1
|
Xu E, Huang Z, Zhu K, Hu J, Ma X, Wang Y, Zhu J, Zhang C. PDGFRB promotes dedifferentiation and pulmonary metastasis through rearrangement of cytoskeleton under hypoxic microenvironment in osteosarcoma. Cell Signal 2024; 125:111501. [PMID: 39505287 DOI: 10.1016/j.cellsig.2024.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Osteosarcoma (OS) cells commonly suffer from hypoxia and dedifferentiation, resulting in poor prognosis. We plan to identify the role of hypoxia on dedifferentiation and the associated cellular signaling. METHODS We performed sphere formation assays and determined spheroid cells as dedifferentiated cells by detecting stem cell-like markers. RNAi assay was used to explore the relationship between hypoxia inducible factor 1 subunit alpha (HIF1A) and platelet derived growth factor receptor beta (PDGFRB). We obtained PDGFRB knockdown and overexpression cells through lentiviral infection experiments and detected the expression of PDGFRB, p-PDGFRB, focal adhesion kinase (FAK), p-FAK, phosphorylated myosin light chain 2 (p-MLC2), and ras homolog family member A (RhoA) in each group. The effects of PDGFRB on cytoskeleton rearrangement and cell adhesion were explored by immunocytochemistry. Wound-healing experiments, transwell assays, and animal trials were employed to investigate the effect of PDGFRB on OS cell metastasis both in vitro and in vivo. RESULTS Dedifferentiated OS cells were found to exhibit high expression of HIF1A and PDGFRB, and HIF1A upregulated PDGFRB, subsequently activated RhoA, and increased the phosphorylation of MLC2. PDGFRB also enhanced the phosphorylation of FAK. The OS cell morphology and vinculin distribution were altered by PDGFRB. PDGFRB promoted cell dedifferentiation and had a significant impact on the migration and invasion abilities of OS cells in vitro. In addition, PDGFRB increased pulmonary metastasis of OS cells in vivo. CONCLUSION Our results demonstrated that HIF1A up-regulated PDGFRB under hypoxic conditions, and PDGFRB regulated the actin cytoskeleton, a process likely linked to the activation of RhoA and the phosphorylation of, thereby promoting OS dedifferentiation and pulmonary metastasis.
Collapse
Affiliation(s)
- Enjie Xu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Zhen Huang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Kunpeng Zhu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Jianping Hu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Xiaolong Ma
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Yongjie Wang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Jiazhuang Zhu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Chunlin Zhang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China.
| |
Collapse
|
2
|
Hasegawa J. New insights into the regulation and roles of phosphatidylinositol 3,4-bisphosphate. J Biochem 2024; 176:339-345. [PMID: 39271134 DOI: 10.1093/jb/mvae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024] Open
Abstract
Phosphoinositides (PIPs) are phospholipids and components of the cellular membrane. In mammals, seven phosphorylated derivatives of PIPs have been identified. Among them, phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] is produced by lipid phosphatases (e.g., SHIP2) or by lipid kinases PI3KC2α and PI3KC2β. Although PI(3,4)P2 is undetectable in normal mouse or human tissues and common cell lines, it appears in a mouse prostate cancer model and in cells exposed to oxidative stress, indicating that PI(3,4)P2 is involved in the pathogenesis of some diseases. Here, I summarize recent findings on the cellular roles and pathophysiological significance of PI(3,4)P2.
Collapse
Affiliation(s)
- Junya Hasegawa
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
3
|
Yan G, Zhou J, Yin J, Gao D, Zhong X, Deng X, Kang H, Sun A. Membrane Ruffles: Composition, Function, Formation and Visualization. Int J Mol Sci 2024; 25:10971. [PMID: 39456754 PMCID: PMC11507850 DOI: 10.3390/ijms252010971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Membrane ruffles are cell actin-based membrane protrusions that have distinct structural characteristics. Linear ruffles with columnar spike-like and veil-like structures assemble at the leading edge of cell membranes. Circular dorsal ruffles (CDRs) have no supporting columnar structures but their veil-like structures, connecting from end to end, present an enclosed ring-shaped circular outline. Membrane ruffles are involved in multiple cell functions such as cell motility, macropinocytosis, receptor internalization, fluid viscosity sensing in a two-dimensional culture environment, and protecting cells from death in response to physiologically compressive loads. Herein, we review the state-of-the-art knowledge on membrane ruffle structure and function, the growth factor-induced membrane ruffling process, and the growth factor-independent ruffling mode triggered by calcium and other stimulating factors, together with the respective underlying mechanisms. We also summarize the inhibitors used in ruffle formation studies and their specificity. In the last part, an overview is given of the various techniques in which the membrane ruffles have been visualized up to now.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongyan Kang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (G.Y.); (J.Z.); (J.Y.); (D.G.); (X.Z.); (X.D.)
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (G.Y.); (J.Z.); (J.Y.); (D.G.); (X.Z.); (X.D.)
| |
Collapse
|
4
|
Morishita H, Kawai K, Egami Y, Honda K, Araki N. Live-cell imaging and CLEM reveal the existence of ACTN4-dependent ruffle-edge lamellipodia acting as a novel mode of cell migration. Exp Cell Res 2024; 442:114232. [PMID: 39222868 DOI: 10.1016/j.yexcr.2024.114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
α-Actinin-4 (ACTN4) expression levels are correlated with the invasive and metastatic potential of cancer cells; however, the underlying mechanism remains unclear. Here, we identified ACTN4-localized ruffle-edge lamellipodia using live-cell imaging and correlative light and electron microscopy (CLEM). BSC-1 cells expressing EGFP-ACTN4 showed that ACTN4 was most abundant in the leading edges of lamellipodia, although it was also present in stress fibers and focal adhesions. ACTN4 localization in lamellipodia was markedly diminished by phosphoinositide 3-kinase inhibition, whereas its localization in stress fibers and focal adhesions remained. Furthermore, overexpression of ACTN4, but not ACTN1, promoted lamellipodial formation. Live-cell analysis demonstrated that ACTN4-enriched lamellipodia are highly dynamic and associated with cell migration. CLEM revealed that ACTN4-enriched lamellipodia exhibit a characteristic morphology of multilayered ruffle-edges that differs from canonical flat lamellipodia. Similar ruffle-edge lamellipodia were observed in A549 and MDA-MB-231 invasive cancer cells. ACTN4 knockdown suppressed the formation of ruffle-edge lamellipodia and cell migration during wound healing in A549 monolayer cultures. Additionally, membrane-type 1 matrix metalloproteinase was observed in the membrane ruffles, suggesting that ruffle-edge lamellipodia have the ability to degrade the extracellular matrix and may contribute to active cell migration/invasion in certain cancer cell types.
Collapse
Affiliation(s)
- Haruka Morishita
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Kagawa, 761-0793, Miki, Japan
| | - Katsuhisa Kawai
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Kagawa, 761-0793, Miki, Japan
| | - Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Kagawa, 761-0793, Miki, Japan
| | - Kazufumi Honda
- Department of Bioregulation, Graduate of Medicine, Nippon Medical School, Sendagi, Bunkyo-ku, 113-8602, Tokyo, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Kagawa, 761-0793, Miki, Japan.
| |
Collapse
|
5
|
Skokan TD, Hobmayer B, McKinley KL, Vale RD. Mechanical stretch regulates macropinocytosis in Hydra vulgaris. Mol Biol Cell 2024; 35:br9. [PMID: 38265917 PMCID: PMC10916863 DOI: 10.1091/mbc.e22-02-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
Cells rely on a diverse array of engulfment processes to sense, exploit, and adapt to their environments. Among these, macropinocytosis enables indiscriminate and rapid uptake of large volumes of fluid and membrane, rendering it a highly versatile engulfment strategy. Much of the molecular machinery required for macropinocytosis has been well established, yet how this process is regulated in the context of organs and organisms remains poorly understood. Here, we report the discovery of extensive macropinocytosis in the outer epithelium of the cnidarian Hydra vulgaris. Exploiting Hydra's relatively simple body plan, we developed approaches to visualize macropinocytosis over extended periods of time, revealing constitutive engulfment across the entire body axis. We show that the direct application of planar stretch leads to calcium influx and the inhibition of macropinocytosis. Finally, we establish a role for stretch-activated channels in inhibiting this process. Together, our approaches provide a platform for the mechanistic dissection of constitutive macropinocytosis in physiological contexts and highlight a potential role for macropinocytosis in responding to cell surface tension.
Collapse
Affiliation(s)
- Taylor D. Skokan
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
| | - Bert Hobmayer
- Department of Zoology and Centre for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Kara L. McKinley
- Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Ronald D. Vale
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147
| |
Collapse
|
6
|
Martínez‐López A, García‐Casas A, Infante G, González‐Fernández M, Salvador N, Lorente M, Mendiburu‐Eliçabe M, Gonzalez‐Moreno S, Villarejo‐Campos P, Velasco G, Malliri A, Castillo‐Lluva S. POTEE promotes breast cancer cell malignancy by inducing invadopodia formation through the activation of SUMOylated Rac1. Mol Oncol 2024; 18:620-640. [PMID: 38098337 PMCID: PMC10920093 DOI: 10.1002/1878-0261.13568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023] Open
Abstract
The small GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) has been implicated in cancer progression and in the poor prognosis of various types of tumors. Rac1 SUMOylation occurs during epithelial-mesenchymal transition (EMT), and it is required for tumor cell migration and invasion. Here we identify POTEE (POTE Ankyrin domain family member E) as a novel Rac1-SUMO1 effector involved in breast cancer malignancy that controls invadopodium formation through the activation of Rac1-SUMO1. POTEE activates Rac1 in the invadopodium by recruiting TRIO-GEF (triple functional domain protein), and it induces tumor cell proliferation and metastasis in vitro and in vivo. We found that the co-localization of POTEE with Rac1 is correlated with more aggressive breast cancer subtypes. Given its role in tumor dissemination, the leading cause of cancer-related deaths, POTEE could represent a potential therapeutic target for these types of cancer.
Collapse
Affiliation(s)
- Angélica Martínez‐López
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias QuímicasUniversidad Complutense de MadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Ana García‐Casas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias QuímicasUniversidad Complutense de MadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Guiomar Infante
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias QuímicasUniversidad Complutense de MadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Mónica González‐Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias QuímicasUniversidad Complutense de MadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Nélida Salvador
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias QuímicasUniversidad Complutense de MadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Mar Lorente
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias QuímicasUniversidad Complutense de MadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Marina Mendiburu‐Eliçabe
- Departamento de Estadística e Investigación Operativa, Facultad de Ciencias MatemáticasUniversidad Complutense de MadridSpain
| | | | | | - Guillermo Velasco
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias QuímicasUniversidad Complutense de MadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Angeliki Malliri
- Cancer Research UK Manchester InstituteThe University of ManchesterUK
| | - Sonia Castillo‐Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias QuímicasUniversidad Complutense de MadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| |
Collapse
|
7
|
Hou J, Liu J, Huang Z, Wang Y, Yao H, Hu Z, Shi C, Xu J, Wang Q. Structure and function of the membrane microdomains in osteoclasts. Bone Res 2023; 11:61. [PMID: 37989999 PMCID: PMC10663511 DOI: 10.1038/s41413-023-00294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 11/23/2023] Open
Abstract
The cell membrane structure is closely related to the occurrence and progression of many metabolic bone diseases observed in the clinic and is an important target to the development of therapeutic strategies for these diseases. Strong experimental evidence supports the existence of membrane microdomains in osteoclasts (OCs). However, the potential membrane microdomains and the crucial mechanisms underlying their roles in OCs have not been fully characterized. Membrane microdomain components, such as scaffolding proteins and the actin cytoskeleton, as well as the roles of individual membrane proteins, need to be elucidated. In this review, we discuss the compositions and critical functions of membrane microdomains that determine the biological behavior of OCs through the three main stages of the OC life cycle.
Collapse
Affiliation(s)
- Jialong Hou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhixian Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yining Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanbing Yao
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenxin Hu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China
| | - Chengge Shi
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
8
|
Jeong H, Kim D, Montagne K, Ushida T, Furukawa KS. Differentiation-inducing effect of osteoclast microgrooves for the purpose of three-dimensional design of regenerated bone. Acta Biomater 2023; 168:174-184. [PMID: 37392936 DOI: 10.1016/j.actbio.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
In vivo bone remodeling is promoted by the balance between osteoclast and osteoblast activity. Conventional research on bone regeneration has mainly focused on increasing osteoblast activity, with limited studies on the effects of scaffold topography on cell differentiation. Here, we examined the effect of microgroove-patterned substrate with spacings ranging from 1 to 10 μm on the differentiation of rat bone marrow-derived osteoclast precursors. Tartrate-resistant acid phosphatase (TRAP) staining and relative gene expression quantification showed that osteoclast differentiation was enhanced in substrate with 1 µm microgroove spacing compared with that in the other groups. Additionally, the ratio of podosome maturation stages in substrate with 1 μm microgroove spacing exhibited a distinct pattern, which was characterized by an increase in the ratio of belts and rings and a decrease in that of clusters. However, myosin II abolished the effects of topography on osteoclast differentiation. Overall, these showed that the reduction of myosin II tension in the podosome core by an integrin vertical vector increased podosome stability and promoted osteoclast differentiation in substrates with 1 μm microgroove spacing, including that microgroove design plays an important role in scaffolds for bone regeneration. STATEMENT OF SIGNIFICANCE: Reduction of myosin II tension in the podosome core, facilitated by an integrin vertical vector, resulted in an enhanced osteoclast differentiation, concomitant with an increase in podosome stability within 1-μm-spaced microgrooves. These findings are anticipated to serve as valuable indicators for the regulation of osteoclast differentiation through the manipulation of biomaterial surface topography in tissue engineering. Furthermore, this study contributes to the lucidation of the underlying mechanisms governing cellular differentiation by providing insights into the impact of the microtopographical environment.
Collapse
Affiliation(s)
- Heonuk Jeong
- Department of Bioengineering, School of Engineering, University of Tokyo, Tokyo, Japan
| | - Dain Kim
- Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan
| | - Kevin Montagne
- Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan
| | - Takashi Ushida
- Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan
| | - Katsuko S Furukawa
- Department of Bioengineering, School of Engineering, University of Tokyo, Tokyo, Japan; Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
9
|
Neumann AJ, Prekeris R. A Rab-bit hole: Rab40 GTPases as new regulators of the actin cytoskeleton and cell migration. Front Cell Dev Biol 2023; 11:1268922. [PMID: 37736498 PMCID: PMC10509765 DOI: 10.3389/fcell.2023.1268922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023] Open
Abstract
The regulation of machinery involved in cell migration is vital to the maintenance of proper organism function. When migration is dysregulated, a variety of phenotypes ranging from developmental disorders to cancer metastasis can occur. One of the primary structures involved in cell migration is the actin cytoskeleton. Actin assembly and disassembly form a variety of dynamic structures which provide the pushing and contractile forces necessary for cells to properly migrate. As such, actin dynamics are tightly regulated. Classically, the Rho family of GTPases are considered the major regulators of the actin cytoskeleton during cell migration. Together, this family establishes polarity in the migrating cell by stimulating the formation of various actin structures in specific cellular locations. However, while the Rho GTPases are acknowledged as the core machinery regulating actin dynamics and cell migration, a variety of other proteins have become established as modulators of actin structures and cell migration. One such group of proteins is the Rab40 family of GTPases, an evolutionarily and functionally unique family of Rabs. Rab40 originated as a single protein in the bilaterians and, through multiple duplication events, expanded to a four-protein family in higher primates. Furthermore, unlike other members of the Rab family, Rab40 proteins contain a C-terminally located suppressor of cytokine signaling (SOCS) box domain. Through the SOCS box, Rab40 proteins interact with Cullin5 to form an E3 ubiquitin ligase complex. As a member of this complex, Rab40 ubiquitinates its effectors, controlling their degradation, localization, and activation. Because substrates of the Rab40/Cullin5 complex can play a role in regulating actin structures and cell migration, the Rab40 family of proteins has recently emerged as unique modulators of cell migration machinery.
Collapse
Affiliation(s)
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
10
|
Beta C, Edelstein-Keshet L, Gov N, Yochelis A. From actin waves to mechanism and back: How theory aids biological understanding. eLife 2023; 12:e87181. [PMID: 37428017 DOI: 10.7554/elife.87181] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Actin dynamics in cell motility, division, and phagocytosis is regulated by complex factors with multiple feedback loops, often leading to emergent dynamic patterns in the form of propagating waves of actin polymerization activity that are poorly understood. Many in the actin wave community have attempted to discern the underlying mechanisms using experiments and/or mathematical models and theory. Here, we survey methods and hypotheses for actin waves based on signaling networks, mechano-chemical effects, and transport characteristics, with examples drawn from Dictyostelium discoideum, human neutrophils, Caenorhabditis elegans, and Xenopus laevis oocytes. While experimentalists focus on the details of molecular components, theorists pose a central question of universality: Are there generic, model-independent, underlying principles, or just boundless cell-specific details? We argue that mathematical methods are equally important for understanding the emergence, evolution, and persistence of actin waves and conclude with a few challenges for future studies.
Collapse
Affiliation(s)
- Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | | | - Nir Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Arik Yochelis
- Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
11
|
Salloum G, Bresnick AR, Backer JM. Macropinocytosis: mechanisms and regulation. Biochem J 2023; 480:335-362. [PMID: 36920093 DOI: 10.1042/bcj20210584] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
Macropinocytosis is defined as an actin-dependent but coat- and dynamin-independent endocytic uptake process, which generates large intracellular vesicles (macropinosomes) containing a non-selective sampling of extracellular fluid. Macropinocytosis provides an important mechanism of immune surveillance by dendritic cells and macrophages, but also serves as an essential nutrient uptake pathway for unicellular organisms and tumor cells. This review examines the cell biological mechanisms that drive macropinocytosis, as well as the complex signaling pathways - GTPases, lipid and protein kinases and phosphatases, and actin regulatory proteins - that regulate macropinosome formation, internalization, and disposition.
Collapse
Affiliation(s)
- Gilbert Salloum
- Department of Molecular Pharamacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Jonathan M Backer
- Department of Molecular Pharamacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| |
Collapse
|
12
|
Mechanisms of Foreign Body Giant Cell Formation in Response to Implantable Biomaterials. Polymers (Basel) 2023; 15:polym15051313. [PMID: 36904554 PMCID: PMC10007405 DOI: 10.3390/polym15051313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Long term function of implantable biomaterials are determined by their integration with the host's body. Immune reactions against these implants could impair the function and integration of the implants. Some biomaterial-based implants lead to macrophage fusion and the formation of multinucleated giant cells, also known as foreign body giant cells (FBGCs). FBGCs may compromise the biomaterial performance and may lead to implant rejection and adverse events in some cases. Despite their critical role in response to implants, there is a limited understanding of cellular and molecular mechanisms involved in forming FBGCs. Here, we focused on better understanding the steps and mechanisms triggering macrophage fusion and FBGCs formation, specifically in response to biomaterials. These steps included macrophage adhesion to the biomaterial surface, fusion competency, mechanosensing and mechanotransduction-mediated migration, and the final fusion. We also described some of the key biomarkers and biomolecules involved in these steps. Understanding these steps on a molecular level would lead to enhance biomaterials design and improve their function in the context of cell transplantation, tissue engineering, and drug delivery.
Collapse
|
13
|
Jacksi M, Schad E, Buday L, Tantos A. Absence of Scaffold Protein Tks4 Disrupts Several Signaling Pathways in Colon Cancer Cells. Int J Mol Sci 2023; 24:ijms24021310. [PMID: 36674824 PMCID: PMC9861885 DOI: 10.3390/ijms24021310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Tks4 is a large scaffold protein in the EGFR signal transduction pathway that is involved in several cellular processes, such as cellular motility, reactive oxygen species-dependent processes, and embryonic development. It is also implicated in a rare developmental disorder, Frank-ter Haar syndrome. Loss of Tks4 resulted in the induction of an EMT-like process, with increased motility and overexpression of EMT markers in colorectal carcinoma cells. In this work, we explored the broader effects of deletion of Tks4 on the gene expression pattern of HCT116 colorectal carcinoma cells by transcriptome sequencing of wild-type and Tks4 knockout (KO) cells. We identified several protein coding genes with altered mRNA levels in the Tks4 KO cell line, as well as a set of long non-coding RNAs, and confirmed these changes with quantitative PCR on a selected set of genes. Our results show a significant perturbation of gene expression upon the deletion of Tks4, suggesting the involvement of different signal transduction pathways over the well-known EGFR signaling.
Collapse
Affiliation(s)
- Mevan Jacksi
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Eva Schad
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - László Buday
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Department of Molecular Biology, Semmelweis University Medical School, 1094 Budapest, Hungary
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence:
| |
Collapse
|
14
|
Lin X, Krishnamoorthy P, Walker EC, Joshi H, Morley SC. Expression of non-phosphorylatable S5A-L-plastin exerts phenotypes distinct from L-plastin deficiency during podosome formation and phagocytosis. Front Cell Dev Biol 2023; 11:1020091. [PMID: 37138794 PMCID: PMC10150066 DOI: 10.3389/fcell.2023.1020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction: The actin cytoskeleton remodels to enable diverse processes essential to immunity, such as cell adhesion, migration and phagocytosis. A panoply of actin-binding proteins regulate these rapid rearrangements to induce actin-based shape changes and to generate force. L-plastin (LPL) is a leukocyte-specific, actin-bundling protein that is regulated in part by phosphorylation of the Ser-5 residue. LPL deficiency in macrophages impairs motility, but not phagocytosis; we recently found that expression of LPL in which the S5 residue is converted to a non-phosphorylatable alanine (S5A-LPL) resulted in diminished phagocytosis, but unimpaired motility. Methods: To provide mechanistic insight into these findings, we now compare the formation of podosomes (an adhesive structure) and phagosomes in alveolar macrophages derived from wild-type (WT), LPL-deficient, or S5A-LPL mice. Both podosomes and phagosomes require rapid remodeling of actin, and both are force-transmitting. Actin rearrangement, force generation, and signaling rely upon recruitment of many actin-binding proteins, including the adaptor protein vinculin and the integrin-associated kinase Pyk2. Prior work suggested that vinculin localization to podosomes was independent of LPL, while Pyk2 was displaced by LPL deficiency. We therefore chose to compare vinculin and Pyk2 co-localization with F-actin at sites of adhesion of phagocytosis in AMs derived from WT, S5A-LPL or LPL-/- mice, using Airyscan confocal microscopy. Results: As described previously, podosome stability was significantly disrupted by LPL deficiency. In contrast, LPL was dispensable for phagocytosis and was not recruited to phagosomes. Recruitment of vinculin to sites of phagocytosis was significantly enhanced in cells lacking LPL. Expression of S5A-LPL impeded phagocytosis, with reduced appearance of ingested bacteria-vinculin aggregates. Discussion: Our systematic analysis of the regulation of LPL during podosome vs. phagosome formation illuminates essential remodeling of actin during key immune processes.
Collapse
Affiliation(s)
- Xue Lin
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Praveen Krishnamoorthy
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, United States
| | - Emma C. Walker
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Hemant Joshi
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Sharon Celeste Morley
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Sharon Celeste Morley,
| |
Collapse
|
15
|
Feng D, Zhu W, Shi X, Wei W, Han P, Wei Q, Yang L. Leucine zipper protein 2 serves as a prognostic biomarker for prostate cancer correlating with immune infiltration and epigenetic regulation. Heliyon 2022; 8:e10750. [PMID: 36217461 PMCID: PMC9547219 DOI: 10.1016/j.heliyon.2022.e10750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022] Open
Abstract
Background We sought to determine whether leucine zipper protein 2 (LUZP2) could benefit men with prostate cancer (PCa) undergoing radical radiotherapy (RT) or prostatectomy (RP). Methods Analysis was done on differentiating expression, clinical prognosis, co-expressed genes, immune infiltration, and epigenetic changes. All of our analyses were done using the R software (version 3.6.3) and the appropriate packages. Results In terms of PCa, tumor samples expressed LUZP2 more than normal samples did. In the TCGA database and GSE116918, we found that LUZP2 was the only independent risk factor for PCa. The shared enriched pathways for patients undergoing RP or RT were cell-cell adhesion, regulation of filopodium assembly, and extracellular matrix containing collagen. With the exception of TNFRSF14, we discovered that LUZP2 was negatively correlated with 21 immune checkpoints in PCa patients receiving RT. We found a significant inverse relationship between LUZP2 expression and the tumor immune environment, which included B cells, CD4+ T cells, neutrophils, macrophages, dendritic cells, stromal score, immune score, and estimate score, in patients receiving RP or RT. Additionally, tumor purity was positively correlated with LUZP2. We found that the drug bortezomib may be susceptible to the LUZP2. DNA methylation was significantly associated with the mRNA expression of LUZP2 in PCa patients from the TCGA database, and LUZP2 methylation was positively correlated with immune cells. The proliferative activity of various PCa cells, which correlated to different stages of this disease, was also found to be significantly reduced by LUZP2 reduction, according to the results of our experimental work. Conclusions We proposed a relatively comprehensive understanding of the roles of LUZP2 on PCa from the fresh perspective of senescence.
Collapse
|
16
|
SKAP2 is downregulated in the villous tissues of patients with missed abortion and regulates growth and migration in trophoblasts through the WAVE2-ARP2/3 signaling pathway. Placenta 2022; 128:100-111. [PMID: 36126383 DOI: 10.1016/j.placenta.2022.08.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Abnormal placental trophoblast function is the main cause of missed abortion (MA). Src kinase-associated phosphoprotein 2 (SKAP2) indirectly affects actin reunion, which is significantly associated with cell migration. METHODS Twenty women with MA and 20 healthy women who underwent voluntarily induced abortion were included in this study. Immunohistochemistry, qRT-PCR, and western blotting were used to determine SKAP2, WAVE2, and ARP2 expression in the villous tissues. We investigated the effects of SKAP2 and the W336K mutant (blocked SKAP2 Src homology 3 function) on growth and migration in HTR8/SVneo cells using the CCK8 assay, flow cytometry, and transwell assay. The effects of SKAP2 on the WAVE2-ARP2/3 signaling pathway in HTR8/SVneo cells were evaluated by western blotting and immunofluorescence. RESULTS Compared to the women in the voluntary abortion group, SKAP2 and WAVE2 expression levels were downregulated in the villous of patients with MA. In HTR8/SVneo cells, SKAP2 siRNA silencing regulated the growth and migration, while SKAP2 overexpression promoted growth and migration, and inhibited apoptosis. Additionally, SKAP2 regulated the expression of WAVE2 and ARP2, as well as the colocalization of actin with WAVE2. The SKAP2 W336K mutant could not alter WAVE2 and ARP2 expression, nor HTR8/SVneo cell growth and migration, with or without SKAP2 siRNA transfection. DISCUSSION SKAP2 could activate the WAVE2-ARP2/3 pathway resulting in an increase of growth and migration in trophoblasts. SKAP2 probably played an important role in MA by affecting the growth and migration of trophoblasts.
Collapse
|
17
|
Kalashnikov N, Moraes C. Engineering physical microenvironments to study innate immune cell biophysics. APL Bioeng 2022; 6:031504. [PMID: 36156981 PMCID: PMC9492295 DOI: 10.1063/5.0098578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Innate immunity forms the core of the human body's defense system against infection, injury, and foreign objects. It aims to maintain homeostasis by promoting inflammation and then initiating tissue repair, but it can also lead to disease when dysregulated. Although innate immune cells respond to their physical microenvironment and carry out intrinsically mechanical actions such as migration and phagocytosis, we still do not have a complete biophysical description of innate immunity. Here, we review how engineering tools can be used to study innate immune cell biophysics. We first provide an overview of innate immunity from a biophysical perspective, review the biophysical factors that affect the innate immune system, and then explore innate immune cell biophysics in the context of migration, phagocytosis, and phenotype polarization. Throughout the review, we highlight how physical microenvironments can be designed to probe the innate immune system, discuss how biophysical insight gained from these studies can be used to generate a more comprehensive description of innate immunity, and briefly comment on how this insight could be used to develop mechanical immune biomarkers and immunomodulatory therapies.
Collapse
Affiliation(s)
- Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
18
|
Linehan JB, Zepeda JL, Mitchell TA, LeClair EE. Follow that cell: leukocyte migration in L-plastin mutant zebrafish. Cytoskeleton (Hoboken) 2022; 79:26-37. [PMID: 35811499 DOI: 10.1002/cm.21717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Actin assemblies are important in motile cells such as leukocytes which form dynamic plasma membrane extensions or podia. L-plastin (LCP1) is a leukocyte-specific calcium-dependent actin-bundling protein that, in mammals, is known to affect immune cell migration. Previously, we generated CRISPR/Cas9 engineered zebrafish lacking L-plastin (lcp1-/-) and reported that they had reduced survival to adulthood, suggesting that lack of this actin-bundler might negatively affect the immune system. To test this hypothesis, we examined the distribution and migration of neutrophils and macrophages in the transparent tail of early zebrafish larvae using cell-specific markers and an established wound-migration assay. Knockout larvae were similar to their heterozygous siblings in having equal body sizes and comparable numbers of neutrophils in caudal hematopoietic tissue at two days post-fertilization, indicating no gross defect in neutrophil production or developmental migration. When stimulated by a tail wound, all genotypes of neutrophils were equally migratory in a two-hour window. However for macrophages we observed both migration defects and morphological differences. L-plastin knockout macrophages (lcp1 -/-) still homed to wounds but were slower, less directional and had a star-like morphology with many leading and trailing projections. In contrast, heterozygous macrophages lcp1 (+/-) were faster, more directional, and had a streamlined, slug-like morphology. Overall, these findings show that in larval zebrafish L-plastin knockout primarily affects the macrophage response with possible consequences for organismal immunity. Consistent with our observations, we propose a model in which cytoplasmic L-plastin negatively regulates macrophage integrin adhesion by holding these transmembrane heterodimers in a 'clasped', inactive form and is a necessary part of establishing macrophage polarity during chemokine-induced motility. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- J B Linehan
- Department of Biological Sciences, DePaul University, USA
| | - J L Zepeda
- Department of Biological Sciences, DePaul University, USA
| | - T A Mitchell
- Department of Biological Sciences, DePaul University, USA
| | - E E LeClair
- Department of Biological Sciences, DePaul University, USA
| |
Collapse
|
19
|
Pal K, Tu Y, Wang X. Single-Molecule Force Imaging Reveals That Podosome Formation Requires No Extracellular Integrin-Ligand Tensions or Interactions. ACS NANO 2022; 16:2481-2493. [PMID: 35073043 PMCID: PMC9129048 DOI: 10.1021/acsnano.1c09105] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Podosomes are integrin-mediated cell adhesion units involved in many cellular and physiological processes. Integrins likely transmit tensions critical for podosome functions, but such force remains poorly characterized. DNA-based tension sensors are powerful in visualizing integrin tensions but subject to degradation by podosomes which ubiquitously recruit DNase. Here, using a DNase-resistant tension sensor based on a DNA/PNA (peptide nucleic acid) duplex, we imaged podosomal integrin tensions (PIT) in the adhesion rings of podosomes on solid substrates with single molecular tension sensitivity. PIT was shown to be generated by both actomyosin contractility and actin polymerization in podosomes. Importantly, by monitoring PIT and podosome structure in parallel, we showed that extracellular integrin-ligand tensions, despite being critical for the formation of focal adhesions, are dispensable for podosome formation, as PIT reduction or elimination has an insignificant impact on structure formation and FAK (focal adhesion kinase) phosphorylation in podosomes. We further verified that even integrin-ligand interaction is dispensable for podosome formation, as macrophages form podosomes normally on passivated surfaces that block integrin-ligand interaction but support macrophage adhesion through electrostatic adsorption or Fc receptor-immunoglobin G interaction. In contrast, focal adhesions are unable to form on these passivated surfaces.
Collapse
Affiliation(s)
- Kaushik Pal
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Ying Tu
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
- Molecular, Cellular, and Developmental Biology interdepartmental program, Ames, IA 50011, USA
- To whom correspondence may be addressed. Xuefeng Wang, Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
20
|
Zhu Y, Ye L, Huang H, Xu X, Liu Y, Wang J, Jin Y. Case report: Primary immunodeficiency due to a novel mutation in CARMIL2 and its response to combined immunomodulatory therapy. Front Pediatr 2022; 10:1042302. [PMID: 36727012 PMCID: PMC9884805 DOI: 10.3389/fped.2022.1042302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/06/2022] [Indexed: 01/18/2023] Open
Abstract
Capping protein regulator and myosin 1 linker 2 (CARMIL2) is necessary for invadopodia formation, cell polarity, lamellipodial assembly, membrane ruffling, acropinocytosis, and collective cell migration. CARMIL2 deficiency is a rare autosomal recessive disease characterized by dysfunction in naïve T-cell activation, proliferation, differentiation, and effector function and insufficient responses in T-cell memory. In this paper, we report a 9-year-old female patient with a novel pathogenic variant in CARMIL2 (c.2063C > G:p.Thr688Arg) who presented with various symptoms of primary immunodeficiencies including recurrent upper and lower respiratory infections, perioral and perineum papules, reddish impetiginized atopic dermatitis, oral ulcer, painful urination and vaginitis, otitis media, and failure to thrive. A missense mutation leading to insufficient CARMIL2 protein expression, reduced absolute T-cell and natural killer cell (NK cell) counts, and marked skewing to the naïve T-cell form was identified and indicated defective maturation of T cells and B cells. Following 1 year of multitargeted treatment with corticosteroids, hydroxychloroquine, mycophenolate mofetil, and thymosin, the patient presented with significant regression in rashes. CD4+ T-cell, CD8+ T-cell, and NK cell counts were significantly improved.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lili Ye
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hua Huang
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xuemei Xu
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yanliang Jin
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
22
|
Liprins in oncogenic signaling and cancer cell adhesion. Oncogene 2021; 40:6406-6416. [PMID: 34654889 PMCID: PMC8602034 DOI: 10.1038/s41388-021-02048-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
Liprins are a multifunctional family of scaffold proteins, identified by their involvement in several important neuronal functions related to signaling and organization of synaptic structures. More recently, the knowledge on the liprin family has expanded from neuronal functions to processes relevant to cancer progression, including cell adhesion, cell motility, cancer cell invasion, and signaling. These proteins consist of regions, which by prediction are intrinsically disordered, and may be involved in the assembly of supramolecular structures relevant for their functions. This review summarizes the current understanding of the functions of liprins in different cellular processes, with special emphasis on liprins in tumor progression. The available data indicate that liprins may be potential biomarkers for cancer progression and may have therapeutic importance.
Collapse
|
23
|
Nanoconfinement of microvilli alters gene expression and boosts T cell activation. Proc Natl Acad Sci U S A 2021; 118:2107535118. [PMID: 34599101 DOI: 10.1073/pnas.2107535118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
T cells sense and respond to their local environment at the nanoscale by forming small actin-rich protrusions, called microvilli, which play critical roles in signaling and antigen recognition, particularly at the interface with the antigen presenting cells. However, the mechanism by which microvilli contribute to cell signaling and activation is largely unknown. Here, we present a tunable engineered system that promotes microvilli formation and T cell signaling via physical stimuli. We discovered that nanoporous surfaces favored microvilli formation and markedly altered gene expression in T cells and promoted their activation. Mechanistically, confinement of microvilli inside of nanopores leads to size-dependent sorting of membrane-anchored proteins, specifically segregating CD45 phosphatases and T cell receptors (TCR) from the tip of the protrusions when microvilli are confined in 200-nm pores but not in 400-nm pores. Consequently, formation of TCR nanoclustered hotspots within 200-nm pores allows sustained and augmented signaling that prompts T cell activation even in the absence of TCR agonists. The synergistic combination of mechanical and biochemical signals on porous surfaces presents a straightforward strategy to investigate the role of microvilli in T cell signaling as well as to boost T cell activation and expansion for application in the growing field of adoptive immunotherapy.
Collapse
|
24
|
Zdżalik-Bielecka D, Poświata A, Kozik K, Jastrzębski K, Schink KO, Brewińska-Olchowik M, Piwocka K, Stenmark H, Miączyńska M. The GAS6-AXL signaling pathway triggers actin remodeling that drives membrane ruffling, macropinocytosis, and cancer-cell invasion. Proc Natl Acad Sci U S A 2021; 118:e2024596118. [PMID: 34244439 PMCID: PMC8285903 DOI: 10.1073/pnas.2024596118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AXL, a member of the TAM (TYRO3, AXL, MER) receptor tyrosine kinase family, and its ligand, GAS6, are implicated in oncogenesis and metastasis of many cancer types. However, the exact cellular processes activated by GAS6-AXL remain largely unexplored. Here, we identified an interactome of AXL and revealed its associations with proteins regulating actin dynamics. Consistently, GAS6-mediated AXL activation triggered actin remodeling manifested by peripheral membrane ruffling and circular dorsal ruffles (CDRs). This further promoted macropinocytosis that mediated the internalization of GAS6-AXL complexes and sustained survival of glioblastoma cells grown under glutamine-deprived conditions. GAS6-induced CDRs contributed to focal adhesion turnover, cell spreading, and elongation. Consequently, AXL activation by GAS6 drove invasion of cancer cells in a spheroid model. All these processes required the kinase activity of AXL, but not TYRO3, and downstream activation of PI3K and RAC1. We propose that GAS6-AXL signaling induces multiple actin-driven cytoskeletal rearrangements that contribute to cancer-cell invasion.
Collapse
Affiliation(s)
- Daria Zdżalik-Bielecka
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland;
| | - Agata Poświata
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamila Kozik
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamil Jastrzębski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kay Oliver Schink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland;
| |
Collapse
|
25
|
Lin SS, Su YA, Chuang MC, Liu YW. Probing invadosomes: technologies for the analysis of invadosomes. FEBS J 2021; 289:5850-5863. [PMID: 34196119 DOI: 10.1111/febs.16098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 12/22/2022]
Abstract
Invadosomes are protrusive and mechanosensitive actin devices critical for cell migration, invasion, and extracellular matrix remodeling. The dynamic, proteolytic, and protrusive natures of invadosomes have made these structures fascinating and attracted many scientists to develop new technologies for their analysis. With these exciting methodologies, many biochemical and biophysical properties of invadosomes have been well characterized and appreciated, and those discoveries elegantly explained the biological and pathological effects of invadosomes in human health and diseases. In this review, we focus on these commonly used or newly developed methods for invadosome analysis and effort to reason some discrepancies among those assays. Finally, we explore the opposite regulatory mechanisms among invadosomes and focal adhesions, another actin-rich adhesive structures, and speculate a potential rule for their switch.
Collapse
Affiliation(s)
- Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - You-An Su
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Chun Chuang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Qin X, Zhang Y, He Y, Chen K, Zhang Y, Li P, Jiang Y, Li S, Li T, Yang H, Wu C, Zheng C, Zhu J, You F, Liu Y. Shear stress triggered circular dorsal ruffles formation to facilitate cancer cell migration. Arch Biochem Biophys 2021; 709:108967. [PMID: 34157295 DOI: 10.1016/j.abb.2021.108967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Circular dorsal ruffles (CDRs) are a kind of special ring-shaped membrane structure rich in F-actin, it is highly involved in the invasion-metastasis of tumor. Shear stress is one of the biophysical elements that affects the fate of tumor cells. However, how shear stress contributes to the CDRs formation is still unclear. In this study, we found that shear stress stimulated the formation of CDRs and promoted the migration of human breast MDA-MB-231 carcinoma cells. Integrin-linked kinase (ILK) mediated the recruiting of ADP-ribosylation factors (ARAP1/Arf1) to CDRs. Meanwhile, the transfection of ARAP1 or Arf1 mutant decreased the number of cells with CDRs, the CDRs areas and perimeters, thus blocked the cancer cell migration. This indicated that the ARAP1/Arf1 were necessary for the CDRs formation and cancer cell migration. Further study revealed that shear stress could stimulate the formation of intracellular macropinocytosis (MPS) thus promoted the ARAP1/Arf1 transportation to early endosome to regulate cancer cell migration after the depolymerization of CDRs. Our study elucidates that the CDRs formation is essential in shear stress-induced breast cancer cell migration, which provides a new research target for exploring the cytoskeletal mechanisms of breast cancer malignance.
Collapse
Affiliation(s)
- Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yuehui Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yuchen He
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Kang Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yixi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ping Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ying Jiang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Jie Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
27
|
Stahnke S, Döring H, Kusch C, de Gorter DJJ, Dütting S, Guledani A, Pleines I, Schnoor M, Sixt M, Geffers R, Rohde M, Müsken M, Kage F, Steffen A, Faix J, Nieswandt B, Rottner K, Stradal TEB. Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrin-mediated adhesion. Curr Biol 2021; 31:2051-2064.e8. [PMID: 33711252 DOI: 10.1016/j.cub.2021.02.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/12/2020] [Accepted: 02/17/2021] [Indexed: 12/22/2022]
Abstract
Hematopoietic-specific protein 1 (Hem1) is an essential subunit of the WAVE regulatory complex (WRC) in immune cells. WRC is crucial for Arp2/3 complex activation and the protrusion of branched actin filament networks. Moreover, Hem1 loss of function in immune cells causes autoimmune diseases in humans. Here, we show that genetic removal of Hem1 in macrophages diminishes frequency and efficacy of phagocytosis as well as phagocytic cup formation in addition to defects in lamellipodial protrusion and migration. Moreover, Hem1-null macrophages displayed strong defects in cell adhesion despite unaltered podosome formation and concomitant extracellular matrix degradation. Specifically, dynamics of both adhesion and de-adhesion as well as concomitant phosphorylation of paxillin and focal adhesion kinase (FAK) were significantly compromised. Accordingly, disruption of WRC function in non-hematopoietic cells coincided with both defects in adhesion turnover and altered FAK and paxillin phosphorylation. Consistently, platelets exhibited reduced adhesion and diminished integrin αIIbβ3 activation upon WRC removal. Interestingly, adhesion phenotypes, but not lamellipodia formation, were partially rescued by small molecule activation of FAK. A full rescue of the phenotype, including lamellipodia formation, required not only the presence of WRCs but also their binding to and activation by Rac. Collectively, our results uncover that WRC impacts on integrin-dependent processes in a FAK-dependent manner, controlling formation and dismantling of adhesions, relevant for properly grabbing onto extracellular surfaces and particles during cell edge expansion, like in migration or phagocytosis.
Collapse
Affiliation(s)
- Stephanie Stahnke
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Hermann Döring
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - David J J de Gorter
- Institute of Molecular Cell Biology, Westphalian Wilhelms University Münster WWU, Münster, Germany
| | - Sebastian Dütting
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Aleks Guledani
- Institute of Molecular Cell Biology, Westphalian Wilhelms University Münster WWU, Münster, Germany
| | - Irina Pleines
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Michael Schnoor
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), 07360 Mexico City, Mexico
| | - Michael Sixt
- Institute of Science and Technology IST Austria, Klosterneuburg, Austria
| | - Robert Geffers
- Genome Analytics Group, Helmholtz Center for Infection Research HZI, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Center for Infection Research HZI, Braunschweig, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Center for Infection Research HZI, Braunschweig, Germany
| | - Frieda Kage
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School MHH, 30625 Hannover, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany; Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
| |
Collapse
|
28
|
Gorshtein G, Grafinger O, Coppolino MG. Targeting SNARE-Mediated Vesicle Transport to Block Invadopodium-Based Cancer Cell Invasion. Front Oncol 2021; 11:679955. [PMID: 34094984 PMCID: PMC8177742 DOI: 10.3389/fonc.2021.679955] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022] Open
Abstract
During metastasis, cancer cells can invade extracellular matrix (ECM) through a process mediated by matrix-degrading protrusions of the plasma membrane, termed invadopodia. Formation of invadopodia correlates with cells’ invasive and metastatic potential, and thus presents a potential target for therapeutic approaches to target metastatic progression. Invadopodia formation is dependent on the recruitment of proteins involved in intracellular signaling, actin cytoskeleton remodeling, and proteolytic matrix modification. The latter includes matrix degrading enzymes such as MT1-MMP, MMP2, and MMP9. These essential invadopodium-associated enzymes are required for localized matrix degradation, and their localization at invadopodia is central to invadopodium-based cancer cell invasion. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) facilitate intracellular vesicle traffic, including that involved in the transport of invadopodium-associated proteins, and in so doing promote modification of ECM and modulation of signaling pathways involved in the movement of cancer cells. Specific SNARE complexes have been found to support invadopodia formation, and these complexes are, in turn, regulated by associated proteins that interact specifically with SNAREs. Targeting SNARE regulatory proteins thus provides a possible approach to disrupt SNARE-dependent delivery of invadopodial proteins, including MT1-MMP, to sites of ECM modification. Here, we review recent studies of SNARE regulators that hold potential as targets for the development of anti-metastatic therapies for patients burdened with invadopodia-forming cancer types.
Collapse
Affiliation(s)
- Genya Gorshtein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Olivia Grafinger
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Marc G Coppolino
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
29
|
Pal K, Zhao Y, Wang Y, Wang X. Ubiquitous membrane-bound DNase activity in podosomes and invadopodia. J Cell Biol 2021; 220:212028. [PMID: 33904858 PMCID: PMC8082437 DOI: 10.1083/jcb.202008079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/02/2020] [Accepted: 04/05/2021] [Indexed: 12/13/2022] Open
Abstract
Podosomes and invadopodia, collectively termed invadosomes, are adhesive and degradative membrane structures formed in many types of cells and are well known for recruiting various proteases. However, another major class of degradative enzymes, deoxyribonuclease (DNase), remains unconfirmed and not studied in invadosomes. Here, using surface-immobilized nuclease sensor (SNS), we demonstrated that invadosomes recruit DNase to their core regions, which degrade extracellular double-stranded DNA. We further identified the DNase as GPI-anchored membrane-bound DNase X. DNase recruitment is ubiquitous and consistent in invadosomes of all tested cell types. DNase activity exhibits within a minute after actin nucleation, functioning concomitantly with protease in podosomes but preceding it in invadopodia. We further showed that macrophages form DNase-active podosome rosettes surrounding bacteria or micropatterned antigen islets, and the podosomes directly degrade bacterial DNA on a surface, exhibiting an apparent immunological function. Overall, this work reports DNase in invadosomes for the first time, suggesting a richer arsenal of degradative enzymes in invadosomes than known before.
Collapse
Affiliation(s)
- Kaushik Pal
- Department of Physics and Astronomy, Iowa State University, Ames, IA
| | - Yuanchang Zhao
- Department of Physics and Astronomy, Iowa State University, Ames, IA
| | - Yongliang Wang
- Department of Physics and Astronomy, Iowa State University, Ames, IA
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, IA.,Molecular, Cellular, and Developmental Biology Interdepartmental Program, Iowa State University, Ames, IA
| |
Collapse
|
30
|
Abstract
Macrophages are one of the major targets of Human Immunodeficiency virus 1 (HIV-1) and play crucial roles in viral dissemination and persistence during AIDS progression. Here, we reveal the dynamic podosome-mediated entry of HIV-1 into macrophages. Inhibition of podosomes prevented HIV-1 entry into macrophages, while stimulation of podosome formation promoted viral entry. Single-virus tracking revealed the temporal and spatial mechanism of the dynamic podosome-mediated viral entry process. The core and ring structures of podosomes played complex roles in viral entry. The HIV coreceptor, CCR5, was recruited to form specific clusters at the podosome ring, where it participated in viral entry. The podosome facilitated HIV-1 entry with a rotation mode triggered by dynamic actin. Our discovery of this novel HIV-1 entry route into macrophages, mediated by podosomes critical for cell migration and tissue infiltration, provides a new view of HIV infection and pathogenesis, which may assist in the development of new antiviral strategies.IMPORTANCEMacrophages are motile leukocytes and play critical roles in HIV-1 infection and AIDS progression. Podosomes, as small dynamic adhesion microdomains driven by the dynamic actin cytoskeleton, are mainly involved in cell migration of macrophages. Herein, we found that HIV-1 uses dynamic podosomes to facilitate its entry into macrophages. Single-virus imaging coupled with drug assays revealed the mechanism underlying the podosome-mediated route of HIV-1 entry into macrophages, including the dynamic relationship between the viral particles and the podosome core and ring structures, the CCR5 coreceptor. The dynamic podosome-mediated entry of HIV-1 into macrophages will be very significant for HIV-1 pathogenesis, especially for viral dissemination via macrophage migration and tissue infiltration. Thus, we report a novel HIV-1 entry route into macrophages mediated by podosomes, which extends our understanding of HIV infection and pathogenesis.
Collapse
|
31
|
Leyden F, Uthishtran S, Moorthi UK, York HM, Patil A, Gandhi H, Petrov EP, Bornschlögl T, Arumugam S. Rac1 activation can generate untemplated, lamellar membrane ruffles. BMC Biol 2021; 19:72. [PMID: 33849538 PMCID: PMC8042924 DOI: 10.1186/s12915-021-00997-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Membrane protrusions that occur on the dorsal surface of a cell are an excellent experimental system to study actin machinery at work in a living cell. Small GTPase Rac1 controls the membrane protrusions that form and encapsulate extracellular volumes to perform pinocytic or phagocytic functions. RESULTS Here, capitalizing on rapid volumetric imaging capabilities of lattice light-sheet microscopy (LLSM), we describe optogenetic approaches using photoactivable Rac1 (PA-Rac1) for controlled ruffle generation. We demonstrate that PA-Rac1 activation needs to be continuous, suggesting a threshold local concentration for sustained actin polymerization leading to ruffling. We show that Rac1 activation leads to actin assembly at the dorsal surface of the cell membrane that result in sheet-like protrusion formation without any requirement of a template. Further, this approach can be used to study the complex morpho-dynamics of the protrusions or to investigate specific proteins that may be enriched in the ruffles. Deactivating PA-Rac1 leads to complex contractile processes resulting in formation of macropinosomes. Using multicolour imaging in combination with these approaches, we find that Myo1e specifically is enriched in the ruffles. CONCLUSIONS Combining LLSM and optogenetics enables superior spatial and temporal control for studying such dynamic mechanisms. Demonstrated here, the techniques implemented provide insight into the complex nature of the molecular interplay involved in dynamic actin machinery, revealing that Rac1 activation can generate untemplated, lamellar protrusions.
Collapse
Affiliation(s)
- F Leyden
- Single Molecule Science, University of New South Wales, Sydney, Australia
| | - S Uthishtran
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - U K Moorthi
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - H M York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - A Patil
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - H Gandhi
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - E P Petrov
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587, Berlin, Germany
| | - T Bornschlögl
- L'Oréal Research & Innovation, 1 Avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - S Arumugam
- Single Molecule Science, University of New South Wales, Sydney, Australia.
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia.
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC, 3800, Australia.
- ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia.
| |
Collapse
|
32
|
Grönloh MLB, Arts JJG, van Buul JD. Neutrophil transendothelial migration hotspots - mechanisms and implications. J Cell Sci 2021; 134:134/7/jcs255653. [PMID: 33795378 DOI: 10.1242/jcs.255653] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During inflammation, leukocytes circulating in the blood stream exit the vasculature in a process called leukocyte transendothelial migration (TEM). The current paradigm of this process comprises several well-established steps, including rolling, adhesion, crawling, diapedesis and sub-endothelial crawling. Nowadays, the role of the endothelium in transmigration is increasingly appreciated. It has been established that leukocyte exit sites on the endothelium and in the pericyte layer are in fact not random but instead may be specifically recognized by migrating leukocytes. Here, we review the concept of transmigration hotspots, specific sites in the endothelial and pericyte layer where most transmigration events take place. Chemokine cues, adhesion molecules and membrane protrusions as well as physical factors, such as endothelial junction stability, substrate stiffness, the presence of pericytes and basement membrane composition, may all contribute to local hotspot formation to facilitate leukocytes exiting the vasculature. In this Review, we discuss the biological relevance of such hotspots and put forward multiple mechanisms and factors that determine a functional TEM hotspot.
Collapse
Affiliation(s)
- Max L B Grönloh
- Molecular Cell Biology Lab, Dept. Plasma proteins, Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066CX, The Netherlands.,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Molecular Cytology section at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam 1066CX, The Netherlands
| | - Janine J G Arts
- Molecular Cell Biology Lab, Dept. Plasma proteins, Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066CX, The Netherlands.,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Molecular Cytology section at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam 1066CX, The Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab, Dept. Plasma proteins, Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066CX, The Netherlands .,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Molecular Cytology section at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
33
|
Shapovalov G, Gordienko D, Prevarskaya N. Store operated calcium channels in cancer progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:123-168. [PMID: 34392928 DOI: 10.1016/bs.ircmb.2021.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent decades cancer emerged as one of the leading causes of death in the developed countries, with some types of cancer contributing to the top 10 causes of death on the list of the World Health Organization. Carcinogenesis, a malignant transformation causing formation of tumors in normal tissues, is associated with changes in the cell cycle caused by suppression of signaling pathways leading to cell death and facilitation of those enhancing proliferation. Further progression of cancer, during which benign tumors acquire more aggressive phenotypes, is characterized by metastatic dissemination through the body driven by augmented motility and invasiveness of cancer cells. All these processes are associated with alterations in calcium homeostasis in cancer cells, which promote their proliferation, motility and invasion, and dissuade cell death or cell cycle arrest. Remodeling of store-operated calcium entry (SOCE), one of the major pathways regulating intracellular Ca2+ concentration ([Ca2+]i), manifests a key event in many of these processes. This review systematizes current knowledge on the mechanisms recruiting SOCE-related proteins in carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- George Shapovalov
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France.
| | - Dmitri Gordienko
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France
| |
Collapse
|
34
|
Liu Y, Wang Y, Qi R, Mao X, Jin F. Expression of lipoma preferred partner in mammary and extramammary Paget disease. Medicine (Baltimore) 2020; 99:e23443. [PMID: 33371071 PMCID: PMC7748372 DOI: 10.1097/md.0000000000023443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/23/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGOUND This study aims to identify the expression of lipoma preferred partner (LPP) in Paget disease (PD) and to further understand the pathogenesis of PD. METHODS Tissue microarray was used to evaluate the expression of LPP by immunohistochemistry in 40 PD patients. The results of LPP expression were combined with clinical and histopathological characteristics. Patient files were analyzed retrospectively. RESULTS Twenty-one cases were mammary Paget disease (MPD) and 19 extramammary Paget disease (EMPD) involving the vulva, scrotum, and penis. LPP was expressed in PD and this expression was significantly greater in MPD versus EMPD (P = .031). The expression of LPP in MPD was significantly related with age (P = .009) and expression of Ki-67 (P = .011). No statistically significant differences were observed in LPP expression as related to sex, body location, and time of PD diagnosis. CONCLUSIONS While LPP is expressed in both MPD and EMPD, the intensity of this expression is greater in MPD. LPP expression is positively correlated with Ki-67 and is more prevalent in middle-aged versus senior MPD patients. Further research is needed to determine its potential role in tumorigenesis and distribution.
Collapse
Affiliation(s)
- Ye Liu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University
| | - Yangbin Wang
- Department of Dermatology, The First Hospital of China Medical University, Heping District, Shenyang, Liaoning Province, P.R. China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University, Heping District, Shenyang, Liaoning Province, P.R. China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University
| |
Collapse
|
35
|
Kadrmas JL, Beckerle MC, Yoshigi M. Genetic analyses in mouse fibroblast and melanoma cells demonstrate novel roles for PDGF-AB ligand and PDGF receptor alpha. Sci Rep 2020; 10:19303. [PMID: 33168840 PMCID: PMC7653911 DOI: 10.1038/s41598-020-75774-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/14/2020] [Indexed: 01/21/2023] Open
Abstract
Platelet Derived Growth Factor Receptor (PDGFR) signaling is a central mitogenic pathway in development, as well as tissue repair and homeostasis. The rules governing the binding of PDGF ligand to the receptor to produce activation and downstream signaling have been well defined over the last several decades. In cultured cells after a period of serum deprivation, treatment with PDGF leads to the rapid formation of dramatic, actin-rich Circular Dorsal Ruffles (CDRs). Using CDRs as a robust visual readout of early PDGFR signaling, we have identified several contradictory elements in the widely accepted model of PDGF activity. Employing CRISPR/Cas9 gene editing to disrupt the Pdgfra gene in two different murine cell lines, we show that in addition to the widely accepted function for PDGFR-beta in CDR formation, PDGFR-alpha is also clearly capable of eliciting CDRs. Moreover, we demonstrate activity for heterodimeric PDGF-AB ligand in the vigorous activation of PDGFR-beta homodimers to produce CDRs. These findings are key to a more complete understanding of PDGF ligand-receptor interactions and their downstream signaling consequences. This knowledge will allow for more rigorous experimental design in future studies of PDGFR signaling and its contributions to development and disease.
Collapse
Affiliation(s)
- Julie L Kadrmas
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, 84112, USA. .,Department of Oncological Sciences, The University of Utah, Salt Lake City, UT, 84112, USA.
| | - Mary C Beckerle
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, 84112, USA. .,School of Biological Sciences, The University of Utah, Salt Lake City, UT, 84112, USA.
| | - Masaaki Yoshigi
- Department of Pediatrics, The University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
36
|
van Loon AP, Erofeev IS, Maryshev IV, Goryachev AB, Sagasti A. Cortical contraction drives the 3D patterning of epithelial cell surfaces. J Cell Biol 2020; 219:133677. [PMID: 32003768 PMCID: PMC7054995 DOI: 10.1083/jcb.201904144] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/16/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Cellular protrusions create complex cell surface topographies, but biomechanical mechanisms regulating their formation and arrangement are largely unknown. To study how protrusions form, we focused on the morphogenesis of microridges, elongated actin-based structures that are arranged in maze-like patterns on the apical surfaces of zebrafish skin cells. Microridges form by accreting simple finger-like precursors. Live imaging demonstrated that microridge morphogenesis is linked to apical constriction. A nonmuscle myosin II (NMII) reporter revealed pulsatile contractions of the actomyosin cortex, and inhibiting NMII blocked apical constriction and microridge formation. A biomechanical model suggested that contraction reduces surface tension to permit the fusion of precursors into microridges. Indeed, reducing surface tension with hyperosmolar media promoted microridge formation. In anisotropically stretched cells, microridges formed by precursor fusion along the stretch axis, which computational modeling explained as a consequence of stretch-induced cortical flow. Collectively, our results demonstrate how contraction within the 2D plane of the cortex can pattern 3D cell surfaces.
Collapse
Affiliation(s)
- Aaron P van Loon
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Ivan S Erofeev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Ivan V Maryshev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Alvaro Sagasti
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
37
|
Lian Y, Wen D, Meng X, Wang X, Li H, Hao L, Xue H, Zhao J. Inhibition of invadopodia formation by diosgenin in tumor cells. Oncol Lett 2020; 20:283. [PMID: 33014161 PMCID: PMC7520800 DOI: 10.3892/ol.2020.12148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Diosgenin is a type of steroid extracted from the rhizome of Dioscorea plants. In traditional Chinese medicine, Dioscorea has the effect of ‘eliminating phlegm, promoting digestion, relaxing tendons, promoting blood circulation and inhibiting malaria’. Recent studies have confirmed that diosgenin exhibits a number of pharmacological effects, including antitumor activities. Through its antitumor effect, diosgenin is able to block tumor progression and increase the survival rate of patients with cancer; ultimately improving their quality of life. However, the mechanism underlying its pharmacological action remains unclear. Once tumor cells reach a metastatic phase, it can be fatal. Increased migration and invasiveness are the hallmarks of metastatic tumor cells. Invadopodia formation is key to maintaining the high migration and invasive ability of tumor cells. Invadopodia are a type of membrane structure process rich in filamentous-actin and are common in highly invasive tumor cells. In addition to actin, numerous actin regulators, including cortical actin-binding protein (Cortactin), accumulate in invadopodia. Cortactin is a microfilament actin-binding protein with special repetitive domains that are directly involved in the formation of the cortical microfilament actin cell skeleton. Cortactin is also one of the main substrates of intracellular Src-type tyrosine protein kinases and represents a highly conserved family of intracellular cortical signaling proteins. In recent years, great progress has been made in understanding the role of Cortactin and its molecular mechanism in cell motility. However, the diosgenin-Cortactin-invadopodia mechanism is still under investigation. Therefore, the present review focused on the current research on the regulation of invadopodia by diosgenin via Cortactin.
Collapse
Affiliation(s)
- Yaxin Lian
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dezhong Wen
- Department of Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaoting Meng
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaozhen Wang
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongcheng Li
- GeneScience Pharmaceuticals Co., Ltd., Changchun, Jilin 130021, P.R. China
| | - Liming Hao
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hui Xue
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jia Zhao
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
38
|
Ju JA, Lee CJ, Thompson KN, Ory EC, Lee RM, Mathias TJ, Pratt SJP, Vitolo MI, Jewell CM, Martin SS. Partial thermal imidization of polyelectrolyte multilayer cell tethering surfaces (TetherChip) enables efficient cell capture and microtentacle fixation for circulating tumor cell analysis. LAB ON A CHIP 2020; 20:2872-2888. [PMID: 32744284 PMCID: PMC7595763 DOI: 10.1039/d0lc00207k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The technical challenges of imaging non-adherent tumor cells pose a critical barrier to understanding tumor cell responses to the non-adherent microenvironments of metastasis, like the bloodstream or lymphatics. In this study, we optimized a microfluidic device (TetherChip) engineered to prevent cell adhesion with an optically-clear, thermal-crosslinked polyelectrolyte multilayer nanosurface and a terminal lipid layer that simultaneously tethers the cell membrane for improved spatial immobilization. Thermal imidization of the TetherChip nanosurface on commercially-available microfluidic slides allows up to 98% of tumor cell capture by the lipid tethers. Importantly, time-lapse microscopy demonstrates that unique microtentacles on non-adherent tumor cells are rapidly destroyed during chemical fixation, but tethering microtentacles to the TetherChip surface efficiently preserves microtentacle structure post-fixation and post-blood isolation. TetherChips remain stable for more than 6 months, enabling shipment to distant sites. The broad retention capability of TetherChips allows comparison of multiple tumor cell types, revealing for the first time that carcinomas beyond breast cancer form microtentacles in suspension. Direct integration of TetherChips into the Vortex VTX-1 CTC isolation instrument shows that live CTCs from blood samples are efficiently captured on TetherChips for rapid fixation and same-day immunofluorescence analysis. Highly efficient and unbiased label-free capture of CTCs on a surface that allows rapid chemical fixation also establishes a streamlined clinical workflow to stabilize patient tumor cell samples and minimize analytical variables. While current studies focus primarily on CTC enumeration, this microfluidic device provides a novel platform for functional phenotype testing in CTCs with the ultimate goal of identifying anti-metastatic, patient-specific therapies.
Collapse
Affiliation(s)
- Julia A Ju
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Bressler Research Building Rm 10-29, 655 W, Baltimore St., Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shedding of cancer susceptibility candidate 4 by the convertases PC7/furin unravels a novel secretory protein implicated in cancer progression. Cell Death Dis 2020; 11:665. [PMID: 32820145 PMCID: PMC7441151 DOI: 10.1038/s41419-020-02893-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
The proprotein convertases (PCs) are responsible for the maturation of precursor proteins, and are involved in multiple and critical biological processes. Over the past 30 years, the PCs have had great translational applications, but the physiological roles of PC7, the seventh member of the family, are still obscure. Searching for new substrates of PC7, a quantitative proteomics screen for selective enrichment of N-glycosylated polypeptides secreted from hepatic HuH7 cells identified two human type-II transmembrane proteins of unknown function(s): Cancer Susceptibility Candidate 4 (CASC4) and Golgi Phosphoprotein of 130 kDa (GPP130/GOLIM4). Concentrating on CASC4, its mutagenesis characterized the PC7/Furin-shedding site to occur at KR66↓NS, in HEK293 cells. We defined PC7 and Furin trafficking and activity, and demonstrated that CASC4 shedding occurs in acidic endosomes and/or in the trans-Golgi Network. Our data unraveled a cancer-protective role for CASC4, because siRNA silencing of endogenous CASC4 expression in the invasive triple-negative breast cancer human cell line MDA-MB-231 resulted in a significantly increased cellular migration and invasion. Conversely, MDA-MB-231 cells stably expressing CASC4 exhibited reduced migration and invasion, which can be explained by an increased number of paxillin-positive focal adhesions. This phenotypic cancer-protective role of CASC4 is reversed in cells overexpressing an optimally PC7/Furin-cleaved CASC4 mutant, or upon overexpression of the N-terminally convertase-generated membrane-bound segment. This phenotype was associated with increased formation of podosome-like structures, especially evident in cells overexpressing the N-terminal fragment. In accord, breast cancer patients’ data sets show that high CASC4 and PCSK7 expression levels predict a significantly worse prognosis compared to high CASC4 but low PCSK7 levels. In conclusion, CASC4 shedding not only disrupts its anti-migratory/invasive role, but also generates a membrane-bound fragment that drastically modifies the actin cytoskeleton, resulting in an enhanced cellular migration and invasion. This phenotype might be clinically relevant in the prognosis of breast cancer patients.
Collapse
|
40
|
Beta C, Gov NS, Yochelis A. Why a Large-Scale Mode Can Be Essential for Understanding Intracellular Actin Waves. Cells 2020; 9:cells9061533. [PMID: 32585983 PMCID: PMC7349605 DOI: 10.3390/cells9061533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/18/2023] Open
Abstract
During the last decade, intracellular actin waves have attracted much attention due to their essential role in various cellular functions, ranging from motility to cytokinesis. Experimental methods have advanced significantly and can capture the dynamics of actin waves over a large range of spatio-temporal scales. However, the corresponding coarse-grained theory mostly avoids the full complexity of this multi-scale phenomenon. In this perspective, we focus on a minimal continuum model of activator-inhibitor type and highlight the qualitative role of mass conservation, which is typically overlooked. Specifically, our interest is to connect between the mathematical mechanisms of pattern formation in the presence of a large-scale mode, due to mass conservation, and distinct behaviors of actin waves.
Collapse
Affiliation(s)
- Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany;
| | - Nir S. Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Arik Yochelis
- Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be’er Sheva 8410501, Israel
- Correspondence:
| |
Collapse
|
41
|
Alonso F, Spuul P, Decossas M, Egaña I, Curado F, Fremaux I, Daubon T, Génot E. Regulation of podosome formation in aortic endothelial cells vessels by physiological extracellular cues. Eur J Cell Biol 2020; 99:151084. [DOI: 10.1016/j.ejcb.2020.151084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 01/27/2023] Open
|
42
|
Cell-Substrate Patterns Driven by Curvature-Sensitive Actin Polymerization: Waves and Podosomes. Cells 2020; 9:cells9030782. [PMID: 32210185 PMCID: PMC7140849 DOI: 10.3390/cells9030782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022] Open
Abstract
Cells adhered to an external solid substrate are observed to exhibit rich dynamics of actin structures on the basal membrane, which are distinct from those observed on the dorsal (free) membrane. Here we explore the dynamics of curved membrane proteins, or protein complexes, that recruit actin polymerization when the membrane is confined by the solid substrate. Such curved proteins can induce the spontaneous formation of membrane protrusions on the dorsal side of cells. However, on the basal side of the cells, such protrusions can only extend as far as the solid substrate and this constraint can convert such protrusions into propagating wave-like structures. We also demonstrate that adhesion molecules can stabilize localized protrusions that resemble some features of podosomes. This coupling of curvature and actin forces may underlie the differences in the observed actin-membrane dynamics between the basal and dorsal sides of adhered cells.
Collapse
|
43
|
Abstract
Skeletal involvement is a frequent and troublesome complication in advanced cancers. In the process of tumor cells homing to the skeleton to form bone metastases (BM), different mechanisms allow tumor cells to interact with cells of the bone microenvironment and seed in the bone tissue. Among these, tumor acidosis has been directly associated with tumor invasion and aggressiveness in several types of cancer although it has been less explored in the context of BM. In bone, the association of local acidosis and cancer invasiveness is even more important for tumor expansion since the extracellular matrix is formed by both organic and hard inorganic matrices and bone cells are used to sense protons and adapt or react to a low pH to maintain tissue homeostasis. In the BM microenvironment, increased concentration of protons may derive not only from glycolytic tumor cells but also from tumor-induced osteoclasts, the bone-resorbing cells, and may influence the progression or symptoms of BM in many different ways, by directly enhancing cancer cell motility and aggressiveness, or by modulating the functions of bone cells versus a pro-tumorigenic phenotype, or by inducing bone pain. In this review, we will describe and discuss the cause of acidosis in BM, its role in BM microenvironment, and which are the final effectors that may be targeted to treat metastatic patients.
Collapse
Affiliation(s)
- Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Silvia Lemma
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123, Bologna, Italy
| |
Collapse
|
44
|
Condon ND, Stow JL, Wall AA. Automated Analysis of Cell Surface Ruffling: Ruffle Quantification Macro. Bio Protoc 2020; 10:e3494. [PMID: 33654725 DOI: 10.21769/bioprotoc.3494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 11/02/2022] Open
Abstract
Cell surface protrusions include F-actin rich, wave-like ruffles that are erected transiently in response to stimuli and during cell migration. Macrophages are innate immune cells that ruffle constitutively and more dramatically in cells activated by pathogens. Dorsal ruffles and their resulting macropinosomes are key sites for environmental sampling, pathogen detection and immune signaling. Quantitative assessment of ruffling is important for assessing pathogen responses in macrophages and for analysis of growth factor responses in other cell types but automated and quantitative methods are lacking, and rely on manual and qualitative assessments. Here we present an automated ImageJ macro for quantifying dorsal cell surface protrusions from 3D microscope images. The assay presented here is suitable for high-throughput screening applications to detect drug, pathogen, or growth factor induced changes in cell ruffling by measuring ruffle area and intensity and providing normalized values in an easy to read combined spreadsheet.
Collapse
Affiliation(s)
- Nicholas D Condon
- Institute for Molecular Biosciences (IMB) Microscopy, The University of Queensland, Brisbane, Australia.,IMB Centre for Inflammation Disease Research, The University of Queensland, Brisbane, Australia
| | - Jennifer L Stow
- IMB Centre for Inflammation Disease Research, The University of Queensland, Brisbane, Australia
| | - Adam A Wall
- IMB Centre for Inflammation Disease Research, The University of Queensland, Brisbane, Australia
| |
Collapse
|
45
|
Chepied A, Daoud-Omar Z, Meunier-Balandre AC, Laird DW, Mesnil M, Defamie N. Involvement of the Gap Junction Protein, Connexin43, in the Formation and Function of Invadopodia in the Human U251 Glioblastoma Cell Line. Cells 2020; 9:cells9010117. [PMID: 31947771 PMCID: PMC7017254 DOI: 10.3390/cells9010117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/02/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022] Open
Abstract
The resistance of glioblastomas to treatments is mainly the consequence of their invasive capacities. Therefore, in order to better treat these tumors, it is important to understand the molecular mechanisms which are responsible for this behavior. Previous work suggested that gap junction proteins, the connexins, facilitate the aggressive nature of glioma cells. Here, we show that one of them—connexin43 (Cx43)—is implicated in the formation and function of invadopodia responsible for invasion capacity of U251 human glioblastoma cells. Immunofluorescent approaches—combined with confocal analyses—revealed that Cx43 was detected in all the formation stages of invadopodia exhibiting proteolytic activity. Clearly, Cx43 appeared to be localized in invadopodia at low cell density and less associated with the establishment of gap junctions. Accordingly, lower extracellular matrix degradation correlated with less mature invadopodia and MMP2 activity when Cx43 expression was decreased by shRNA strategies. Moreover, the kinetics of invadopodia formation could be dependent on Cx43 dynamic interactions with partners including Src and cortactin. Interestingly, it also appeared that invadopodia formation and MMP2 activity are dependent on Cx43 hemichannel activity. In conclusion, these results reveal that Cx43 might be involved in the formation and function of the invadopodia of U251 glioblastoma cells.
Collapse
Affiliation(s)
- Amandine Chepied
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
| | - Zeinaba Daoud-Omar
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
| | - Annie-Claire Meunier-Balandre
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Marc Mesnil
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
| | - Norah Defamie
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
- Correspondence:
| |
Collapse
|
46
|
Mularski A, Niedergang F. Force Measurement of Living Professional Phagocytes of the Immune System. Aust J Chem 2020. [DOI: 10.1071/ch19409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In higher organisms, the professional phagocytes of the immune system (dendritic cells, neutrophils, monocytes, and macrophages) are responsible for pathogen clearance, the development of immune responses via cytokine secretion and presentation of antigens derived from internalized material, and the normal turnover and remodelling of tissues and disposal of dead cells. These functions rely on the ability of phagocytes to migrate and adhere to sites of infection, dynamically probe their environments to make contact with phagocytic targets, and perform phagocytosis, a mechanism of internalization of large particles, microorganisms, and cellular debris for intracellular degradation. The cell-generated forces that are necessary for the professional phagocytes to act in their roles as ‘first responders’ of the immune system have been the subject of mechanical studies in recent years. Methods of force measurement such as atomic force microscopy, traction force microscopy, micropipette aspiration, magnetic and optical tweezers, and exciting new variants of these have accompanied classical biological methods to perform mechanical investigations of these highly dynamic immune cells.
Collapse
|
47
|
Hussein NJ, Mbimba T, Al-Adlaan AA, Ansari MY, Jaber FA, McDermott S, Kasumov T, Safadi FF. A novel regulatory role of TRAPPC9 in L-plastin-mediated osteoclast actin ring formation. J Cell Biochem 2019; 121:284-298. [PMID: 31453638 DOI: 10.1002/jcb.29168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Abstract
Trafficking protein particle complex 9 (TRAPPC9) is a major subunit of the TRAPPII complex. TRAPPC9 has been reported to bind nuclear factor κB kinase subunit β (IKKβ) and NF-kB-inducing kinase (NIK) where it plays a role in the canonical and noncanonical of nuclear factor-κB (NF-kB) signaling pathways, receptively. The role of TRAPPC9 in protein trafficking and cytoskeleton organization in osteoclast (OC) has not been studied yet. In this study, we examined the mRNA expression of TRAPPC9 during OC differentiation. Next, we examined the colocalization of TRAPPC9 with cathepsin-K, known to mediate OC resorption suggesting that TRAPPC9 mediates the trafficking pathway within OC. To identify TRAPPC9 protein partners important for OC-mediated cytoskeleton re-organization, we conducted immunoprecipitation of TRAPPC9 in mature OCs followed by mass spectrometry analysis. Our data showed that TRAPPC9 binds various protein partners. One protein with high recovery rate is L-plastin (LPL). LPL localizes at the podosomes and reported to play a crucial role in actin aggregation thereby actin ring formation and OC function. Although the role of LPL in OC-mediated bone resorption has not fully reported in detail. Here, first, we confirmed the binding of LPL to TRAPPC9 and, then, we investigated the potential regulatory role of TRAPPC9 in LPL-mediated OC cytoskeleton reorganization. We assessed the localization of TRAPPC9 and LPL in OC and found that TRAPPC9 is colocalized with LPL at the periphery of OC. Next, we determined the effect of TRAPPC9 overexpression on LPL recruitment to the actin ring using a viral system. Interestingly, our data showed that TRAPPC9 overexpression promotes the recruitment of LPL to the actin ring when compared with control cultures. In addition, we observed that TRAPPC9 overexpression reorganizes actin clusters/aggregates and regulates vinculin recruitment into the OC periphery to initiate podosome formation.
Collapse
Affiliation(s)
- Nazar J Hussein
- School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Thomas Mbimba
- School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Asaad A Al-Adlaan
- School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Mohammad Y Ansari
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Fatima A Jaber
- School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio.,Department of Biology, King Abdulaziz University, Jeddah, KSA.,Department of Biology, University of Jeddah, Jeddah, KSA
| | - Scott McDermott
- Department of Orthopaedic Surgery, SUMMA Heath System, Akron, Ohio, USA
| | - Takhar Kasumov
- Department of Orthopaedic Surgery, SUMMA Heath System, Akron, Ohio, USA
| | - Fayez F Safadi
- School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio.,Department of Orthopaedic Surgery, SUMMA Heath System, Akron, Ohio, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA.,Rebecca D. Considine Research Institute, Akron Children Hospital, Akron, Ohio
| |
Collapse
|
48
|
Mukherjee A, Behkam B, Nain AS. Cancer Cells Sense Fibers by Coiling on them in a Curvature-Dependent Manner. iScience 2019; 19:905-915. [PMID: 31513975 PMCID: PMC6742781 DOI: 10.1016/j.isci.2019.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/01/2019] [Accepted: 08/13/2019] [Indexed: 01/09/2023] Open
Abstract
Metastatic cancer cells sense the complex and heterogeneous fibrous extracellular matrix (ECM) by formation of protrusions, and our knowledge of how cells physically recognize these fibers remains in its infancy. Here, using suspended ECM-mimicking isodiameter fibers ranging from 135 to 1,000 nm, we show that metastatic breast cancer cells sense fiber diameters differentially by coiling (wrapping-around) on them in a curvature-dependent manner, whereas non-tumorigenic cells exhibit diminished coiling. We report that coiling occurs at the tip of growing protrusions and the coil width and coiling rate increase in a curvature-dependent manner, but time to maximum coil width occurs biphasically. Interestingly, bundles of 135-nm diameter fibers recover coiling width and rate on 1,000-nm-diameter fibers. Coiling also coincides with curvature-dependent persistent and ballistic transport of endogenous granules inside the protrusions. Altogether, our results lay the groundwork to link biophysical sensing with biological signaling to quantitate pro- and anti-invasive fibrous environments. Video Abstract
Cells sense ECM-mimicking suspended fibers by coiling (wrapping around) Coiling occurs at the tip of growing protrusions in a curvature-dependent manner Non-tumorigenic cells exhibit diminished coiling compared with metastatic cells A bundle of small-diameter fibers recover coiling observed on a large-diameter fiber
Collapse
Affiliation(s)
- Apratim Mukherjee
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
49
|
Karamanou K, Franchi M, Vynios D, Brézillon S. Epithelial-to-mesenchymal transition and invadopodia markers in breast cancer: Lumican a key regulator. Semin Cancer Biol 2019; 62:125-133. [PMID: 31401293 DOI: 10.1016/j.semcancer.2019.08.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/02/2019] [Accepted: 08/04/2019] [Indexed: 12/30/2022]
Abstract
A great hallmark of breast cancer is the absence or presence of estrogen receptors ERα and ERβ, with a dominant role in cell proliferation, differentiation and cancer progression. Both receptors are related with Epithelial-to-Mesenchymal Transition (EMT) since there is a relation between ERs and extracellular matrix (ECM) macromolecules expression, and therefore, cell-cell and cell-ECM interactions. The endocrine resistance of ERα endows epithelial cells with increased aggressiveness and induces cell proliferation, resulting into a mesenchymal phenotype and an EMT status. ERα signaling may affect the transcriptional factors which govern EMT. Knockdown or silencing of ERα and ERβ in MCF-7 and MDA-MB-231 breast cancer cells respectively, provoked pivotal changes in phenotype, cellular functions, mRNA and protein levels of EMT markers, and consequently the EMT status. Mesenchymal cells owe their migratory and invasive properties to invadopodia, while in epithelial cells, lamellipodia and filopodia are mostly observed. Invadopodia, are actin-rich protrusions of plasma membrane, promoting proteolytic degradation of ECM and tumor invasion. Cortactin and MMP-14 govern the formation and principal functions of invadopodia. In vitro experiments proved that lumican inhibits cortactin and MMP-14 expression, alters the formation of lamellipodia and transforms mesenchymal cells into epithelial-like. Conclusively, lumican may inhibit or even reverse the several metastatic features that EMT endows in breast cancer cells. Therefore, a lumican-based anti-cancer therapy which will pharmacologically target and inhibit EMT might be interesting to be developed.
Collapse
Affiliation(s)
- Konstantina Karamanou
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France; Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France; Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Demitrios Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Stéphane Brézillon
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France; Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.
| |
Collapse
|
50
|
Ampelopsin E Reduces the Invasiveness of the Triple Negative Breast Cancer Cell Line, MDA-MB-231. Molecules 2019; 24:molecules24142619. [PMID: 31323836 PMCID: PMC6680398 DOI: 10.3390/molecules24142619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most common and the second leading cause of cancer-related deaths in women. It has two distinctive hallmarks: rapid abnormal growth and the ability to invade and metastasize. During metastasis, cancer cells are thought to form actin-rich protrusions, called invadopodia, which degrade the extracellular matrix. Current breast cancer treatments, particularly chemotherapy, comes with adverse effects like immunosuppression, resistance development and secondary tumour formation. Hence, naturally-occurring molecules claimed to be less toxic are being studied as new drug candidates. Ampelopsin E, a natural oligostilbene extracted from Dryobalanops species, has exhibited various pharmacological properties, including anticancer and anti-inflammatory activities. However, there is yet no scientific evidence of the effects of ampelopsin E towards metastasis. Scratch assay, transwell migration and invasion assays, invadopodia and gelatin degradation assays, and ELISA were used to determine the effects of ampelopsin E towards the invasiveness of MDA-MB-231 cells. Strikingly in this study, ampelopsin E was able to halt migration, transmigration and invasion in MDA-MB-231 cells by reducing formation of invadopodia and its degradation capability through significant reduction (p < 0.05) in expression levels of PDGF, MMP2, MMP9 and MMP14. In conclusion, ampelopsin E reduced the invasiveness of MDA-MB-231 cells and was proven to be a potential alternative in treating TNBC.
Collapse
|