker in prickly ash, an ecologically and economically important forest tree. However, the genome lack of F. zanthoxyli has hindered research on its interaction with prickly ash and the development of precise control strategies for stem canker. RESULTS In this study, we sequenced and annotated a relatively high-quality genome of F. zanthoxyli with a size of 43.39 Mb, encoding 11,316 putative genes. Pathogenicity-related factors are predicted, comprising 495 CAZymes, 217 effectors, 156 CYP450s, and 202 enzymes associated with secondary metabolism. Besides, a comparative genomics analysis revealed Fusarium and Colletotrichum diverged from a shared ancestor approximately 141.1 ~ 88.4 million years ago (MYA). Additionally, a phylogenomic investigation of 12 different phytopathogens within Fusarium indicated that F. zanthoxyli originated approximately 34.6 ~ 26.9 MYA, and events of gene expansion and contraction within them were also unveiled. Finally, utilizing conserved domain prediction, the results revealed that among the 59 unique genes, the most enriched domains were PnbA and ULP1. Among the 783 expanded genes, the most enriched domains were PKc_like kinases and those belonging to the APH_ChoK_Like family. CONCLUSION This study sheds light on the genetic basis of F. zanthoxyli's pathogenicity and evolution which provides valuable information for future research on its molecular interactions with prickly ash and the development of effective strategies to combat stem canker.
Collapse
Affiliation(s)
- Zhao Ruan
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiahui Jiao
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Junchi Zhao
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiaxue Liu
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chaoqiong Liang
- Shaanxi Academy of Forestry, Xi'an, Shaanxi, 710082, People's Republic of China
| | - Xia Yang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yan Sun
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Guanghui Tang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Peiqin Li
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
21
|
Zhang S, Xu N, Fu L, Yang X, Li Y, Yang Z, Feng Y, Ma K, Jiang X, Han J, Hu R, Zhang L, de Gennaro L, Ryabov F, Meng D, He Y, Wu D, Yang C, Paparella A, Mao Y, Bian X, Lu Y, Antonacci F, Ventura M, Shepelev VA, Miga KH, Alexandrov IA, Logsdon GA, Phillippy AM, Su B, Zhang G, Eichler EE, Lu Q, Shi Y, Sun Q, Mao Y. Comparative genomics of macaques and integrated insights into genetic variation and population history. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588379. [PMID: 38645259 PMCID: PMC11030432 DOI: 10.1101/2024.04.07.588379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The crab-eating macaques ( Macaca fascicularis ) and rhesus macaques ( M. mulatta ) are widely studied nonhuman primates in biomedical and evolutionary research. Despite their significance, the current understanding of the complex genomic structure in macaques and the differences between species requires substantial improvement. Here, we present a complete genome assembly of a crab-eating macaque and 20 haplotype-resolved macaque assemblies to investigate the complex regions and major genomic differences between species. Segmental duplication in macaques is ∼42% lower, while centromeres are ∼3.7 times longer than those in humans. The characterization of ∼2 Mbp fixed genetic variants and ∼240 Mbp complex loci highlights potential associations with metabolic differences between the two macaque species (e.g., CYP2C76 and EHBP1L1 ). Additionally, hundreds of alternative splicing differences show post-transcriptional regulation divergence between these two species (e.g., PNPO ). We also characterize 91 large-scale genomic differences between macaques and humans at a single-base-pair resolution and highlight their impact on gene regulation in primate evolution (e.g., FOLH1 and PIEZO2 ). Finally, population genetics recapitulates macaque speciation and selective sweeps, highlighting potential genetic basis of reproduction and tail phenotype differences (e.g., STAB1 , SEMA3F , and HOXD13 ). In summary, the integrated analysis of genetic variation and population genetics in macaques greatly enhances our comprehension of lineage-specific phenotypes, adaptation, and primate evolution, thereby improving their biomedical applications in human diseases.
Collapse
|
22
|
Johannesson K, Faria R, Le Moan A, Rafajlović M, Westram AM, Butlin RK, Stankowski S. Diverse pathways to speciation revealed by marine snails. Trends Genet 2024; 40:337-351. [PMID: 38395682 DOI: 10.1016/j.tig.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 02/25/2024]
Abstract
Speciation is a key evolutionary process that is not yet fully understood. Combining population genomic and ecological data from multiple diverging pairs of marine snails (Littorina) supports the search for speciation mechanisms. Placing pairs on a one-dimensional speciation continuum, from undifferentiated populations to species, obscured the complexity of speciation. Adding multiple axes helped to describe either speciation routes or reproductive isolation in the snails. Divergent ecological selection repeatedly generated barriers between ecotypes, but appeared less important in completing speciation while genetic incompatibilities played a key role. Chromosomal inversions contributed to genomic barriers, but with variable impact. A multidimensional (hypercube) approach supported framing of questions and identification of knowledge gaps and can be useful to understand speciation in many other systems.
Collapse
Affiliation(s)
- Kerstin Johannesson
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, SE 45296 Strömstad, Sweden; The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Rui Faria
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Alan Le Moan
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden; CNRS & Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Marina Rafajlović
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden; Department of Marine Sciences, University of Gothenburg, SE 41390 Gothenburg, Sweden; Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
| | - Anja Marie Westram
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, SE 45296 Strömstad, Sweden; The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden; Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Roger K Butlin
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, SE 45296 Strömstad, Sweden; The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden; Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Sean Stankowski
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden; Institute of Science and Technology Austria, Klosterneuburg, Austria; Department of Ecology and Evolution, University of Sussex, Brighton, UK
| |
Collapse
|
23
|
Nosil P, Gompert Z, Funk DJ. Divergent dynamics of sexual and habitat isolation at the transition between stick insect populations and species. Nat Commun 2024; 15:2273. [PMID: 38480699 PMCID: PMC10937975 DOI: 10.1038/s41467-024-46294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
Speciation is often viewed as a continuum along which populations diverge until they become reproductively-isolated species. However, such divergence may be heterogeneous, proceeding in fits and bursts, rather than being uniform and gradual. We show in Timema stick insects that one component of reproductive isolation evolves non-uniformly across this continuum, whereas another does not. Specifically, we use thousands of host-preference and mating trials to study habitat and sexual isolation among 42 pairs of taxa spanning a range of genomic differentiation and divergence time. We find that habitat isolation is uncoupled from genomic differentiation within species, but accumulates linearly with it between species. In contrast, sexual isolation accumulates linearly across the speciation continuum, and thus exhibits similar dynamics to morphological traits not implicated in reproductive isolation. The results show different evolutionary dynamics for different components of reproductive isolation and highlight a special relevance for species status in the process of speciation.
Collapse
Affiliation(s)
- Patrik Nosil
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - Daniel J Funk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
24
|
Meng QL, Qiang CG, Li JL, Geng MF, Ren NN, Cai Z, Wang MX, Jiao ZH, Zhang FM, Song XJ, Ge S. Genetic architecture of ecological divergence between Oryza rufipogon and Oryza nivara. Mol Ecol 2024; 33:e17268. [PMID: 38230514 DOI: 10.1111/mec.17268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Ecological divergence due to habitat difference plays a prominent role in the formation of new species, but the genetic architecture during ecological speciation and the mechanism underlying phenotypic divergence remain less understood. Two wild ancestors of rice (Oryza rufipogon and Oryza nivara) are a progenitor-derivative species pair with ecological divergence and provide a unique system for studying ecological adaptation/speciation. Here, we constructed a high-resolution linkage map and conducted a quantitative trait locus (QTL) analysis of 19 phenotypic traits using an F2 population generated from a cross between the two Oryza species. We identified 113 QTLs associated with interspecific divergence of 16 quantitative traits, with effect sizes ranging from 1.61% to 34.1% in terms of the percentage of variation explained (PVE). The distribution of effect sizes of QTLs followed a negative exponential, suggesting that a few genes of large effect and many genes of small effect were responsible for the phenotypic divergence. We observed 18 clusters of QTLs (QTL hotspots) on 11 chromosomes, significantly more than that expected by chance, demonstrating the importance of coinheritance of loci/genes in ecological adaptation/speciation. Analysis of effect direction and v-test statistics revealed that interspecific differentiation of most traits was driven by divergent natural selection, supporting the argument that ecological adaptation/speciation would proceed rapidly under coordinated selection on multiple traits. Our findings provide new insights into the understanding of genetic architecture of ecological adaptation and speciation in plants and help effective manipulation of specific genes or gene cluster in rice breeding.
Collapse
Affiliation(s)
- Qing-Lin Meng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Gen Qiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Long Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mu-Fan Geng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ning-Ning Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhe Cai
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Mei-Xia Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Hui Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fu-Min Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xian-Jun Song
- Key Laboratory of Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Ali HAA, Coulson T, Clegg SM, Quilodrán CS. The effect of divergent and parallel selection on the genomic landscape of divergence. Mol Ecol 2024; 33:e17225. [PMID: 38063473 DOI: 10.1111/mec.17225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/16/2023] [Indexed: 01/25/2024]
Abstract
While the role of selection in divergence along the speciation continuum is theoretically well understood, defining specific signatures of selection in the genomic landscape of divergence is empirically challenging. Modelling approaches can provide insight into the potential role of selection on the emergence of a heterogenous genomic landscape of divergence. Here, we extend and apply an individual-based approach that simulates the phenotypic and genotypic distributions of two populations under a variety of selection regimes, genotype-phenotype maps, modes of migration, and genotype-environment interactions. We show that genomic islands of high differentiation and genomic valleys of similarity may respectively form under divergent and parallel selection between populations. For both types of between-population selection, negative and positive frequency-dependent selection within populations generated genomic islands of higher magnitude and genomic valleys of similarity, respectively. Divergence rates decreased under strong dominance with divergent selection, as well as in models including genotype-environment interactions under parallel selection. For both divergent and parallel selection models, divergence rate was higher under an intermittent migration regime between populations, in contrast to a constant level of migration across generations, despite an equal number of total migrants. We highlight that interpreting a particular evolutionary history from an observed genomic pattern must be done cautiously, as similar patterns may be obtained from different combinations of evolutionary processes. Modelling approaches such as ours provide an opportunity to narrow the potential routes that generate the genomic patterns of specific evolutionary histories.
Collapse
Affiliation(s)
- Hisham A A Ali
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
| | - Tim Coulson
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
| | - Sonya M Clegg
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
| | - Claudio S Quilodrán
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Venney CJ, Mérot C, Normandeau E, Rougeux C, Laporte M, Bernatchez L. Epigenetic and Genetic Differentiation Between Coregonus Species Pairs. Genome Biol Evol 2024; 16:evae013. [PMID: 38271269 PMCID: PMC10849188 DOI: 10.1093/gbe/evae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Phenotypic diversification is classically associated with genetic differentiation and gene expression variation. However, increasing evidence suggests that DNA methylation is involved in evolutionary processes due to its phenotypic and transcriptional effects. Methylation can increase mutagenesis and could lead to increased genetic divergence between populations experiencing different environmental conditions for many generations, though there has been minimal empirical research on epigenetically induced mutagenesis in diversification and speciation. Whitefish, freshwater members of the salmonid family, are excellent systems to study phenotypic diversification and speciation due to the repeated divergence of benthic-limnetic species pairs serving as natural replicates. Here we investigate whole genome genetic and epigenetic differentiation between sympatric benthic-limnetic species pairs in lake and European whitefish (Coregonus clupeaformis and Coregonus lavaretus) from four lakes (N = 64). We found considerable, albeit variable, genetic and epigenetic differences between species pairs. All SNP types were enriched at CpG sites supporting the mutagenic nature of DNA methylation, though C>T SNPs were most common. We also found an enrichment of overlaps between outlier SNPs with the 5% highest FST between species and differentially methylated loci. This could possibly represent differentially methylated sites that have caused divergent genetic mutations between species, or divergent selection leading to both genetic and epigenetic variation at these sites. Our results support the hypothesis that DNA methylation contributes to phenotypic divergence and mutagenesis during whitefish speciation.
Collapse
Affiliation(s)
- Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Claire Mérot
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- UMR 6553 Ecobio, OSUR, CNRS, Université de Rennes, Rennes, France
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Clément Rougeux
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Ministère des Forêts, de la Faune et des Parcs (MFFP), Québec, Québec, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| |
Collapse
|
27
|
Bailey RI. Bayesian hybrid index and genomic cline estimation with the R package gghybrid. Mol Ecol Resour 2024; 24:e13910. [PMID: 38063369 DOI: 10.1111/1755-0998.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024]
Abstract
Admixture, the interbreeding of individuals from differentiated source populations, is now known to be a widespread phenomenon. Genomic studies of natural hybridisation can help to answer many questions on the impacts of admixture on adaptive evolution, reproductive isolation, and speciation. When a large variety of admixture proportions between two source populations exist, both geographic and genomic cline analysis are suitable methods for inferring biased, restricted or excessive gene flow at individual loci into the foreign genomic background, providing evidence for reproductive isolation, selection across an environmental transition, balancing selection, and adaptive introgression. Genomic cline analysis replaces geographic location with genome-wide hybrid index and is therefore useable in circumstances that violate geographic cline assumptions. Here, I introduce gghybrid, an R package for simple and flexible Bayesian estimation of Buerkle's hybrid index and Fitzpatrick's logit-logistic genomic clines using bi-allelic data, suitable for both small and large datasets. gghybrid allows any ploidy and uses Structure input file format. It has separate functions for hybrid index and cline estimation, treating each individual and locus respectively as an independent analysis, making it highly parallelisable. Admixture proportions from other software can alternatively be used in cline analysis, alongside parental allele frequencies. Parameters can be fixed and samples pooled for statistical model comparison with AIC or waic. Here, I describe the functions, pipeline, and statistical properties of gghybrid. Simulations reveal that model comparison with waic is preferred, and use of Bayesian posterior distributions and p values to select candidate non-null loci is problematic and should be avoided.
Collapse
Affiliation(s)
- Richard Ian Bailey
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| |
Collapse
|
28
|
Diz AP, Skibinski DOF. Patterns of admixture and introgression in a mosaic Mytilus galloprovincialis and Mytilus edulis hybrid zone in SW England. Mol Ecol 2024; 33:e17233. [PMID: 38063472 DOI: 10.1111/mec.17233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 01/25/2024]
Abstract
The study of hybrid zones offers important insights into speciation. Earlier studies on hybrid populations of the marine mussel species Mytilus edulis and Mytilus galloprovincialis in SW England provided evidence of admixture but were constrained by the limited number of molecular markers available. We use 57 ancestry-informative SNPs, most of which have been mapped genetically, to provide evidence of distinctive differences between admixed populations in SW England and asymmetrical introgression from M. edulis to M. galloprovincialis. We combine the genetic study with analysis of phenotypic traits of potential ecological and adaptive significance. We demonstrate that hybrid individuals have brown mantle edges unlike the white or purple in the parental species, suggesting allelic or non-allelic genomic interactions. We report differences in gonad development stage between the species consistent with a prezygotic barrier between the species. By incorporating results from publications dating back to 1980, we confirm the long-term stability of the hybrid zone despite higher viability of M. galloprovincialis. This stability coincides with a dramatic change in temperature of UK coastal waters and suggests that these hybrid populations might be resisting the effects of global warming. However, a single SNP locus associated with the Notch transmembrane signalling protein shows a markedly different pattern of variation to the others and might be associated with adaptation of M. galloprovincialis to colder northern temperatures.
Collapse
Affiliation(s)
- Angel P Diz
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVIGO), Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | | |
Collapse
|
29
|
Souza LHB, Pierson TW, Tenório RO, Ferro JM, Gatto KP, Silva BC, de Andrade GV, Suárez P, Haddad CFB, Lourenço LB. Multiple contact zones and karyotypic evolution in a neotropical frog species complex. Sci Rep 2024; 14:1119. [PMID: 38212602 PMCID: PMC10784582 DOI: 10.1038/s41598-024-51421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Previous studies of DNA sequence and karyotypic data have revealed high genetic diversity in the Physalaemus cuvieri - Physalaemus ephippifer species complex-a group of small leptodactylid frogs in South America. To date, seven major genetic lineages have been recognized in this group, with species delimitation tests supporting four to seven of them as valid species. Among these, only P. ephippifer shows heteromorphic sex chromosomes, but the implications of cytogenetic divergence for the evolution of this group are unknown. We analyzed karyotypic, mitochondrial DNA, and 3RAD genomic data to characterize a putative contact zone between P. ephippifer and P. cuvieri Lineage 1, finding evidence for admixture and karyotypic evolution. We also describe preliminary evidence for admixture between two other members of this species complex-Lineage 1 and Lineage 3 of P. cuvieri. Our study sheds new light on evolutionary relationships in the P. cuvieri - P. ephippifer species complex, suggesting an important role of karyotypic divergence in its evolutionary history and underscoring the importance of hybridization as a mechanism of sex chromosome evolution in amphibians.
Collapse
Affiliation(s)
- Lucas H B Souza
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-863, Brazil.
| | - Todd W Pierson
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Renata O Tenório
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-863, Brazil
| | - Juan M Ferro
- Laboratorio de Genética Evolutiva "Dr. Claudio J. Bidau", Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - Kaleb P Gatto
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-863, Brazil
| | - Bruno C Silva
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-863, Brazil
| | - Gilda V de Andrade
- Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão (UFMA), Campus do Bacanga, São Luís, MA, 65080-040, Brazil
| | - Pablo Suárez
- Instituto de Biología Subtropical (CONICET-UNaM), Puerto Iguazú, Argentina
| | - Célio F B Haddad
- Departamento de Biodiversidade and Centro de Aquicultura (CAUNESP), Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, Brazil
| | - Luciana B Lourenço
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-863, Brazil
| |
Collapse
|
30
|
Chase MA, Vilcot M, Mugal CF. Evidence that genetic drift not adaptation drives fast-Z and large-Z effects in Ficedula flycatchers. Mol Ecol 2024:e17262. [PMID: 38193599 DOI: 10.1111/mec.17262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
The sex chromosomes have been hypothesized to play a key role in driving adaptation and speciation across many taxa. The reason for this is thought to be the hemizygosity of the heteromorphic part of sex chromosomes in the heterogametic sex, which exposes recessive mutations to natural and sexual selection. The exposure of recessive beneficial mutations increases their rate of fixation on the sex chromosomes, which results in a faster rate of evolution. In addition, genetic incompatibilities between sex-linked loci are exposed faster in the genomic background of hybrids of divergent lineages, which makes sex chromosomes contribute disproportionately to reproductive isolation. However, in birds, which show a Z/W sex determination system, the role of adaptation versus genetic drift as the driving force of the faster differentiation of the Z chromosome (fast-Z effect) and the disproportionate role of the Z chromosome in reproductive isolation (large-Z effect) are still debated. Here, we address this debate in the bird genus Ficedula flycatchers based on population-level whole-genome sequencing data of six species. Our analysis provides evidence for both faster lineage sorting and reduced gene flow on the Z chromosome than the autosomes. However, these patterns appear to be driven primarily by the increased role of genetic drift on the Z chromosome, rather than an increased rate of adaptive evolution. Genomic scans of selective sweeps and fixed differences in fact suggest a reduced action of positive selection on the Z chromosome.
Collapse
Affiliation(s)
- Madeline A Chase
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Maurine Vilcot
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Laboratory of Biometry and Evolutionary Biology, University of Lyon 1, CNRS UMR 5558, Villeurbanne, France
| |
Collapse
|
31
|
Thom G, Moreira LR, Batista R, Gehara M, Aleixo A, Smith BT. Genomic Architecture Predicts Tree Topology, Population Structuring, and Demographic History in Amazonian Birds. Genome Biol Evol 2024; 16:evae002. [PMID: 38236173 PMCID: PMC10823491 DOI: 10.1093/gbe/evae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Geographic barriers are frequently invoked to explain genetic structuring across the landscape. However, inferences on the spatial and temporal origins of population variation have been largely limited to evolutionary neutral models, ignoring the potential role of natural selection and intrinsic genomic processes known as genomic architecture in producing heterogeneity in differentiation across the genome. To test how variation in genomic characteristics (e.g. recombination rate) impacts our ability to reconstruct general patterns of differentiation between species that cooccur across geographic barriers, we sequenced the whole genomes of multiple bird populations that are distributed across rivers in southeastern Amazonia. We found that phylogenetic relationships within species and demographic parameters varied across the genome in predictable ways. Genetic diversity was positively associated with recombination rate and negatively associated with species tree support. Gene flow was less pervasive in genomic regions of low recombination, making these windows more likely to retain patterns of population structuring that matched the species tree. We further found that approximately a third of the genome showed evidence of selective sweeps and linked selection, skewing genome-wide estimates of effective population sizes and gene flow between populations toward lower values. In sum, we showed that the effects of intrinsic genomic characteristics and selection can be disentangled from neutral processes to elucidate spatial patterns of population differentiation.
Collapse
Affiliation(s)
- Gregory Thom
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Lucas Rocha Moreira
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Romina Batista
- Programa de Coleções Biológicas, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
- School of Science, Engineering and Environment, University of Salford, Manchester, UK
| | - Marcelo Gehara
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA
| | - Alexandre Aleixo
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Department of Environmental Genomics, Instituto Tecnológico Vale, Belém, Brazil
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
32
|
Kou Y, Fan D, Cheng S, Yang Y, Wang M, Wang Y, Zhang Z. Peripatric speciation within Torreya fargesii (Taxaceae) in the Hengduan Mountains inferred from multi-loci phylogeography. BMC Ecol Evol 2023; 23:74. [PMID: 38087226 PMCID: PMC10714551 DOI: 10.1186/s12862-023-02183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The Hengduan Mountains (HDM) are one of the major global biodiversity hotspots in the world. Several evolutionary scenarios, especially in-situ diversification, have been proposed to account for the high species richness of temperate plants. However, peripatric speciation, an important mode of allopatric speciation, has seldom been reported in this region. RESULTS Here, two chloroplast DNA regions and 14 nuclear loci were sequenced for 112 individuals from 10 populations of Torreya fargesii var. fargesii and 63 individuals from 6 populations of T. fargesii var. yunnanensis. Population genetic analyses revealed that the two varieties are well differentiated genetically (FST, 0.5765) and have uneven genetic diversity (π, 0.00221 vs. 0.00073 on an average of nuclear loci). The gene genealogical relationship showed that T. fargesii var. yunnanensis is inferred as derived from T. fargesii var. fargesii, which was further supported by the coalescent simulations (DIYABC, fastsimcoal2 and IMa2). By the coalescent simulations, the divergence time (~ 2.50-3.65 Ma) and the weak gene flow between the two varieties were detected. The gene flow was asymmetrical and only occurred in later stages of divergence, which is caused by second contact due to the population expansion (~ 0.61 Ma) in T. fargesii var. fargesii. In addition, niche modeling indicated that the two varieties are differentiated geographically and ecologically and have unbalanced distribution range. CONCLUSIONS Overall, T. fargesii var. fargesii is always parapatric with respect to T. fargesii var. yunnanensis, and the latter derived from the former in peripatry of the HDM following a colonization from central China during the late Pliocene. Our findings demonstrate that peripatric speciation following dispersal events may be an important evolutionary scenario for the formation of biodiversity hotspot of the HDM.
Collapse
Affiliation(s)
- Yixuan Kou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China
| | - Dengmei Fan
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China
| | - Shanmei Cheng
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China
| | - Yi Yang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China
| | - Meixia Wang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China
| | - Yujin Wang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China.
| | - Zhiyong Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China.
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China.
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
33
|
Ludington AJ, Hammond JM, Breen J, Deveson IW, Sanders KL. New chromosome-scale genomes provide insights into marine adaptations of sea snakes (Hydrophis: Elapidae). BMC Biol 2023; 21:284. [PMID: 38066641 PMCID: PMC10709897 DOI: 10.1186/s12915-023-01772-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Sea snakes underwent a complete transition from land to sea within the last ~ 15 million years, yet they remain a conspicuous gap in molecular studies of marine adaptation in vertebrates. RESULTS Here, we generate four new annotated sea snake genomes, three of these at chromosome-scale (Hydrophis major, H. ornatus and H. curtus), and perform detailed comparative genomic analyses of sea snakes and their closest terrestrial relatives. Phylogenomic analyses highlight the possibility of near-simultaneous speciation at the root of Hydrophis, and synteny maps show intra-chromosomal variations that will be important targets for future adaptation and speciation genomic studies of this system. We then used a strict screen for positive selection in sea snakes (against a background of seven terrestrial snake genomes) to identify genes over-represented in hypoxia adaptation, sensory perception, immune response and morphological development. CONCLUSIONS We provide the best reference genomes currently available for the prolific and medically important elapid snake radiation. Our analyses highlight the phylogenetic complexity and conserved genome structure within Hydrophis. Positively selected marine-associated genes provide promising candidates for future, functional studies linking genetic signatures to the marine phenotypes of sea snakes and other vertebrates.
Collapse
Affiliation(s)
- Alastair J Ludington
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Jillian M Hammond
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, Australia
| | - James Breen
- Indigenous Genomics, Telethon Kids Institute, Adelaide, Australia
- John Curtin School of Medical Research, College of Health & Medicine, Australian National University, Canberra, Australia
| | - Ira W Deveson
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
- The South Australian Museum, Adelaide, Australia.
| |
Collapse
|
34
|
Keggin T, Waldock C, Skeels A, Hagen O, Albouy C, Manel S, Pellissier L. Diversity across organisational scale emerges through dispersal ability and speciation dynamics in tropical fish. BMC Biol 2023; 21:282. [PMID: 38053182 PMCID: PMC10696697 DOI: 10.1186/s12915-023-01771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Biodiversity exists at different levels of organisation: e.g. genetic, individual, population, species, and community. These levels of organisation all exist within the same system, with diversity patterns emerging across organisational scales through several key processes. Despite this inherent interconnectivity, observational studies reveal that diversity patterns across levels are not consistent and the underlying mechanisms for variable continuity in diversity across levels remain elusive. To investigate these mechanisms, we apply a spatially explicit simulation model to simulate the global diversification of tropical reef fishes at both the population and species levels through emergent population-level processes. RESULTS We find significant relationships between the population and species levels of diversity which vary depending on both the measure of diversity and the spatial partitioning considered. In turn, these population-species relationships are driven by modelled biological trait parameters, especially the divergence threshold at which populations speciate. CONCLUSIONS To explain variation in multi-level diversity patterns, we propose a simple, yet novel, population-to-species diversity partitioning mechanism through speciation which disrupts continuous diversity patterns across organisational levels. We expect that in real-world systems this mechanism is driven by the molecular dynamics that determine genetic incompatibility, and therefore reproductive isolation between individuals. We put forward a framework in which the mechanisms underlying patterns of diversity across organisational levels are universal, and through this show how variable patterns of diversity can emerge through organisational scale.
Collapse
Affiliation(s)
- Thomas Keggin
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland.
- Unit of Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.
| | - Conor Waldock
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Alexander Skeels
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
- Unit of Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Division of Ecology & Evolution, Research School of Biology, Australian National University Canberra, Canberra, Australia
| | - Oskar Hagen
- Evolution and Adaptation, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Ecological Modelling, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Camille Albouy
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
- Unit of Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Stéphanie Manel
- CEFE, Univ. Montpellier, CNRS, EPHE- PSL University, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Loïc Pellissier
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
- Unit of Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
35
|
Waller H, Blankers T, Xu M, Shaw KL. Quantitative trait loci underlying a speciation phenotype. INSECT MOLECULAR BIOLOGY 2023; 32:592-602. [PMID: 37318126 DOI: 10.1111/imb.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023]
Abstract
Sexual signalling traits and their associated genetic components play a crucial role in the speciation process, as divergence in these traits can contribute to sexual isolation. Despite their importance, our understanding of the genetic basis of variable sexual signalling traits linked to speciation remains limited. In this study, we present new genetic evidence of Quantitative Trait Loci (QTL) underlying divergent sexual signalling behaviour, specifically pulse rate, in the Hawaiian cricket Laupala. By performing RNA sequencing on the brain and central nervous system of the parental species, we annotate these QTL regions and identify candidate genes associated with pulse rate. Our findings provide insights into the genetic processes driving reproductive isolation during speciation, with implications for understanding the mechanisms underlying species diversity.
Collapse
Affiliation(s)
- Hayden Waller
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Thomas Blankers
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Mingzi Xu
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| |
Collapse
|
36
|
Munguía‐Rosas MA, Parra‐Tabla V, Rodríguez‐Domínguez JM. Partial and asymmetrical reproductive isolation between two sympatric tropical shrub species: Cnidoscolus aconitifolius and C. souzae (Euphorbiaceae). Ecol Evol 2023; 13:e10801. [PMID: 38089899 PMCID: PMC10714054 DOI: 10.1002/ece3.10801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/13/2023] [Accepted: 11/22/2023] [Indexed: 10/16/2024] Open
Abstract
Reproductive isolation is conferred by several barriers that occur at different stages of reproduction. Comprehensive reviews on the topic have identified that barriers occurring prior to zygote formation are often stronger than those that occur afterward. However, the overrepresentation of temperate perennial herbs in the current literature precludes any generalization of this pattern to plants that present other life forms and patterns of distribution. Here, we assessed reproductive isolation barriers and their absolute contribution to reproductive isolation and asymmetry in Cnidoscolus aconitifolius and C. souzae, two closely related tropical shrub species that co-occur on the Yucatan peninsula. The reproductive barriers assessed were phenological mismatch, pollinator differentiation, pollen-pistil incompatibility (three pre-zygotic barriers), fruit set failure, and seed unviability (post-zygotic barriers). Reproductive isolation between the study species was found to be complete in the direction C. aconitifolius to C. souzae, but only partial in the opposite direction. One post-zygotic barrier was the strongest example. Most barriers, particularly the pre-zygotic examples, were asymmetrical and predicted the direction of heterospecific pollen flow and hybrid formation from C. souzae to C. aconitifolius. Both parental species, as well as the hybrids, were diploid and had a chromosome number 2n = 36. More studies with tropical woody perennials are required to fully determine whether this group of plants consistently shows stronger post-zygotic barriers.
Collapse
Affiliation(s)
- Miguel A. Munguía‐Rosas
- Laboratorio de Ecología Terrestre, Departamento de Ecología HumanaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav)MéridaMexico
| | - Víctor Parra‐Tabla
- Departamento de Ecología TropicalUniversidad Autónoma de YucatánMéridaMexico
| | - José M. Rodríguez‐Domínguez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Unidad de Biotecnología VegetalGuadalajaraMexico
| |
Collapse
|
37
|
Haghighatnia M, Machac A, Schmickl R, Lafon Placette C. Darwin's 'mystery of mysteries': the role of sexual selection in plant speciation. Biol Rev Camb Philos Soc 2023; 98:1928-1944. [PMID: 37337476 DOI: 10.1111/brv.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Sexual selection is considered one of the key processes that contribute to the emergence of new species. While the connection between sexual selection and speciation has been supported by comparative studies, the mechanisms that mediate this connection remain unresolved, especially in plants. Similarly, it is not clear how speciation processes within plant populations translate into large-scale speciation dynamics. Here, we review the mechanisms through which sexual selection, pollination, and mate choice unfold and interact, and how they may ultimately produce reproductive isolation in plants. We also overview reproductive strategies that might influence sexual selection in plants and illustrate how functional traits might connect speciation at the population level (population differentiation, evolution of reproductive barriers; i.e. microevolution) with evolution above the species level (macroevolution). We also identify outstanding questions in the field, and suitable data and tools for their resolution. Altogether, this effort motivates further research focused on plants, which might potentially broaden our general understanding of speciation by sexual selection, a major concept in evolutionary biology.
Collapse
Affiliation(s)
- Mohammadjavad Haghighatnia
- Department of Botany, Faculty of Science, Charles University, Benatska 2, Prague, CZ-128 01, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Antonin Machac
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Benatska 2, Prague, CZ-128 01, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Clément Lafon Placette
- Department of Botany, Faculty of Science, Charles University, Benatska 2, Prague, CZ-128 01, Czech Republic
| |
Collapse
|
38
|
Deville D, Kawai K, Fujita H, Umino T. Genetic divergences and hybridization within the Sebastes inermis complex. PeerJ 2023; 11:e16391. [PMID: 38025733 PMCID: PMC10656903 DOI: 10.7717/peerj.16391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
The Sebastes inermis complex includes three sympatric species (Sebastes cheni, viz Sebastes inermis, and Sebastes ventricosus) with clear ecomorphological differences, albeit incomplete reproductive isolation. The presence of putative morphological hybrids (PMH) with plausibly higher fitness than the parent species indicates the need to confirm whether hybridization occurs within the complex. In this sense, we assessed the dynamics of genetic divergence and hybridization within the species complex using a panel of 10 microsatellite loci, and sequences of the mitochondrial control region (D-loop) and the intron-free rhodopsin (RH1) gene. The analyses revealed the presence of three distinct genetic clusters, large genetic distances using D-loop sequences, and distinctive mutations within the RH1 gene. These results are consistent with the descriptions of the three species. Two microsatellite loci had signatures of divergent selection, indicating that they are linked to genomic regions that are crucial for speciation. Furthermore, nonsynonymous mutations within the RH1 gene detected in S. cheni and "Kumano" (a PMH) suggest dissimilar adaptations related to visual perception in dim-light environments. The presence of individuals with admixed ancestry between two species confirmed hybridization. The presence of nonsynonymous mutations within the RH1 gene and the admixed ancestry of the "Kumano" morphotype highlight the potential role of hybridization in generating novelties within the species complex. We discuss possible outcomes of hybridization within the species complex, considering hybrid fitness and assortative mating. Overall, our findings indicate that the genetic divergence of each species is maintained in the presence of hybridization, as expected in a scenario of speciation-with-gene-flow.
Collapse
Affiliation(s)
- Diego Deville
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japón
| | - Kentaro Kawai
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japón
| | - Hiroki Fujita
- Seto Marine Biological Laboratory, Field Science Education and Research Center, Kyoto University, Shirahama, Wakayama, Japan
| | - Tetsuya Umino
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japón
| |
Collapse
|
39
|
Reifová R, Ament-Velásquez SL, Bourgeois Y, Coughlan J, Kulmuni J, Lipinska AP, Okude G, Stevison L, Yoshida K, Kitano J. Mechanisms of Intrinsic Postzygotic Isolation: From Traditional Genic and Chromosomal Views to Genomic and Epigenetic Perspectives. Cold Spring Harb Perspect Biol 2023; 15:a041607. [PMID: 37696577 PMCID: PMC10547394 DOI: 10.1101/cshperspect.a041607] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Intrinsic postzygotic isolation typically appears as reduced viability or fertility of interspecific hybrids caused by genetic incompatibilities between diverged parental genomes. Dobzhansky-Muller interactions among individual genes, and chromosomal rearrangements causing problems with chromosome synapsis and recombination in meiosis, have both long been considered as major mechanisms behind intrinsic postzygotic isolation. Recent research has, however, suggested that the genetic basis of intrinsic postzygotic isolation can be more complex and involves, for example, overall divergence of the DNA sequence or epigenetic changes. Here, we review the mechanisms of intrinsic postzygotic isolation from genic, chromosomal, genomic, and epigenetic perspectives across diverse taxa. We provide empirical evidence for these mechanisms, discuss their importance in the speciation process, and highlight questions that remain unanswered.
Collapse
Affiliation(s)
- Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | | | - Yann Bourgeois
- DIADE, University of Montpellier, CIRAD, IRD, 34090 Montpellier, France
| | - Jenn Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Jonna Kulmuni
- Institute for Biodiversity and Ecosystem Dynamics, Department of Evolutionary and Population Biology, University of Amsterdam, 1012 Amsterdam, The Netherlands
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, 00100 Helsinki, Finland
| | - Agnieszka P Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076 Tuebingen, Germany
- CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Genta Okude
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Laurie Stevison
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Kohta Yoshida
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Jun Kitano
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
40
|
Janko K, Mikulíček P, Hobza R, Schlupp I. Sperm-dependent asexual species and their role in ecology and evolution. Ecol Evol 2023; 13:e10522. [PMID: 37780083 PMCID: PMC10534198 DOI: 10.1002/ece3.10522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Sexual reproduction is the primary mode of reproduction in eukaryotes, but some organisms have evolved deviations from classical sex and switched to asexuality. These asexual lineages have sometimes been viewed as evolutionary dead ends, but recent research has revealed their importance in many areas of general biology. Our review explores the understudied, yet important mechanisms by which sperm-dependent asexuals that produce non-recombined gametes but rely on their fertilization, can have a significant impact on the evolution of coexisting sexual species and ecosystems. These impacts are concentrated around three major fields. Firstly, sperm-dependent asexuals can potentially impact the gene pool of coexisting sexual species by either restricting their population sizes or by providing bridges for interspecific gene flow whose type and consequences substantially differ from gene flow mechanisms expected under sexual reproduction. Secondly, they may impact on sexuals' diversification rates either directly, by serving as stepping-stones in speciation, or indirectly, by promoting the formation of pre- and postzygotic reproduction barriers among nascent species. Thirdly, they can potentially impact on spatial distribution of species, via direct or indirect (apparent) types of competition and Allee effects. For each such mechanism, we provide empirical examples of how natural sperm-dependent asexuals impact the evolution of their sexual counterparts. In particular, we highlight that these broad effects may last beyond the tenure of the individual asexual lineages causing them, which challenges the traditional perception that asexual lineages are short-lived evolutionary dead ends and minor sideshows. Our review also proposes new research directions to incorporate the aforementioned impacts of sperm-dependent asexuals. These research directions will ultimately enhance our understanding of the evolution of genomes and biological interactions in general.
Collapse
Affiliation(s)
- Karel Janko
- Laboratory of Non‐Mendelian Evolution, Institute of Animal Physiology and GeneticsAcademy of Sciences of the Czech RepublicLiběchovCzech Republic
- Department of Biology and Ecology, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
| | - Peter Mikulíček
- Department of Zoology, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovakia
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of BiophysicsAcademy of Sciences of the Czech RepublicBrnoCzech Republic
| | - Ingo Schlupp
- Department of BiologyUniversity of OklahomaOklahomaNormanUSA
- Department of BiologyInternational Stock Center for Livebearing FishesOklahomaNormanUSA
| |
Collapse
|
41
|
Preckler-Quisquater S, Kierepka EM, Reding DM, Piaggio AJ, Sacks BN. Can demographic histories explain long-term isolation and recent pulses of asymmetric gene flow between highly divergent grey fox lineages? Mol Ecol 2023; 32:5323-5337. [PMID: 37632719 DOI: 10.1111/mec.17105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023]
Abstract
Secondary contact zones between deeply divergent, yet interfertile, lineages provide windows into the speciation process. North American grey foxes (Urocyon cinereoargenteus) are divided into western and eastern lineages that diverged approximately 1 million years ago. These ancient lineages currently hybridize in a relatively narrow zone of contact in the southern Great Plains, a pattern more commonly observed in smaller-bodied taxa, which suggests relatively recent contact after a long period of allopatry. Based on local ancestry inference with whole-genome sequencing (n = 43), we identified two distinct Holocene pulses of admixture. The older pulse (500-3500 YBP) reflected unidirectional gene flow from east to west, whereas the more recent pulse (70-200 YBP) of admixture was bi-directional. Augmented with genotyping-by-sequencing data from 216 additional foxes, demographic analyses indicated that the eastern lineage declined precipitously after divergence, remaining small throughout most of the late Pleistocene, and expanding only during the Holocene. Genetic diversity in the eastern lineage was highest in the southeast and lowest near the contact zone, consistent with a westward expansion. Concordantly, distribution modelling indicated that during their isolation, the most suitable habitat occurred far east of today's contact zone or west of the Great Plains. Thus, long-term isolation was likely caused by the small, distant location of the eastern refugium, with recent contact reflecting a large increase in suitable habitat and corresponding demographic expansion from the eastern refugium. Ultimately, long-term isolation in grey foxes may reflect their specialized bio-climatic niche. This system presents an opportunity for future investigation of potential pre- and post-zygotic isolating mechanisms.
Collapse
Affiliation(s)
- Sophie Preckler-Quisquater
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Elizabeth M Kierepka
- North Carolina Museum of Natural Sciences, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
| | - Dawn M Reding
- Department of Biology, Luther College, Decorah, Iowa, USA
| | - Antoinette J Piaggio
- USDA, Wildlife Services, National Wildlife Research Center, Wildlife Genetics Lab, Fort Collins, Colorado, USA
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
42
|
Dittmar EL, Schemske DW. Temporal Variation in Selection Influences Microgeographic Local Adaptation. Am Nat 2023; 202:471-485. [PMID: 37792918 DOI: 10.1086/725865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractEcological heterogeneity can lead to local adaptation when populations exhibit fitness trade-offs among habitats. However, the degree to which local adaptation is affected by the spatial and temporal scale of environmental variation is poorly understood. A multiyear reciprocal transplant experiment was performed with populations of the annual plant Leptosiphon parviflorus living on adjacent serpentine and nonserpentine soil. Local adaptation over this small geographic scale was observed, but there were differences in the temporal variability of selection across habitats. On serpentine soil, the local population had a consistently large survival advantage, presumably as a result of the temporal stability in selection imposed by soil cation content. In contrast, a fecundity advantage was observed for the sandstone population on its native soil type but only in the two study years with the highest rainfall. A manipulative greenhouse experiment demonstrated that the fitness advantage of the sandstone population in its native soil type depends critically on water availability. The temporal variability in local adaptation driven by variation in precipitation suggests that continued drought conditions have the potential to erode local adaptation in these populations. These results show how different selective factors can influence spatial and temporal patterns of variation in fitness trade-offs.
Collapse
|
43
|
Enbody ED, Sendell-Price AT, Sprehn CG, Rubin CJ, Visscher PM, Grant BR, Grant PR, Andersson L. Community-wide genome sequencing reveals 30 years of Darwin's finch evolution. Science 2023; 381:eadf6218. [PMID: 37769091 DOI: 10.1126/science.adf6218] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
A fundamental goal in evolutionary biology is to understand the genetic architecture of adaptive traits. Using whole-genome data of 3955 of Darwin's finches on the Galápagos Island of Daphne Major, we identified six loci of large effect that explain 45% of the variation in the highly heritable beak size of Geospiza fortis, a key ecological trait. The major locus is a supergene comprising four genes. Abrupt changes in allele frequencies at the loci accompanied a strong change in beak size caused by natural selection during a drought. A gradual change in Geospiza scandens occurred across 30 years as a result of introgressive hybridization with G. fortis. This study shows how a few loci with large effect on a fitness-related trait contribute to the genetic potential for rapid adaptive radiation.
Collapse
Affiliation(s)
- Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Ashley T Sendell-Price
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - C Grace Sprehn
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd., St. Lucia QLD 4072, Australia
| | - B Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ 08544, USA
| | - Peter R Grant
- Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ 08544, USA
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Pkwy Building 2, College Station, TX 77843, USA
| |
Collapse
|
44
|
Bock DG, Cai Z, Elphinstone C, González-Segovia E, Hirabayashi K, Huang K, Keais GL, Kim A, Owens GL, Rieseberg LH. Genomics of plant speciation. PLANT COMMUNICATIONS 2023; 4:100599. [PMID: 37050879 PMCID: PMC10504567 DOI: 10.1016/j.xplc.2023.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Studies of plants have been instrumental for revealing how new species originate. For several decades, botanical research has complemented and, in some cases, challenged concepts on speciation developed via the study of other organisms while also revealing additional ways in which species can form. Now, the ability to sequence genomes at an unprecedented pace and scale has allowed biologists to settle decades-long debates and tackle other emerging challenges in speciation research. Here, we review these recent genome-enabled developments in plant speciation. We discuss complications related to identification of reproductive isolation (RI) loci using analyses of the landscape of genomic divergence and highlight the important role that structural variants have in speciation, as increasingly revealed by new sequencing technologies. Further, we review how genomics has advanced what we know of some routes to new species formation, like hybridization or whole-genome duplication, while casting doubt on others, like population bottlenecks and genetic drift. While genomics can fast-track identification of genes and mutations that confer RI, we emphasize that follow-up molecular and field experiments remain critical. Nonetheless, genomics has clarified the outsized role of ancient variants rather than new mutations, particularly early during speciation. We conclude by highlighting promising avenues of future study. These include expanding what we know so far about the role of epigenetic and structural changes during speciation, broadening the scope and taxonomic breadth of plant speciation genomics studies, and synthesizing information from extensive genomic data that have already been generated by the plant speciation community.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zhe Cai
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cassandra Elphinstone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Eric González-Segovia
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Amy Kim
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
45
|
Pollmann M, Kuhn D, König C, Homolka I, Paschke S, Reinisch R, Schmidt A, Schwabe N, Weber J, Gottlieb Y, Steidle JLM. New species based on the biological species concept within the complex of Lariophagus distinguendus (Hymenoptera, Chalcidoidea, Pteromalidae), a parasitoid of household pests. Ecol Evol 2023; 13:e10524. [PMID: 37720058 PMCID: PMC10500055 DOI: 10.1002/ece3.10524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/07/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
The pteromalid parasitoid Lariophagus distinguendus (Foerster) belongs to the Hymenoptera, a megadiverse insect order with high cryptic diversity. It attacks stored product pest beetles in human storage facilities. Recently, it has been shown to consist of two separate species. To further study its cryptic diversity, strains were collected to compare their relatedness using barcoding and nuclear genes. Nuclear genes identified two clusters which agree with the known two species, whereas the barcode fragment determined an additional third Clade. Total reproductive isolation (RI) according to the biological species concept (BSC) was investigated in crossing experiments within and between clusters using representative strains. Sexual isolation exists between all studied pairs, increasing from slight to strong with genetic distance. Postzygotic barriers mostly affected hybrid males, pointing to Haldane's rule. Hybrid females were only affected by unidirectional Spiroplasma-induced cytoplasmic incompatibility and behavioural sterility, each in one specific strain combination. RI was virtually absent between strains separated by up to 2.8% COI difference, but strong or complete in three pairs from one Clade each, separated by at least 7.2%. Apparently, each of these clusters represents one separate species according to the BSC, highlighting cryptic diversity in direct vicinity to humans. In addition, these results challenge the recent 'turbo-taxonomy' practice of using 2% COI differences to delimitate species, especially within parasitic Hymenoptera. The gradual increase in number and strength of reproductive barriers between strains with increasing genetic distance also sheds light on the emergence of barriers during the speciation process in L. distinguendus.
Collapse
Affiliation(s)
- Marie Pollmann
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Denise Kuhn
- Department of Entomology 360c, Institute of PhytomedicineUniversity of HohenheimStuttgartGermany
| | - Christian König
- Akademie für Natur‐ und Umweltschutz Baden‐WürttembergStuttgartGermany
| | - Irmela Homolka
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Sina Paschke
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Ronja Reinisch
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Anna Schmidt
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Noa Schwabe
- Plant Evolutionary Biology 190b, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Justus Weber
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Yuval Gottlieb
- Robert H. Smith Faculty of Agriculture, Food and Environment, Koret School of Veterinary MedicineHebrew University of JerusalemRehovotIsrael
| | - Johannes Luitpold Maria Steidle
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
- KomBioTa – Center of Biodiversity and Integrative TaxonomyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
46
|
Bruni G, Chiocchio A, Nascetti G, Cimmaruta R. Different patterns of introgression in a three species hybrid zone among European cave salamanders. Ecol Evol 2023; 13:e10437. [PMID: 37636870 PMCID: PMC10447881 DOI: 10.1002/ece3.10437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023] Open
Abstract
Hybrid zones occur where genetically distinct populations meet, mate and produce offspring with mixed ancestry. In Plethodontid salamanders, introgressive hybridization is a common phenomenon, where hybrids backcross with parental populations leading to the spread of new alleles into the parental genomes. Whereas many hybrid zones have been reported in American Plethodontid salamanders, only a single hybrid zone has been documented in European plethodontids so far, which is located at the Apuan Alps in the Italian Peninsula. Here, we describe a previously unreported hybrid zone in the Northern Apennines involving all the three Plethodontid salamander species inhabiting the Italian Peninsula. We found 21 new Speleomantes sites of occurrence, from a hitherto unexplored area located at the boundaries between three Speleomantes species ranges. Using mitochondrial (Cytb and ND2 genes) and nuclear markers (two diagnostic SNPs at the NCX1 gene), we revealed a three-way contact zone where all the three mainland species hybridize: S. strinatii, S. ambrosii and S. italicus. We observed a strong mitonuclear discordance, with mitochondrial markers showing a conspicuous geographic pattern, while diagnostic nuclear SNPs coexisted in both the same populations and individuals, providing evidence of hybridization in many possible combinations. The introgression is asymmetric, with S. italicus mitogenome usually associated with S. a. ambrosii and, to a lesser extent, to S. strinatii nuclear alleles. This finding confirms that Plethodontid are a group of choice to investigate hybridization mechanisms and suggests that behavioural, genetic and ecological components may concur in determining the direction and extent of introgression.
Collapse
Affiliation(s)
| | - Andrea Chiocchio
- Department of Ecological and Biological SciencesTuscia UniversityViterboItaly
| | - Giuseppe Nascetti
- Department of Ecological and Biological SciencesTuscia UniversityViterboItaly
| | - Roberta Cimmaruta
- Department of Ecological and Biological SciencesTuscia UniversityViterboItaly
| |
Collapse
|
47
|
Barata C, Snook RR, Ritchie MG, Kosiol C. Selection on the Fly: Short-Term Adaptation to an Altered Sexual Selection Regime in Drosophila pseudoobscura. Genome Biol Evol 2023; 15:evad113. [PMID: 37341535 PMCID: PMC10319773 DOI: 10.1093/gbe/evad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023] Open
Abstract
Experimental evolution studies are powerful approaches to examine the evolutionary history of lab populations. Such studies have shed light on how selection changes phenotypes and genotypes. Most of these studies have not examined the time course of adaptation under sexual selection manipulation, by resequencing the populations' genomes at multiple time points. Here, we analyze allele frequency trajectories in Drosophila pseudoobscura where we altered their sexual selection regime for 200 generations and sequenced pooled populations at 5 time points. The intensity of sexual selection was either relaxed in monogamous populations (M) or elevated in polyandrous lines (E). We present a comprehensive study of how selection alters population genetics parameters at the chromosome and gene level. We investigate differences in the effective population size-Ne-between the treatments, and perform a genome-wide scan to identify signatures of selection from the time-series data. We found genomic signatures of adaptation to both regimes in D. pseudoobscura. There are more significant variants in E lines as expected from stronger sexual selection. However, we found that the response on the X chromosome was substantial in both treatments, more pronounced in E and restricted to the more recently sex-linked chromosome arm XR in M. In the first generations of experimental evolution, we estimate Ne to be lower on the X in E lines, which might indicate a swift adaptive response at the onset of selection. Additionally, the third chromosome was affected by elevated polyandry whereby its distal end harbors a region showing a strong signal of adaptive evolution especially in E lines.
Collapse
Affiliation(s)
- Carolina Barata
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Michael G Ritchie
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | - Carolin Kosiol
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| |
Collapse
|
48
|
Cutter AD. Speciation and development. Evol Dev 2023; 25:289-327. [PMID: 37545126 DOI: 10.1111/ede.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein-protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's "mystery of mysteries," this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Zhang BL, Chen W, Wang Z, Pang W, Luo MT, Wang S, Shao Y, He WQ, Deng Y, Zhou L, Chen J, Yang MM, Wu Y, Wang L, Fernández-Bellon H, Molloy S, Meunier H, Wanert F, Kuderna L, Marques-Bonet T, Roos C, Qi XG, Li M, Liu Z, Schierup MH, Cooper DN, Liu J, Zheng YT, Zhang G, Wu DD. Comparative genomics reveals the hybrid origin of a macaque group. SCIENCE ADVANCES 2023; 9:eadd3580. [PMID: 37262187 PMCID: PMC10413639 DOI: 10.1126/sciadv.add3580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/25/2023] [Indexed: 06/03/2023]
Abstract
Although species can arise through hybridization, compelling evidence for hybrid speciation has been reported only rarely in animals. Here, we present phylogenomic analyses on genomes from 12 macaque species and show that the fascicularis group originated from an ancient hybridization between the sinica and silenus groups ~3.45 to 3.56 million years ago. The X chromosomes and low-recombination regions exhibited equal contributions from each parental lineage, suggesting that they were less affected by subsequent backcrossing and hence could have played an important role in maintaining hybrid integrity. We identified many reproduction-associated genes that could have contributed to the development of the mixed sexual phenotypes characteristic of the fascicularis group. The phylogeny within the silenus group was also resolved, and functional experimentation confirmed that all extant Western silenus species are susceptible to HIV-1 infection. Our study provides novel insights into macaque evolution and reveals a hybrid speciation event that has occurred only very rarely in primates.
Collapse
Affiliation(s)
- Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wu Chen
- Guangzhou Zoo and Guangzhou Wildlife Research Center, Guangzhou 510070, China
| | - Zefu Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Meng-Ting Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wen-Qiang He
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yuan Deng
- BGI-Shenzhen, Shenzhen 518083, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Long Zhou
- Center for Evolutionary and Organismal Biology and Women’s Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | - Min-Min Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yajiang Wu
- Guangzhou Zoo and Guangzhou Wildlife Research Center, Guangzhou 510070, China
| | - Lu Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an, China
| | | | | | - Hélène Meunier
- Centre de Primatologie, de l'Université de Strasbourg, Niederhausbergen, France
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Université de Strasbourg, Strasbourg, France
| | - Fanélie Wanert
- Plateforme SILABE, Université de Strasbourg, Niederhausbergen, France
| | - Lukas Kuderna
- Genome Interpretation Department, Illumina Inc., Foster City, CA, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, Barcelona 08003, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona 08010, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Göttingen, Germany
- Gene Bank of Primates, German Primate Center, Göttingen, Germany
| | - Xiao-Guang Qi
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | | | - David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Jianquan Liu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Evolutionary and Organismal Biology and Women’s Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
50
|
Ortiz-Sepulveda CM, Genete M, Blassiau C, Godé C, Albrecht C, Vekemans X, Van Bocxlaer B. Target enrichment of long open reading frames and ultraconserved elements to link microevolution and macroevolution in non-model organisms. Mol Ecol Resour 2023; 23:659-679. [PMID: 36349833 DOI: 10.1111/1755-0998.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022]
Abstract
Despite the increasing accessibility of high-throughput sequencing, obtaining high-quality genomic data on non-model organisms without proximate well-assembled and annotated genomes remains challenging. Here, we describe a workflow that takes advantage of distant genomic resources and ingroup transcriptomes to select and jointly enrich long open reading frames (ORFs) and ultraconserved elements (UCEs) from genomic samples for integrative studies of microevolutionary and macroevolutionary dynamics. This workflow is applied to samples of the African unionid bivalve tribe Coelaturini (Parreysiinae) at basin and continent-wide scales. Our results indicate that ORFs are efficiently captured without prior identification of intron-exon boundaries. The enrichment of UCEs was less successful, but nevertheless produced substantial data sets. Exploratory continent-wide phylogenetic analyses with ORF supercontigs (>515,000 parsimony informative sites) resulted in a fully resolved phylogeny, the backbone of which was also retrieved with UCEs (>11,000 informative sites). Variant calling on ORFs and UCEs of Coelaturini from the Malawi Basin produced ~2000 SNPs per population pair. Estimates of nucleotide diversity and population differentiation were similar for ORFs and UCEs. They were low compared to previous estimates in molluscs, but comparable to those in recently diversifying Malawi cichlids and other taxa at an early stage of speciation. Skimming off-target sequence data from the same enriched libraries of Coelaturini from the Malawi Basin, we reconstructed the maternally-inherited mitogenome, which displays the gene order inferred for the most recent common ancestor of Unionidae. Overall, our workflow and results provide exciting perspectives for integrative genomic studies of microevolutionary and macroevolutionary dynamics in non-model organisms.
Collapse
Affiliation(s)
| | - Mathieu Genete
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | | | - Cécile Godé
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University, D-35392 Giessen, Germany.,Department of Biology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Xavier Vekemans
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | | |
Collapse
|