1
|
Liu J, Tan L, Liu Z, Shi R. Blood and urine manganese exposure in non-alcoholic fatty liver disease and advanced liver fibrosis: an observational study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22222-22231. [PMID: 36280639 DOI: 10.1007/s11356-022-23630-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Manganese was the key activator of biological enzymes-mediated metabolic diseases (Mets)-associated pathophysiological process. Non-alcoholic fatty liver disease (NAFLD), which was the hepatic manifestation of Mets, development remained a mystery. We aimed to explore the association between blood/urine manganese exposure and NAFLD and liver fibrosis diagnosed by vibration-controlled transient elastography (VCTE). All data were extracted from National Health and Nutrition Examination Survey database (2017-2018). A total of 3580 participants with blood manganese data were enrolled and divided into four groups according to the quartile of blood manganese exposure level. In multiple logistic regression models, the higher blood manganese exposure level (groups 2, 3, and 4) had a significant positive association with NAFLD (β = 1.58, 1.30, and 1.69). In subgroup analysis, the main inversely correlation between blood manganese and NAFLD was found in participants with normal/high body mass index and high blood manganese exposure level. Moreover, in 1179 participants with urine manganese data, urine manganese exposure level presented as significantly associated with advanced liver fibrosis in models 1 and 2 (β = 2.00 and 2.02). This study showed that manganese exposure level was positively associated with NAFLD and advanced liver fibrosis among the US population. We suggested that manganese exposure level was a biomarker of the development of NAFLD.
Collapse
Affiliation(s)
- Jie Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liao Tan
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoya Liu
- Department of the Geriatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Thymiakou E, Tzardi M, Kardassis D. Impaired hepatic glucose metabolism and liver-α-cell axis in mice with liver-specific ablation of the Hepatocyte Nuclear Factor 4α (Hnf4a) gene. Metabolism 2023; 139:155371. [PMID: 36464036 DOI: 10.1016/j.metabol.2022.155371] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Hnf4a gene ablation in mouse liver causes hepatic steatosis, perturbs HDL structure and function and affects many pathways and genes related to glucose metabolism. Our aim here was to investigate the role of liver HNF4A in glucose homeostasis. METHODS Serum and tissue samples were obtained from Alb-Cre;Hnf4afl/fl (H4LivKO) mice and their littermate Hnf4afl/fl controls. Fasting glucose and insulin, glucose tolerance, insulin tolerance and glucagon challenge tests were performed by standard procedures. Binding of HNF4A to DNA was assessed by chromatin immunoprecipitation assays. Gene expression analysis was performed by quantitative reverse transcription PCR. RESULTS H4LivKO mice presented lower blood levels of fasting glucose, improved glucose tolerance, increased serum lactate levels and reduced response to glucagon challenge compared to their control littermates. Insulin signaling in the liver was reduced despite the increase in serum insulin levels. H4LivKO mice showed altered expression of genes involved in glycolysis, gluconeogenesis and glycogen metabolism in the liver. The expression of the gene encoding the glucagon receptor (Gcgr) was markedly reduced in H4LivKO liver and chromatin immunoprecipitation assays revealed specific and strong binding of HNF4A to the Gcgr promoter. H4LivKO mice presented increased amino acid concentration in the serum, α-cell hyperplasia and a dramatic increase in glucagon levels suggesting an impairment of the liver-α-cell axis. Glucose administration in the drinking water of H4LivKO mice resulted in an impressive extension of survival. The expression of several genes related to non-alcoholic fatty liver disease progression to more severe liver pathologies, including Mcp1, Gdf15, Igfbp-1 and Hmox1, was increased in H4LivKO mice as early as 6 weeks of age and this increased expression was sustained until the endpoint of the study. CONCLUSIONS Our results reveal a novel role of liver HNF4A in controlling blood glucose levels via regulation of glucagon signaling. In combination with the steatotic phenotype, our results suggest that H4LivKO mice could serve as a valuable model for studying glucose homeostasis in the context of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Efstathia Thymiakou
- Laboratory of Biochemistry, University of Crete Medical School, Heraklion 71003, Greece; Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 71003, Greece
| | - Maria Tzardi
- Department of Pathology, University of Crete Medical School, Heraklion, Crete, Greece
| | - Dimitris Kardassis
- Laboratory of Biochemistry, University of Crete Medical School, Heraklion 71003, Greece; Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 71003, Greece.
| |
Collapse
|
3
|
Cho J, Johnson BD, Watt KD, Niven AS, Yeo D, Kim CH. Exercise training attenuates pulmonary inflammation and mitochondrial dysfunction in a mouse model of high-fat high-carbohydrate-induced NAFLD. BMC Med 2022; 20:429. [PMID: 36348343 PMCID: PMC9644617 DOI: 10.1186/s12916-022-02629-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) can lead to pulmonary dysfunction that is associated with pulmonary inflammation. Moreover, little is known regarding the therapeutic role of exercise training on pulmonary pathophysiology in NAFLD. The present study aimed to investigate the effect of exercise training on high-fat high-carbohydrate (HFHC)-induced pulmonary dysfunction in C57BL/6 mice. METHODS Male C57BL/6 mice (N = 40) were fed a standard Chow (n = 20) or an HFHC (n = 20) diet for 15 weeks. After 8 weeks of dietary treatment, they were further assigned to 4 subgroups for the remaining 7 weeks: Chow (n = 10), Chow plus exercise (Chow+EX, n = 10), HFHC (n = 10), or HFHC plus exercise (HFHC+EX, n = 10). Both Chow+EX and HFHC+EX mice were subjected to treadmill running. RESULTS Chronic exposure to the HFHC diet resulted in obesity with hepatic steatosis, impaired glucose tolerance, and elevated liver enzymes. The HFHC significantly increased fibrotic area (p < 0.001), increased the mRNA expression of TNF-α (4.1-fold, p < 0.001), IL-1β (5.0-fold, p < 0.001), col1a1 (8.1-fold, p < 0.001), and Timp1 (6.0-fold, p < 0.001) in the lung tissue. In addition, the HFHC significantly altered mitochondrial function (p < 0.05) along with decreased Mfn1 protein levels (1.8-fold, p < 0.01) and increased Fis1 protein levels (1.9-fold, p < 0.001). However, aerobic exercise training significantly attenuated these pathophysiologies in the lungs in terms of ameliorating inflammatory and fibrogenic effects by enhancing mitochondrial function in lung tissue (p < 0.001). CONCLUSIONS The current findings suggest that exercise training has a beneficial effect against pulmonary abnormalities in HFHC-induced NAFLD through improved mitochondrial function.
Collapse
Affiliation(s)
- Jinkyung Cho
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.,Department of Sport Science, Korea Institute of Sport Science, Seoul, Republic of Korea
| | - Bruce D Johnson
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Kymberly D Watt
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Alexander S Niven
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dongwook Yeo
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Chul-Ho Kim
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Stratifying individuals into non-alcoholic fatty liver disease risk levels using time series machine learning models. J Biomed Inform 2022; 126:103986. [PMID: 35007752 DOI: 10.1016/j.jbi.2022.103986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects 25% of the population worldwide, and its prevalence is anticipated to increase globally. While most NAFLD patients are asymptomatic, NAFLD may progress to fibrosis, cirrhosis, cardiovascular disease, and diabetes. Research reports, with daunting results, show the challenge that NAFLD's burden causes to global population health. The current process for identifying fibrosis risk levels is inefficient, expensive, does not cover all potential populations, and does not identify the risk in time. Instead of invasive liver biopsies, we implemented a non-invasive fibrosis assessment process calculated from clinical data (accessed via EMRs/EHRs). We stratified patients' risks for fibrosis from 2007 to 2017 by modeling the risk in 5579 individuals. The process involved time-series machine learning models (Hidden Markov Models and Group-Based Trajectory Models) profiled fibrosis risk by modeling patients' latent medical status resulted in three groups. The high-risk group had abnormal lab test values and a higher prevalence of chronic conditions. This study can help overcome the inefficient, traditional process of detecting fibrosis via biopsies (that are also medically unfeasible due to their invasive nature, the medical resources involved, and costs) at early stages. Thus longitudinal risk assessment may be used to make population-specific medical recommendations targeting early detection of high risk patients, to avoid the development of fibrosis disease and its complications as well as decrease healthcare costs.
Collapse
|
5
|
Paving the way: the road to be taken for proper NAFLD health care. Nat Rev Gastroenterol Hepatol 2022; 19:1. [PMID: 34707259 DOI: 10.1038/s41575-021-00538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
6
|
Bao T, He F, Zhang X, Zhu L, Wang Z, Lu H, Wang T, Li Y, Yang S, Wang H. Inulin Exerts Beneficial Effects on Non-Alcoholic Fatty Liver Disease via Modulating gut Microbiome and Suppressing the Lipopolysaccharide-Toll-Like Receptor 4-Mψ-Nuclear Factor-κB-Nod-Like Receptor Protein 3 Pathway via gut-Liver Axis in Mice. Front Pharmacol 2020; 11:558525. [PMID: 33390939 PMCID: PMC7774311 DOI: 10.3389/fphar.2020.558525] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease worldwide with chronic low-grade inflammation and alteration of gut microbiota. Inulin (INU) has been confirmed to exhibit benefit for metabolic diseases. The aim of this study was to clarify the effects and mechanism of INU on NAFLD inflammation via gut-liver axis. Methods: C57BL/6 mice were randomly divided into four groups: normal diet group (ND); high-fat diet group (HFD); ND with INU group (ND-INU); HFD with INU group (HFD-INU). After 14 weeks of feeding, mice were sacrificed and associated indications were investigated. Results: Significant increases of body weight, liver weight, liver biochemical aspartate aminotransferase, alanine aminotransferase, triglyceride, total cholesterol and pro-inflammatory indicators (Lipopolysaccharide, interleukin (IL)-18, IL-1β, TNF-α and IL-6), as well as a reduction of plasma IL-10 were observed in HFD group, while INU treatment restored these abnormal indicators. The ratio of hepatic macrophages (Mψs) and Toll-like receptor 4+ Mψs were both reduced with INU intervention. Nuclear factor-κB, nod-like receptor protein 3, apoptosis-associated speck-like protein and caspase-1 were decreased in HFD-INU group. Additionally, the results of 16S rRNA sequencing and analysis showed that INU administration modulated the composition of gut microbial community in NAFLD mice by up-regulating the abundances of Akkermansia and Bifidobacterium as well as down-regulating the abundances of Blautia and the ratio of Firmicutes/Bacteroidetes. Short-chain fatty acids including acetic acid, propionic acid and butyric acid, were increased with INU treatment. Correlation analysis revealed close relationships among inflammatory indicators, metabolic indicators as well as gut microbiota/its metabolite short-chain fatty acids. Conclusion: INU prevents NAFLD via modulating gut microbiota and suppressing Lipopolysaccharide-Toll-like receptor 4-Mψ-Nuclear factor-κB-nod-like receptor protein 3 inflammatory pathway via the gut-liver axis.
Collapse
Affiliation(s)
- Ting Bao
- Clinical Medical College, Ningxia Medical University, Yinchuan, China.,Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fang He
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Lili Zhu
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Zhen Wang
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Haixia Lu
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Ting Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yiwei Li
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shaoqi Yang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hao Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
7
|
Ding HR, Tang ZT, Tang N, Zhu ZY, Liu HY, Pan CY, Hu AY, Lin YZ, Gou P, Yuan XW, Cai JH, Dong CL, Wang JL, Ren HZ. Protective Properties of FOXO1 Inhibition in a Murine Model of Non-alcoholic Fatty Liver Disease Are Associated With Attenuation of ER Stress and Necroptosis. Front Physiol 2020; 11:177. [PMID: 32218743 PMCID: PMC7078343 DOI: 10.3389/fphys.2020.00177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Aim The pathogenesis of non-alcoholic fatty liver disease is currently unclear, however, lipid accumulation leading to endoplasmic reticulum stress appears to be pivotal in the process. At present, FOXO1 is known to be involved in NAFLD progression. The relationship between necroptosis and non-alcoholic steatohepatitis has been of great research interest more recently. However, whether FOXO1 regulates ER stress and necroptosis in mice fed with a high fat diet is not clear. Therefore, in this study we analyzed the relationship between non-alcoholic steatohepatitis, ER stress, and necroptosis. Main Methods Male C57BL/6J mice were fed with an HFD for 14 weeks to induce non-alcoholic steatohepatitis. ER stress and activation of necroptosis in AML12 cells were evaluated after inhibition of FOXO1 in AML12 cells. In addition, mice were fed with AS1842856 for 14 weeks. Liver function and lipid accumulation were measured, and further, ER stress and necroptosis were evaluated by Western Blot and Transmission Electron Microscopy. Key Findings Mice fed with a high fat diet showed high levels of FOXO1, accompanying activation of endoplasmic reticulum stress and necroptosis. Further, sustained PA stimulation caused ER stress and necroptosis in AML12 cells. At the same time, protein levels of FOXO1 increased significantly. Inhibition of FOXO1 with AS1842856 alleviated ER stress and necroptosis. Additionally, treatment of mice with a FOXO1 inhibitor ameliorated liver function after they were fed with a high fat diet, displaying better liver condition and lighter necroptosis. Significance Inhibition of FOXO1 attenuates ER stress and necroptosis in a mouse model of non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Hao-Ran Ding
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen-Ting Tang
- Department of Pediatrics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ning Tang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zheng-Yi Zhu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Han-Yi Liu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Chen-Yan Pan
- Department of Hepatobiliary Surgery, Nanjing University of Chinese Medicine, Nanjing, China
| | - An-Yin Hu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yun-Zhen Lin
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Peng Gou
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xian-Wen Yuan
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jia-Hui Cai
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Chun-Long Dong
- Department of Hepatobiliary Surgery, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-Lin Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao-Zhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of the metabolic syndrome (MetS) and comprises one of the largest health threats of the twenty-first century. In this chapter, we review the current state of knowledge of NAFLD and underline the striking similarities with atherosclerosis. We first describe current epidemiological data showing the staggering increase of NAFLD numbers and its related clinical and economic costs. We then provide an overview of pathophysiological hepatic processes in NAFLD and highlight the systemic aspects of NAFLD that point toward metabolic crosstalk between organs as an important cause of metabolic disease. Finally, we end by highlighting the currently investigated therapeutic approaches for NAFLD, which also show strong similarities with a range of treatment options for atherosclerosis.
Collapse
|
9
|
Sanyal AJ, Harrison SA, Ratziu V, Abdelmalek MF, Diehl AM, Caldwell S, Shiffman ML, Aguilar Schall R, Jia C, McColgan B, Djedjos CS, McHutchison JG, Subramanian GM, Myers RP, Younossi Z, Muir AJ, Afdhal NH, Bosch J, Goodman Z. The Natural History of Advanced Fibrosis Due to Nonalcoholic Steatohepatitis: Data From the Simtuzumab Trials. Hepatology 2019; 70:1913-1927. [PMID: 30993748 DOI: 10.1002/hep.30664] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
Abstract
Progression of nonalcoholic steatohepatitis (NASH) is incompletely characterized. We analyzed data on longitudinal changes in liver histology, hepatic venous pressure gradient (HVPG), and serum markers of fibrosis in 475 patients with NASH with bridging fibrosis (F3) or compensated cirrhosis (F4) enrolled in two phase 2b, placebo-controlled trials of simtuzumab. The trials were terminated after 96 weeks because of lack of efficacy, so data from treatment groups were combined. Liver biopsies and HVPG measurements (only for patients with F4 fibrosis) were collected at screening and at weeks 48 and 96. Patients were assessed for Ishak fibrosis stage, hepatic collagen content and alpha-smooth muscle actin (by morphometry), NAFLD Activity Score (NAS), and serum markers of fibrosis. Associations with progression to cirrhosis (in patients with F3 fibrosis) and liver-related clinical events (in patients with F4 fibrosis) were determined. Progression to cirrhosis occurred in 22% (48/217) of F3 patients, and liver-related clinical events occurred in 19% (50/258) of patients with cirrhosis. Factors significantly associated with progression to cirrhosis included higher baseline values of and greater increases in hepatic collagen content, level of alpha-smooth muscle actin, and Enhanced Liver Fibrosis score. Similar factors, plus lack of fibrosis stage improvement (hazard ratio, 9.30; 95% confidence interval, 1.28-67.37), higher HVPG at baseline, and greater increase in HVPG over time, were associated with an increased risk of liver-related clinical events in patients with cirrhosis. Disease progression was not associated with the NAS at baseline or changes in NAS during treatment after adjustment for fibrosis stage. Conclusion: In patients with advanced fibrosis due to NASH, the primary determinant of clinical disease progression is fibrosis and its change over time.
Collapse
Affiliation(s)
| | | | - Vlad Ratziu
- Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nezam H Afdhal
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jaime Bosch
- Inselspital, Bern University, Switzerland.,IDIBAPS, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
10
|
Sarr O, Mathers KE, Zhao L, Dunlop K, Chiu J, Guglielmo CG, Bureau Y, Cheung A, Raha S, Lee TY, Regnault TRH. Western diet consumption through early life induces microvesicular hepatic steatosis in association with an altered metabolome in low birth weight Guinea pigs. J Nutr Biochem 2019; 67:219-233. [PMID: 30981986 DOI: 10.1016/j.jnutbio.2019.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
Uteroplacental insufficiency-induced low birth weight (LBW) and postnatal high saturated fat/high sucrose-fructose diet (Western Diet, WD) consumption have been independently associated with the development of hepatic steatosis, while their additive effect on fatty acid, acylcarnitine and amino acid profiles in early adulthood have not been widely reported. We employed LBW, generated via uterine artery ablation, and normal birth weight (NBW) male guinea pigs fed either a WD or control diet (CD) from weaning to postnatal day 150 (early adulthood). Hepatic steatosis was absent in CD-fed offspring, while NBW/WD offspring displayed macrovesicular steatosis and LBW/WD offspring exhibited microvesicular steatosis, both occurring in a lean phenotype. Life-long consumption of the WD, irrespective of birth weight, was associated with an increase in hepatic medium- and long-chain saturated fatty acids, monounsaturated fatty acids, acylcarnitines, reduced oxidative phosphorylation complex III activity and polyunsaturated fatty acids, and molecular evidence of disrupted hepatic insulin signaling. In NBW/WD, hepatic C15:1 and C16:1n-6 fatty acids in phospholipids, C16, C18 and C18:1 acylcarnitines, concentrations of aspartate, phenylalanine, tyrosine and tryptophan and expression of carnitine palmitoyltransferase 1 alpha (CPT1α) and uncoupling protein 2 (UCP2) genes were elevated compared to LBW/WD livers. Our results suggest that LBW and life-long WD combined are influential in promoting hepatic microvesicular steatosis in conjunction with a specific mitochondrial gene expression and metabolomic profile in early adulthood.
Collapse
Affiliation(s)
- Ousseynou Sarr
- Department of Obstetrics and Gynaecology, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada
| | | | - Lin Zhao
- Department of Obstetrics and Gynaecology, Western University, London, Ontario, Canada
| | - Kristyn Dunlop
- Department of Physiology and Pharmacology, Western University
| | - Jacky Chiu
- Department of Physiology and Pharmacology, Western University
| | | | - Yves Bureau
- Department of Medical Biophysics, Western University
| | - Anson Cheung
- Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Sandeep Raha
- Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Ting-Yim Lee
- Lawson Health Research Institute, London, Ontario, Canada; Departments of Medical Imaging, Medical Biophysics, and Oncology, Western University; Robarts Research Institute, London, Ontario, Canada
| | - Timothy R H Regnault
- Department of Obstetrics and Gynaecology, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, Western University.
| |
Collapse
|
11
|
Zhang Z, Liu X, Xu H, Feng X, Lin Y, Huang Y, Peng Y, Gu M. Obesity-induced upregulation of miR-361-5p promotes hepatosteatosis through targeting Sirt1. Metabolism 2018; 88:31-39. [PMID: 30309516 DOI: 10.1016/j.metabol.2018.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/29/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Obesity is associated with an increased risk of many metabolic disorders, including non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms remain poorly understood. Recent studies have demonstrated that MicroRNA-mediated gene silencing plays an important role in hepatic triglyceride (TG) metabolism. In the present study, we aimed to investigate the pathological function of miR-361-5p in the development of NAFLD. METHODS Expression levels of miR-361-5p was determined by quantitative real-time PCR in livers of obese mice and NAFLD patients. Liver tissues from mice with miR-361-5p overexpression or inhibition were collected and analyzed by TG contents, gene expression profile. RESULTS Expression of miR-361-5p was increased in the livers of two obese mouse models and NAFLD subjects. Overexpression of miR-361-5p in C57BL/6 mice led to hepatosteatosis, whereas inhibition of miR-361-5p expression in db/db mice improved TG accumulation and insulin sensitivity. Mechanistically, we identified Sirt1 as a direct target gene of miR-361-5p and re-introduction of Sirt1 largely abolished the metabolic action of miR-361-5p. CONCLUSIONS Our results demonstrated the role of miR-361-5p in the regulation of hepatic TG homeostasis, which may provide potential therapeutic target for hepatosteatosis.
Collapse
Affiliation(s)
- Zhijian Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xing Liu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huanbai Xu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiaoyun Feng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yi Lin
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yunhong Huang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Mingyu Gu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
12
|
Boland ML, Oldham S, Boland BB, Will S, Lapointe JM, Guionaud S, Rhodes CJ, Trevaskis JL. Nonalcoholic steatohepatitis severity is defined by a failure in compensatory antioxidant capacity in the setting of mitochondrial dysfunction. World J Gastroenterol 2018; 24:1748-1765. [PMID: 29713129 PMCID: PMC5922994 DOI: 10.3748/wjg.v24.i16.1748] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To comprehensively evaluate mitochondrial (dys) function in preclinical models of nonalcoholic steatohepatitis (NASH).
METHODS We utilized two readily available mouse models of nonalcoholic fatty liver disease (NAFLD) with or without progressive fibrosis: Lepob/Lepob (ob/ob) and FATZO mice on high trans-fat, high fructose and high cholesterol (AMLN) diet. Presence of NASH was assessed using immunohistochemical and pathological techniques, and gene expression profiling. Morphological features of mitochondria were assessed via transmission electron microscopy and immunofluorescence, and function was assessed by measuring oxidative capacity in primary hepatocytes, and respiratory control and proton leak in isolated mitochondria. Oxidative stress was measured by assessing activity and/or expression levels of Nrf1, Sod1, Sod2, catalase and 8-OHdG.
RESULTS When challenged with AMLN diet for 12 wk, ob/ob and FATZO mice developed steatohepatitis in the presence of obesity and hyperinsulinemia. NASH development was associated with hepatic mitochondrial abnormalities, similar to those previously observed in humans, including mitochondrial accumulation and increased proton leak. AMLN diet also resulted in increased numbers of fragmented mitochondria in both strains of mice. Despite similar mitochondrial phenotypes, we found that ob/ob mice developed more advanced hepatic fibrosis. Activity of superoxide dismutase (SOD) was increased in ob/ob AMLN mice, whereas FATZO mice displayed increased catalase activity, irrespective of diet. Furthermore, 8-OHdG, a marker of oxidative DNA damage, was significantly increased in ob/ob AMLN mice compared to FATZO AMLN mice. Therefore, antioxidant capacity reflected as the ratio of catalase:SOD activity was similar between FATZO and C57BL6J control mice, but significantly perturbed in ob/ob mice.
CONCLUSION Oxidative stress, and/or the capacity to compensate for increased oxidative stress, in the setting of mitochondrial dysfunction, is a key factor for development of hepatic injury and fibrosis in these mouse models.
Collapse
Affiliation(s)
- Michelle L Boland
- Cardiovascular and Metabolic Diseases, MedImmune LLC, Gaithersburg, MD 20878, United States
| | - Stephanie Oldham
- Cardiovascular and Metabolic Diseases, MedImmune LLC, Gaithersburg, MD 20878, United States
| | - Brandon B Boland
- Cardiovascular and Metabolic Diseases, MedImmune LLC, Gaithersburg, MD 20878, United States
| | - Sarah Will
- Cardiovascular and Metabolic Diseases, MedImmune LLC, Gaithersburg, MD 20878, United States
| | | | - Silvia Guionaud
- Pathology, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge CB22 3AT, United Kingdom
| | - Christopher J Rhodes
- Cardiovascular and Metabolic Diseases, MedImmune LLC, Gaithersburg, MD 20878, United States
| | - James L Trevaskis
- Cardiovascular and Metabolic Diseases, MedImmune LLC, Gaithersburg, MD 20878, United States
| |
Collapse
|
13
|
Liu Y, Zhang W, Wu X, Gong J. Foxo3a-dependent Bim transcription protects mice from a high fat diet via inhibition of activation of the NLRP3 inflammasome by facilitating autophagy flux in Kupffer cells. Oncotarget 2018; 8:34258-34267. [PMID: 28427239 PMCID: PMC5470965 DOI: 10.18632/oncotarget.15946] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/22/2017] [Indexed: 12/11/2022] Open
Abstract
Background The role of Foxo3a in the regulation of autophagy flux and activation of the NLRP3 inflammasome in KCs suffering from HFD conditions is unknown. Results Up-regulation of Foxo3a restored autophagy flux and dampened the activation of the NLRP3 inflammasome in KCs stimulated with PA and LPS. In contrast, down-regulation of Foxo3a increased blockage of autophagy flux and promoted NLRP3 inflammasome activation. Additionally, mRNA levels of Bim were significantly changed with the alteration of Foxo3a in KCs under PA and LPS stimulation among foxo3a targeted genes. Overexpression of Bim restored autophagy influx and attenuated NLRP3 inflammasome pathway activation. In addition, autophagy formation was restored, and activation of NLRP3 inflammasome was inhibited in KCs isolated from mice treated with Iturin A and fed with a HFD. Materials and methods Autophagy flux in KCs and activation levels of NLRP3 inflammasome were evaluated after altering the expression of Foxo3a in KCs before stimulation with PA and LPS. Additionally, various target genes of Foxo3a were measured in KCs pretreated with an agonist (Iturin A) or inhibitor (SC97) of Foxo3a after KCs stimulation with PA and LPS in order to hunt for targets of Foxo3a. Activation levels of NLRP3 inflammasome in isolated KCs, as well as autophagy flux, were measured after mice were treated with Iturin A and fed with a HFD for 16 weeks. Conclusions Foxo3a restores autophagy flux and attenuates the activation of the NLRP3 inflammasome by promoting the transcription of Bim, suggesting a potential therapeutic target in NAFLD and other obesity-related diseases.
Collapse
Affiliation(s)
- Yan Liu
- Department of Digestive System, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China.,Department of Gastroenterology, the Fifth people's Hospital of Chengdu, Chengdu, Sichuan, 611130, P.R. China
| | - Wenfeng Zhang
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Xiaoling Wu
- Department of Digestive System, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Jianping Gong
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| |
Collapse
|
14
|
Improving the economics of NASH/NAFLD treatment through the use of systems biology. Drug Discov Today 2017; 22:1532-1538. [DOI: 10.1016/j.drudis.2017.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022]
|
15
|
Lee SM, Dorotea D, Jung I, Nakabayashi T, Miyata T, Ha H. TM5441, a plasminogen activator inhibitor-1 inhibitor, protects against high fat diet-induced non-alcoholic fatty liver disease. Oncotarget 2017; 8:89746-89760. [PMID: 29163785 PMCID: PMC5685706 DOI: 10.18632/oncotarget.21120] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/03/2017] [Indexed: 12/16/2022] Open
Abstract
Recent evidences showed that elevation of plasminogen activator inhibitor 1 (PAI-1) was responsible in mediating obesity-induced non-alcoholic fatty liver disease (NAFLD) and metabolic disorders. Here, we investigated the effect of TM5441, an oral PAI-1 inhibitor that lacks of bleeding risk, on high-fat diet (HFD)-induced NAFLD. HFD-fed C57BL/6J mice was daily treated with 20 mg/kg TM5441. To examine the preventive effect, 10-week-treatment was started along with initiation of HFD; alternatively, 4-week-treatment was started in mice with glucose intolerance in the interventional strategy. In vivo study showed that early and delayed treatment decreased hepatic steatosis. Particularly, early treatment prevented the progression of hepatic inflammation and fibrosis in HFD mice. Interestingly, both strategies abrogated hepatic insulin resistance and mitochondrial dysfunction, presented by enhanced p-Akt and p-GSK3β, reduced p-JNK signaling, along with p-AMPK and PGC-1α activation. Consistently, TM5441 treatment in the presence of either PAI-1 exposure or TNF-α stimulated-PAI-1 activity showed a restoration of mitochondrial biogenesis related genes expression on HepG2 cells. Thus, improvement of insulin sensitivity and mitochondrial function was imperative to partially explain the therapeutic effects of TM5441, a novel agent targeting HFD-induced NAFLD.
Collapse
Affiliation(s)
- Seon Myeong Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Debra Dorotea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Inji Jung
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Tetsuo Nakabayashi
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|