1
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Heeh M, Sandouka D, Idais T. Exploring the role of AMPA receptor auxiliary proteins in synaptic functions and diseases. FEBS J 2024. [PMID: 39394632 DOI: 10.1111/febs.17287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (AMPARs) mediate rapid excitatory synaptic transmission in the mammalian brain, primarily driven by the neurotransmitter glutamate. The modulation of AMPAR activity, particularly calcium-permeable AMPARs (CP-AMPARs), is crucially influenced by various auxiliary subunits. These subunits are integral membrane proteins that bind to the receptor's core and modify its functional properties, including ion channel kinetics and receptor trafficking. This review comprehensively catalogs all known AMPAR auxiliary proteins, providing vital insights into the biochemical mechanisms governing synaptic modulation and the specific impact of CP-AMPARs compared to their calcium-impermeable AMPA receptor (CI-AMPARs). Understanding the complex interplay between AMPARs and their auxiliary subunits in different brain regions is essential for elucidating their roles in cognitive functions such as learning and memory. Importantly, alterations in these auxiliary proteins' expression, function or interactions have been implicated in various neurological disorders. Aberrant signaling through CP-AMPARs, in particular, is associated with severe synaptic dysfunctions across neurodevelopmental, neurodegenerative and psychiatric conditions. Targeting the distinct properties of AMPAR-auxiliary subunit complexes, especially those involving CP-AMPARs, could disclose new therapeutic strategies, potentially allowing for more precise interventions in treating complex neuronal disorders.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Tala Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
2
|
Xu YT, Yu SY, Li Z, Kou BH, Pang JX, Zhao WW, Chen HY, Xu JJ. A nanofluidic spiking synapse. Proc Natl Acad Sci U S A 2024; 121:e2403143121. [PMID: 38959041 PMCID: PMC11252921 DOI: 10.1073/pnas.2403143121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
Currently, the nanofluidic synapse can only perform basic neuromorphic pulse patterns. One immediate problem that needs to be addressed to further its capability of brain-like computing is the realization of a nanofluidic spiking device. Here, we report the use of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate membrane to achieve bionic ionic current-induced spiking. In addition to the simulation of various electrical pulse patterns, our synapse could produce transmembrane ionic current-induced spiking, which is highly analogous to biological action potentials with similar phases and excitability. Moreover, the spiking properties could be modulated by ions and neurochemicals. We expect that this work could contribute to biomimetic spiking computing in solution.
Collapse
Affiliation(s)
- Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Bo-Han Kou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jian-Xiang Pang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|
3
|
Khalil R, Demarin V. Creative therapy in health and disease: Inner vision. CNS Neurosci Ther 2024; 30:e14266. [PMID: 37305955 PMCID: PMC10915997 DOI: 10.1111/cns.14266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
Can we better understand the unique mechanisms of de novo abilities in light of our current knowledge of the psychological and neuroscientific literature on creativity? This review outlines the state-of-the-art in the neuroscience of creativity and points out crucial aspects that still demand further exploration, such as brain plasticity. The progressive development of current neuroscience research on creativity presents a multitude of prospects and potentials for furnishing efficacious therapy in the context of health and illness. Therefore, we discuss directions for future studies, identifying a focus on pinpointing the neglected beneficial practices for creative therapy. We emphasize the neglected neuroscience perspective of creativity on health and disease and how creative therapy could offer limitless possibilities to improve our well-being and give hope to patients with neurodegenerative diseases to compensate for their brain injuries and cognitive impairments by expressing their hidden creativity.
Collapse
Affiliation(s)
- Radwa Khalil
- School of Business, Social and Decision SciencesConstructor UniversityBremenGermany
| | - Vida Demarin
- International Institute for Brain HealthZagrebCroatia
| |
Collapse
|
4
|
Lu W, Yang X, Zhong W, Chen G, Guo X, Ye Q, Xu Y, Qi Z, Ye Y, Zhang J, Wang Y, Wang X, Wang S, Zhao Q, Zeng W, Huang J, Ma H, Xie J. METTL14-mediated m6A epitranscriptomic modification contributes to chemotherapy-induced neuropathic pain by stabilizing GluN2A expression via IGF2BP2. J Clin Invest 2024; 134:e174847. [PMID: 38319733 PMCID: PMC10940092 DOI: 10.1172/jci174847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Epigenetics is a biological process that modifies and regulates gene expression, affects neuronal function, and contributes to pain. However, the mechanism by which epigenetics facilitates and maintains chronic pain is poorly understood. We aimed to determine whether N6-methyladenosine (m6A) specifically modified by methyltransferase-like 14 (METTL14) alters neuronal activity and governs pain by sensitizing the GluN2A subunit of the N-methyl-d-aspartate receptor (NMDAR) in the dorsal root ganglion (DRG) neurons in a model of chemotherapy-induced neuropathic pain (CINP). Using dot blotting, immunofluorescence, gain/loss-of-function, and behavioral assays, we found that m6A levels were upregulated in L4-L6 DRG neurons in CINP in a DBP/METTL14-dependent manner, which was also confirmed in human DRGs. Blocking METTL14 reduced m6A methylation and attenuated pain hypersensitivity. Mechanistically, METTL14-mediated m6A modification facilitated the synaptic plasticity of DRG neurons by enhancing the GluN2A subunit of NMDAR, and inhibiting METTL14 blocked this effect. In contrast, overexpression of METTL14 upregulated m6A modifications, enhanced presynaptic NMDAR activity in DRG neurons, and facilitated pain sensation. Our findings reveal a previously unrecognized mechanism of METTL14-mediated m6A modification in DRG neurons to maintain neuropathic pain. Targeting these molecules may provide a new strategy for pain treatment.
Collapse
Affiliation(s)
- Weicheng Lu
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaohua Yang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Weiqiang Zhong
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Guojun Chen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xinqi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qingqing Ye
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yixin Xu
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhenhua Qi
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yaqi Ye
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jingyun Zhang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuge Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xintong Wang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shu Wang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qiyue Zhao
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weian Zeng
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Junting Huang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingdun Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Souza JR, Lima-Silveira L, Accorsi-Mendonça D, Machado BH. Enhancement of the Evoked Excitatory Transmission in the Nucleus Tractus Solitarius Neurons after Sustained Hypoxia in Mice Depends on A 2A Receptors. Neuroscience 2024; 536:57-71. [PMID: 37979842 DOI: 10.1016/j.neuroscience.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
The first synapses of the afferents of peripheral chemoreceptors are located in the Nucleus Tractus Solitarius (NTS) and there is evidence that short-term sustained hypoxia (SH - 24 h, FiO2 0.1) facilitates glutamatergic transmission in NTS neurons of rats. Adenosine is an important neuromodulator of synaptic transmission and hypoxia contributes to increase its extracellular concentration. The A2A receptors mediate the excitatory actions of adenosine and are active players in the modulation of neuronal networks in the NTS. Herein, we used knockout mice for A2A receptors (A2AKO) and electrophysiological recordings of NTS neurons were performed to evaluate the contribution of these receptors in the changes in synaptic transmission in NTS neurons of mice submitted to SH. The membrane passive properties and excitability of NTS neurons were not affected by SH and were similar between A2AKO and wild-type mice. The overall amplitude of spontaneous glutamatergic currents in NTS neurons of A2AKO mice was lower than in Balb/c WT mice. SH increased the amplitude of evoked glutamatergic currents of NTS neurons from WT mice by a non-presynaptic mechanism, but this enhancement was not observed in NTS neurons of A2AKO mice. Under normoxia, the amplitude of evoked glutamatergic currents was similar between WT and A2AKO mice. The data indicate that A2A receptors (a) modulate spontaneous glutamatergic currents, (b) do not modulate the evoked glutamatergic transmission in the NTS neurons under control conditions, and (c) are required for the enhancement of glutamatergic transmission observed in the NTS neurons of mice submitted to SH.
Collapse
Affiliation(s)
- Juliana R Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Ludmila Lima-Silveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Daniela Accorsi-Mendonça
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil.
| |
Collapse
|
6
|
Ganter-Argast C, Schipper M, Shamsrizi M, Stein C, Khalil R. The light side of gaming: creativity and brain plasticity. Front Hum Neurosci 2024; 17:1280989. [PMID: 38249576 PMCID: PMC10796710 DOI: 10.3389/fnhum.2023.1280989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Could gaming enhance brain plasticity and executive functions (EFs) by fostering creativity? We identify vital benefits from further research exploring the relationship between games, brain plasticity, and creativity. The ongoing progress in neuroscience research in these three disciplines offers many possibilities and prospects for impactful therapy. Therefore, we emphasize the significance of investigating the untapped potentials of using games in creative therapy-our perspective on the often-overlooked neuroscientific aspect of creativity concerning health and wellbeing. One of these potentials is examining games as a therapeutic tool, focusing on their capacity to inspire and engage the imagination and other mental operators shared with creativity. Using a game as a therapeutic approach may boost brain plasticity, which may help them reduce their cognitive impairments by improving their EFs. This review offers a comprehensive outline of the latest advancements in the literature on games that tie to creativity through enhancing brain plasticity and EFs. Communicating this knowledge can furnish countless possibilities to improve our overall health and wellbeing and foster a positive perspective in individuals affected by anxiety.
Collapse
Affiliation(s)
- Christiane Ganter-Argast
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital and Faculty of Medicine, University of Tübingen, Tübingen, Germany
- University of Applied Sciences, Nürtingen-Geislingen, Nürtingen, Germany
| | - Marc Schipper
- University of Applied Sciences and Arts, Ottersberg, Germany
- Institute for Psychology, Arts, and Society, Bremen, Germany
| | - Manouchehr Shamsrizi
- IFA – Institut für Auslandsbeziehungen, Stuttgart, Germany
- Excellence Cluster Matters of Activity / Gamelab.Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Stein
- Excellence Cluster Matters of Activity / Gamelab.Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Radwa Khalil
- School of Business, Social, and Decision Sciences, Constructor University, Bremen, Germany
| |
Collapse
|
7
|
Chen Y, Huang Y, Zeng J, Kang Y, Tan Y, Xie X, Wei B, Li C, Fang L, Jiang T. Energy-Efficient ReS 2-Based Optoelectronic Synapse for 3D Object Reconstruction and Recognition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58631-58642. [PMID: 38054897 DOI: 10.1021/acsami.3c14958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The neuromorphic vision system (NVS) equipped with optoelectronic synapses integrates perception, storage, and processing and is expected to address the issues of traditional machine vision. However, owing to their lack of stereo vision, existing NVSs focus on 2D image processing, which makes it difficult to solve problems such as spatial cognition errors and low-precision interpretation. Consequently, inspired by the human visual system, an NVS with stereo vision is developed to achieve 3D object recognition, depending on the prepared ReS2 optoelectronic synapse with 12.12 fJ ultralow power consumption. This device exhibits excellent optical synaptic plasticity derived from the persistent photoconductivity effect. As the cornerstone for 3D vision, color planar information is successfully discriminated and stored in situ at the sensor end, benefiting from its wavelength-dependent plasticity in the visible region. Importantly, the dependence of the channel conductance on the target distance is experimentally revealed, implying that the structure information on the object can be directly captured and stored by the synapse. The 3D image of the object is successfully reconstructed via fusion of its planar and depth images. Therefore, the proposed 3D-NVS based on ReS2 synapses for 3D objects achieves a recognition accuracy of 97.0%, which is much higher than that for 2D objects (32.6%), demonstrating its strong ability to prevent 2D-photo spoofing in applications such as face payment, entrance guard systems, and others.
Collapse
Affiliation(s)
- Yabo Chen
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, P. R. China
| | - Yujie Huang
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, P. R. China
| | - Junwei Zeng
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, P. R. China
| | - Yan Kang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, P. R. China
| | - Yinlong Tan
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, P. R. China
| | - Xiangnan Xie
- Institute of Quantum Information Science and Technology, College of Science, National University of Defense Technology, Changsha 410073, P. R. China
| | - Bo Wei
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, P. R. China
| | - Cheng Li
- Institute of Quantum Information Science and Technology, College of Science, National University of Defense Technology, Changsha 410073, P. R. China
| | - Liang Fang
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, P. R. China
| | - Tian Jiang
- Institute of Quantum Information Science and Technology, College of Science, National University of Defense Technology, Changsha 410073, P. R. China
| |
Collapse
|
8
|
Han MJ, Tsukruk VV. Trainable Bilingual Synaptic Functions in Bio-enabled Synaptic Transistors. ACS NANO 2023; 17:18883-18892. [PMID: 37721448 PMCID: PMC10569090 DOI: 10.1021/acsnano.3c04113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The signal transmission of the nervous system is regulated by neurotransmitters. Depending on the type of neurotransmitter released by presynaptic neurons, neuron cells can either be excited or inhibited. Maintaining a balance between excitatory and inhibitory synaptic responses is crucial for the nervous system's versatility, elasticity, and ability to perform parallel computing. On the way to mimic the brain's versatility and plasticity traits, creating a preprogrammed balance between excitatory and inhibitory responses is required. Despite substantial efforts to investigate the balancing of the nervous system, a complex circuit configuration has been suggested to simulate the interaction between excitatory and inhibitory synapses. As a meaningful approach, an optoelectronic synapse for balancing the excitatory and inhibitory responses assisted by light mediation is proposed here by deploying humidity-sensitive chiral nematic phases of known polysaccharide cellulose nanocrystals. The environment-induced pitch tuning changes the polarization of the helicoidal organization, affording different hysteresis effects with the subsequent excitatory and inhibitory nonvolatile behavior in the bio-electrolyte-gated transistors. By applying voltage pulses combined with stimulation of chiral light, the artificial optoelectronic synapse tunes not only synaptic functions but also learning pathways and color recognition. These multifunctional bio-based synaptic field-effect transistors exhibit potential for enhanced parallel neuromorphic computing and robot vision technology.
Collapse
Affiliation(s)
- Moon Jong Han
- Department
of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Vladimir V. Tsukruk
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Dewberry LS, Porche K, Koenig T, Allen KD, Otto KJ. High frequency alternating current neurostimulation decreases nocifensive behavior in a disc herniation model of lumbar radiculopathy. Bioelectron Med 2023; 9:15. [PMID: 37434246 DOI: 10.1186/s42234-023-00119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The purpose of this study was to evaluate if kilohertz frequency alternating current (KHFAC) stimulation of peripheral nerve could serve as a treatment for lumbar radiculopathy. Prior work shows that KHFAC stimulation can treat sciatica resulting from chronic sciatic nerve constriction. Here, we evaluate if KHFAC stimulation is also beneficial in a more physiologic model of low back pain which mimics nucleus pulposus (NP) impingement of a lumbar dorsal root ganglion (DRG). METHODS To mimic a lumbar radiculopathy, autologous tail NP was harvested and placed upon the right L5 nerve root and DRG. During the same surgery, a cuff electrode was implanted around the sciatic nerve with wires routed to a headcap for delivery of KHFAC stimulation. Male Lewis rats (3 mo., n = 18) were separated into 3 groups: NP injury + KHFAC stimulation (n = 7), NP injury + sham cuff (n = 6), and sham injury + sham cuff (n = 5). Prior to surgery and for 2 weeks following surgery, animal tactile sensitivity, gait, and static weight bearing were evaluated. RESULTS KHFAC stimulation of the sciatic nerve decreased behavioral evidence of pain and disability. Without KHFAC stimulation, injured animals had heightened tactile sensitivity compared to baseline (p < 0.05), with tactile allodynia reversed during KHFAC stimulation (p < 0.01). Midfoot flexion during locomotion was decreased after injury but improved with KHFAC stimulation (p < 0.05). Animals also placed more weight on their injured limb when KHFAC stimulation was applied (p < 0.05). Electrophysiology measurements at end point showed decreased, but not blocked, compound nerve action potentials with KHFAC stimulation (p < 0.05). CONCLUSIONS KHFAC stimulation decreases hypersensitivity but does not cause additional gait compensations. This supports the idea that KHFAC stimulation applied to a peripheral nerve may be able to treat chronic pain resulting from sciatic nerve root inflammation.
Collapse
Affiliation(s)
- Lauren Savannah Dewberry
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
| | - Ken Porche
- Lillian S Wells Department of Neurosurgery at the University of Florida, College of Medicine, 1505 SW Archer Road Gainesville, FL, 32608, Gainesville, USA
| | - Travis Koenig
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
- Pain Research & Intervention Center of Excellence, University of Florida, CTSI 2004 Mowry Road, Gainesville, FL, USA
- Department of Orthopedics and Sports Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA.
- Department of Neuroscience, University of Florida, 1149 Newell Dr. L1-100, P.O. Box 100244, Gainesville, FL, USA.
- Department of Electrical and Computer Engineering, University of Florida, 968 Center Dr, Gainesville, FL, 32611, USA.
- Department of Chemical Engineering, University of Florida, 1030 Center Drive, P.O. Box 116005, Gainesville, FL, 32611, USA.
- Department of Materials Science and Engineering, University of Florida, 549 Gale Lemerand Dr, P.O. Box 116400, Gainesville, FL, 32611, USA.
- Department of Neurology, 1149 Newell Dr, P.O. Box 100236, Gainesville, FL, L3-10032610, USA.
- Nanoscience Institute for Medical and Engineering Technology (NIMET), University of Florida, 1041 Center Drive, Gainesville, FL, 32611, USA.
| |
Collapse
|
10
|
Stasenko SV, Hramov AE, Kazantsev VB. Loss of neuron network coherence induced by virus-infected astrocytes: a model study. Sci Rep 2023; 13:6401. [PMID: 37076526 PMCID: PMC10115799 DOI: 10.1038/s41598-023-33622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/15/2023] [Indexed: 04/21/2023] Open
Abstract
Coherent activations of brain neuron networks underlie many physiological functions associated with various behavioral states. These synchronous fluctuations in the electrical activity of the brain are also referred to as brain rhythms. At the cellular level, rhythmicity can be induced by various mechanisms of intrinsic oscillations in neurons or the network circulation of excitation between synaptically coupled neurons. One specific mechanism concerns the activity of brain astrocytes that accompany neurons and can coherently modulate synaptic contacts of neighboring neurons, synchronizing their activity. Recent studies have shown that coronavirus infection (Covid-19), which enters the central nervous system and infects astrocytes, can cause various metabolic disorders. Specifically, Covid-19 can depress the synthesis of astrocytic glutamate and gamma-aminobutyric acid. It is also known that in the post-Covid state, patients may suffer from symptoms of anxiety and impaired cognitive functions. We propose a mathematical model of a spiking neuron network accompanied by astrocytes capable of generating quasi-synchronous rhythmic bursting discharges. The model predicts that if the release of glutamate is depressed, normal burst rhythmicity will suffer dramatically. Interestingly, in some cases, the failure of network coherence may be intermittent, with intervals of normal rhythmicity, or the synchronization can disappear.
Collapse
Affiliation(s)
- Sergey V Stasenko
- Scientific-educational mathematical center "Mathematics of future technologies", Lobachevsky University, Nizhniy Novgorod, Russia, 603022.
- Laboratory of neurobiomorphic technologies, Moscow Institute of Physics and Technology, Moscow, Russia, 117303.
| | - Alexander E Hramov
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia, 236041
- Neuroscience Research Institute, Samara State Medical University, Samara, Russia, 443099
| | - Victor B Kazantsev
- Scientific-educational mathematical center "Mathematics of future technologies", Lobachevsky University, Nizhniy Novgorod, Russia, 603022
- Laboratory of neurobiomorphic technologies, Moscow Institute of Physics and Technology, Moscow, Russia, 117303
| |
Collapse
|
11
|
Lenz M, Eichler A, Kruse P, Stöhr P, Kleidonas D, Galanis C, Lu H, Vlachos A. Denervated mouse CA1 pyramidal neurons express homeostatic synaptic plasticity following entorhinal cortex lesion. Front Mol Neurosci 2023; 16:1148219. [PMID: 37122623 PMCID: PMC10130538 DOI: 10.3389/fnmol.2023.1148219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
Structural, functional, and molecular reorganization of denervated neural networks is often observed in neurological conditions. The loss of input is accompanied by homeostatic synaptic adaptations, which can affect the reorganization process. A major challenge of denervation-induced homeostatic plasticity operating in complex neural networks is the specialization of neuronal inputs. It remains unclear whether neurons respond similarly to the loss of distinct inputs. Here, we used in vitro entorhinal cortex lesion (ECL) and Schaffer collateral lesion (SCL) in mouse organotypic entorhino-hippocampal tissue cultures to study denervation-induced plasticity of CA1 pyramidal neurons. We observed microglia accumulation, presynaptic bouton degeneration, and a reduction in dendritic spine numbers in the denervated layers 3 days after SCL and ECL. Transcriptome analysis of the CA1 region revealed complex changes in differential gene expression following SCL and ECL compared to non-lesioned controls with a specific enrichment of differentially expressed synapse-related genes observed after ECL. Consistent with this finding, denervation-induced homeostatic plasticity of excitatory synapses was observed 3 days after ECL but not after SCL. Chemogenetic silencing of the EC but not CA3 confirmed the pathway-specific induction of homeostatic synaptic plasticity in CA1. Additionally, increased RNA oxidation was observed after SCL and ECL. These results reveal important commonalities and differences between distinct pathway lesions and demonstrate a pathway-specific induction of denervation-induced homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Phyllis Stöhr
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dimitrios Kleidonas
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Zhao J, Zheng S, Zhou L, Mi W, Ding Y, Wang M. An artificial optoelectronic synapse based on MoO xfilm. NANOTECHNOLOGY 2023; 34:145201. [PMID: 36630707 DOI: 10.1088/1361-6528/acb217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Artificial optoelectronic synapses have the advantages of large bandwidth, low power consumption and low crosstalk, and are considered to be the basic building blocks of neuromorphic computing. In this paper, a two-terminal optoelectronic synaptic device with ITO-MoOx-Pt structure is prepared by magnetron sputtering. The performance of resistive switching (RS) and the photo plastic properties of the device are analyzed and demonstrated. Electrical characterization tests show that the device has a resistive HRS/LRS ratio of about 90, stable endurance, and retention characteristics of more than 104s (85 °C). The physical mechanism of the device is elucidated by a conducting filament composed of oxygen vacancies. Furthermore, the function of various synaptic neural morphologies is successfully mimicked using UV light as the stimulation source. Including short-term/long-term memory, paired-pulse facilitation, the transition from short-term to long-term memory, and 'learning-experience' behavior. Integrated optical sensing and electronic data storage devices have great potential for future artificial intelligence, which will facilitate the rapid development of retina-like visual sensors and low-power neuromorphic systems.
Collapse
Affiliation(s)
- Jinshi Zhao
- Tianjin Key Laboratory of Film Electronic & Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xi qing District, Tianjin, 300384, People's Republic of China
| | - ShuTong Zheng
- Tianjin Key Laboratory of Film Electronic & Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xi qing District, Tianjin, 300384, People's Republic of China
| | - Liwei Zhou
- Tianjin Key Laboratory of Film Electronic & Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xi qing District, Tianjin, 300384, People's Republic of China
| | - Wei Mi
- Tianjin Key Laboratory of Film Electronic & Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xi qing District, Tianjin, 300384, People's Republic of China
| | - Yue Ding
- Tianjin Key Laboratory of Film Electronic & Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xi qing District, Tianjin, 300384, People's Republic of China
| | - Meng Wang
- Innetech Electronics CO. Ltd, Building B, No. 4, Tianzhi Industrial Park, No. 12, Hongyuan Road, Xiqing Economic Development Zone, Tianjin, People's Republic of China
| |
Collapse
|
13
|
Linders LE, Supiot LF, Du W, D’Angelo R, Adan RAH, Riga D, Meye FJ. Studying Synaptic Connectivity and Strength with Optogenetics and Patch-Clamp Electrophysiology. Int J Mol Sci 2022; 23:ijms231911612. [PMID: 36232917 PMCID: PMC9570045 DOI: 10.3390/ijms231911612] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 02/07/2023] Open
Abstract
Over the last two decades the combination of brain slice patch clamp electrophysiology with optogenetic stimulation has proven to be a powerful approach to analyze the architecture of neural circuits and (experience-dependent) synaptic plasticity in such networks. Using this combination of methods, originally termed channelrhodopsin-assisted circuit mapping (CRACM), a multitude of measures of synaptic functioning can be taken. The current review discusses their rationale, current applications in the field, and their associated caveats. Specifically, the review addresses: (1) How to assess the presence of synaptic connections, both in terms of ionotropic versus metabotropic receptor signaling, and in terms of mono- versus polysynaptic connectivity. (2) How to acquire and interpret measures for synaptic strength and function, like AMPAR/NMDAR, AMPAR rectification, paired-pulse ratio (PPR), coefficient of variance and input-specific quantal sizes. We also address how synaptic modulation by G protein-coupled receptors can be studied with pharmacological approaches and advanced technology. (3) Finally, we elaborate on advances on the use of dual color optogenetics in concurrent investigation of multiple synaptic pathways. Overall, with this review we seek to provide practical insights into the methods used to study neural circuits and synapses, by combining optogenetics and patch-clamp electrophysiology.
Collapse
|
14
|
Kim D, Lee JS. Emulating the Signal Transmission in a Neural System Using Polymer Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42308-42316. [PMID: 36069456 DOI: 10.1021/acsami.2c12166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurons are vital components of the brain. When stimulated by neurotransmitters at the dendrites, neurons deliver signals as changes in the membrane potential by ion movement. The signal transmission of a nervous system exhibits a high energy efficiency. These characteristics of neurons are being exploited to develop efficient neuromorphic computing systems. In this study, we develop chemical synapses for neuromorphic devices and emulate the signaling processes in a nervous system using a polymer membrane, in which the ionic permeability can be controlled. The polymer membrane comprises poly(diallyl-dimethylammonium chloride) and poly(3-sulfopropyl acrylate potassium salt), which have positive and negative charges, respectively. The ionic permeability of the polymer membrane is controlled by the injection of a neurotransmitter solution. This device emulates the signal transmission behavior of biological neurons depending on the concentration of the injected neurotransmitter solution. The proposed artificial neuronal signaling device can facilitate the development of bio-realistic neuromorphic devices.
Collapse
Affiliation(s)
- Dongshin Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jang-Sik Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
15
|
Hikosaka M, Kawano T, Wada Y, Maeda T, Sakurai T, Ohtsuki G. Immune-Triggered Forms of Plasticity Across Brain Regions. Front Cell Neurosci 2022; 16:925493. [PMID: 35978857 PMCID: PMC9376917 DOI: 10.3389/fncel.2022.925493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/16/2022] [Indexed: 01/03/2023] Open
Abstract
Immune cells play numerous roles in the host defense against the invasion of microorganisms and pathogens, which induces the release of inflammatory mediators (e.g., cytokines and chemokines). In the CNS, microglia is the major resident immune cell. Recent efforts have revealed the diversity of the cell types and the heterogeneity of their functions. The refinement of the synapse structure was a hallmark feature of the microglia, while they are also involved in the myelination and capillary dynamics. Another promising feature is the modulation of the synaptic transmission as synaptic plasticity and the intrinsic excitability of neurons as non-synaptic plasticity. Those modulations of physiological properties of neurons are considered induced by both transient and chronic exposures to inflammatory mediators, which cause behavioral disorders seen in mental illness. It is plausible for astrocytes and pericytes other than microglia and macrophage to induce the immune-triggered plasticity of neurons. However, current understanding has yet achieved to unveil what inflammatory mediators from what immune cells or glia induce a form of plasticity modulating pre-, post-synaptic functions and intrinsic excitability of neurons. It is still unclear what ion channels and intracellular signaling of what types of neurons in which brain regions of the CNS are involved. In this review, we introduce the ubiquitous modulation of the synaptic efficacy and the intrinsic excitability across the brain by immune cells and related inflammatory cytokines with the mechanism for induction. Specifically, we compare neuro-modulation mechanisms by microglia of the intrinsic excitability of cerebellar Purkinje neurons with cerebral pyramidal neurons, stressing the inverted directionality of the plasticity. We also discuss the suppression and augmentation of the extent of plasticity by inflammatory mediators, as the meta-plasticity by immunity. Lastly, we sum up forms of immune-triggered plasticity in the different brain regions with disease relevance. Together, brain immunity influences our cognition, sense, memory, and behavior via immune-triggered plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Price BH, Gavornik JP. Efficient Temporal Coding in the Early Visual System: Existing Evidence and Future Directions. Front Comput Neurosci 2022; 16:929348. [PMID: 35874317 PMCID: PMC9298461 DOI: 10.3389/fncom.2022.929348] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 01/16/2023] Open
Abstract
While it is universally accepted that the brain makes predictions, there is little agreement about how this is accomplished and under which conditions. Accurate prediction requires neural circuits to learn and store spatiotemporal patterns observed in the natural environment, but it is not obvious how such information should be stored, or encoded. Information theory provides a mathematical formalism that can be used to measure the efficiency and utility of different coding schemes for data transfer and storage. This theory shows that codes become efficient when they remove predictable, redundant spatial and temporal information. Efficient coding has been used to understand retinal computations and may also be relevant to understanding more complicated temporal processing in visual cortex. However, the literature on efficient coding in cortex is varied and can be confusing since the same terms are used to mean different things in different experimental and theoretical contexts. In this work, we attempt to provide a clear summary of the theoretical relationship between efficient coding and temporal prediction, and review evidence that efficient coding principles explain computations in the retina. We then apply the same framework to computations occurring in early visuocortical areas, arguing that data from rodents is largely consistent with the predictions of this model. Finally, we review and respond to criticisms of efficient coding and suggest ways that this theory might be used to design future experiments, with particular focus on understanding the extent to which neural circuits make predictions from efficient representations of environmental statistics.
Collapse
Affiliation(s)
| | - Jeffrey P. Gavornik
- Center for Systems Neuroscience, Graduate Program in Neuroscience, Department of Biology, Boston University, Boston, MA, United States
| |
Collapse
|
17
|
Müller NIC, Paulußen I, Hofmann LN, Fisch JO, Singh A, Friauf E. Development of synaptic fidelity and action potential robustness at an inhibitory sound localization circuit: effects of otoferlin-related deafness. J Physiol 2022; 600:2461-2497. [PMID: 35439328 DOI: 10.1113/jp280403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/30/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Inhibitory glycinergic inputs from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) are involved in sound localization. This brainstem circuit performs reliably throughout life. How such reliability develops is unknown. Here we investigated the role of acoustic experience on the functional maturation of MNTB-LSO inputs at juvenile (postnatal day P11) and young-adult ages (P38) employing deaf mice lacking otoferlin (KO). We analyzed neurotransmission at single MNTB-LSO fibers in acute brainstem slices employing prolonged high-frequency stimulation (1-200 Hz|60 s). At P11, KO inputs still performed normally, as manifested by normal synaptic attenuation, fidelity, replenishment rate, temporal precision, and action potential robustness. Between P11-P38, several synaptic parameters increased substantially in WTs, collectively resulting in high-fidelity and temporally precise neurotransmission. In contrast, maturation of synaptic fidelity was largely absent in KOs after P11. Collectively, reliable neurotransmission at inhibitory MNTB-LSO inputs develops under the guidance of acoustic experience. ABSTRACT Sound localization involves information analysis in the lateral superior olive (LSO), a conspicuous nucleus in the mammalian auditory brainstem. LSO neurons weigh interaural level differences (ILDs) through precise integration of glutamatergic excitation from the cochlear nucleus (CN) and glycinergic inhibition from the medial nucleus of the trapezoid body (MNTB). Sound sources can be localized even during sustained perception, an accomplishment that requires robust neurotransmission. Virtually nothing is known about the sustained performance and the temporal precision of MNTB-LSO inputs after postnatal day (P)12 (time of hearing onset) and whether acoustic experience guides development. Here we performed whole-cell patch-clamp recordings to investigate neurotransmission of single MNTB-LSO fibers upon sustained electrical stimulation (1-200 Hz|60 s) at P11 and P38 in wild-type (WT) and deaf otoferlin (Otof) knock-out (KO) mice. At P11, WT and KO inputs performed remarkably similarly. In WTs, the performance increased drastically between P11-P38, e.g. manifested by an 8 to 11-fold higher replenishment rate (RR) of synaptic vesicles (SVs) and action potential robustness. Together, these changes resulted in reliable and highly precise neurotransmission at frequencies ≤ 100 Hz. In contrast, KO inputs performed similarly at both ages, implying impaired synaptic maturation. Computational modeling confirmed the empirical observations and established a reduced RR per release site for P38 KOs. In conclusion, acoustic experience appears to contribute massively to the development of reliable neurotransmission, thereby forming the basis for effective ILD detection. Collectively, our results provide novel insights into experience-dependent maturation of inhibitory neurotransmission and auditory circuits at the synaptic level. Abstract figure legend MNTB-LSO inputs are a major component of the mammalian auditory brainstem. Reliable neurotransmission at these inputs requires both failure-free conduction of action potentials and robust synaptic transmission. The development of reliable neurotransmission depends crucially on functional hearing, as demonstrated in a time series and by the fact that deafness - upon loss of the protein otoferlin - results in severely impaired synaptic release and replenishment machineries. These findings from animal research may have some implications towards optimizing cochlear implant strategies on newborn humans. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nicolas I C Müller
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany.,Physiology of Neuronal Networks, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| | - Isabelle Paulußen
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| | - Lina N Hofmann
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| | - Jonas O Fisch
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| | - Abhyudai Singh
- 3Electrical & Computer Engineering, University of Delaware, Newark, DE, USA
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| |
Collapse
|
18
|
Bian H, Goh YY, Liu Y, Ling H, Xie L, Liu X. Stimuli-Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006469. [PMID: 33837601 DOI: 10.1002/adma.202006469] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Neuromorphic computing holds promise for building next-generation intelligent systems in a more energy-efficient way than the conventional von Neumann computing architecture. Memristive hardware, which mimics biological neurons and synapses, offers high-speed operation and low power consumption, enabling energy- and area-efficient, brain-inspired computing. Here, recent advances in memristive materials and strategies that emulate synaptic functions for neuromorphic computing are highlighted. The working principles and characteristics of biological neurons and synapses, which can be mimicked by memristive devices, are presented. Besides device structures and operation with different external stimuli such as electric, magnetic, and optical fields, how memristive materials with a rich variety of underlying physical mechanisms can allow fast, reliable, and low-power neuromorphic applications is also discussed. Finally, device requirements are examined and a perspective on challenges in developing memristive materials for device engineering and computing science is given.
Collapse
Affiliation(s)
- Hongyu Bian
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Yi Yiing Goh
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Yuxia Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou, 215123, China
| | - Haifeng Ling
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Linghai Xie
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou, 215123, China
| |
Collapse
|
19
|
Tonti E, Budini M, Vingolo EM. Visuo-Acoustic Stimulation's Role in Synaptic Plasticity: A Review of the Literature. Int J Mol Sci 2021; 22:ijms221910783. [PMID: 34639122 PMCID: PMC8509608 DOI: 10.3390/ijms221910783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Brain plasticity is the capacity of cerebral neurons to change, structurally and functionally, in response to experiences. This is an essential property underlying the maturation of sensory functions, learning and memory processes, and brain repair in response to the occurrence of diseases and trauma. In this field, the visual system emerges as a paradigmatic research model, both for basic research studies and for translational investigations. The auditory system remains capable of reorganizing itself in response to different auditory stimulations or sensory organ modification. Acoustic biofeedback training can be an effective way to train patients with the central scotoma, who have poor fixation stability and poor visual acuity, in order to bring fixation on an eccentrical and healthy area of the retina: a pseudofovea. This review article is focused on the cellular and molecular mechanisms underlying retinal sensitivity changes and visual and auditory system plasticity.
Collapse
|
20
|
Nersisyan S, Bekisz M, Kublik E, Granseth B, Wróbel A. Cholinergic and Noradrenergic Modulation of Corticothalamic Synaptic Input From Layer 6 to the Posteromedial Thalamic Nucleus in the Rat. Front Neural Circuits 2021; 15:624381. [PMID: 33981204 PMCID: PMC8107268 DOI: 10.3389/fncir.2021.624381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Cholinergic and noradrenergic neuromodulation of the synaptic transmission from cortical layer 6 of the primary somatosensory cortex to neurons in the posteromedial thalamic nucleus (PoM) was studied using an in vitro slice preparation from young rats. Cholinergic agonist carbachol substantially decreased the amplitudes of consecutive excitatory postsynaptic potentials (EPSPs) evoked by a 20 Hz five pulse train. The decreased amplitude effect was counteracted by a parallel increase of synaptic frequency-dependent facilitation. We found this modulation to be mediated by muscarinic acetylcholine receptors. In the presence of carbachol the amplitudes of the postsynaptic potentials showed a higher trial-to-trial coefficient of variation (CV), which suggested a presynaptic site of action for the modulation. To substantiate this finding, we measured the failure rate of the excitatory postsynaptic currents in PoM cells evoked by “pseudominimal” stimulation of corticothalamic input. A higher failure-rate in the presence of carbachol indicated decreased probability of transmitter release at the synapse. Activation of the noradrenergic modulatory system that was mimicked by application of norepinephrine did not affect the amplitude of the first EPSP evoked in the five-pulse train, but later EPSPs were diminished. This indicated a decrease of the synaptic frequency-dependent facilitation. Treatment with noradrenergic α-2 agonist clonidine, α-1 agonist phenylephrine, or β-receptor agonist isoproterenol showed that the modulation may partly rely on α-2 adrenergic receptors. CV analysis did not suggest a presynaptic action of norepinephrine. We conclude that cholinergic and noradrenergic modulation act as different variable dynamic controls for the corticothalamic mechanism of the frequency-dependent facilitation in PoM.
Collapse
Affiliation(s)
- Syune Nersisyan
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Marek Bekisz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Kublik
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Björn Granseth
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Andrzej Wróbel
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Philosophy, University of Warsaw, Warsaw, Poland
| |
Collapse
|
21
|
Neudorfer C, Chow CT, Boutet A, Loh A, Germann J, Elias GJ, Hutchison WD, Lozano AM. Kilohertz-frequency stimulation of the nervous system: A review of underlying mechanisms. Brain Stimul 2021; 14:513-530. [PMID: 33757930 DOI: 10.1016/j.brs.2021.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Electrical stimulation in the kilohertz-frequency range has gained interest in the field of neuroscience. The mechanisms underlying stimulation in this frequency range, however, are poorly characterized to date. OBJECTIVE/HYPOTHESIS To summarize the manifold biological effects elicited by kilohertz-frequency stimulation in the context of the currently existing literature and provide a mechanistic framework for the neural responses observed in this frequency range. METHODS A comprehensive search of the peer-reviewed literature was conducted across electronic databases. Relevant computational, clinical, and mechanistic studies were selected for review. RESULTS The effects of kilohertz-frequency stimulation on neural tissue are diverse and yield effects that are distinct from conventional stimulation. Broadly, these can be divided into 1) subthreshold, 2) suprathreshold, 3) synaptic and 4) thermal effects. While facilitation is the dominating mechanism at the subthreshold level, desynchronization, spike-rate adaptation, conduction block, and non-monotonic activation can be observed during suprathreshold kilohertz-frequency stimulation. At the synaptic level, kilohertz-frequency stimulation has been associated with the transient depletion of the available neurotransmitter pool - also known as synaptic fatigue. Finally, thermal effects associated with extrinsic (environmental) and intrinsic (associated with kilohertz-frequency stimulation) temperature changes have been suggested to alter the neural response to stimulation paradigms. CONCLUSION The diverse spectrum of neural responses to stimulation in the kilohertz-frequency range is distinct from that associated with conventional stimulation. This offers the potential for new therapeutic avenues across stimulation modalities. However, stimulation in the kilohertz-frequency range is associated with distinct challenges and caveats that need to be considered in experimental paradigms.
Collapse
Affiliation(s)
- Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Clement T Chow
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Gavin Jb Elias
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - William D Hutchison
- Krembil Research Institute, University of Toronto, Ontario, Canada; Department of Physiology, Toronto Western Hospital and University of Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada; Krembil Research Institute, University of Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Pascoaloti-Lima JC, Machado BH, Accorsi-Mendonça D. Sustained Hypoxia Reduces GABAergic Modulation on NTS Neurons Sending Projections to Ventral Medulla of Rats. Neuroscience 2021; 457:1-11. [PMID: 33421568 DOI: 10.1016/j.neuroscience.2020.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Abstract
Peripheral chemoreflex is activated during short-term sustained hypoxia (SH), and the first synapse of these afferents is located in Nucleus Tractus Solitarius(NTS). NTS neurons projecting to the ventral lateral medulla (NTS-VLM) are part of the respiratory pathways of the chemoreflex. SH increases the magnitude of basal respiratory parameters in rats from Wistar-Hannover strain. In this study, we hypothesized that the observed changes in the respiratory pattern in response to SH were due to changes in the GABAergic modulation of the synaptic transmission of NTS-VLM neurons. We used an electrophysiological approach to record the synaptic activity of NTS neurons labeled with a retrograde tracer previously microinjected into VLM of Wistar-Hannover rats submitted to 24 h SH. The data are showing that: (a) the amplitude of evoked inhibitory currents in NTS-VLM neurons of SH rats was reduced and not accompanied by any change in rise-time and decay-time; (b) the 1/CV2 and the number of failures in response to evoked currents were also affected by SH; (c) the frequency of spontaneous inhibitory currents was reduced by SH without changes in amplitude and half-width. These effects of SH were observed in NTS-VLM neurons located in caudal and intermediate NTS, but not in NTS-VLM neurons located in the rostral NTS. We conclude that SH causes a reduction in inhibitory modulation onto NTS-VLM neurons by pre-synaptic mechanisms, which may contribute to the observed changes in the respiratory pattern of Wistar-Hannover rats submitted to SH.
Collapse
Affiliation(s)
- Júlio C Pascoaloti-Lima
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniela Accorsi-Mendonça
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
23
|
Knockdown of astrocytic TREM2 in the hippocampus relieves cognitive decline in elderly male mice. Behav Brain Res 2020; 397:112939. [PMID: 32991925 DOI: 10.1016/j.bbr.2020.112939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
With the lengthening of the human lifespan, an increasing proportion of the population is subject to age-related cognitive impairments, making it important to investigate ways to confront the effects of aging. Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune receptor that is expressed mainly on the surfaces of microglia. Previous studies have found a significant positive correlation between age and TREM2 levels. An increased concentration of soluble TREM2 in cerebrospinal fluid was also found in Alzheimer's disease (AD) patients. Although TREM2 is more highly expressed in microglia than in astrocytes, little attention has been focused on astrocytic TREM2, and the precise role of astrocytic TREM2 in the aging process remains unknown. In this study, we injected TREM2 shRNA into the hippocampal CA1 region to specifically knock down the expression of this protein in astrocytes. We found that TREM2 shRNA injection can improve learning and memory ability in elderly mice, as demonstrated by improved learning ability and memory performance in the Morris water maze (MWM) test, an increased freezing duration in the contextual fear conditioning test, a higher preference ratio in the novel object recognition (NOR) test and a higher alternation rate in the T-maze test. Knocking down astrocytic TREM2 can also rescue impaired long-term potentiation (LTP) induction in the hippocampal CA1 of elderly mice through a presynaptic mechanism. Our results suggest that decreased astrocytic TREM2 levels have beneficial effects on learning and memory ability in elderly mice, which may provide new insight into the pathological mechanism and potential targets of age-related dementia.
Collapse
|
24
|
Levetiracetam Reduced the Basal Excitability of the Dentate Gyrus without Restoring Impaired Synaptic Plasticity in Rats with Temporal Lobe Epilepsy. Brain Sci 2020; 10:brainsci10090634. [PMID: 32933015 PMCID: PMC7565946 DOI: 10.3390/brainsci10090634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Temporal lobe epilepsy (TLE), the most common type of focal epilepsy, affects learning and memory; these effects are thought to emerge from changes in synaptic plasticity. Levetiracetam (LEV) is a widely used antiepileptic drug that is also associated with the reversal of cognitive dysfunction. The long-lasting effect of LEV treatment and its participation in synaptic plasticity have not been explored in early chronic epilepsy. Therefore, through the measurement of evoked field potentials, this study aimed to comprehensively identify the alterations in the excitability and the short-term (depression/facilitation) and long-term synaptic plasticity (long-term potentiation, LTP) of the dentate gyrus of the hippocampus in a lithium–pilocarpine rat model of TLE, as well as their possible restoration by LEV (1 week; 300 mg/kg/day). TLE increased the population spike (PS) amplitude (input/output curve); interestingly, LEV treatment partially reduced this hyperexcitability. Furthermore, TLE augmented synaptic depression, suppressed paired-pulse facilitation, and reduced PS-LTP; however, LEV did not alleviate such alterations. Conversely, the excitatory postsynaptic potential (EPSP)-LTP of TLE rats was comparable to that of control rats and was decreased by LEV. LEV caused a long-lasting attenuation of basal hyperexcitability but did not restore impaired synaptic plasticity in the early chronic phase of TLE.
Collapse
|
25
|
Jacobi E, Engelhardt J. Modulation of information processing by AMPA receptor auxiliary subunits. J Physiol 2020; 599:471-483. [DOI: 10.1113/jp276698] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Eric Jacobi
- Institute of Pathophysiology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
- Focus Program Translational Neurosciences (FTN) University Medical Center of the Johannes Gutenberg‐University Mainz Mainz Germany
| | - Jakob Engelhardt
- Institute of Pathophysiology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
- Focus Program Translational Neurosciences (FTN) University Medical Center of the Johannes Gutenberg‐University Mainz Mainz Germany
| |
Collapse
|
26
|
Yu Z, McIntosh JM, Sadeghi SG, Glowatzki E. Efferent synaptic transmission at the vestibular type II hair cell synapse. J Neurophysiol 2020; 124:360-374. [PMID: 32609559 DOI: 10.1152/jn.00143.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the vestibular peripheral organs, type I and type II hair cells (HCs) transmit incoming signals via glutamatergic quantal transmission onto afferent nerve fibers. Additionally, type I HCs transmit via "non-quantal" transmission to calyx afferent fibers, by accumulation of glutamate and potassium in the synaptic cleft. Vestibular efferent inputs originating in the brainstem contact type II HCs and vestibular afferents. Here, synaptic inputs to type II HCs were characterized by using electrical and optogenetic stimulation of efferent fibers combined with in vitro whole cell patch-clamp recording from type II HCs in the rodent vestibular crista. Properties of efferent synaptic currents in type II HCs were similar to those found in cochlear HCs and mediated by activation of α9-containing nicotinic acetylcholine receptors (nAChRs) and small-conductance calcium-activated potassium (SK) channels. While efferents showed a low probability of release at low frequencies of stimulation, repetitive stimulation resulted in facilitation and increased probability of release. Notably, the membrane potential of type II HCs during optogenetic stimulation of efferents showed a strong hyperpolarization in response to single pulses and was further enhanced by repetitive stimulation. Such efferent-mediated inhibition of type II HCs can provide a mechanism to adjust the contribution of signals from type I and type II HCs to vestibular nerve fibers, with a shift of the response to be more like that of calyx-only afferents with faster non-quantal responses.NEW & NOTEWORTHY Type II vestibular hair cells (HCs) receive inputs from efferent neurons in the brain stem. We used in vitro optogenetic and electrical stimulation of vestibular efferent fibers to study their synaptic inputs to type II HCs. Stimulation of efferents inhibited type II HCs, similar to efferent effects on cochlear HCs. We propose that efferent inputs adjust the contribution of signals from type I and II HCs to vestibular nerve fibers.
Collapse
Affiliation(s)
- Zhou Yu
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Center for Hearing and Balance, and The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Soroush G Sadeghi
- Department of Communicative Disorders and Sciences, and Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York.,Neuroscience Program, State University of New York at Buffalo, Buffalo, New York
| | - Elisabeth Glowatzki
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Center for Hearing and Balance, and The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
27
|
Mu-Opioids Suppress GABAergic Synaptic Transmission onto Orbitofrontal Cortex Pyramidal Neurons with Subregional Selectivity. J Neurosci 2020; 40:5894-5907. [PMID: 32601247 DOI: 10.1523/jneurosci.2049-19.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
The orbitofrontal cortex (OFC) plays a critical role in evaluating outcomes in a changing environment. Administering opioids to the OFC can alter the hedonic reaction to food rewards and increase their consumption in a subregion-specific manner. However, it is unknown how mu-opioid signaling influences synaptic transmission in the OFC. Thus, we investigated the cellular actions of mu-opioids within distinct subregions of the OFC. Using in vitro patch-clamp electrophysiology in brain slices containing the OFC, we found that the mu-opioid agonist DAMGO produced a concentration-dependent inhibition of GABAergic synaptic transmission onto medial OFC (mOFC), but not lateral OFC (lOFC) neurons. This effect was mediated by presynaptic mu-opioid receptor activation of local parvalbumin (PV+)-expressing interneurons. The DAMGO-induced suppression of inhibition was long lasting and not reversed on washout of DAMGO or by application of the mu-opioid receptor antagonist CTAP, suggesting an inhibitory long-term depression (LTD) induced by an exogenous mu-opioid. We show that LTD at inhibitory synapses is dependent on downstream cAMP/protein kinase A (PKA) signaling, which differs between the mOFC and lOFC. Finally, we demonstrate that endogenous opioid release triggered via moderate physiological stimulation can induce LTD. Together, these results suggest that presynaptic mu-opioid stimulation of local PV+ interneurons induces a long-lasting suppression of GABAergic synaptic transmission, which depends on subregional differences in mu-opioid receptor coupling to the downstream cAMP/PKA intracellular cascade. These findings provide mechanistic insight into the opposing functional effects produced by mu-opioids within the OFC.SIGNIFICANCE STATEMENT Considering that both the orbitofrontal cortex (OFC) and the opioid system regulate reward, motivation, and food intake, understanding the role of opioid signaling within the OFC is fundamental for a mechanistic understanding of the sequelae for several psychiatric disorders. This study makes several novel observations. First, mu-opioids induce a long-lasting suppression of inhibitory synaptic transmission onto OFC pyramidal neurons in a regionally selective manner. Second, mu-opioids recruit parvalbumin inputs to suppress inhibitory synaptic transmission in the mOFC. Third, the regional selectivity of mu-opioid action of endogenous opioids is due to the efficacy of mu-opioid receptor coupling to the downstream cAMP/PKA intracellular cascades. These experiments are the first to reveal a cellular mechanism of opioid action within the OFC.
Collapse
|
28
|
Kulkarni MR, John RA, Tiwari N, Nirmal A, Ng SE, Nguyen AC, Mathews N. Field-Driven Athermal Activation of Amorphous Metal Oxide Semiconductors for Flexible Programmable Logic Circuits and Neuromorphic Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901457. [PMID: 31120199 DOI: 10.1002/smll.201901457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Despite extensive research, large-scale realization of metal-oxide electronics is still impeded by high-temperature fabrication, incompatible with flexible substrates. Ideally, an athermal treatment modifying the electronic structure of amorphous metal oxide semiconductors (AMOS) to generate sufficient carrier concentration would help mitigate such high-temperature requirements, enabling realization of high-performance electronics on flexible substrates. Here, a novel field-driven athermal activation of AMOS channels is demonstrated via an electrolyte-gating approach. Facilitating migration of charged oxygen species across the semiconductor-dielectric interface, this approach modulates the local electronic structure of the channel, generating sufficient carriers for charge transport and activating oxygen-compensated thin films. The thin-film transistors (TFTs) investigated here depict an enhancement of linear mobility from 51 to 105.25 cm2 V-1 s-1 (ionic-gated) and from 8.09 to 14.49 cm2 V-1 s-1 (back-gated), by creating additional oxygen vacancies. The accompanying stochiometric transformations, monitored via spectroscopic measurements (X-ray photoelectron spectroscopy) corroborate the detailed electrical (TFT, current evolution) parameter analyses, providing critical insights into the underlying oxygen-vacancy generation mechanism and clearly demonstrating field-induced activation as a promising alternative to conventional high-temperature annealing strategies. Facilitating on-demand active programing of the operation modes of transistors (enhancement vs depletion), this technique paves way for facile fabrication of logic circuits and neuromorphic transistors for bioinspired computing.
Collapse
Affiliation(s)
- Mohit Rameshchandra Kulkarni
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rohit Abraham John
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Nidhi Tiwari
- Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, Singapore, 637553, Singapore
| | - Amoolya Nirmal
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Si En Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Anh Chien Nguyen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Nripan Mathews
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, Singapore, 637553, Singapore
| |
Collapse
|
29
|
Ille S, Engel L, Albers L, Schroeder A, Kelm A, Meyer B, Krieg SM. Functional Reorganization of Cortical Language Function in Glioma Patients-A Preliminary Study. Front Oncol 2019; 9:446. [PMID: 31231608 PMCID: PMC6558431 DOI: 10.3389/fonc.2019.00446] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/10/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Functional reorganization (FR) was shown in glioma patients by direct electrical stimulation (DES) during awake craniotomy. This option for repeated mapping is available in cases of tumor recurrence and after decision for a second surgery. Navigated repetitive transcranial magnetic stimulation (nrTMS) has shown a high correlation with results of DES during awake craniotomy for language-negative sites (LNS) and allows for a non-invasive evaluation of language function. This preliminary study aims to examine FR in glioma patients by nrTMS. Methods: A cohort of eighteen patients with left-sided perisylvian gliomas underwent preoperative nrTMS language mapping twice. The mean time between mappings was 17 ± 12 months. The cortex was separated into anterior and posterior language-eloquent regions. We defined a tumor area and an area without tumor (WOT). Error rates (ER = number of errors per number of stimulations) and hemispheric dominance ratios (HDR) were calculated as the quotient of the left- and right-sided ER. Results: In cases in which most language function was located near the tumor during the first mapping, we found significantly more LNS in the tumor area during the second mapping as compared to cases in which function was not located near the tumor (p = 0.049). Patients with seizures showed fewer LNS during the second mapping. We found more changes of cortical language function in patients with a follow-up time of more than 13 months and lower WHO-graded tumors. Conclusion: Present results confirm that nrTMS can show FR of LNS in glioma patients. Its extent, clinical impact and correlation with DES requires further evaluation but could have a considerable impact in neuro-oncology.
Collapse
Affiliation(s)
- Sebastian Ille
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Technische Universität München, Munich, Germany
| | - Lara Engel
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Technische Universität München, Munich, Germany
| | - Lucia Albers
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
| | - Axel Schroeder
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Technische Universität München, Munich, Germany
| | - Anna Kelm
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Technische Universität München, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Technische Universität München, Munich, Germany
| |
Collapse
|
30
|
Lima-Silveira L, Accorsi-Mendonça D, Bonagamba LGH, Almado CEL, da Silva MP, Nedoboy PE, Pilowsky PM, Machado BH. Enhancement of excitatory transmission in NTS neurons projecting to ventral medulla of rats exposed to sustained hypoxia is blunted by minocycline. J Physiol 2019; 597:2903-2923. [PMID: 30993693 DOI: 10.1113/jp277532] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/16/2019] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Rats subjected to sustained hypoxia (SH) present increases in arterial pressure (AP) and in glutamatergic transmission in the nucleus tractus solitarius (NTS) neurons sending projections to ventrolateral medulla (VLM). Treatment with minocycline, a microglial inhibitor, attenuated the increase in AP in response to SH. The increase in the amplitude of glutamatergic postsynaptic currents in the NTS-VLM neurons, induced by postsynaptic mechanisms, was blunted by minocycline treatment. The number of microglial cells was increased in the NTS of vehicle-treated SH rats but not in the NTS of minocycline-treated rats. The data show that microglial recruitment/proliferation induced by SH is associated with the enhancement of excitatory neurotransmission in NTS-VLM neurons, which may contribute to the observed increase in AP. ABSTRACT Short-term sustained hypoxia (SH) produces significant autonomic and respiratory adjustments and triggers activation of microglia, the resident immune cells in the brain. SH also enhances glutamatergic neurotransmission in the NTS. Here we evaluated the role of microglial activation induced by SH on the cardiovascular changes and mainly on glutamatergic neurotransmission in NTS neurons sending projections to the ventrolateral medulla (NTS-VLM), using a microglia inhibitor (minocycline). Direct measurement of arterial pressure (AP) in freely moving rats showed that SH (24 h, fraction of inspired oxygen ( F I , O 2 ) 0.1) in vehicle and minocycline (30 mg/kg i.p. for 3 days)-treated groups produced a significant increase in AP in relation to control groups under normoxic conditions, but this increase was significantly lower in minocycline-treated rats. Whole-cell patch-clamp recordings revealed that the active properties of the membrane were comparable among the groups. Nevertheless, the amplitudes of glutamatergic postsynaptic currents, evoked by tractus solitarius stimulation, were increased in NTS-VLM neurons of SH rats. Changes in asynchronous glutamatergic currents indicated that the observed increase in amplitude was due to postsynaptic mechanisms. These changes were blunted in the SH group previously treated with minocycline. Using immunofluorescence, we found that the number of microglial cells was increased in the NTS of vehicle-treated SH rats but not in the NTS neurons of minocycline-treated rats. Our data support the concept that microglial activation induced by SH is associated with the enhancement of excitatory neurotransmission in NTS-VLM neurons, which may contribute to the increase in AP observed in this experimental model.
Collapse
Affiliation(s)
- Ludmila Lima-Silveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Daniela Accorsi-Mendonça
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Leni G H Bonagamba
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Carlos Eduardo L Almado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Polina E Nedoboy
- The Heart Research Institute, Sydney, New South Wales, 2042, Australia
| | - Paul M Pilowsky
- The Heart Research Institute, Sydney, New South Wales, 2042, Australia
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| |
Collapse
|
31
|
Impaired fear memory extinction during adolescence is accompanied by the depressive-like behaviors. Neurosci Lett 2019; 699:8-15. [DOI: 10.1016/j.neulet.2019.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/03/2019] [Accepted: 01/19/2019] [Indexed: 12/30/2022]
|
32
|
John RA, Tiwari N, Yaoyi C, Tiwari N, Kulkarni M, Nirmal A, Nguyen AC, Basu A, Mathews N. Ultralow Power Dual-Gated Subthreshold Oxide Neuristors: An Enabler for Higher Order Neuronal Temporal Correlations. ACS NANO 2018; 12:11263-11273. [PMID: 30395439 DOI: 10.1021/acsnano.8b05903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Inspired by neural computing, the pursuit of ultralow power neuromorphic architectures with highly distributed memory and parallel processing capability has recently gained more traction. However, emulation of biological signal processing via artificial neuromorphic architectures does not exploit the immense interplay between local activities and global neuromodulations observed in biological neural networks and hence are unable to mimic complex biologically plausible adaptive functions like heterosynaptic plasticity and homeostasis. Here, we demonstrate emulation of complex neuronal behaviors like heterosynaptic plasticity, homeostasis, association, correlation, and coincidence in a single neuristor via a dual-gated architecture. This multiple gating approach allows one gate to capture the effect of local activity correlations and the second gate to represent global neuromodulations, allowing additional modulations which augment their plasticity, enabling higher order temporal correlations at a unitary level. Moreover, the dual-gate operation extends the available dynamic range of synaptic conductance while maintaining symmetry in the weight-update operation, expanding the number of accessible memory states. Finally, operating neuristors in the subthreshold regime enable synaptic weight changes with high gain while maintaining ultralow power consumption of the order of femto-Joules.
Collapse
Affiliation(s)
- Rohit Abraham John
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Nidhi Tiwari
- Energy Research Institute at NTU (ERI@N) , Nanyang Technological University , Singapore 637553
| | - Chen Yaoyi
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Naveen Tiwari
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Mohit Kulkarni
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Amoolya Nirmal
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Anh Chien Nguyen
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Arindam Basu
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Nripan Mathews
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
- Energy Research Institute at NTU (ERI@N) , Nanyang Technological University , Singapore 637553
| |
Collapse
|
33
|
Raeber TJ, Barlow AJ, Zhao ZC, McKenzie DR, Partridge JG, McCulloch DG, Murdoch BJ. Sensory gating in bilayer amorphous carbon memristors. NANOSCALE 2018; 10:20272-20278. [PMID: 30362489 DOI: 10.1039/c8nr05328f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Multi-state amorphous carbon-based memory devices have been developed that exhibit both bipolar and unipolar resistive switching behaviour. These modes of operation were implemented independently to access multiple resistance states, enabling higher memory density than conventional binary non-volatile memory technologies. The switching characteristics have been further utilised to study synaptic computational functions that could be implemented in artificial neural networks. Notably, paired-pulse inhibition (PPI) is observed at bio-realistic timescales (<100 ms). Devices displaying this rich synaptic behaviour could function as robust stand-alone synapse-inspired memory or be applied as filters for specialised neuromorphic circuits and sensors.
Collapse
Affiliation(s)
- T J Raeber
- School of Science, RMIT University, VIC 3001, Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
34
|
Opposite Roles in Short-Term Plasticity for N-Type and P/Q-Type Voltage-Dependent Calcium Channels in GABAergic Neuronal Connections in the Rat Cerebral Cortex. J Neurosci 2018; 38:9814-9828. [PMID: 30249804 DOI: 10.1523/jneurosci.0337-18.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/23/2018] [Accepted: 07/28/2018] [Indexed: 12/23/2022] Open
Abstract
Neurotransmitter release is triggered by Ca2+ influx through voltage-dependent Ca2+ channels (VDCCs). Distinct expression patterns of VDCC subtypes localized on the synaptic terminal affect intracellular Ca2+ dynamics induced by action potential-triggered Ca2+ influx. However, it has been unknown whether the expression pattern of VDCC subtypes depends on each axon terminal or neuronal subtype. Furthermore, little information is available on how these VDCC subtypes regulate the release probability of neurotransmitters. To address these questions, we performed multiple whole-cell patch-clamp recordings from GABAergic neurons in the insular cortex of either the male or the female rat. The paired-pulse ratio (PPR; 50 ms interstimulus interval) varied widely among inhibitory connections between GABAergic neurons. The PPR of unitary IPSCs was enhanced by ω-conotoxin GVIA (CgTx; 3 μm), an N-type VDCC blocker, whereas blockade of P/Q-type VDCCs by ω-agatoxin IVA (AgTx, 200 nm) decreased the PPR. In the presence of CgTx, application of 4 mm [Ca2+]o or of roscovitine, a P/Q-type activator, increased the PPR. These results suggest that the recruitment of P/Q-type VDCCs increases the PPR, whereas N-type VDCCs suppress the PPR. Furthermore, we found that charybdotoxin or apamin, blockers of Ca2+-dependent K+ channels, with AgTx increased the PPR, suggesting that Ca2+-dependent K+ channels are coupled to N-type VDCCs and suppress the PPR in GABAergic neuronal terminals. Variance-mean analysis with changing [Ca2+]o showed a negative correlation between the PPR and release probability in GABAergic synapses. These results suggest that GABAergic neurons differentially express N-type and/or P/Q-type VDCCs and that these VDCCs regulate the GABA release probability in distinct manners.SIGNIFICANCE STATEMENT GABAergic neuronal axons target multiple neurons and release GABA triggered by Ca2+ influx via voltage-dependent Ca2+ channels (VDCCs), including N-type and P/Q-type channels. Little is known about VDCC expression patterns in GABAergic synaptic terminals and their role in short-term plasticity. We focused on inhibitory synaptic connections between GABAergic neurons in the cerebral cortex using multiple whole-cell patch-clamp recordings and found different expression patterns of VDCCs in the synaptic terminals branched from a single presynaptic neuron. Furthermore, we observed facilitative and depressive short-term plasticity of IPSCs mediated by P/Q-type and N-type VDCCs, respectively. These results suggest that VDCC expression patterns regulate distinctive types of synaptic transmission in each GABAergic axon terminal even though they are branched from a common presynaptic neuron.
Collapse
|
35
|
Barbeito-Andrés J, Gleiser PM, Bernal V, Hallgrímsson B, Gonzalez PN. Brain Structural Networks in Mouse Exposed to Chronic Maternal Undernutrition. Neuroscience 2018; 380:14-26. [DOI: 10.1016/j.neuroscience.2018.03.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 11/27/2022]
|
36
|
Sun L, Zhang Y, Hwang G, Jiang J, Kim D, Eshete YA, Zhao R, Yang H. Synaptic Computation Enabled by Joule Heating of Single-Layered Semiconductors for Sound Localization. NANO LETTERS 2018; 18:3229-3234. [PMID: 29668290 DOI: 10.1021/acs.nanolett.8b00994] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Synaptic computation, which is vital for information processing and decision making in neural networks, has remained technically challenging to be demonstrated without using numerous transistors and capacitors, though significant efforts have been made to emulate the biological synaptic transmission such as short-term and long-term plasticity and memory. Here, we report synaptic computation based on Joule heating and versatile doping induced metal-insulator transition in a scalable monolayer-molybdenum disulfide (MoS2) device with a biologically comparable energy consumption (∼10 fJ). A circuit with our tunable excitatory and inhibitory synaptic devices demonstrates a key function for realizing the most precise temporal computation in the human brain, sound localization: detecting an interaural time difference by suppressing sound intensity- or frequency-dependent synaptic connectivity. This Letter opens a way to implement synaptic computing in neuromorphic applications, overcoming the limitation of scalability and power consumption in conventional CMOS-based neuromorphic devices.
Collapse
Affiliation(s)
- Linfeng Sun
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Korea
| | - Yishu Zhang
- Singapore University of Technology & Design , 8 Somapah Road , 487372 , Singapore
| | - Geunwoo Hwang
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Korea
| | - Jinbao Jiang
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Korea
- IBS Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science , Sungkyunkwan University , Suwon 16419 , Korea
| | - Dohyun Kim
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Korea
| | - Yonas Assefa Eshete
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Korea
| | - Rong Zhao
- Singapore University of Technology & Design , 8 Somapah Road , 487372 , Singapore
| | - Heejun Yang
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Korea
| |
Collapse
|
37
|
Huang YT, Chang YL, Chen CC, Lai PY, Chan CK. Positive feedback and synchronized bursts in neuronal cultures. PLoS One 2017; 12:e0187276. [PMID: 29091966 PMCID: PMC5665536 DOI: 10.1371/journal.pone.0187276] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/17/2017] [Indexed: 01/05/2023] Open
Abstract
Synchronized bursts (SBs) with complex structures are common in neuronal cultures. Although the phenomenon of SBs has been discovered for a long time, its origin is still unclear. Here, we investigate the properties of these SBs in cultures grown on a multi-electrode array. We find that structures of these SBs are related to the different developmental stages of the cultures and these structures can be modified by changing the magnesium concentration in the culture medium; indicating that synaptic mechanism is involved in the generation of SBs. A model based on short term synaptic plasticity (STSP), recurrent connections and astrocytic recycling of neurotransmitters has been developed successfully to understand the observed structures of SBs in experiments. A phase diagram obtained from this model shows that networks exhibiting SBs are in a complex oscillatory state due to large enough positive feedback provided by synaptic facilitation and recurrent connections. In this model, while STSP controls the fast oscillations (∼ 100 ms) within a SB, the astrocytic recycling determines the slow time scale (∼10 s) of inter-burst intervals. Our study suggests that glia-neuron interactions can be important in the understanding of the complex dynamics of neuronal networks.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Dept. of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, ROC
- Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
| | - Yu-Lin Chang
- Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
| | - Chun-Chung Chen
- Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
| | - Pik-Yin Lai
- Dept. of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, ROC
- * E-mail: (PYL); (CKC)
| | - C. K. Chan
- Dept. of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, ROC
- Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
- * E-mail: (PYL); (CKC)
| |
Collapse
|
38
|
Deng M, Xiao H, Zhang H, Peng H, Yuan H, Xu Y, Zhang G, Hu Z. Mesenchymal Stem Cell-Derived Extracellular Vesicles Ameliorates Hippocampal Synaptic Impairment after Transient Global Ischemia. Front Cell Neurosci 2017; 11:205. [PMID: 28769765 PMCID: PMC5511812 DOI: 10.3389/fncel.2017.00205] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/30/2017] [Indexed: 01/24/2023] Open
Abstract
Recent studies have found that administration of stem cells or extracellular vehicles (EVs) derived from stem cells exert neuroprotective effects after transient global ischemia. However, the underlying mechanisms of this effect remain unclear, especially at the level of synaptic functions. In this study, we compared the suppressive effects on cyclooxygenase-2 (COX-2) upregulation by EVs derived from bone marrow mesenchymal stem cells (BMSC-EV), adipose tissue MSC (AdMSC-EV) and serum (serum-EV). Then we examined whether BMSC-EVs could restore functional integrity of synaptic transmission and plasticity. Mice were randomly assigned to four groups: sham, sham with EV treatment, ischemia and ischemia with EV treatment. EVs were administered by intracerebroventricular injection (ICVI). We examined the consequence of transient global ischemia on pre- and post-synaptic functions of the hippocampal CA3-CA1 synapses at basal level, and long-term potentiation (LTP), an activity-dependent form of synaptic plasticity. Then we tested the therapeutic effects of EVs on these synaptic deficits. Meanwhile, Morris water maze (MWM) test was performed to examine the efficacy of EVs in rescuing ischemia-induced impairments in spatial learning and memory. EV treatment significantly restored impaired basal synaptic transmission and synaptic plasticity, and improved spatial learning and memory compared with the control group. In addition, EVs significantly inhibited ischemia-induced pathogenic expression of COX-2 in the hippocampus. EVs exert ameliorating effects on synaptic functions against transient global cerebral ischemia, which may be partly attributed to suppression of COX-2 pathogenic expression.
Collapse
Affiliation(s)
- Mingyang Deng
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Han Xiao
- Department of Neurology, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Huan Yuan
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Yunxiao Xu
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
39
|
Krächan EG, Fischer AU, Franke J, Friauf E. Synaptic reliability and temporal precision are achieved via high quantal content and effective replenishment: auditory brainstem versus hippocampus. J Physiol 2017; 595:839-864. [PMID: 27673320 PMCID: PMC5285727 DOI: 10.1113/jp272799] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Auditory brainstem neurons involved in sound source localization are equipped with several morphological and molecular features that enable them to compute interaural level and time differences. As sound source localization works continually, synaptic transmission between these neurons should be reliable and temporally precise, even during sustained periods of high-frequency activity. Using patch-clamp recordings in acute brain slices, we compared synaptic reliability and temporal precision in the seconds-minute range between auditory and two types of hippocampal synapses; the latter are less confronted with temporally precise high-frequency transmission than the auditory ones. We found striking differences in synaptic properties (e.g. continually high quantal content) that allow auditory synapses to reliably release vesicles at much higher rate than their hippocampal counterparts. Thus, they are indefatigable and also in a position to transfer information with exquisite temporal precision and their performance appears to be supported by very efficient replenishment mechanisms. ABSTRACT At early stations of the auditory pathway, information is encoded by precise signal timing and rate. Auditory synapses must maintain the relative timing of events with submillisecond precision even during sustained and high-frequency stimulation. In non-auditory brain regions, e.g. telencephalic ones, synapses are activated at considerably lower frequencies. Central to understanding the heterogeneity of synaptic systems is the elucidation of the physical, chemical and biological factors that determine synapse performance. In this study, we used slice recordings from three synapse types in the mouse auditory brainstem and hippocampus. Whereas the auditory brainstem nuclei experience high-frequency activity in vivo, the hippocampal circuits are activated at much lower frequencies. We challenged the synapses with sustained high-frequency stimulation (up to 200 Hz for 60 s) and found significant performance differences. Our results show that auditory brainstem synapses differ considerably from their hippocampal counterparts in several aspects, namely resistance to synaptic fatigue, low failure rate and exquisite temporal precision. Their high-fidelity performance supports the functional demands and appears to be due to the large size of the readily releasable pool and a high release probability, which together result in a high quantal content. In conjunction with very efficient vesicle replenishment mechanisms, these properties provide extremely rapid and temporally precise signalling required for neuronal communication at early stations of the auditory system, even during sustained activation in the minute range.
Collapse
Affiliation(s)
- Elisa G Krächan
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Alexander U Fischer
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Jürgen Franke
- Chair for Applied Mathematical Statistics, Department of MathematicsUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Eckhard Friauf
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| |
Collapse
|
40
|
Blitz DM, Pritchard AE, Latimer JK, Wakefield AT. Muscles innervated by a single motor neuron exhibit divergent synaptic properties on multiple time scales. ACTA ACUST UNITED AC 2017; 220:1233-1244. [PMID: 28104799 DOI: 10.1242/jeb.148908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/10/2017] [Indexed: 11/20/2022]
Abstract
Adaptive changes in the output of neural circuits underlying rhythmic behaviors are relayed to muscles via motor neuron activity. Presynaptic and postsynaptic properties of neuromuscular junctions can impact the transformation from motor neuron activity to muscle response. Further, synaptic plasticity occurring on the time scale of inter-spike intervals can differ between multiple muscles innervated by the same motor neuron. In rhythmic behaviors, motor neuron bursts can elicit additional synaptic plasticity. However, it is unknown whether plasticity regulated by the longer time scale of inter-burst intervals also differs between synapses from the same neuron, and whether any such distinctions occur across a physiological activity range. To address these issues, we measured electrical responses in muscles innervated by a chewing circuit neuron, the lateral gastric (LG) motor neuron, in a well-characterized small motor system, the stomatogastric nervous system (STNS) of the Jonah crab, Cancer borealisIn vitro and in vivo, sensory, hormonal and modulatory inputs elicit LG bursting consisting of inter-spike intervals of 50-250 ms and inter-burst intervals of 2-24 s. Muscles expressed similar facilitation measured with paired stimuli except at the shortest inter-spike interval. However, distinct decay time constants resulted in differences in temporal summation. In response to bursting activity, augmentation occurred to different extents and saturated at different inter-burst intervals. Further, augmentation interacted with facilitation, resulting in distinct intra-burst facilitation between muscles. Thus, responses of multiple target muscles diverge across a physiological activity range as a result of distinct synaptic properties sensitive to multiple time scales.
Collapse
Affiliation(s)
- Dawn M Blitz
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Amy E Pritchard
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - John K Latimer
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
41
|
Abstract
The thalamocortical (TC) relay neuron of the dorsoLateral Geniculate Nucleus (dLGN) has borne its imprecise label for many decades in spite of strong evidence that its role in visual processing transcends the implied simplicity of the term "relay". The retinogeniculate synapse is the site of communication between a retinal ganglion cell and a TC neuron of the dLGN. Activation of retinal fibers in the optic tract causes reliable, rapid, and robust postsynaptic potentials that drive postsynaptics spikes in a TC neuron. Cortical and subcortical modulatory systems have been known for decades to regulate retinogeniculate transmission. The dynamic properties that the retinogeniculate synapse itself exhibits during and after developmental refinement further enrich the role of the dLGN in the transmission of the retinal signal. Here we consider the structural and functional substrates for retinogeniculate synaptic transmission and plasticity, and reflect on how the complexity of the retinogeniculate synapse imparts a novel dynamic and influential capacity to subcortical processing of visual information.
Collapse
Affiliation(s)
- Elizabeth Y Litvina
- Department of Neurology,F.M. Kirby Neurobiology Center,Children's Hospital, Boston,Boston,Massachusetts 02115
| | - Chinfei Chen
- Department of Neurology,F.M. Kirby Neurobiology Center,Children's Hospital, Boston,Boston,Massachusetts 02115
| |
Collapse
|
42
|
Thalmeier D, Uhlmann M, Kappen HJ, Memmesheimer RM. Learning Universal Computations with Spikes. PLoS Comput Biol 2016; 12:e1004895. [PMID: 27309381 PMCID: PMC4911146 DOI: 10.1371/journal.pcbi.1004895] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 04/01/2016] [Indexed: 11/19/2022] Open
Abstract
Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world models. Here we show how spiking neural networks may solve these different tasks. Firstly, we derive constraints under which classes of spiking neural networks lend themselves to substrates of powerful general purpose computing. The networks contain dendritic or synaptic nonlinearities and have a constrained connectivity. We then combine such networks with learning rules for outputs or recurrent connections. We show that this allows to learn even difficult benchmark tasks such as the self-sustained generation of desired low-dimensional chaotic dynamics or memory-dependent computations. Furthermore, we show how spiking networks can build models of external world systems and use the acquired knowledge to control them.
Collapse
Affiliation(s)
- Dominik Thalmeier
- Donders Institute, Department of Biophysics, Radboud University, Nijmegen, Netherlands
| | - Marvin Uhlmann
- Max Planck Institute for Psycholinguistics, Department for Neurobiology of Language, Nijmegen, Netherlands
- Donders Institute, Department for Neuroinformatics, Radboud University, Nijmegen, Netherlands
| | - Hilbert J. Kappen
- Donders Institute, Department of Biophysics, Radboud University, Nijmegen, Netherlands
| | - Raoul-Martin Memmesheimer
- Donders Institute, Department for Neuroinformatics, Radboud University, Nijmegen, Netherlands
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
The Ins and Outs of miRNA-Mediated Gene Silencing during Neuronal Synaptic Plasticity. Noncoding RNA 2016; 2:ncrna2010001. [PMID: 29657259 PMCID: PMC5831896 DOI: 10.3390/ncrna2010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/18/2022] Open
Abstract
Neuronal connections through specialized junctions, known as synapses, create circuits that underlie brain function. Synaptic plasticity, i.e., structural and functional changes to synapses, occurs in response to neuronal activity and is a critical regulator of various nervous system functions, including long-term memory formation. The discovery of mRNAs, miRNAs, ncRNAs, ribosomes, translational repressors, and other RNA binding proteins in dendritic spines allows individual synapses to alter their synaptic strength rapidly through regulation of local protein synthesis in response to different physiological stimuli. In this review, we discuss our understanding of a number of miRNAs, ncRNAs, and RNA binding proteins that are emerging as important regulators of synaptic plasticity, which play a critical role in memory, learning, and diseases that arise when neuronal circuits are impaired.
Collapse
|
44
|
Abbasi S, Kumar SS. Layer-specific modulation of entorhinal cortical excitability by presubiculum in a rat model of temporal lobe epilepsy. J Neurophysiol 2015; 114:2854-66. [PMID: 26378210 DOI: 10.1152/jn.00823.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/09/2015] [Indexed: 11/22/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of epilepsy in adults and is often refractory to antiepileptic medications. The medial entorhinal area (MEA) is affected in TLE but mechanisms underlying hyperexcitability of MEA neurons require further elucidation. Previous studies suggest that inputs from the presubiculum (PrS) contribute to MEA pathophysiology. We assessed electrophysiologically how PrS influences MEA excitability using the rat pilocarpine model of TLE. PrS-MEA connectivity was confirmed by electrically stimulating PrS afferents while recording from neurons within superficial layers of MEA. Assessment of alterations in PrS-mediated synaptic drive to MEA neurons was made following focal application of either glutamate or NBQX to the PrS in control and epileptic animals. Here, we report that monosynaptic inputs to MEA from PrS neurons are conserved in epileptic rats, and that PrS modulation of MEA excitability is layer-specific. PrS contributes more to synaptic inhibition of LII stellate cells than excitation. Under epileptic conditions, stellate cell inhibition is significantly reduced while excitatory synaptic drive is maintained at levels similar to control. PrS contributes to both synaptic excitation and inhibition of LIII pyramidal cells in control animals. Under epileptic conditions, overall excitatory synaptic drive to these neurons is enhanced while inhibitory synaptic drive is maintained at control levels. Additionally, neither glutamate nor NBQX applied focally to PrS now affected EPSC and IPSC frequency of LIII pyramidal neurons. These layer-specific changes in PrS-MEA interactions are unexpected and of significance in unraveling pathophysiological mechanisms underlying TLE.
Collapse
Affiliation(s)
- Saad Abbasi
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
45
|
Born G, Grayton HM, Langhorst H, Dudanova I, Rohlmann A, Woodward BW, Collier DA, Fernandes C, Missler M. Genetic targeting of NRXN2 in mice unveils role in excitatory cortical synapse function and social behaviors. Front Synaptic Neurosci 2015; 7:3. [PMID: 25745399 PMCID: PMC4333794 DOI: 10.3389/fnsyn.2015.00003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/03/2015] [Indexed: 01/23/2023] Open
Abstract
Human genetics has identified rare copy number variations and deleterious mutations for all neurexin genes (NRXN1-3) in patients with neurodevelopmental diseases, and electrophysiological recordings in animal brains have shown that Nrxns are important for synaptic transmission. While several mouse models for Nrxn1α inactivation have previously been studied for behavioral changes, very little information is available for other variants. Here, we validate that mice lacking Nrxn2α exhibit behavioral abnormalities, characterized by social interaction deficits and increased anxiety-like behavior, which partially overlap, partially differ from Nrxn1α mutant behaviors. Using patch-clamp recordings in Nrxn2α knockout brains, we observe reduced spontaneous transmitter release at excitatory synapses in the neocortex. We also analyse at this cellular level a novel NRXN2 mouse model that carries a combined deletion of Nrxn2α and Nrxn2β. Electrophysiological analysis of this Nrxn2-mutant mouse shows surprisingly similar defects of excitatory release to Nrxn2α, indicating that the β-variant of Nrxn2 has no strong function in basic transmission at these synapses. Inhibitory transmission as well as synapse densities and ultrastructure remain unchanged in the neocortex of both models. Furthermore, at Nrxn2α and Nrxn2-mutant excitatory synapses we find an altered facilitation and N-methyl-D-aspartate receptor (NMDAR) function because NMDAR-dependent decay time and NMDAR-mediated responses are reduced. As Nrxn can indirectly be linked to NMDAR via neuroligin and PSD-95, the trans-synaptic nature of this complex may help to explain occurrence of presynaptic and postsynaptic effects. Since excitatory/inhibitory imbalances and impairment of NMDAR function are alledged to have a role in autism and schizophrenia, our results support the idea of a related pathomechanism in these disorders.
Collapse
Affiliation(s)
- Gesche Born
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University Münster, Germany
| | - Hannah M Grayton
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK ; Discovery Neuroscience Research, Eli Lilly and Company Ltd. Surrey, UK
| | - Hanna Langhorst
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University Münster, Germany
| | - Irina Dudanova
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University Münster, Germany
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University Münster, Germany
| | - Benjamin W Woodward
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - David A Collier
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK ; Discovery Neuroscience Research, Eli Lilly and Company Ltd. Surrey, UK
| | - Cathy Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University Münster, Germany ; Cluster of Excellence EXC 1003, Cells in Motion Münster, Germany
| |
Collapse
|
46
|
Orduz D, Boom A, Gall D, Brion JP, Schiffmann SN, Schwaller B. Subcellular structural plasticity caused by the absence of the fast Ca(2+) buffer calbindin D-28k in recurrent collaterals of cerebellar Purkinje neurons. Front Cell Neurosci 2014; 8:364. [PMID: 25414639 PMCID: PMC4220698 DOI: 10.3389/fncel.2014.00364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/14/2014] [Indexed: 11/13/2022] Open
Abstract
Purkinje cells (PC) control spike timing of neighboring PC by their recurrent axon collaterals. These synapses underlie fast cerebellar oscillations and are characterized by a strong facilitation within a time window of <20 ms during paired-pulse protocols. PC express high levels of the fast Ca(2+) buffer protein calbindin D-28k (CB). As expected from the absence of a fast Ca(2+) buffer, presynaptic action potential-evoked [Ca(2+)]i transients were previously shown to be bigger in PC boutons of young (second postnatal week) CB-/- mice, yet IPSC mean amplitudes remained unaltered in connected CB-/- PC. Since PC spine morphology is altered in adult CB-/- mice (longer necks, larger spine head volume), we summoned that morphological compensation/adaptation mechanisms might also be induced in CB-/- PC axon collaterals including boutons. In these mice, biocytin-filled PC reconstructions revealed that the number of axonal varicosities per PC axon collateral was augmented, mostly confined to the granule cell layer. Additionally, the volume of individual boutons was increased, evidenced from z-stacks of confocal images. EM analysis of PC-PC synapses revealed an enhancement in active zone (AZ) length by approximately 23%, paralleled by a higher number of docked vesicles per AZ in CB-/- boutons. Moreover, synaptic cleft width was larger in CB-/- (23.8 ± 0.43 nm) compared to wild type (21.17 ± 0.39 nm) synapses. We propose that the morphological changes, i.e., the larger bouton volume, the enhanced AZ length and the higher number of docked vesicles, in combination with the increase in synaptic cleft width likely modifies the GABA release properties at this synapse in CB-/- mice. We view these changes as adaptation/homeostatic mechanisms to likely maintain characteristics of synaptic transmission in the absence of the fast Ca(2+) buffer CB. Our study provides further evidence on the functioning of the Ca(2+) homeostasome.
Collapse
Affiliation(s)
- David Orduz
- Laboratory of Neurophysiology, UNI, Université Libre de Bruxelles (ULB) Bruxelles, Belgium
| | - Alain Boom
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI, Université Libre de Bruxelles (ULB) Bruxelles, Belgium
| | - David Gall
- Laboratory of Neurophysiology, UNI, Université Libre de Bruxelles (ULB) Bruxelles, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI, Université Libre de Bruxelles (ULB) Bruxelles, Belgium
| | - Serge N Schiffmann
- Laboratory of Neurophysiology, UNI, Université Libre de Bruxelles (ULB) Bruxelles, Belgium
| | - Beat Schwaller
- Anatomy, Department of Medicine, University of Fribourg Fribourg, Switzerland
| |
Collapse
|
47
|
Liu JH, You QL, Wei MD, Wang Q, Luo ZY, Lin S, Huang L, Li SJ, Li XW, Gao TM. Social Isolation During Adolescence Strengthens Retention of Fear Memories and Facilitates Induction of Late-Phase Long-Term Potentiation. Mol Neurobiol 2014; 52:1421-1429. [PMID: 25860250 PMCID: PMC4588096 DOI: 10.1007/s12035-014-8917-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 09/28/2014] [Indexed: 12/23/2022]
Abstract
Social isolation during the vulnerable period of adolescence produces emotional dysregulation that often manifests as abnormal behavior in adulthood. The enduring consequence of isolation might be caused by a weakened ability to forget unpleasant memories. However, it remains unclear whether isolation affects unpleasant memories. To address this, we used a model of associative learning to induce the fear memories and evaluated the influence of isolation mice during adolescence on the subsequent retention of fear memories and its underlying cellular mechanisms. Following adolescent social isolation, we found that mice decreased their social interaction time and had an increase in anxiety-related behavior. Interestingly, when we assessed memory retention, we found that isolated mice were unable to forget aversive memories when tested 4 weeks after the original event. Consistent with this, we observed that a single train of high-frequency stimulation (HFS) enabled a late-phase long-term potentiation (L-LTP) in the hippocampal CA1 region of isolated mice, whereas only an early-phase LTP was observed with the same stimulation in the control mice. Social isolation during adolescence also increased brain-derived neurotrophic factor (BDNF) expression in the hippocampus, and application of a tropomyosin-related kinase B (TrkB) receptor inhibitor ameliorated the facilitated L-LTP seen after isolation. Together, our results suggest that adolescent isolation may result in mental disorders during adulthood and that this may stem from an inability to forget the unpleasant memories via BDNF-mediated synaptic plasticity. These findings may give us a new strategy to prevent mental disorders caused by persistent unpleasant memories.
Collapse
Affiliation(s)
- Ji-Hong Liu
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, 510515, China
| | - Qiang-Long You
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, 510515, China
| | - Mei-Dan Wei
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Qian Wang
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, 510515, China
| | - Zheng-Yi Luo
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, 510515, China
| | - Song Lin
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, 510515, China
| | - Lang Huang
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Ji Li
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, 510515, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
48
|
Chronic intermittent hypoxia depresses afferent neurotransmission in NTS neurons by a reduction in the number of active synapses. J Neurosci 2013; 32:16736-46. [PMID: 23175827 DOI: 10.1523/jneurosci.2654-12.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term synaptic plasticity has been recently described in brainstem areas associated to visceral afferent sensory integration. Chronic intermittent hypoxia (CIH), an animal model for studying obstructive sleep apnea in humans, depresses the afferent neurotransmission in nucleus tractus solitarii (NTS) neurons, which affect respiratory and autonomic regulation. Here we identified the synaptic mechanisms of CIH-induced depression of the afferent neurotransmission in NTS neurons in juvenile rats. We verified that CIH reduced the amplitude of both NMDA and non-NMDA glutamatergic excitatory currents (eEPSCs) evoked by tractus solitarii stimulation (TS-eEPSC) of second-order neurons in the NTS. No changes were observed in release probability, evidenced by absence of any CIH-elicited effects on short-term depression and failures in EPSCs evoked in low calcium. CIH also produced no changes in TS-eEPSC quantal size, since the amplitudes of both low calcium-evoked EPSCs and asynchronous TS-eEPSCs (evoked in the presence of Sr(2+)) were unchanged. Using single TS afferent fiber stimulation in slices from control and CIH rats we clearly show that CIH reduced the quantal content of the TS-eEPSCs without affecting the quantal size or release probability, suggesting a reduction in the number of active synapses as the mechanism of CIH induced TS-eEPSC depression. In accordance with this concept, the input-output relationship of stimulus intensity and TS-eEPSC amplitude shows an early saturation in CIH animals. These findings open new perspectives for a better understanding of the mechanisms underlying the synaptic plasticity in the brainstem sensory neurons under challenges such as those produced by CIH in experimental and pathological conditions.
Collapse
|
49
|
Short-term synaptic plasticity compensates for variability in number of motor neurons at a neuromuscular junction. J Neurosci 2013; 32:16007-17. [PMID: 23136437 DOI: 10.1523/jneurosci.2584-12.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We studied how similar postsynaptic responses are maintained in the face of interindividual variability in the number of presynaptic neurons. In the stomatogastric ganglion of the lobster, Homarus americanus, the pyloric (PY) neurons exist in variable numbers across animals. We show that each individual fiber of the stomach muscles innervated by PY neurons received synaptic input from all neurons present. We performed intracellular recordings of excitatory junction potentials (EJPs) in the muscle fibers to determine the consequences of differences in the number of motor neurons. Despite the variability in neuron number, the compound electrical response of muscle fibers to natural bursting input was similar across individuals. The similarity of total synaptic activation was not due to differences in the spiking activity of individual motor neurons across animals with different numbers of PY neurons. The amplitude of a unitary EJP in response to a single spike in a single motor neuron also did not depend on the number of PY neurons present. Consequently, the compound EJP in response to a single stimulus that activated all motor axons present was larger in individuals with more PY neurons. However, when axons were stimulated with trains of pulses mimicking bursting activity, EJPs facilitated more in individuals with fewer PY neurons. After a few stimuli, this resulted in depolarizations similar to the ones in individuals with more PY neurons. We interpret our findings as evidence that compensatory or homeostatic regulatory mechanisms can act on short-term synaptic dynamics instead of absolute synaptic strength.
Collapse
|
50
|
Abstract
Different types of synapses are specialized to interpret spike trains in their own way by virtue of the complement of short-term synaptic plasticity mechanisms they possess. Numerous types of short-term, use-dependent synaptic plasticity regulate neurotransmitter release. Short-term depression is prominent after a single conditioning stimulus and recovers in seconds. Sustained presynaptic activation can result in more profound depression that recovers more slowly. An enhancement of release known as facilitation is prominent after single conditioning stimuli and lasts for hundreds of milliseconds. Finally, tetanic activation can enhance synaptic strength for tens of seconds to minutes through processes known as augmentation and posttetantic potentiation. Progress in clarifying the properties, mechanisms, and functional roles of these forms of short-term plasticity is reviewed here.
Collapse
Affiliation(s)
- Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|