1
|
He A, Li Q, Dang M, Lu W, Li X, Dai Z, Ding M, Zhang Y, Dong H, Teng Z, Mou Y. Extracellular Vesicle-Inspired Minimalist Flexible Nanocapsules Assembled with Whole Active Ingredients for Highly Efficient Enhancement of DC-Mediated Tumor Immunotherapy. Adv Healthc Mater 2024; 13:e2401199. [PMID: 39054675 PMCID: PMC11650550 DOI: 10.1002/adhm.202401199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/23/2024] [Indexed: 07/27/2024]
Abstract
The development of nanovaccines capable of eliciting tumor-specific immune responses holds significant promise for tumor immunotherapy. However, many nanovaccine designs rely heavily on incorporating multiple adjuvants and carriers, increasing the biological hazards associated with these additional components. Here, this work introduces novel flexible nanocapsules (OVAnano) designed to mimic extracellular vesicles, primarily using the ovalbumin antigen and minimal polyethylenimine adjuvant components. These results show that the biomimetic flexible structure of OVAnano facilitates enhanced antigen uptake by dendritic cells (DCs), leading to efficient antigen and adjuvant release into the cytosol via endosomal escape, and ultimately, successful antigen cross-presentation by DCs. Furthermore, OVAnano modulates the intracellular nuclear factor kappa-B (NF-κB) signaling pathway, promoting DC maturation. The highly purified antigens in OVAnano demonstrate remarkable antigen-specific immunogenicity, triggering strong antitumor immune responses mediated by DCs. Therapeutic tumor vaccination studies have also shown that OVAnano administration effectively suppresses tumor growth in mice by inducing immune responses from CD8+ and CD4+ T cells targeting specific antigens, reducing immunosuppression by regulatory T cells, and boosting the populations of effector memory T cells. These findings underscore that the simple yet potent strategy of employing minimal flexible nanocapsules markedly enhances DC-mediated antitumor immunotherapy, offering promising avenues for future clinical applications.
Collapse
Affiliation(s)
- Ao He
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Qiang Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Meng Dang
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for Biosensors, Institute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023China
| | - Wei Lu
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for Biosensors, Institute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023China
| | - Xiaoye Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Zhuo Dai
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Meng Ding
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Yu Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Heng Dong
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for Biosensors, Institute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023China
| | - Yongbin Mou
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| |
Collapse
|
2
|
Wang Z, Yang Q, Wu G, Ma J, Luo L, Yin W, Wu M. Structural analysis and adjuvant activity of a polysaccharide from Urtica macrorrhiza. Int J Biol Macromol 2024; 283:137433. [PMID: 39542334 DOI: 10.1016/j.ijbiomac.2024.137433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Developing new vaccine adjuvants for clinical use remains a significant challenge. Herein, we reported a polysaccharide (UMRG) from Urtica macrorrhiza. It has a molecular weight of 743.35 kDa and is composed of rhamnose (Rha), glucuronic acid (GlcA), galacturonic acid (GalA), and galactose (Gal) in a molar ratio of 1.94: 1.00: 4.17: 1.79. Structural analysis revealed that UMRG contains a rhamnogalacturonan I backbone with short side chains of β-Galp-(1→4)-β-GlcAp-(1→4)-β-Glap-(1→ linked at the C-4 position of →2,4)-α-Rhap-(1→. In vivo, UMRG significantly increased the production of antigen-specific IgG, IgG1, and IgG2a by 1.91-, 2.09-, and 3.43-fold, respectively, on day 42 post-immunization. It also promoted the proliferation of splenic lymphocytes, increasing the proportion of CD3+ and CD3+CD4+ T lymphocytes from 32.63 ± 1.13 % to 38.13 ± 2.03 % and from 21.05 ± 0.93 % to 24.34 ± 1.21 %, respectively. Further investigation demonstrated that UMRG promoted the phagocytosis of antigens by dendritic cells, improved their maturation, and stimulated the secretion of the cytokines TNF-α, IL-12, and IL-6. Additionally, both in vitro and in vivo experiments demonstrated that UMRG displayed good biosafety. Our results suggested the Urtica macrorrhiza polysaccharide may exhibit the potential to be developed as a highly efficient and low-toxicity immune adjuvant.
Collapse
Affiliation(s)
- Zhongjuan Wang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, China; Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Yang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, China; School of Pharmacy, Dali University, Dali 671003, China.; Yunnan Baiyao Group CO.LTD, Kunming 650500, China
| | - Genrui Wu
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, China; School of Pharmacy, Dali University, Dali 671003, China
| | - Jiancheng Ma
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, China; School of Pharmacy, Dali University, Dali 671003, China
| | - Lan Luo
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wenjie Yin
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, China.
| | - Mingyi Wu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.; University of Chinese Academy of Sciences, Beijing 100049, China..
| |
Collapse
|
3
|
Juhasz V, Charlier FT, Zhao TX, Tsiantoulas D. Targeting the adaptive immune continuum in atherosclerosis and post-MI injury. Atherosclerosis 2024; 399:118616. [PMID: 39546915 DOI: 10.1016/j.atherosclerosis.2024.118616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 11/17/2024]
Abstract
Atherosclerotic disease is a cholesterol-rich lipoprotein particle-driven disease resulting in the formation of atherosclerotic plaques in large and medium size arteries. Rupture or erosion of atherosclerotic plaques can trigger the formation of a thrombus causing the obstruction of the blood flow in the coronary artery and thereby leading to myocardial infarction (MI). Inflammation is a crucial pillar of the mechanisms leading to atherosclerosis and governing the cardiac repair post-MI. Dissecting the complex and sophisticated networks of the immune responses underlying the formation of atherosclerotic plaques and affecting the healing of the heart after MI will allow the designing of highly precise immunomodulatory therapies for these settings. Notably, MI also accelerates atherosclerosis via modulating the response of the immune system. Therefore, for the identification of effective and safe therapeutic targets, it is critical to consider the inflammatory continuum that interconnects the two pathologies and identify immunomodulatory strategies that confer a protective effect in both settings or at least, affect each pathology independently. Adaptive immunity, which consists of B and T lymphocytes, is a major regulator of atherosclerosis and post-MI cardiac repair. Here, we review and discuss the effect of potential adaptive immunity-targeting therapies, such as cell-depleting therapies, in atherosclerosis and post-MI cardiac injury.
Collapse
Affiliation(s)
- Viktoria Juhasz
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Fiona T Charlier
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Tian X Zhao
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Cardiology, Royal Papworth Hospital NHS Trust, Cambridge, United Kingdom
| | | |
Collapse
|
4
|
Lok V, Olson-McPeek S, Spiegelhoff G, Cortez J, Detz D, Czerniecki B. Immunotherapies in breast cancer: harnessing the cancer immunity cycle. Expert Opin Ther Targets 2024; 28:925-935. [PMID: 39523444 DOI: 10.1080/14728222.2024.2427038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Immunotherapies have found limited success in breast cancerdue to significant challenges within the tumor that block T-cell activity and function. AREAS COVERED The current review discusses clinically relevant immunotherapeutics and trials within the framework of the cancer-immunity cycle. EXPERT OPINION Current therapies such as antibody-drug conjugates and immune checkpoint blockade require proper biomarker selection, such as PD1 expression and the degree of tumor-infiltrating lymphocyte (TIL) infiltration to subset potential responders. HER2 and other tumor-associated antigens have served as valuable benchmarks for developing novel therapies, such as antibody engagers and CAR T-cells. However, further research is essential to identify and validate new target antigens that can enhance therapeutic efficacy and broaden the clinical applicability of these approaches.
Collapse
Affiliation(s)
- Vincent Lok
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - Sy Olson-McPeek
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - Grace Spiegelhoff
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - Jaqueline Cortez
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - David Detz
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - Brian Czerniecki
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
5
|
Zhong H, Wang F, Tang C, Li J, Cheng JH. Combination of Structural Analysis and Proteomics Strategy Revealed the Mechanism of Ultrasound-Assisted Cold Plasma Regulating Shrimp Allergy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39356241 DOI: 10.1021/acs.jafc.4c06388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Allergic incidents of crustacean aquatic products occur frequently, and tropomyosin (TM) is the main allergen. Therefore, it is worthwhile to develop technologies to efficiently reduce the allergenicity of TM. In this study, ultrasound-assisted cold plasma (UCP) treatment was used to regulate shrimp allergy. The remarkable changes in TM structure were substantiated by alteration in secondary structure, reduction in sulfhydryl content, change in surface hydrophobicity, and disparity in surface morphology. The IgE and IgG binding ability of TM significantly decreased by 52.40% and 46.51% due to UCP treatment. In the Balb/c mouse model, mice in the UCP group showed most prominent mitigation of allergic symptoms, proved by lower allergy score, changes in levels of TM-specific antibodies, and restoration of Th1/Th2 cytokine imbalance. Using a proteomics approach, 439 differentially expressed proteins (DEPs) in the TM group (vs phosphate-buffered saline group) and 170 DEPs in the UCP group (vs TM group) were determined. Subsequent analysis demonstrated that Col6a5, Col6a6, and Epx were potential biomarkers of TM allergy. Moreover, Col6a5, Col6a6, Dcn, and Kng1 might be the target proteins of UCP treatment, while PI3K/Akt/mTOR might be the regulated signaling pathway. These findings proved that UCP treatment has great potential in reducing TM allergenicity and provide new insights into the development of hypoallergenic shrimp products.
Collapse
Affiliation(s)
- Hangyu Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Fengqi Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Caidie Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
6
|
Xie S, Sun M, Zhang X, Kan C, Shi G, Peng W, Guo J, Wu D, Yin Z, Yang Q, Zhang R. T cell responses in immune-mediated IgA nephropathy. J Leukoc Biol 2024; 116:523-535. [PMID: 38713107 DOI: 10.1093/jleuko/qiae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
Immunoglobulin A nephropathy is a complex autoimmune disease with various underlying causes and significant clinical heterogeneity. There are large individual differences in its development, and the etiology and pathogenesis are still poorly understood. While it is known that immunobiological factors play a significant role in the pathophysiology of immunoglobulin A nephropathy, the specific nature of these factors has yet to be fully elucidated. Numerous investigations have verified that CD4+ and CD8+ T lymphocytes are involved in the immunopathogenesis of immunoglobulin A nephropathy. Furthermore, certain data also point to γδT cells' involvement in the pathophysiology of immunoglobulin A nephropathy. By thoroughly examining the mechanisms of action of these T cells in the context of immunoglobulin A nephropathy, this review sheds light on the immunopathogenesis of the disease and its associated factors. The review is intended to provide reference value for the future research in this field and promising treatment clues for clinical patients.
Collapse
Affiliation(s)
- Shimin Xie
- Department of Nephrology, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Mengying Sun
- Department of Nephrology, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Xiaohan Zhang
- Department of Nephrology, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Chao Kan
- Department of Nephrology, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Guojuan Shi
- Department of Nephrology, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Weixiang Peng
- Department of Nephrology, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Junli Guo
- Department of Nephrology, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Dantong Wu
- Department of Nephrology, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, 510632, China
| | - Quanli Yang
- Department of Nephrology, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Rui Zhang
- Department of Nephrology, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China
| |
Collapse
|
7
|
Cao TP, Shahine A, Cox LR, Besra GS, Moody DB, Rossjohn J. A structural perspective of how T cell receptors recognize the CD1 family of lipid antigen-presenting molecules. J Biol Chem 2024; 300:107511. [PMID: 38945451 PMCID: PMC11780374 DOI: 10.1016/j.jbc.2024.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024] Open
Abstract
The CD1 family of antigen-presenting molecules adopt a major histocompatibility complex class I (MHC-I) fold. Whereas MHC molecules present peptides, the CD1 family has evolved to bind self- and foreign-lipids. The CD1 family of antigen-presenting molecules comprises four members-CD1a, CD1b, CD1c, and CD1d-that differ in their architecture around the lipid-binding cleft, thereby enabling diverse lipids to be accommodated. These CD1-lipid complexes are recognized by T cell receptors (TCRs) expressed on T cells, either through dual recognition of CD1 and lipid or in a new model whereby the TCR directly contacts CD1, thereby triggering an immune response. Chemical syntheses of lipid antigens, and analogs thereof, have been crucial in understanding the underlying specificity of T cell-mediated lipid immunity. This review will focus on our current understanding of how TCRs interact with CD1-lipid complexes, highlighting how it can be fundamentally different from TCR-MHC-peptide corecognition.
Collapse
Affiliation(s)
- Thinh-Phat Cao
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK.
| |
Collapse
|
8
|
Liu Y, Lam DMK, Luan M, Zheng W, Ai H. Recent development of oral vaccines (Review). Exp Ther Med 2024; 27:223. [PMID: 38590568 PMCID: PMC11000446 DOI: 10.3892/etm.2024.12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/08/2024] [Indexed: 04/10/2024] Open
Abstract
Oral immunization can elicit an effective immune response and immune tolerance to specific antigens. When compared with the traditional injection route, delivering antigens via the gastrointestinal mucosa offers superior immune effects and compliance, as well as simplicity and convenience, making it a more optimal route for immunization. At present, various oral vaccine delivery systems exist. Certain modified bacteria, such as Salmonella, Escherichia coli and particularly Lactobacillus, are considered promising carriers for oral vaccines. These carriers can significantly enhance immunization efficiency by actively replicating in the intestinal tract following oral administration. The present review provided a discussion of the main mechanisms of oral immunity and the research progress made in the field of oral vaccines. Additionally, it introduced the advantages and disadvantages of the currently more commonly administered injectable COVID-19 vaccines, alongside the latest advancements in this area. Furthermore, recent developments in oral vaccines are summarized, and their potential benefits and side effects are discussed.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | | | - Mei Luan
- Department of Geriatric Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Wenfu Zheng
- Chinese Academy of Sciences Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
9
|
Cheng X, Liu S, Sun J, Liu L, Ma X, Li J, Fan B, Yang C, Zhao Y, Liu S, Wen Y, Li W, Sun S, Mi S, Huo H, Miao L, Pan H, Cui X, Lin J, Lu X. A Synergistic Lipid Nanoparticle Encapsulating mRNA Shingles Vaccine Induces Potent Immune Responses and Protects Guinea Pigs from Viral Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310886. [PMID: 38145557 DOI: 10.1002/adma.202310886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Shingles is caused by the reactivation of varicella zoster virus (VZV) and manifests as painful skin rashes. While the recombinant protein-based vaccine proves highly effective, it encounters supply chain challenges due to a shortage of the necessary adjuvant. Messenger RNA (mRNA)-based vaccines can be rapidly produced on a large scale, but their effectiveness relies on efficient delivery and sequence design. Here, an mRNA-based VZV vaccine using a synergistic lipid nanoparticle (Syn-LNP) containing two different ionizable lipids is developed. Syn-LNP shows superior mRNA expression compared to LNPs formulated with either type of ionizable lipid and to a commercialized LNP. After encapsulating VZV glycoprotein E (gE)-encoding mRNA, mgE@Syn-LNP induces robust humoral and cellular immune responses in two strains of mice. The magnitude of these responses is similar to that induced by adjuvanted recombinant gE proteins and significantly higher than that observed with live-attenuated VZV. mgE@Syn-LNP exhibits durable humoral responses for over 7 months without obvious adverse effects. In addition, mgE@Syn-LNP protects vaccinated guinea pigs against live VZV challenges. Preliminary studies on the mRNA antigen design reveal that the removal of glycosylation sites of gE greatly reduces its immune responses. Collectively, Syn-LNP encapsulating gE-encoded mRNA holds great promise as a shingles vaccine.
Collapse
Affiliation(s)
- Xingdi Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sujia Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100029, China
| | - Lin Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xinghuan Ma
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jingjiao Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bangda Fan
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Chen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yixing Wen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Simin Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shiwei Mi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haonan Huo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Miao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hao Pan
- Proxybio Therapeutics Co., Ltd., Shenzhen, 518001, China
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100029, China
| | - Jiaqi Lin
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xueguang Lu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Kou R, Wang J, Li A, Wang Y, Fan D, Zhang B, Fu W, Liu J, Fu H, Wang S. 2'-Fucosyllactose alleviates OVA-induced food allergy in mice by ameliorating intestinal microecology and regulating the imbalance of Th2/Th1 proportion. Food Funct 2023; 14:10924-10940. [PMID: 38009336 DOI: 10.1039/d3fo03272h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Food allergy (FA) has become a prominent problem in public health. 2'-Fucosyllactose (2'-FL) was reported to alleviate FA symptoms; however, the regulatory mechanism is still unclear. This study evaluated the 2'-FL antiallergic potential in an ovalbumin (OVA)-sensitized mouse model and explored the systemic effects of 2'-FL on gut microecology and the intestinal immune barrier. The results showed that 2'-FL alleviated allergy symptoms, decreased serum allergic indicator levels, enhanced the intestinal barrier, and attenuated low-grade inflammation. The up-regulation of G protein-coupled receptors (GPRs) was associated with higher levels of short-chain fatty acids (SCFAs) in 2'-FL intervention mice. 2'-FL also improved the intestinal microbiota diversity and increased the abundance of Akkermansia, Lachnospiraceae UCG-006, and Ruminococcaceae while suppressing Muribaculaceae, Desulfovibrionaceae, and Erysipelotrichaceae. Additionally, 2'-FL ameliorated the imbalance of Th2/Th1, mainly by decreasing Th2-type immune response and enhanced CD4 + Foxp3 + Treg immunoreaction. These results suggest that 2'-FL restores intestinal barrier defects, gut microbiota disorder, and immune impairment while alleviating ovalbumin-induced allergic symptoms in FA mice.
Collapse
Affiliation(s)
- Ruixin Kou
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Ang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yuanyifei Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Dancai Fan
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Wenhui Fu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Jingmin Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Hanyue Fu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
11
|
Huang W, Shi S, Jiang Y, Tian Y, Wang Y, Jiang D, Xu L, Chen T. Universal Fe/Mn Nanoadjuvant with T1/T2 MRI Self-Navigation and Gas Generation for Ideal Vaccines with Precise Tracking. ACS NANO 2023; 17:15590-15604. [PMID: 37530430 DOI: 10.1021/acsnano.3c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Because of the distinguished properties between nanovaccine and traditional vaccine, the precise guidelines for nanovaccines with an optimal vaccination strategy to induce ideal immunities are greatly desired for combating major diseases, including cancer and infections. Herein, we designed and synthesized a self-navigating nanoadjuvant composed of Fe-doped manganese carbonate and its nanovaccine via a facile method. First, the degradation of the nanoadjuvant under acidic milieu of immune cells in lymph nodes would generate T1 and T2 MR imaging (MRI) signals to reflect the transformation dynamics of the nanovaccine and inform us when the next vaccination needed. Under this guideline, nanovaccines with a precise vaccination strategy triggered robust antigen-specific immune responses and immunological memory to effectively prevent ovalbumin (OVA)-expressing melanoma relapse by activating dendritic cells via a stimulator of interferon genes (STING) signaling pathway and inducing antigen cross-presentation by shaping lysosome integrity with CO2 generation and upregulating transporter associated antigen processing 1 (TAP-1) transporter. This study provides a universal nanoadjuvant with imaging self-guidance, immunopotentiating, and cross-priming activities for developing precise vaccines with an optimal immunization strategy to combat major diseases.
Collapse
Affiliation(s)
- Wei Huang
- Department of Oncology, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Sujiang Shi
- Department of Oncology, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yalin Jiang
- Department of Oncology, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yuan Tian
- Department of Oncology, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Ying Wang
- Department of Oncology, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Dan Jiang
- Department of Oncology, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Ligeng Xu
- Department of Oncology, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Oncology, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev 2023; 52:5172-5254. [PMID: 37462107 DOI: 10.1039/d2cs00848c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vaccines comprising innovative adjuvants are rapidly reaching advanced translational stages, such as the authorized nanotechnology adjuvants in mRNA vaccines against COVID-19 worldwide, offering new strategies to effectively combat diseases threatening human health. Adjuvants are vital ingredients in vaccines, which can augment the degree, extensiveness, and longevity of antigen specific immune response. The advances in the modulation of physicochemical properties of nanoplatforms elevate the capability of adjuvants in initiating the innate immune system and adaptive immunity, offering immense potential for developing vaccines against hard-to-target infectious diseases and cancer. In this review, we provide an essential introduction of the basic principles of prophylactic and therapeutic vaccination, key roles of adjuvants in augmenting and shaping immunity to achieve desired outcomes and effectiveness, and the physiochemical properties and action mechanisms of clinically approved adjuvants for humans. We particularly focus on the preclinical and clinical progress of highly immunogenic emerging nanotechnology adjuvants formulated in vaccines for cancer treatment or infectious disease prevention. We deliberate on how the immune system can sense and respond to the physicochemical cues (e.g., chirality, deformability, solubility, topology, and chemical structures) of nanotechnology adjuvants incorporated in the vaccines. Finally, we propose possible strategies to accelerate the clinical implementation of nanotechnology adjuvanted vaccines, such as in-depth elucidation of nano-immuno interactions, antigen identification and optimization by the deployment of high-dimensional multiomics analysis approaches, encouraging close collaborations among scientists from different scientific disciplines and aggressive exploration of novel nanotechnologies.
Collapse
Affiliation(s)
- Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
13
|
Tripathy A, Swain N, Padhan P, Raghav SK, Gupta B. Lactobacillus rhamnosus reduces CD8 +T cell mediated inflammation in patients with rheumatoid arthritis. Immunobiology 2023; 228:152415. [PMID: 37356231 DOI: 10.1016/j.imbio.2023.152415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND The T cells, components of adaptive immunity participate in immune pathology of the autoimmune inflammatory disorder called rheumatoid arthritis (RA). The presence of TLRs on the surface of the CD8+ T cells and their ability to recognize bacterial moieties adds to the inflammatory burden in case of RA. It has been reported that the gut microbiome is necessary for the crucial shift in the balance between proinflammatory and anti-inflammatory cytokines. The altered gut microbiome and the presence of TLRs emphasizes on the microbiome driven inflammatory responses in case of RA. METHODS Eighty-nine RA patients participated in this study. Clinical variations like disease duration, number of actively inflamed joints, number and type of bone deformities, CRP, RF, Anti-CCP, ESR, DAS 28 score were recorded for each patient. Co-culture of CD8+T cells and bacteria has been performed with proper culture condition. TLRs and inflammatory mediators' expression level were checked by both qPCR and flow cytometry analysis. RESULTS We observed in the suppression of pro-inflammatory molecules like Granzyme B and IFNƳ and expression of TLR2 in CD8 + T cells upon treatment with Lactobacillus rhamnosus (L. rhamnosus). Moreover, L. rhamnosus activated CD8+T cells such that they could induce FOXP3 expression in CD4+T cells thereby skewing T cell population towards a regulatory phenotype. On the contrary, TLR4 engagement on CD8+T cell by Escherichia coli (E.coli) increased in inflammatory responses following ERK activation. CONCLUSIONS Thus, we conclude that L. rhamnosus can effectively suppress CD8+T cell mediated inflammation by a simultaneous decrease of Th1 cells that may potentiate better treatment modalities for RA.
Collapse
Affiliation(s)
- Archana Tripathy
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Nitish Swain
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Prasanta Padhan
- Department of Rheumatology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Sunil K Raghav
- Immuno-Genomics and Systems Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Bhawna Gupta
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
14
|
Nakamoto A, Goto M, Hasegawa H, Anzaki C, Nakamoto M, Shuto E, Sakai T. Essential Oil of Citrus sudachi Suppresses T Cell Activation Both In Vitro and In Vivo. J Nutr Sci Vitaminol (Tokyo) 2022; 68:513-520. [PMID: 36596549 DOI: 10.3177/jnsv.68.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The essential oil of Citrus sudachi (sudachi oil) is extracted from the peel of sudachi, a citrus plant. We investigated the effect of sudachi oil on immune function in both in vitro antigen (Ag) induced lymphocyte activation and in vivo Ag-specific immune response. In the in vitro study, the proliferative activity of splenocytes upon Ag-specific and non-specific stimulation was suppressed by treatment with sudachi oil in a dose-dependent manner. In addition, the expression level of Ag-presentation-related molecules and their Ag-presenting function on dendritic cells were suppressed by sudachi oil. To examine how sudachi oil regulates an Ag-specific immune response in vivo, mice were immunized with ovalbumin and the immune response of the mice was investigated. Ag-specific proliferation response of splenocytes from mice treated with sudachi essential oil was significantly suppressed. The results indicate that sudachi oil suppresses T cell and dendritic cell functions in vitro and Ag-specific T cell induction in vivo.
Collapse
Affiliation(s)
- Akiko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Miho Goto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Hina Hasegawa
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Chieri Anzaki
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Mariko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Emi Shuto
- Department of Nutritional Science, Okayama Prefectural University
| | - Tohru Sakai
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
15
|
Sato-Kaneko F, Yao S, Lao FS, Sako Y, Jin J, Shukla NM, Cottam HB, Chan M, Belsuzarri MM, Carson DA, Hayashi T. A Dual Adjuvant System for Intranasal Boosting of Local and Systemic Immunity for Influenza Vaccination. Vaccines (Basel) 2022; 10:1694. [PMID: 36298559 PMCID: PMC9611830 DOI: 10.3390/vaccines10101694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Systemically vaccinated individuals against COVID-19 and influenza may continue to support viral replication and shedding in the upper airways, contributing to the spread of infections. Thus, a vaccine regimen that enhances mucosal immunity in the respiratory mucosa is needed to prevent a pandemic. Intranasal/pulmonary (IN) vaccines can promote mucosal immunity by promoting IgA secretion at the infection site. Here, we demonstrate that an intramuscular (IM) priming-IN boosting regimen with an inactivated influenza A virus adjuvanted with the liposomal dual TLR4/7 adjuvant (Fos47) enhances systemic and local/mucosal immunity. The IN boosting with Fos47 (IN-Fos47) enhanced antigen-specific IgA secretion in the upper and lower respiratory tracts compared to the IM boosting with Fos47 (IM-Fos47). The secreted IgA induced by IN-Fos47 was also cross-reactive to multiple influenza virus strains. Antigen-specific tissue-resident memory T cells in the lung were increased after IN boosting with Fos47, indicating that IN-Fos47 established tissue-resident T cells. Furthermore, IN-Fos47 induced systemic cross-reactive IgG antibody titers comparable to those of IM-Fos47. Neither local nor systemic reactogenicity or adverse effects were observed after IN delivery of Fos47. Collectively, these results indicate that the IM/IN regimen with Fos47 is safe and provides both local and systemic anti-influenza immune responses.
Collapse
|
16
|
Rico-San Román L, Amieva R, Regidor-Cerrillo J, García-Sánchez M, Collantes-Fernández E, Pastor-Fernández I, Saeij JPJ, Ortega-Mora LM, Horcajo P. NcGRA7 and NcROP40 Play a Role in the Virulence of Neospora caninum in a Pregnant Mouse Model. Pathogens 2022; 11:pathogens11090998. [PMID: 36145430 PMCID: PMC9506596 DOI: 10.3390/pathogens11090998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022] Open
Abstract
The intraspecific variability among Neospora caninum isolates in their in vitro behaviour and in vivo virulence has been widely studied. In particular, transcriptomic and proteomic analyses have shown a higher expression/abundance of specific genes/proteins in high-virulence isolates. Consequently, the dense granule protein NcGRA7 and the rhoptry protein NcROP40 were proposed as potential virulence factors. The objective of this study was to characterize the role of these proteins using CRISPR/Cas9 knockout (KO) parasites in a well-established pregnant BALB/c mouse model of N. caninum infection at midgestation. The deletion of NcGRA7 and NcROP40 was associated with a reduction of virulence, as infected dams displayed milder clinical signs, lower parasite burdens in the brain, and reduced mortality rates compared to those infected with the wild-type parasite (Nc-Spain7). Specifically, those infected with the NcGRA7 KO parasites displayed significantly milder clinical signs and a lower brain parasite burden. The median survival time of the pups from dams infected with the two KO parasites was significantly increased, but differences in neonatal mortality rates were not detected. Overall, the present study indicates that the disruption of NcGRA7 considerably impairs virulence in mice, while the impact of NcROP40 deletion was more modest. Further research is needed to understand the role of these virulence factors during N. caninum infection.
Collapse
Affiliation(s)
- Laura Rico-San Román
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Rafael Amieva
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Javier Regidor-Cerrillo
- SALUVET-Innova S.L., Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Marta García-Sánchez
- SALUVET-Innova S.L., Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Esther Collantes-Fernández
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Iván Pastor-Fernández
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Correspondence: (L.M.O.-M.); (P.H.); Tel.: +34-91-3944098 (P.H.)
| | - Pilar Horcajo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Correspondence: (L.M.O.-M.); (P.H.); Tel.: +34-91-3944098 (P.H.)
| |
Collapse
|
17
|
Zhao F, Li B, Yang W, Ge T, Cui R. Brain-immune interaction mechanisms: Implications for cognitive dysfunction in psychiatric disorders. Cell Prolif 2022; 55:e13295. [PMID: 35860850 PMCID: PMC9528770 DOI: 10.1111/cpr.13295] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Objectives Cognitive dysfunction has been identified as a major symptom of a series of psychiatric disorders. Multidisciplinary studies have shown that cognitive dysfunction is monitored by a two‐way interaction between the neural and immune systems. However, the specific mechanisms of cognitive dysfunction in immune response and brain immune remain unclear. Materials and methods In this review, we summarized the relevant research to uncover our comprehension of the brain–immune interaction mechanisms underlying cognitive decline. Results The pathophysiological mechanisms of brain‐immune interactions in psychiatric‐based cognitive dysfunction involve several specific immune molecules and their associated signaling pathways, impairments in neural and synaptic plasticity, and the potential neuro‐immunological mechanism of stress. Conclusions Therefore, this review may provide a better theoretical basis for integrative therapeutic considerations for psychiatric disorders associated with cognitive dysfunction.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Su W, Gong T, Jiang Z, Lu Z, Wang Y. The Role of Probiotics in Alleviating Postweaning Diarrhea in Piglets From the Perspective of Intestinal Barriers. Front Cell Infect Microbiol 2022; 12:883107. [PMID: 35711653 PMCID: PMC9197122 DOI: 10.3389/fcimb.2022.883107] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
Early weaning of piglets is an important strategy for improving the production efficiency of sows in modern intensive farming systems. However, due to multiple stressors such as physiological, environmental and social challenges, postweaning syndrome in piglets often occurs during early weaning period, and postweaning diarrhea (PWD) is a serious threat to piglet health, resulting in high mortality. Early weaning disrupts the intestinal barrier function of piglets, disturbs the homeostasis of gut microbiota, and destroys the intestinal chemical, mechanical and immunological barriers, which is one of the main causes of PWD in piglets. The traditional method of preventing PWD is to supplement piglet diet with antibiotics. However, the long-term overuse of antibiotics led to bacterial resistance, and antibiotics residues in animal products, threatening human health while causing dysbiosis of gut microbiota and superinfection of piglets. Antibiotic supplementation in livestock diets is prohibited in many countries and regions. Regarding this context, finding antibiotic alternatives to maintain piglet health at the critical weaning period becomes a real emergency. More and more studies showed that probiotics can prevent and treat PWD by regulating the intestinal barriers in recent years. Here, we review the research status of PWD-preventing and treating probiotics and discuss its potential mechanisms from the perspective of intestinal barriers (the intestinal microbial barrier, the intestinal chemical barrier, the intestinal mechanical barrier and the intestinal immunological barrier) in piglets.
Collapse
Affiliation(s)
- Weifa Su
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Tao Gong
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Zipeng Jiang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Zeqing Lu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Yizhen Wang,
| |
Collapse
|
19
|
Brégère C, Schwendele B, Radanovic B, Guzman R. Microglia and Stem-Cell Mediated Neuroprotection after Neonatal Hypoxia-Ischemia. Stem Cell Rev Rep 2022; 18:474-522. [PMID: 34382141 PMCID: PMC8930888 DOI: 10.1007/s12015-021-10213-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
Neonatal hypoxia-ischemia encephalopathy (HIE) refers to a brain injury in term infants that can lead to death or lifelong neurological deficits such as cerebral palsy (CP). The pathogenesis of this disease involves multiple cellular and molecular events, notably a neuroinflammatory response driven partly by microglia, the brain resident macrophages. Treatment options are currently very limited, but stem cell (SC) therapy holds promise, as beneficial outcomes are reported in animal studies and to a lesser degree in human trials. Among putative mechanisms of action, immunomodulation is considered a major contributor to SC associated benefits. The goal of this review is to examine whether microglia is a cellular target of SC-mediated immunomodulation and whether the recruitment of microglia is linked to brain repair. We will first provide an overview on microglial activation in the rodent model of neonatal HI, and highlight its sensitivity to developmental age. Two complementary questions are then addressed: (i) do immune-related treatments impact microglia and provide neuroprotection, (ii) does stem cell treatment modulates microglia? Finally, the immune-related findings in patients enrolled in SC based clinical trials are discussed. Our review points to an impact of SCs on the microglial phenotype, but heterogeneity in experimental designs and methodological limitations hamper our understanding of a potential contribution of microglia to SC associated benefits. Thorough analyses of the microglial phenotype are warranted to better address the relevance of the neuroimmune crosstalk in brain repair and improve or advance the development of SC protocols in humans.
Collapse
Affiliation(s)
- Catherine Brégère
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Bernd Schwendele
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Boris Radanovic
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
20
|
An Early Th1 Response Is a Key Factor for a Favorable COVID-19 Evolution. Biomedicines 2022; 10:biomedicines10020296. [PMID: 35203509 PMCID: PMC8869678 DOI: 10.3390/biomedicines10020296] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The Th1/Th2 balance plays a crucial role in the progression of different pathologies and is a determining factor in the evolution of infectious diseases. This work has aimed to evaluate the early, or on diagnosis, T-cell compartment response, T-helper subsets and anti-SARS-CoV-2 antibody specificity in COVID-19 patients and to classify them according to evolution based on infection severity. A unicenter, randomized group of 146 COVID-19 patients was divided into four groups in accordance with the most critical events during the course of disease. The immunophenotype and T-helper subsets were analyzed by flow cytometry. Asymptomatic SARS-CoV-2 infected individuals showed a potent and robust Th1 immunity, with a lower Th17 and less activated T-cells at the time of sample acquisition compared not only with symptomatic patients, but also with healthy controls. Conversely, severe COVID-19 patients presented with Th17-skewed immunity, fewer Th1 responses and more activated T-cells. The multivariate analysis of the immunological and inflammatory parameters, together with the comorbidities, showed that the Th1 response was an independent protective factor for the prevention of hospitalization (OR 0.17, 95% CI 0.03–0.81), with an AUC of 0.844. Likewise, the Th1 response was found to be an independent protective factor for severe forms of the disease (OR 0.09, 95% CI: 0.01–0.63, p = 0.015, AUC: 0.873). In conclusion, a predominant Th1 immune response in the acute phase of the SARS-CoV-2 infection could be used as a tool to identify patients who might have a good disease evolution.
Collapse
|
21
|
Kulkarni R, Chen WC, Lee Y, Kao CF, Hu SL, Ma HH, Jan JT, Liao CC, Liang JJ, Ko HY, Sun CP, Lin YS, Wang YC, Wei SC, Lin YL, Ma C, Chao YC, Chou YC, Chang W. Vaccinia virus-based vaccines confer protective immunity against SARS-CoV-2 virus in Syrian hamsters. PLoS One 2021; 16:e0257191. [PMID: 34499677 PMCID: PMC8428573 DOI: 10.1371/journal.pone.0257191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 in humans is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that belongs to the beta family of coronaviruses. SARS-CoV-2 causes severe respiratory illness in 10-15% of infected individuals and mortality in 2-3%. Vaccines are urgently needed to prevent infection and to contain viral spread. Although several mRNA- and adenovirus-based vaccines are highly effective, their dependence on the "cold chain" transportation makes global vaccination a difficult task. In this context, a stable lyophilized vaccine may present certain advantages. Accordingly, establishing additional vaccine platforms remains vital to tackle SARS-CoV-2 and any future variants that may arise. Vaccinia virus (VACV) has been used to eradicate smallpox disease, and several attenuated viral strains with enhanced safety for human applications have been developed. We have generated two candidate SARS-CoV-2 vaccines based on two vaccinia viral strains, MVA and v-NY, that express full-length SARS-CoV-2 spike protein. Whereas MVA is growth-restricted in mammalian cells, the v-NY strain is replication-competent. We demonstrate that both candidate recombinant vaccines induce high titers of neutralizing antibodies in C57BL/6 mice vaccinated according to prime-boost regimens. Furthermore, our vaccination regimens generated TH1-biased immune responses in mice. Most importantly, prime-boost vaccination of a Syrian hamster infection model with MVA-S and v-NY-S protected the hamsters against SARS-CoV-2 infection, supporting that these two vaccines are promising candidates for future development. Finally, our vaccination regimens generated neutralizing antibodies that partially cross-neutralized SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Ching Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ying Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Fei Kao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - Hsiu-Hua Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Ying Ko
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yin-Shoiou Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Chiuan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Academi Sinica SPF Animal Facility, Academia Sinica, Taipei, Taiwan
| | - Sung-Chan Wei
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Wen Chang
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
22
|
Sato-Kaneko F, Yao S, Lao FS, Nan J, Shpigelman J, Cheng A, Saito T, Messer K, Pu M, Shukla NM, Cottam HB, Chan M, Molina AJ, Corr M, Hayashi T, Carson DA. Mitochondria-dependent synthetic small-molecule vaccine adjuvants for influenza virus infection. Proc Natl Acad Sci U S A 2021; 118:e2025718118. [PMID: 34078669 PMCID: PMC8201894 DOI: 10.1073/pnas.2025718118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vaccine adjuvants enhance and prolong pathogen-specific protective immune responses. Recent reports indicate that host factors-such as aging, pregnancy, and genetic polymorphisms-influence efficacies of vaccines adjuvanted with Toll-like receptor (TLR) or known pattern-recognition receptor (PRR) agonists. Although PRR independent adjuvants (e.g., oil-in-water emulsion and saponin) are emerging, these adjuvants induce some local and systemic reactogenicity. Hence, new TLR and PRR-independent adjuvants that provide greater potency alone or in combination without compromising safety are highly desired. Previous cell-based high-throughput screenings yielded a small molecule 81 [N-(4-chloro-2,5-dimethoxyphenyl)-4-ethoxybenzenesulfonamide], which enhanced lipopolysaccharide-induced NF-κB and type I interferon signaling in reporter assays. Here compound 81 activated innate immunity in primary human peripheral blood mononuclear cells and murine bone marrow-derived dendritic cells (BMDCs). The innate immune activation by 81 was independent of TLRs and other PRRs and was significantly reduced in mitochondrial antiviral-signaling protein (MAVS)-deficient BMDCs. Compound 81 activities were mediated by mitochondrial dysfunction as mitophagy inducers and a mitochondria specific antioxidant significantly inhibited cytokine induction by 81. Both compound 81 and a derivative obtained via structure-activity relationship studies, 2F52 [N-benzyl-N-(4-chloro-2,5-dimethoxyphenyl)-4-ethoxybenzenesulfonamide] modestly increased mitochondrial reactive oxygen species and induced the aggregation of MAVS. Neither 81 nor 2F52 injected as adjuvants caused local or systemic toxicity in mice at effective concentrations for vaccination. Furthermore, vaccination with inactivated influenza virus adjuvanted with 2F52 demonstrated protective effects in a murine lethal virus challenge study. As an unconventional and safe adjuvant that does not require known PRRs, compound 2F52 could be a useful addition to vaccines.
Collapse
Affiliation(s)
- Fumi Sato-Kaneko
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0809
| | - Shiyin Yao
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0809
| | - Fitzgerald S Lao
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0809
| | - Jason Nan
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0809
| | - Jonathan Shpigelman
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0809
| | - Annette Cheng
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0809
| | - Tetsuya Saito
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0809
| | - Karen Messer
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA 92093-0901
| | - Minya Pu
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA 92093-0901
| | - Nikunj M Shukla
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0809
| | - Howard B Cottam
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0809
| | - Michael Chan
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0809
| | - Anthony J Molina
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0656
| | - Maripat Corr
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0656
| | - Tomoko Hayashi
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0809;
| | - Dennis A Carson
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0809;
| |
Collapse
|
23
|
A safe and highly efficacious measles virus-based vaccine expressing SARS-CoV-2 stabilized prefusion spike. Proc Natl Acad Sci U S A 2021; 118:2026153118. [PMID: 33688034 PMCID: PMC8000430 DOI: 10.1073/pnas.2026153118] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Measles virus (MeV) vaccine is one of the safest and most efficient vaccines with a track record in children. Here, we generated a panel of rMeV-based vaccines with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S antigens inserted near 3′ of the MeV genome. The rMeV expressing a soluble stabilized, prefusion spike (preS) is much more potent in triggering SARS-CoV-2–specific neutralizing antibody than rMeV-based full-length S vaccine candidate. A single dose of rMeV-preS is sufficient to induce high levels of SARS-CoV-2 antibody in animals. Furthermore, rMeV-preS induces high levels of Th1-biased immunity. Hamsters immunized with rMeV-preS were completely protected against SARS-CoV-2 challenge. Our results demonstrate rMeV-preS is a safe and highly efficacious bivalent vaccine candidate for SARS-CoV-2 and MeV. The current pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights an urgent need to develop a safe, efficacious, and durable vaccine. Using a measles virus (rMeV) vaccine strain as the backbone, we developed a series of recombinant attenuated vaccine candidates expressing various forms of the SARS-CoV-2 spike (S) protein and its receptor binding domain (RBD) and evaluated their efficacy in cotton rat, IFNAR−/−mice, IFNAR−/−-hCD46 mice, and golden Syrian hamsters. We found that rMeV expressing stabilized prefusion S protein (rMeV-preS) was more potent in inducing SARS-CoV-2–specific neutralizing antibodies than rMeV expressing full-length S protein (rMeV-S), while the rMeVs expressing different lengths of RBD (rMeV-RBD) were the least potent. Animals immunized with rMeV-preS produced higher levels of neutralizing antibody than found in convalescent sera from COVID-19 patients and a strong Th1-biased T cell response. The rMeV-preS also provided complete protection of hamsters from challenge with SARS-CoV-2, preventing replication in lungs and nasal turbinates, body weight loss, cytokine storm, and lung pathology. These data demonstrate that rMeV-preS is a safe and highly efficacious vaccine candidate, supporting its further development as a SARS-CoV-2 vaccine.
Collapse
|
24
|
Eikmans M, van der Zwan A, Claas FHJ, van der Hoorn ML, Heidt S. Got your mother in a whirl: The role of maternal T cells and myeloid cells in pregnancy. HLA 2020; 96:561-579. [PMID: 32841539 DOI: 10.1111/tan.14055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022]
Abstract
Appropriate development of the placenta is required for healthy pregnancy to occur. After implantation of the fertilized blastocyst, fetal trophoblasts invade the endometrium and myometrium of the mother's uterus to establish placentation. In this process, fetal trophoblasts encounter maternal immune cells. In this review, we focus on the role of maternal T cells and myeloid cells (macrophages, dendritic cells) in pregnancy and their interaction with trophoblasts. To retain immunologic tolerization, trophoblasts evade immune recognition by T cells and produce factors that modulate their phenotype and function. On top of that, the local environment at the maternal-fetal interface favors expansion of regulatory T cells. Macrophages and dendritic cells are essential in maintaining a healthy pregnancy. They produce soluble factors and act as antigen-presenting cells, thereby interacting with T cells. Herein, M2 macrophages, immature dendritic cells, CD4+ Th2 cells, and regulatory T cells represent an axis that maintains a local immune tolerant environment. We consider outstanding issues concerning these cell types and their pathways, which need to be addressed in future investigations. Data from recent single-cell sequencing experiments of the placental bed, to study heterogeneity of maternal immune cells and to predict cell-cell interactions, are discussed. Novel ways for long-term culturing of primary trophoblasts allow for cell-cell interaction studies in a functional way. Future directions should include study of the functionality of currently known and newly identified decidual immune cell subsets in healthy and complicated pregnancies, and their interaction with and modulation by trophoblast cells.
Collapse
Affiliation(s)
- Michael Eikmans
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anita van der Zwan
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans H J Claas
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
25
|
Torres-Ruesta A, Teo TH, Chan YH, Rénia L, Ng LFP. Pathogenic Th1 responses in CHIKV-induced inflammation and their modulation upon Plasmodium parasites co-infection. Immunol Rev 2019; 294:80-91. [PMID: 31773780 PMCID: PMC7064921 DOI: 10.1111/imr.12825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022]
Abstract
The induction of polyarthritis and polyarthralgia is a hallmark of arthritogenic alphavirus infections, with an exceptionally higher morbidity observed with chikungunya virus (CHIKV). While the mechanisms underlying these incapacitating acute symptoms remain partially understood, the progression to chronic conditions in some cases remains unanswered. The highly pro‐inflammatory nature of alphavirus disease has suggested the involvement of virus‐specific, joint‐infiltrating Th1 cells as one of the main pathogenic mediators of CHIKV‐induced joint pathologies. This review summarizes the role of cell‐mediated immune responses in CHIKV pathogenesis, with a specific focus on pro‐inflammatory Th1 responses in the development of CHIKV joint inflammation. Furthermore, due to the explosive nature of arthritogenic alphavirus outbreaks and their recent expansion across the world, co‐infections with other highly prevalent pathogens such as malaria are likely to occur but the pathological outcomes of such interactions in humans are unknown. This review will also discuss the potential impact of malaria co‐infections on CHIKV pathogenesis and their relevance in alphavirus control programs in endemic areas.
Collapse
Affiliation(s)
- Anthony Torres-Ruesta
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Teck-Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore.,Department of Cell Biology and Infection, Molecular Microbial Pathogenesis Unit, Institute Pasteur, Paris, France
| | - Yi-Hao Chan
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
26
|
Mitani M, Minatogawa Y, Nakamoto A, Nakamoto M, Shuto E, Nii Y, Sakai T. Sudachitin, polymethoxyflavone from Citrus sudachi, enhances antigen-specific cellular and humoral immune responses in BALB/c mice. J Clin Biochem Nutr 2018; 64:158-163. [PMID: 30936628 PMCID: PMC6436041 DOI: 10.3164/jcbn.18-70] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/15/2018] [Indexed: 12/22/2022] Open
Abstract
Scdachitin is a polymethoxyflavone (5,7,4'-trihydroxy-6,8,3-trimethoxyflavone) that is found in the peel of Citrus sudachi. We examined the effect of sudachitin on immune response in ovalbumin-immunized BALB/c mice. Treatment with sudachitin increased ovalbumin-specific IL-4 and IL-10 productions. In addition, mice that received sudachitin showed higher levels of ovalbumin-specific IgE, IgG1 and IgG l production than did control mice. The antibody response to the thymus-independent antigen 2,4,6-trinitrophenyl Ficoll was not different in the control and sudachitin groups, suggesting that sudachitin does not directly stimulate antibody production. An in vitro study showed that treatment of sudachitin enhanced the ability of antigen presentation in bone marrow-derived dendritic cells. Furthermore, CD11c+ cells that had been treated with sudachitin showed increased expression of co-stimulatory molecules. The results indicate that sudachitin regulates immune function both in vivo and in vitro.
Collapse
Affiliation(s)
- Mami Mitani
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yuki Minatogawa
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Akiko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Mariko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Emi Shuto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yoshitaka Nii
- Food and Biotechnology Division, Tokushima Prefectural Industrial Technology Center, 11-2 Saika-cho, Tokushima 770-8021, Japan
| | - Tohru Sakai
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
27
|
Yang C, Tiemessen KM, Bosker FJ, Wardenaar KJ, Lie J, Schoevers RA. Interleukin, tumor necrosis factor-α and C-reactive protein profiles in melancholic and non-melancholic depression: A systematic review. J Psychosom Res 2018; 111:58-68. [PMID: 29935756 DOI: 10.1016/j.jpsychores.2018.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 10/16/2022]
Abstract
OBJECTIVE The current diagnostic criteria for major depressive disorder (MDD) do not allow prediction of prognosis and therapeutic response. A possible strategy to improve this situation is the identification of depression subtypes on the bases of biomarkers reflecting underlying pathological processes such as neuro-inflammation. METHODS The PubMed/Medline database was searched until Apr 25th, 2017. In the initial search 1018 articles were retrieved, which were subsequently screened and only selected when the inclusion and exclusion criteria were fulfilled. RESULTS Eight eligible studies were found. Overall, serum interleukin-6 and 1β values were increased in the melancholic MDD subtype compared to controls and the non-melancholic MDD subtype. C-reactive protein was increased in non-melancholic MDD in 2 out of 4 studies, while there was no difference for tumor necrosis factor-α and interleukin-2 and 10. CONCLUSION Given the paucity of eligible studies the tentative conclusion must be drawn that peripheral inflammation markers have limited added value thus far to distinguish between melancholic and non-melancholic depression. To allow for a more definitive conclusion, further research is warranted using a broader panel of inflammatory markers in MDD subtypes, preferably based on a general consensus regarding diagnostic criteria and subtype definitions.
Collapse
Affiliation(s)
- Chenghao Yang
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Tianjin, China; University Centre of Psychiatry, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands; University of Groningen, Research School Behavioral and Cognitive Neurosciences (BCN), Groningen, The Netherlands
| | - Kim M Tiemessen
- University Centre of Psychiatry, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Fokko J Bosker
- University Centre of Psychiatry, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands; University of Groningen, Research School Behavioral and Cognitive Neurosciences (BCN), Groningen, The Netherlands.
| | - Klaas J Wardenaar
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), Groningen, The Netherlands
| | - Jie Lie
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Tianjin, China
| | - Robert A Schoevers
- University Centre of Psychiatry, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands; University of Groningen, Research School Behavioral and Cognitive Neurosciences (BCN), Groningen, The Netherlands
| |
Collapse
|
28
|
On phagocytes and macular degeneration. Prog Retin Eye Res 2017; 61:98-128. [DOI: 10.1016/j.preteyeres.2017.06.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/17/2022]
|
29
|
Das A, Ranganathan V, Umar D, Thukral S, George A, Rath S, Bal V. Effector/memory CD4 T cells making either Th1 or Th2 cytokines commonly co-express T-bet and GATA-3. PLoS One 2017; 12:e0185932. [PMID: 29088218 PMCID: PMC5663332 DOI: 10.1371/journal.pone.0185932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/21/2017] [Indexed: 11/23/2022] Open
Abstract
Naïve CD4 T (NCD4T) cells post-activation undergo programming for inducible production of cytokines leading to generation of memory cells with various functions. Based on cytokine based polarization of NCD4T cells in vitro, programming for either ‘Th1’ (interferon-gamma [IFNg]) or ‘Th2’ (interleukin [IL]-4/5/13) cytokines is thought to occur via mutually exclusive expression and functioning of T-bet or GATA-3 transcription factors (TFs). However, we show that a high proportion of mouse and human memory-phenotype CD4 T (MCD4T) cells generated in vivo which expressed either Th1 or Th2 cytokines commonly co-expressed T-bet and GATA-3. While T-bet levels did not differ between IFNg-expressing and IL-4/5/13-expressing MCD4T cells, GATA-3 levels were higher in the latter. These observations were also confirmed in MCD4T cells from FVB/NJ or aged C57BL/6 or IFNg-deficient mice. While MCD4T cells from these strains showed greater Th2 commitment than those from young C57BL/6 mice, pattern of co-expression of TF was similar. Effector T cells generated in vivo following immunization also showed TF co-expression in Th1 or Th2 cytokine producing cells. We speculated that the difference in TF expression pattern of MCD4T cells generated in vivo and those generated in cytokine polarized cultures in vitro could be due to relative absence of polarizing conditions during activation in vivo. We tested this by NCD4T cell activation in non-polarizing conditions in vitro. Anti-CD3 and anti-CD28-mediated priming of polyclonal NCD4T cells in vitro without polarizing milieu generated cells that expressed either IFNg or IL-4/5/13 but not both, yet both IFNg- and IL-4/5/13-expressing cells showed upregulation of both TFs. We also tested monoclonal T cell populations activated in non-polarizing conditions. TCR-transgenic NCD4T cells primed in vitro by cognate peptide in non-polarizing conditions which expressed either IFNg or IL-4/5/13 also showed a high proportion of cells co-expressing TFs, and their cytokine commitment varied depending on genetic background or priming conditions, without altering pattern of TF co-expression. Thus, the model of mutually antagonistic differentiation programs driven by mutually exclusively expressed T-bet or GATA-3 does not completely explain natural CD4 T cell priming outcomes.
Collapse
Affiliation(s)
| | | | - Danish Umar
- National Institute of Immunology, New Delhi, India
| | | | - Anna George
- National Institute of Immunology, New Delhi, India
| | | | - Vineeta Bal
- National Institute of Immunology, New Delhi, India
- * E-mail:
| |
Collapse
|
30
|
Galvão JGFM, Cavalcante-Silva LHA, Carvalho DCM, Ferreira LKDP, Monteiro TM, Alves AF, Ferreira LAMP, Gadelha FAAF, Piuvezam MR, Rodrigues-Mascarenhas S. Ouabain attenuates ovalbumin-induced airway inflammation. Inflamm Res 2017; 66:1117-1130. [PMID: 28905075 DOI: 10.1007/s00011-017-1092-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Ouabain, an Na+/K+-ATPase inhibitor hormone, presents immunomodulatory actions, including anti-inflammatory effect on acute inflammation models. METHODS In the present study, the effect of ouabain in a model of allergic airway inflammation induced by ovalbumin (OVA) was assessed. RESULTS Initially, it was observed that ouabain treatment inhibited cellular migration induced by OVA on bronchoalveolar lavage fluid (BALF), mostly granulocytes, without modulating macrophage migration. In addition, it was observed, by flow cytometry, that ouabain reduces CD3high lymphocytes cells on BALF. Furthermore, treatment with ouabain decreased IL-4 and IL-13 levels on BALF. Ouabain also promoted pulmonary histological alterations, including decreased cell migration into peribronchiolar and perivascular areas, and reduced mucus production in bronchioles regions observed through hematoxylin-eosin (HE) and by periodic acid-Schiff stain, respectively. Allergic airway inflammation is characterized by high OVA-specific IgE serum titer. This parameter was also reduced by the treatment with ouabain. CONCLUSIONS Therefore, our data demonstrate that ouabain negatively modulates allergic airway inflammation induced by OVA.
Collapse
Affiliation(s)
- José Guilherme F M Galvão
- Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | | | - Deyse Cristina M Carvalho
- Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | - Laércia Karla D P Ferreira
- Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | - Talissa Mozzini Monteiro
- Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | - Adriano Francisco Alves
- Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | - Larissa Adilis M P Ferreira
- Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | - Francisco Allysson A F Gadelha
- Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | - Marcia Regina Piuvezam
- Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil.
| |
Collapse
|
31
|
Hossain MJ, Tanasescu R, Gran B. Innate immune regulation of autoimmunity in multiple sclerosis: Focus on the role of Toll-like receptor 2. J Neuroimmunol 2016; 304:11-20. [PMID: 28007303 DOI: 10.1016/j.jneuroim.2016.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/11/2016] [Indexed: 02/06/2023]
Abstract
Innate immunity relies on a set of germline-encoded receptors including Toll-like receptors (TLRs) that enable the host to discriminate between self and non-self. Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease of the central nervous system (CNS). Infections are thought to play an important role in disease susceptibility. The role of innate immunity in MS has been recently appreciated. TLR2, a member of the TLR family, forms heterodimers with either TLR1 or TLR6 and detects a wide range of microbial as well as self-derived molecular structures. It may thus be important both in fighting infection and in activating autoimmunity. In this review, we discuss innate regulation of autoimmunity in MS with a focus on the role of TLR2 signaling.
Collapse
Affiliation(s)
- Md Jakir Hossain
- Division of Clinical Neuroscience, University of Nottingham, School of Medicine, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Radu Tanasescu
- Division of Clinical Neuroscience, University of Nottingham, School of Medicine, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom; Department of Neurology, Neurosurgery and Psychiatry, University of Medicine and Pharmacy Carol Davila, Colentina Hospital, Bucharest, Romania
| | - Bruno Gran
- Division of Clinical Neuroscience, University of Nottingham, School of Medicine, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom; Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
32
|
Liang DY, Hou YQ, Luo LJ, Ao L. Altered expression of miR-92a correlates with Th17 cell frequency in patients with primary biliary cirrhosis. Int J Mol Med 2016; 38:131-8. [PMID: 27246196 PMCID: PMC4899017 DOI: 10.3892/ijmm.2016.2610] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 05/16/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are small, non-coding RNA molecules that play significant roles in numerous diseases. However, there is limited information regarding the plasma expression of miRNAs in patients with primary biliary cirrhosis (PBC) as well as the potential role of miRNAs in the development of PBC. miRNA microarray analysis was performed using plasma obtaind from three patients with PBC and three healthy controls. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to confirm the differential expression of miRNAs in the plasma and peripheral blood mononuclear cells (PBMCs) isolated from 20 patients with PBC, 20 patients with chronic hepatitis B (CHB) and 20 healthy controls. These miRNAs in PBMCs and plasma were validated by linear regression analyses. The T cell subset frequency was analyzed by flow cytometry. Correlations between altered miRNA expression and the frequency of the T cell subsets were determined by linear regression analyses. The co-expression of miRNAs and IL-17A was examined using fluorescence in situ hybridization (FISH) and immunohistochemistry. The microarray analysis identified sixteen miRNAs that were differentially expressed. Four miRNAs were validated by RT-qPCR. The expression pattern of miR-572 and miR-92a in the PBMCs correlated with the expression pattern in plasma. We also found that miR-92a expression closely correlated with the frequency of a subset of IL-17-producing T helper cells (Th17), and that miR-92a was co-expressed with IL-17A in patients with PBC. Taken together, these findings revealed that plasma from patients with PBC has a unique miRNA expression profile. Moreover, miR-92a may play an important role in the pathogenesis of PBC by regulating Th17 cell differentiation.
Collapse
Affiliation(s)
- Dong-Yu Liang
- Department of Central Laboratory, Shanghai Jiading Central Hospital, Shanghai 201800, P.R. China
| | - Yan-Qiang Hou
- Department of Central Laboratory, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, Shanghai 201600, P.R. China
| | - Li-Jun Luo
- Department of Central Laboratory, Shanghai Jiading Central Hospital, Shanghai 201800, P.R. China
| | - Li Ao
- Department of Central Laboratory, Shanghai Jiading Central Hospital, Shanghai 201800, P.R. China
| |
Collapse
|
33
|
Wang S, Li H, Zhang M, Yue LT, Wang CC, Zhang P, Liu Y, Duan RS. Curcumin ameliorates experimental autoimmune myasthenia gravis by diverse immune cells. Neurosci Lett 2016; 626:25-34. [PMID: 27181511 DOI: 10.1016/j.neulet.2016.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 01/31/2023]
Abstract
Curcumin is a traditional Asian medicine with diverse immunomodulatory properties used therapeutically in the treatment of many autoimmune diseases. However, the effects of curcumin on myasthenia gravis (MG) remain undefined. Here we investigated the effects and potential mechanisms of curcumin in experimental autoimmune myasthenia gravis (EAMG). Our results demonstrated that curcumin ameliorated the clinical scores of EAMG, suppressed the expression of T cell co-stimulatory molecules (CD80 and CD86) and MHC class II, down-regulated the levels of pro-inflammatory cytokines (IL-17, IFN-γ and TNF-α) and up-regulated the levels of the anti-inflammatory cytokine IL-10, shifted the balance from Th1/Th17 toward Th2/Treg, and increased the numbers of NKR-P1(+) cells (natural killer cell receptor protein 1 positive cells, including NK and NKT cells). Moreover, the administration of curcumin promoted the differentiation of B cells into a subset of B10 cells, increased the anti-R97-166 peptide IgG1 levels and decreased the relative affinity indexes of anti-R97-116 peptide IgG. In summary, curcumin effectively ameliorate EAMG, indicating that curcumin may be a potential candidate therapeutic agent for MG.
Collapse
Affiliation(s)
- Shan Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Heng Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Min Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Long-Tao Yue
- Central Laboratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Cong-Cong Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Peng Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Ying Liu
- Electromyography Department, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China.
| |
Collapse
|
34
|
Karin N, Wildbaum G, Thelen M. Biased signaling pathways via CXCR3 control the development and function of CD4+ T cell subsets. J Leukoc Biol 2015; 99:857-62. [PMID: 26657511 DOI: 10.1189/jlb.2mr0915-441r] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/03/2015] [Indexed: 12/17/2022] Open
Abstract
Structurally related chemotactic cytokines (chemokines) regulate cell trafficking through interactions with 7-transmembrane domain, G protein-coupled receptors. Biased signaling or functional selectivity is a concept that describes a situation where a 7-transmembrane domain receptor preferentially activates one of several available cellular signaling pathways. It can be divided into 3 distinct cases: ligand bias, receptor bias, and tissue or cell bias. Many studies, including those coming from our lab, have shown that only a limited number of chemokines are key drivers of inflammation. We have referred to them as "driver chemokines." They include the CXCR3 ligands CXCL9 and CXCL10, the CCR2 ligand CCL2, all 3 CCR5 ligands, and the CCR9 ligand CCL25. As for CXCR3, despite the proinflammatory nature of CXCL10 and CXCL9, transgenic mice lacking CXCR3 display an aggravated manifestation of different autoimmune disease, including Type I diabetes and experimental autoimmune encephalomyelitis. Recently, we showed that whereas CXCL9 and CXCL10 induce effector Th1/Th17 cells to promote inflammation, CXCL11, with a relatively higher binding affinity to CXCR3, drives the development of the forkhead box P3-negative IL-10(high) T regulatory 1 cell subset and hence, dampens inflammation. We also showed that CXCL9/CXCL10 activates a different signaling cascade than CXCL11, despite binding to the same receptor, CXCR3, which results in these diverse biologic activities. This provides new evidence for the role of biased signaling in regulating biologic activities, in which CXCL11 induces ligand bias at CXCR3 and receptor-biased signaling via atypical chemokine receptor 3.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Rappaport Family Institute for Research in the Medical Sciences and Bruce Rappaport Faculty of Medicine, Haifa, Israel; and
| | - Gizi Wildbaum
- Department of Immunology, Rappaport Family Institute for Research in the Medical Sciences and Bruce Rappaport Faculty of Medicine, Haifa, Israel; and
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
35
|
Natural Products: Insights into Leishmaniasis Inflammatory Response. Mediators Inflamm 2015; 2015:835910. [PMID: 26538837 PMCID: PMC4619978 DOI: 10.1155/2015/835910] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/22/2015] [Indexed: 12/12/2022] Open
Abstract
Leishmaniasis is a vector-borne disease that affects several populations worldwide, against which there are no vaccines available and the chemotherapy is highly toxic. Depending on the species causing the infection, the disease is characterized by commitment of tissues, including the skin, mucous membranes, and internal organs. Despite the relevance of host inflammatory mediators on parasite burden control, Leishmania and host immune cells interaction may generate an exacerbated proinflammatory response that plays an important role in the development of leishmaniasis clinical manifestations. Plant-derived natural products have been recognized as bioactive agents with several properties, including anti-protozoal and anti-inflammatory activities. The present review focuses on the antileishmanial activity of plant-derived natural products that are able to modulate the inflammatory response in vitro and in vivo. The capability of crude extracts and some isolated substances in promoting an anti-inflammatory response during Leishmania infection may be used as part of an effective strategy to fight the disease.
Collapse
|
36
|
Jeon YT, Na H, Ryu H, Chung Y. Modulation of Dendritic Cell Activation and Subsequent Th1 Cell Polarization by Lidocaine. PLoS One 2015; 10:e0139845. [PMID: 26445366 PMCID: PMC4596553 DOI: 10.1371/journal.pone.0139845] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/17/2015] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells play an essential role in bridging innate and adaptive immunity by recognizing cellular stress including pathogen- and damage-associated molecular patterns and by shaping the types of antigen-specific T cell immunity. Although lidocaine is widely used in clinical settings that trigger cellular stress, it remains unclear whether such treatment impacts the activation of innate immune cells and subsequent differentiation of T cells. Here we showed that lidocaine inhibited the production of IL–6, TNFα and IL–12 from dendritic cells in response to toll-like receptor ligands including lipopolysaccharide, poly(I:C) and R837 in a dose-dependent manner. Notably, the differentiation of Th1 cells was significantly suppressed by the addition of lidocaine while the same treatment had little effect on the differentiation of Th17, Th2 and regulatory T cells in vitro. Moreover, lidocaine suppressed the ovalbumin-specific Th1 cell responses in vivo induced by the adoptive transfer of ovalbumin-pulsed dendritic cells. These results demonstrate that lidocaine inhibits the activation of dendritic cells in response to toll-like receptor signals and subsequently suppresses the differentiation of Th1 cell responses.
Collapse
Affiliation(s)
- Young-Tae Jeon
- Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyeongjin Na
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Heeju Ryu
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
37
|
The role of chemokines in adjusting the balance between CD4+ effector T cell subsets and FOXp3-negative regulatory T cells. Int Immunopharmacol 2015; 28:829-35. [DOI: 10.1016/j.intimp.2015.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/28/2015] [Indexed: 12/24/2022]
|
38
|
Recent insights into cutaneous immunization: How to vaccinate via the skin. Vaccine 2015; 33:4663-74. [PMID: 26006087 DOI: 10.1016/j.vaccine.2015.05.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 04/21/2015] [Accepted: 05/01/2015] [Indexed: 12/24/2022]
Abstract
Technologies and strategies for cutaneous vaccination have been evolving significantly during the past decades. Today, there is evidence for increased efficacy of cutaneously delivered vaccines allowing for dose reduction and providing a minimally invasive alternative to traditional vaccination. Considerable progress has been made within the field of well-established cutaneous vaccination strategies: Jet and powder injection technologies, microneedles, microporation technologies, electroporation, sonoporation, and also transdermal and transfollicular vaccine delivery. Due to recent advances, the use of cutaneous vaccination can be expanded from prophylactic vaccination for infectious diseases into therapeutic vaccination for both infectious and non-infectious chronic conditions. This review will provide an insight into immunological processes occurring in the skin and introduce the key innovations of cutaneous vaccination technologies.
Collapse
|
39
|
Yoon SY, Kang HB, Ko YE, Shin SH, Kim YJ, Sohn KY, Han YH, Chong S, Kim JW. 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (EC-18) Modulates Th2 Immunity through Attenuation of IL-4 Expression. Immune Netw 2015; 15:100-9. [PMID: 25922599 PMCID: PMC4411508 DOI: 10.4110/in.2015.15.2.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 01/09/2023] Open
Abstract
Controlling balance between T-helper type 1 (Th1) and T-helper type 2 (Th2) plays a pivotal role in maintaining the biological rhythm of Th1/Th2 and circumventing diseases caused by Th1/Th2 imbalance. Interleukin 4 (IL-4) is a Th2-type cytokine and often associated with hypersensitivity-related diseases such as atopic dermatitis and allergies when overexpressed. In this study, we have tried to elucidate the function of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (EC-18) as an essential modulator of Th1/Th2 balance. EC-18 has showed an inhibitory effect on the production of IL-4 in a dose-dependent manner. RT-PCR analysis has proved EC-18 affect the transcription of IL-4. By analyzing the phosphorylation status of Signal transducer and activator of transcription 6 (STAT6), which is a transcriptional activator of IL-4 expression, we discovered that EC-18 induced the decrease of STAT6 activity in several stimulated cell lines, which was also showed in STAT6 reporter analysis. Co-treatment of EC-18 significantly weakened atopy-like phenotypes in mice treated with an allergen. Collectively, our results suggest that EC-18 is a potent Th2 modulating factor by regulating the transcription of IL-4 via STAT6 modulation, and could be developed for immune-modulatory therapeutics.
Collapse
Affiliation(s)
| | - Ho Bum Kang
- Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Young-Eun Ko
- Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Su-Hyun Shin
- Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea. ; Soonchunhyang Medical Science Research Institute, College of Medicine Soonchunhyang University, Cheonan 330-721, Korea
| | - Young-Jun Kim
- Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | | | | | - Saeho Chong
- ENZYCHEM Lifesciences, Daejeon 305-732, Korea
| | - Jae Wha Kim
- Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| |
Collapse
|
40
|
Osborne S, Farrell J, Dearman RJ, MacIver K, Naisbitt DJ, Moots RJ, Edwards SW, Goebel A. Cutaneous immunopathology of long-standing complex regional pain syndrome. Eur J Pain 2015; 19:1516-26. [PMID: 25728589 DOI: 10.1002/ejp.685] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Both increased mast cells numbers and raised immune mediator concentrations indicate immune activation in the affected skin of patients with early complex regional pain syndrome (CRPS), but little is known about regional immune cell involvement in late-stage CRPS. The aim of the current study was to determine skin immune cell populations in long-standing CRPS. METHODS Using 6-mm skin punch biopsies from CRPS-affected and non-affected tissues, and a combination of chemical and immunofluorescence staining, we examined the density and function of key cell populations including mast cells, epidermal Langerhans cells (LCs) and tissue resident T-cells. RESULTS We found no significant differences in either overall immune cell infiltrates, or mast cell density between CRPS-affected and non-affected sub-epidermal tissue sections, contrasting recent findings in early CRPS by other groups. However, CD1a(+) LC densities in the epidermal layer were significantly decreased in affected compared to non-affected CRPS limbs (p < 0.01). T-cell clones isolated from CRPS-affected sub-epidermal tissues displayed a trend towards increased IL-13 production in ELISPOT assays when compared to T-cells isolated from non-affected areas, suggesting a Th2 bias. CONCLUSIONS Immune cell abnormalities are maintained in late-stage CRPS disease as manifest by changes in epidermal LC density and tissue resident T-cell phenotype.
Collapse
Affiliation(s)
- S Osborne
- Institute of Integrative Biology, University of Liverpool, UK
| | - J Farrell
- MRC Centre for Drug Safety Science and Institute of Translational Medicine, Department of Molecular and Clinical Pharmacology, University of Liverpool, UK
| | - R J Dearman
- Faculty of Life Sciences, University of Manchester, UK
| | - K MacIver
- Pain Research Institute, Department of Translational Medicine, Liverpool University, UK
| | - D J Naisbitt
- MRC Centre for Drug Safety Science and Institute of Translational Medicine, Department of Molecular and Clinical Pharmacology, University of Liverpool, UK
| | - R J Moots
- Rheumatology Research Group, Institute of Ageing and Chronic Disease, University of Liverpool, UK
| | - S W Edwards
- Institute of Integrative Biology, University of Liverpool, UK
| | - A Goebel
- Pain Research Institute, Department of Translational Medicine, Liverpool University, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
41
|
Bakema JE, Tuk CW, van Vliet SJ, Bruijns SC, Vos JB, Letsiou S, Dijkstra CD, van Kooyk Y, Brenkman AB, van Egmond M. Antibody-opsonized bacteria evoke an inflammatory dendritic cell phenotype and polyfunctional Th cells by cross-talk between TLRs and FcRs. THE JOURNAL OF IMMUNOLOGY 2015; 194:1856-66. [PMID: 25582855 DOI: 10.4049/jimmunol.1303126] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During secondary immune responses, Ab-opsonized bacteria are efficiently taken up via FcRs by dendritic cells. We now demonstrate that this process induces cross-talk between FcRs and TLRs, which results in synergistic release of several inflammatory cytokines, as well as altered lipid metabolite profiles. This altered inflammatory profile redirects Th1 polarization toward Th17 cell responses. Interestingly, GM-CSF-producing Th cells were synergistically evoked as well, which suggests the onset of polyfunctional Th17 cells. Synergistic cytokine release was dependent on activation via MyD88 and ITAM signaling pathways through TLRs and FcRs, respectively. Cytokine regulation occurred via transcription-dependent mechanisms for TNF-α and IL-23 and posttranscriptional mechanisms for caspase-1-dependent release of IL-1β. Furthermore, cross-talk between TLRs and FcRs was not restricted to dendritic cells. In conclusion, our results support that bacteria alone initiate fundamentally different immune responses compared with Ab-opsonized bacteria through the combined action of two classes of receptors and, ultimately, may refine new therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Jantine E Bakema
- Department of Otolaryngology - Head and Neck Surgery, VU University Medical Center, 1007 MB Amsterdam, the Netherlands; Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands;
| | - Cornelis W Tuk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| | - Sven C Bruijns
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| | - Joost B Vos
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands; Immunaffect BV, 1404 AK Bussum, the Netherlands
| | - Sophia Letsiou
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht 3584 EA, the Netherlands; and
| | - Christien D Dijkstra
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| | - Arjan B Brenkman
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht 3584 EA, the Netherlands; and
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands; Department of Surgery, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| |
Collapse
|
42
|
A vaccine formulation combining rhoptry proteins NcROP40 and NcROP2 improves pup survival in a pregnant mouse model of neosporosis. Vet Parasitol 2015; 207:203-15. [DOI: 10.1016/j.vetpar.2014.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 11/23/2022]
|
43
|
Peptide-Based Vaccination and Induction of CD8+ T-Cell Responses Against Tumor Antigens in Breast Cancer. BioDrugs 2014; 29:15-30. [DOI: 10.1007/s40259-014-0114-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
León B, Ballesteros-Tato A, Lund FE. Dendritic cells and B cells: unexpected partners in Th2 development. THE JOURNAL OF IMMUNOLOGY 2014; 193:1531-7. [PMID: 25086176 DOI: 10.4049/jimmunol.1400149] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although we have known for decades that B cells contribute to immune responses by secreting Ab, it is now clear that they are more than simply factories for Ig production, and they also play key roles as modulators of T cell-dependent immunity. Indeed, the evidence showing that Ag-presenting and cytokine-producing B cells can alter the magnitude and quality of CD4 T cell responses continues to grow. In this article, we review the data showing that B cells, working in partnership with dendritic cells, regulate the development of Th2 cells and the subsequent allergic response.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - André Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| |
Collapse
|
45
|
Faner R, Cruz T, Agusti A. Immune response in chronic obstructive pulmonary disease. Expert Rev Clin Immunol 2014; 9:821-33. [PMID: 24070046 DOI: 10.1586/1744666x.2013.828875] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major public health problem because of its high prevalence, rising incidence and associated socio-economic cost. The inhalation of toxic particles and gases, mostly tobacco smoke, is the main risk factor for COPD. Yet, not all smokers are equally susceptible to these toxic effects and only a percentage of them develop the disease (so-called 'susceptible smokers'). This, in combination with the observation that COPD shows familial aggregation, suggests that the genetic background of the smoker is a key element in the pathogenesis of the disease. On the other hand, it is well established that 'susceptible' smokers exhibit an enhanced inflammatory response of the lung parenchyma as compared with 'resistant' smokers (i.e., those who manage to maintain lung function within the normal age range despite their habit). Importantly, in COPD patients this inflammatory response does not resolve after quitting smoking, again at variance with resistant smokers. All in all, these observations suggest that the pathogenesis of COPD may involve, in some patients, an autoimmune component which contributes to the enhanced and persistent inflammatory response that characterizes the disease. Here we: i) review briefly the pathobiology of COPD; ii) present the available scientific evidence supporting a potential role for autoimmunity in COPD; iii) propose a three-step pathogenic hypothesis in the transition from smoking to COPD; and iv) discuss potential implications for the diagnosis and treatment of this frequent, growing, devastating and costly disease.
Collapse
Affiliation(s)
- Rosa Faner
- FISIB, CIBER Enfermedades Respiratorias (CIBERES), Mallorca, Spain
| | | | | |
Collapse
|
46
|
Abstract
The development of specialized helper T cells has garnered much attention because of their critical role in coordinating the immune response to invading pathogens. Recent research emphasizing novel functions for specialized helper T cells in a variety of infectious disease settings, as well as autoimmune states, has reshaped our view on the capabilities of helper T cells. Notably, one previously underappreciated aspect of the lifespan of helper T cells is that they often retain the capacity to respond to changes in the environment by altering the composition of helper T cell lineage-specifying transcription factors they express, which, in turn, changes their phenotype. This emerging realization is changing our views on the stability versus flexibility of specialized helper T cell subtypes. Now, there is a new concerted effort to define the mechanistic events that contribute to the potential for flexibility in specialized helper T cell gene expression programs in the different environmental circumstances that allow for the re-expression of helper T cell lineage-specifying transcription factors. In addition, we are also now beginning to appreciate that "helper T cell" lineage-specifying transcription factors are expressed in diverse types of innate and adaptive immune cells and this may allow them to play roles in coordinating aspects of the immune response. Our current challenges include defining the conserved mechanisms that are utilized by these lineage-specifying transcription factors to coordinate gene expression programs in different settings as well as the mechanistic events that contribute to the differential downstream consequences that these factors mediate in unique cellular environments. In this review, we will explore our evolving views on these topics, often times using the Th1-lineage-specifying transcription factor T-bet as an example.
Collapse
|
47
|
Turroni F, Ventura M, Buttó LF, Duranti S, O’Toole PW, Motherway MO, van Sinderen D. Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell Mol Life Sci 2014; 71:183-203. [PMID: 23516017 PMCID: PMC11113728 DOI: 10.1007/s00018-013-1318-0] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/13/2013] [Accepted: 03/04/2013] [Indexed: 02/06/2023]
Abstract
The human gut represents a highly complex ecosystem, which is densely colonized by a myriad of microorganisms that influence the physiology, immune function and health status of the host. Among the many members of the human gut microbiota, there are microorganisms that have co-evolved with their host and that are believed to exert health-promoting or probiotic effects. Probiotic bacteria isolated from the gut and other environments are commercially exploited, and although there is a growing list of health benefits provided by the consumption of such probiotics, their precise mechanisms of action have essentially remained elusive. Genomics approaches have provided exciting new opportunities for the identification of probiotic effector molecules that elicit specific responses to influence the physiology and immune function of their human host. In this review, we describe the current understanding of the intriguing relationships that exist between the human gut and key members of the gut microbiota such as bifidobacteria and lactobacilli, discussed here as prototypical groups of probiotic microorganisms.
Collapse
Affiliation(s)
- Francesca Turroni
- Alimentary Pharmabiotic Centre, Department of Microbiology Biosciences Institute, University College Cork, National University of Ireland, Western Road, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parma, Italy
| | - Ludovica F. Buttó
- Alimentary Pharmabiotic Centre, Department of Microbiology Biosciences Institute, University College Cork, National University of Ireland, Western Road, Cork, Ireland
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parma, Italy
| | - Paul W. O’Toole
- Alimentary Pharmabiotic Centre, Department of Microbiology Biosciences Institute, University College Cork, National University of Ireland, Western Road, Cork, Ireland
| | - Mary O’Connell Motherway
- Alimentary Pharmabiotic Centre, Department of Microbiology Biosciences Institute, University College Cork, National University of Ireland, Western Road, Cork, Ireland
| | - Douwe van Sinderen
- Alimentary Pharmabiotic Centre, Department of Microbiology Biosciences Institute, University College Cork, National University of Ireland, Western Road, Cork, Ireland
| |
Collapse
|
48
|
Mason LMK, Veerman CC, Geijtenbeek TBH, Hovius JWR. Ménage à trois: Borrelia, dendritic cells, and tick saliva interactions. Trends Parasitol 2013; 30:95-103. [PMID: 24388562 DOI: 10.1016/j.pt.2013.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 02/02/2023]
Abstract
Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis, is inoculated into the skin during an Ixodes tick bite where it is recognised and captured by dendritic cells (DCs). However, considering the propensity of Borrelia to disseminate, it would appear that DCs fall short in mounting a robust immune response against it. Many aspects of the DC-driven immune response to Borrelia have been examined. Recently, components of tick saliva have been identified that sabotage DC responses and aid Borrelia infection. In this review, we summarise what is currently known about the immune response of DCs to Borrelia and explore the mechanisms by which Borrelia manages to circumvent this immune response, with or without the help of tick salivary proteins.
Collapse
Affiliation(s)
- Lauren M K Mason
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | - Christiaan C Veerman
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Joppe W R Hovius
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Li H, Li XL, Zhang M, Xu H, Wang CC, Wang S, Duan RS. Berberine Ameliorates Experimental Autoimmune Neuritis by Suppressing both Cellular and Humoral Immunity. Scand J Immunol 2013; 79:12-9. [PMID: 24354407 DOI: 10.1111/sji.12123] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/02/2013] [Indexed: 12/13/2022]
Affiliation(s)
- H. Li
- Department of Neurology; Shandong Provincial Qianfoshan Hospital; Shandong University; Jinan China
| | - X.-L. Li
- Department of Neurology; Shandong Provincial Qianfoshan Hospital; Shandong University; Jinan China
| | - M. Zhang
- Department of Neurology; Shandong Provincial Qianfoshan Hospital; Shandong University; Jinan China
| | - H. Xu
- Department of Neurology; Shandong Provincial Qianfoshan Hospital; Shandong University; Jinan China
- Taian City Central Hospital; Taian China
| | - C.-C. Wang
- Department of Neurology; Shandong Provincial Qianfoshan Hospital; Shandong University; Jinan China
| | - S. Wang
- Department of Neurology; Shandong Provincial Qianfoshan Hospital; Shandong University; Jinan China
| | - R.-S. Duan
- Department of Neurology; Shandong Provincial Qianfoshan Hospital; Shandong University; Jinan China
| |
Collapse
|
50
|
Abstract
Molecular mechanisms guiding naïve T helper cell differentiation into functionally specified effector cells are intensively studied. The rapidly growing knowledge is mainly achieved by using mouse cells or disease models. Comparatively exiguous data is gathered from human primary cells although they provide the "ultimate model" for immunology in man, have been exploited in many original studies paving the way for the field, and can be analyzed more easily than ever with the help of modern technology and methods. As usage of mouse models is unavoidable in translational research, parallel human and mouse studies should be performed to assure the relevancy of the hypothesis created during the basic research. In this review, we give an overview on the status of the studies conducted with human primary cells aiming at elucidating the mechanisms instructing the priming of T helper cell subtypes. The special emphasis is given to the recent high-throughput studies. In addition, by comparing the human and mouse studies we intend to point out the regulatory mechanisms and questions which are lacking examination with human primary cells.
Collapse
Affiliation(s)
- Soile Tuomela
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | | |
Collapse
|