1
|
Li D, Hudetz AG. Anesthesia alters complexity of spontaneous and stimulus-related neuronal firing patterns in rat visual cortex. Neuroscience 2025; 565:440-456. [PMID: 39631661 DOI: 10.1016/j.neuroscience.2024.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Complexity of neuronal firing patterns may serve as an indicator of sensory information processing across different states of consciousness. Recent studies have shown that spontaneous changes in brain states can occur during general anesthesia, which may influence neuronal complexity and the state of consciousness. In this study, we investigated how the firing patterns of cortical neurons, both at rest and during visual stimulation, are affected by spontaneously changing brain states under varying levels of anesthesia. Extracellular unit activity was measured in the primary visual cortex of unrestrained rats as the inhaled concentration of desflurane was incrementally reduced to 6%, 4%, 2%, and 0%. Using dimensionality reduction and density-based clustering on individual unit activities, we identified five distinct population states, which underwent dynamic transitions independent of the anesthetic level during both resting and stimulus conditions. One population state that occurred mainly in deep anesthesia exhibited a paradoxically increased number of active neurons and asynchronous spiking, suggesting a spontaneous reversal towards an awake-like condition. However, this was contradicted by the observation of low neuronal complexity in both spontaneous and stimulus-related spike activity, which more closely aligns with unconsciousness. Our findings reveal that transient neuronal states with distinct spiking patterns can emerge in visual cortex at constant anesthetic concentrations. The reduced complexity in states associated with deep anesthesia likely indicates a disruption of conscious sensory information processing.
Collapse
Affiliation(s)
- Duan Li
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Anthony G Hudetz
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Novo DP, Gao M, Yu J, Barrett JM, Shepherd GMG. Cortical dynamics in hand/forelimb S1 and M1 evoked by brief photostimulation of the mouse's hand. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626335. [PMID: 39677687 PMCID: PMC11642753 DOI: 10.1101/2024.12.02.626335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Spiking activity along synaptic circuits linking primary somatosensory (S1) and motor (M1) areas is fundamental for sensorimotor integration in cortex. Circuits along the ascending somatosensory pathway through mouse hand/forelimb S1 and M1 were recently described in detail (Yamawaki et al., 2021). Here, we characterize the peripherally evoked spiking dynamics in these two cortical areas in the same system. Brief (5 ms) optogenetic photostimulation of the hand generated short (~25 ms) barrages of activity first in S1 (onset latency 15 ms) then M1 (10 ms later). The estimated propagation speed was 20-fold faster from hand to S1 than from S1 to M1. Response amplitudes in M1 were strongly attenuated to approximately a third of those in S1. Responses were typically triphasic, with suppression and rebound following the initial peak. Parvalbumin (PV) inhibitory interneurons were involved in each phase, accounting for three-quarters of the initial spikes generated in S1, and their selective photostimulation sufficed to evoke suppression and rebound in both S1 and M1. Partial silencing of S1 by PV activation during hand stimulation reduced the M1 sensory responses. These results provide quantitative measures of spiking dynamics of cortical activity along the hand/forelimb-related transcortical loop; demonstrate a prominent and mechanistic role for PV neurons in each phase of the response; and, support a conceptual model in which somatosensory signals reach S1 via high-speed subcortical circuits to generate characteristic barrages of cortical activity, then reach M1 via densely polysynaptic corticocortical circuits to generate a similar but delayed and attenuated profile of activity.
Collapse
Affiliation(s)
- Daniela Piña Novo
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mang Gao
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jianing Yu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - John M. Barrett
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Gordon M. G. Shepherd
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Panichello MF, Jonikaitis D, Oh YJ, Zhu S, Trepka EB, Moore T. Intermittent rate coding and cue-specific ensembles support working memory. Nature 2024; 636:422-429. [PMID: 39506106 PMCID: PMC11634780 DOI: 10.1038/s41586-024-08139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Persistent, memorandum-specific neuronal spiking activity has long been hypothesized to underlie working memory1,2. However, emerging evidence suggests a potential role for 'activity-silent' synaptic mechanisms3-5. This issue remains controversial because evidence for either view has largely relied either on datasets that fail to capture single-trial population dynamics or on indirect measures of neuronal spiking. We addressed this controversy by examining the dynamics of mnemonic information on single trials obtained from large, local populations of lateral prefrontal neurons recorded simultaneously in monkeys performing a working memory task. Here we show that mnemonic information does not persist in the spiking activity of neuronal populations during memory delays, but instead alternates between coordinated 'On' and 'Off' states. At the level of single neurons, Off states are driven by both a loss of selectivity for memoranda and a return of firing rates to spontaneous levels. Further exploiting the large-scale recordings used here, we show that mnemonic information is available in the patterns of functional connections among neuronal ensembles during Off states. Our results suggest that intermittent periods of memorandum-specific spiking coexist with synaptic mechanisms to support working memory.
Collapse
Affiliation(s)
- Matthew F Panichello
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Donatas Jonikaitis
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Yu Jin Oh
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Shude Zhu
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Ethan B Trepka
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
González-Pereyra P, Sánchez-Lobato O, Martínez-Montalvo MG, Ortega-Romero DI, Pérez-Díaz CI, Merchant H, Tellez LA, Rueda-Orozco PE. Preconfigured cortico-thalamic neural dynamics constrain movement-associated thalamic activity. Nat Commun 2024; 15:10185. [PMID: 39582075 PMCID: PMC11586408 DOI: 10.1038/s41467-024-54742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
Neural preconfigured activity patterns (nPAPs), conceptualized as organized activity parcellated into groups of neurons, have been proposed as building blocks for cognitive and sensory processing. However, their existence and function in motor networks have been scarcely studied. Here, we explore the possibility that nPAPs are present in the motor thalamus (VL/VM) and their potential contribution to motor-related activity. To this end, we developed a preparation where VL/VM multiunitary activity could be robustly recorded in mouse behavior evoked by primary motor cortex (M1) optogenetic stimulation and forelimb movements. VL/VM-evoked activity was organized as rigid stereotypical activity patterns at the single and population levels. These activity patterns were unable to dynamically adapt to different temporal architectures of M1 stimulation. Moreover, they were experience-independent, present in virtually all animals, and pairs of neurons with high correlations during M1-stimulation also presented higher correlations during spontaneous activity, confirming their preconfigured nature. Finally, subpopulations expressing specific M1-evoked patterns also displayed specific movement-related patterns. Our data demonstrate that the behaviorally related identity of specific neural subpopulations is tightly linked to nPAPs.
Collapse
Affiliation(s)
- Perla González-Pereyra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Oswaldo Sánchez-Lobato
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Mario G Martínez-Montalvo
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Diana I Ortega-Romero
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Claudia I Pérez-Díaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Hugo Merchant
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Luis A Tellez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Pavel E Rueda-Orozco
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico.
| |
Collapse
|
5
|
Luczak A. Entropy of Neuronal Spike Patterns. ENTROPY (BASEL, SWITZERLAND) 2024; 26:967. [PMID: 39593911 PMCID: PMC11592492 DOI: 10.3390/e26110967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Neuronal spike patterns are the fundamental units of neural communication in the brain, which is still not fully understood. Entropy measures offer a quantitative framework to assess the variability and information content of these spike patterns. By quantifying the uncertainty and informational content of neuronal patterns, entropy measures provide insights into neural coding strategies, synaptic plasticity, network dynamics, and cognitive processes. Here, we review basic entropy metrics and then we provide examples of recent advancements in using entropy as a tool to improve our understanding of neuronal processing. It focuses especially on studies on critical dynamics in neural networks and the relation of entropy to predictive coding and cortical communication. We highlight the necessity of expanding entropy measures from single neurons to encompass multi-neuronal activity patterns, as cortical circuits communicate through coordinated spatiotemporal activity patterns, called neuronal packets. We discuss how the sequential and partially stereotypical nature of neuronal packets influences the entropy of cortical communication. Stereotypy reduces entropy by enhancing reliability and predictability in neural signaling, while variability within packets increases entropy, allowing for greater information capacity. This balance between stereotypy and variability supports both robustness and flexibility in cortical information processing. We also review challenges in applying entropy to analyze such spatiotemporal neuronal spike patterns, notably, the "curse of dimensionality" in estimating entropy for high-dimensional neuronal data. Finally, we discuss strategies to overcome these challenges, including dimensionality reduction techniques, advanced entropy estimators, sparse coding schemes, and the integration of machine learning approaches. Thus, this work summarizes the most recent developments on how entropy measures contribute to our understanding of principles underlying neural coding.
Collapse
Affiliation(s)
- Artur Luczak
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
6
|
Renner A, Sheldon F, Zlotnik A, Tao L, Sornborger A. The backpropagation algorithm implemented on spiking neuromorphic hardware. Nat Commun 2024; 15:9691. [PMID: 39516210 PMCID: PMC11549378 DOI: 10.1038/s41467-024-53827-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The capabilities of natural neural systems have inspired both new generations of machine learning algorithms as well as neuromorphic, very large-scale integrated circuits capable of fast, low-power information processing. However, it has been argued that most modern machine learning algorithms are not neurophysiologically plausible. In particular, the workhorse of modern deep learning, the backpropagation algorithm, has proven difficult to translate to neuromorphic hardware. This study presents a neuromorphic, spiking backpropagation algorithm based on synfire-gated dynamical information coordination and processing implemented on Intel's Loihi neuromorphic research processor. We demonstrate a proof-of-principle three-layer circuit that learns to classify digits and clothing items from the MNIST and Fashion MNIST datasets. To our knowledge, this is the first work to show a Spiking Neural Network implementation of the exact backpropagation algorithm that is fully on-chip without a computer in the loop. It is competitive in accuracy with off-chip trained SNNs and achieves an energy-delay product suitable for edge computing. This implementation shows a path for using in-memory, massively parallel neuromorphic processors for low-power, low-latency implementation of modern deep learning applications.
Collapse
Affiliation(s)
- Alpha Renner
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, 8057, Switzerland
- Forschungszentrum Jülich, Jülich, 52428, Germany
| | - Forrest Sheldon
- Physics of Condensed Matter & Complex Systems (T-4), Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- London Institute for Mathematical Sciences, Royal Institution, London, W1S 4BS, UK
| | - Anatoly Zlotnik
- Applied Mathematics & Plasma Physics (T-5), Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Louis Tao
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Andrew Sornborger
- Information Sciences (CCS-3), Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
7
|
Xie W, Wittig JH, Chapeton JI, El-Kalliny M, Jackson SN, Inati SK, Zaghloul KA. Neuronal sequences in population bursts encode information in human cortex. Nature 2024; 635:935-942. [PMID: 39415012 DOI: 10.1038/s41586-024-08075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
Neural coding has traditionally been examined through changes in firing rates and latencies in response to different stimuli1-5. However, populations of neurons can also exhibit transient bursts of spiking activity, wherein neurons fire in a specific temporal order or sequence6-8. The human brain may utilize these neuronal sequences within population bursts to efficiently represent information9-12, thereby complementing the well-known neural code based on spike rate or latency. Here we examined this possibility by recording the spiking activity of populations of single units in the human anterior temporal lobe as eight participants performed a visual categorization task. We find that population spiking activity organizes into bursts during the task. The temporal order of spiking across the activated units within each burst varies across stimulus categories, creating unique stereotypical sequences for individual categories as well as for individual exemplars within a category. The information conveyed by the temporal order of spiking activity is separable from and complements the information conveyed by the units' spike rates or latencies following stimulus onset. Collectively, our data provide evidence that the human brain contains a complementary code based on the neuronal sequence within bursts of population spiking to represent information.
Collapse
Affiliation(s)
- Weizhen Xie
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA.
- Department of Psychology, University of Maryland, College Park, MD, USA.
| | - John H Wittig
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Julio I Chapeton
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Mostafa El-Kalliny
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Samantha N Jackson
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Sara K Inati
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Rodríguez-Cattáneo A, Pereira AC, Aguilera PA, Caputi ÁA. Packet information encoding in a cerebellum-like circuit. PLoS One 2024; 19:e0308146. [PMID: 39302961 DOI: 10.1371/journal.pone.0308146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Packet information encoding of neural signals was proposed for vision about 50 years ago and has recently been revived as a plausible strategy generalizable to natural and artificial sensory systems. It involves discrete image segmentation controlled by feedback and the ability to store and compare packets of information. This article shows that neurons of the cerebellum-like electrosensory lobe (EL) of the electric fish Gymnotus omarorum use spike-count and spike-timing distribution as constitutive variables of packets of information that encode one-by-one the electrosensory images generated by a self-timed series of electric organ discharges (EODs). To evaluate this hypothesis, extracellular unitary activity was recorded from the centro-medial map of the EL. Units recorded in high-decerebrate preparations were classified into six types using hierarchical cluster analysis of post-EOD spiking histograms. Cross-correlation analysis indicated that each EOD strongly influences the unit firing probability within the next inter-EOD interval. Units of the same type were similarly located in the laminar organization of the EL and showed similar stimulus-specific changes in spike count and spike timing after the EOD when a metal object was moved close by, along the fish's body parallel to the skin, or when the longitudinal impedance of a static cylindrical probe placed at the center of the receptive field was incremented in a stepwise manner in repetitive trials. These last experiments showed that spike-counts and the relative entropy, expressing a comparative measure of information before and after the step, were systematically increased with respect to a control in all unit types. The post-EOD spike-timing probability distribution and the relatively independent contribution of spike-timing and number to the content of information in the transmitted packet suggest that these are the constitutive image-encoding variables of the packets. Comparative analysis suggests that packet information transmission is a general principle for processing superposition images in cerebellum-like networks.
Collapse
Affiliation(s)
- Alejo Rodríguez-Cattáneo
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ana Carolina Pereira
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Pedro Anibal Aguilera
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ángel Ariel Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
9
|
Kucewicz MT, Cimbalnik J, Garcia-Salinas JS, Brazdil M, Worrell GA. High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams? Brain 2024; 147:2966-2982. [PMID: 38743818 PMCID: PMC11370809 DOI: 10.1093/brain/awae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Despite advances in understanding the cellular and molecular processes underlying memory and cognition, and recent successful modulation of cognitive performance in brain disorders, the neurophysiological mechanisms remain underexplored. High frequency oscillations beyond the classic electroencephalogram spectrum have emerged as a potential neural correlate of fundamental cognitive processes. High frequency oscillations are detected in the human mesial temporal lobe and neocortical intracranial recordings spanning gamma/epsilon (60-150 Hz), ripple (80-250 Hz) and higher frequency ranges. Separate from other non-oscillatory activities, these brief electrophysiological oscillations of distinct duration, frequency and amplitude are thought to be generated by coordinated spiking of neuronal ensembles within volumes as small as a single cortical column. Although the exact origins, mechanisms and physiological roles in health and disease remain elusive, they have been associated with human memory consolidation and cognitive processing. Recent studies suggest their involvement in encoding and recall of episodic memory with a possible role in the formation and reactivation of memory traces. High frequency oscillations are detected during encoding, throughout maintenance, and right before recall of remembered items, meeting a basic definition for an engram activity. The temporal coordination of high frequency oscillations reactivated across cortical and subcortical neural networks is ideally suited for integrating multimodal memory representations, which can be replayed and consolidated during states of wakefulness and sleep. High frequency oscillations have been shown to reflect coordinated bursts of neuronal assembly firing and offer a promising substrate for tracking and modulation of the hypothetical electrophysiological engram.
Collapse
Affiliation(s)
- Michal T Kucewicz
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Bioelectronics, Neurophysiology and Engineering Laboratory, Mayo Clinic, Departments of Neurology and Biomedical Engineering & Physiology, Mayo Clinic, Rochester, MN 55902, USA
| | - Jan Cimbalnik
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Department of Biomedical Engineering, St. Anne’s University Hospital in Brno & International Clinical Research Center, Brno 602 00, Czech Republic
- Brno Epilepsy Center, 1th Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, member of the ERN-EpiCARE, Brno 602 00, Czech Republic
| | - Jesus S Garcia-Salinas
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Milan Brazdil
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Brno Epilepsy Center, 1th Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, member of the ERN-EpiCARE, Brno 602 00, Czech Republic
- Behavioural and Social Neuroscience Research Group, CEITEC—Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Gregory A Worrell
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Bioelectronics, Neurophysiology and Engineering Laboratory, Mayo Clinic, Departments of Neurology and Biomedical Engineering & Physiology, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
10
|
Stanojevic A, Woźniak S, Bellec G, Cherubini G, Pantazi A, Gerstner W. High-performance deep spiking neural networks with 0.3 spikes per neuron. Nat Commun 2024; 15:6793. [PMID: 39122775 PMCID: PMC11315905 DOI: 10.1038/s41467-024-51110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Communication by rare, binary spikes is a key factor for the energy efficiency of biological brains. However, it is harder to train biologically-inspired spiking neural networks than artificial neural networks. This is puzzling given that theoretical results provide exact mapping algorithms from artificial to spiking neural networks with time-to-first-spike coding. In this paper we analyze in theory and simulation the learning dynamics of time-to-first-spike-networks and identify a specific instance of the vanishing-or-exploding gradient problem. While two choices of spiking neural network mappings solve this problem at initialization, only the one with a constant slope of the neuron membrane potential at threshold guarantees the equivalence of the training trajectory between spiking and artificial neural networks with rectified linear units. For specific image classification architectures comprising feed-forward dense or convolutional layers, we demonstrate that deep spiking neural network models can be effectively trained from scratch on MNIST and Fashion-MNIST datasets, or fine-tuned on large-scale datasets, such as CIFAR10, CIFAR100 and PLACES365, to achieve the exact same performance as that of artificial neural networks, surpassing previous spiking neural networks. Our approach accomplishes high-performance classification with less than 0.3 spikes per neuron, lending itself for an energy-efficient implementation. We also show that fine-tuning spiking neural networks with our robust gradient descent algorithm enables their optimization for hardware implementations with low latency and resilience to noise and quantization.
Collapse
Affiliation(s)
- Ana Stanojevic
- IBM Research Europe - Zurich, Rüschlikon, Switzerland
- School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Guillaume Bellec
- School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | - Wulfram Gerstner
- School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Hudetz AG. Microstimulation reveals anesthetic state-dependent effective connectivity of neurons in cerebral cortex. Front Neurosci 2024; 18:1387098. [PMID: 39035779 PMCID: PMC11258030 DOI: 10.3389/fnins.2024.1387098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Complex neuronal interactions underlie cortical information processing that can be compromised in altered states of consciousness. Here intracortical microstimulation was applied to investigate anesthetic state-dependent effective connectivity of neurons in rat visual cortex in vivo. Methods Extracellular activity was recorded at 32 sites in layers 5/6 while stimulating with charge-balanced discrete pulses at each electrode in random order. The same stimulation pattern was applied at three levels of anesthesia with desflurane and in wakefulness. Spikes were sorted and classified by their waveform features as putative excitatory and inhibitory neurons. Network motifs were identified in graphs of effective connectivity constructed from monosynaptic cross-correlograms. Results Microstimulation caused early (<10 ms) increase followed by prolonged (11-100 ms) decrease in spiking of all neurons throughout the electrode array. The early response of excitatory but not inhibitory neurons decayed rapidly with distance from the stimulation site over 1 mm. Effective connectivity of neurons with significant stimulus response was dense in wakefulness and sparse under anesthesia. The number of network motifs, especially those of higher order, increased rapidly as the anesthesia was withdrawn indicating a substantial increase in network connectivity as the animals woke up. Conclusion The results illuminate the impact of anesthesia on functional integrity of local cortical circuits affecting the state of consciousness.
Collapse
Affiliation(s)
- Anthony G Hudetz
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Mohan UR, Zhang H, Ermentrout B, Jacobs J. The direction of theta and alpha travelling waves modulates human memory processing. Nat Hum Behav 2024; 8:1124-1135. [PMID: 38459263 DOI: 10.1038/s41562-024-01838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/24/2024] [Indexed: 03/10/2024]
Abstract
To support a range of behaviours, the brain must flexibly coordinate neural activity across widespread brain regions. One potential mechanism for this coordination is a travelling wave, in which a neural oscillation propagates across the brain while organizing the order and timing of activity across regions. Although travelling waves are present across the brain in various species, their potential functional relevance has remained unknown. Here, using rare direct human brain recordings, we demonstrate a distinct functional role for travelling waves of theta- and alpha-band (2-13 Hz) oscillations in the cortex. Travelling waves propagate in different directions during separate cognitive processes. In episodic memory, travelling waves tended to propagate in a posterior-to-anterior direction during successful memory encoding and in an anterior-to-posterior direction during recall. Because travelling waves of oscillations correspond to local neuronal spiking, these patterns indicate that rhythmic pulses of activity move across the brain in different directions for separate behaviours. More broadly, our results suggest a fundamental role for travelling waves and oscillations in dynamically coordinating neural connectivity, by flexibly organizing the timing and directionality of network interactions across the cortex to support cognition and behaviour.
Collapse
Affiliation(s)
- Uma R Mohan
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | | | - Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
- Department of Neurological Surgery, Columbia University, New York City, NY, USA.
| |
Collapse
|
13
|
Hudetz AG. Microstimulation reveals anesthetic state-dependent effective connectivity of neurons in cerebral cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591664. [PMID: 38746366 PMCID: PMC11092428 DOI: 10.1101/2024.04.29.591664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Complex neuronal interactions underlie cortical information processing that can be compromised in altered states of consciousness. Here intracortical microstimulation was applied to investigate the state-dependent effective connectivity of neurons in rat visual cortex in vivo. Extracellular activity was recorded at 32 sites in layers 5/6 while stimulating with charge-balanced discrete pulses at each electrode in random order. The same stimulation pattern was applied at three levels of anesthesia with desflurane and in wakefulness. Spikes were sorted and classified by their waveform features as putative excitatory and inhibitory neurons. Microstimulation caused early (<10ms) increase followed by prolonged (11-100ms) decrease in spiking of all neurons throughout the electrode array. The early response of excitatory but not inhibitory neurons decayed rapidly with distance from the stimulation site over 1mm. Effective connectivity of neurons with significant stimulus response was dense in wakefulness and sparse under anesthesia. Network motifs were identified in graphs of effective connectivity constructed from monosynaptic cross-correlograms. The number of motifs, especially those of higher order, increased rapidly as the anesthesia was withdrawn indicating a substantial increase in network connectivity as the animals woke up. The results illuminate the impact of anesthesia on functional integrity of local circuits affecting the state of consciousness.
Collapse
|
14
|
Noda T, Aschauer DF, Chambers AR, Seiler JPH, Rumpel S. Representational maps in the brain: concepts, approaches, and applications. Front Cell Neurosci 2024; 18:1366200. [PMID: 38584779 PMCID: PMC10995314 DOI: 10.3389/fncel.2024.1366200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Neural systems have evolved to process sensory stimuli in a way that allows for efficient and adaptive behavior in a complex environment. Recent technological advances enable us to investigate sensory processing in animal models by simultaneously recording the activity of large populations of neurons with single-cell resolution, yielding high-dimensional datasets. In this review, we discuss concepts and approaches for assessing the population-level representation of sensory stimuli in the form of a representational map. In such a map, not only are the identities of stimuli distinctly represented, but their relational similarity is also mapped onto the space of neuronal activity. We highlight example studies in which the structure of representational maps in the brain are estimated from recordings in humans as well as animals and compare their methodological approaches. Finally, we integrate these aspects and provide an outlook for how the concept of representational maps could be applied to various fields in basic and clinical neuroscience.
Collapse
Affiliation(s)
- Takahiro Noda
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Dominik F. Aschauer
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Anna R. Chambers
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Johannes P.-H. Seiler
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Simon Rumpel
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| |
Collapse
|
15
|
Yuste R, Cossart R, Yaksi E. Neuronal ensembles: Building blocks of neural circuits. Neuron 2024; 112:875-892. [PMID: 38262413 PMCID: PMC10957317 DOI: 10.1016/j.neuron.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Neuronal ensembles, defined as groups of neurons displaying recurring patterns of coordinated activity, represent an intermediate functional level between individual neurons and brain areas. Novel methods to measure and optically manipulate the activity of neuronal populations have provided evidence of ensembles in the neocortex and hippocampus. Ensembles can be activated intrinsically or in response to sensory stimuli and play a causal role in perception and behavior. Here we review ensemble phenomenology, developmental origin, biophysical and synaptic mechanisms, and potential functional roles across different brain areas and species, including humans. As modular units of neural circuits, ensembles could provide a mechanistic underpinning of fundamental brain processes, including neural coding, motor planning, decision-making, learning, and adaptability.
Collapse
Affiliation(s)
- Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems Aix-Marseille University, Marseille, France.
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; Koç University Research Center for Translational Medicine, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
16
|
Papo D, Buldú JM. Does the brain behave like a (complex) network? I. Dynamics. Phys Life Rev 2024; 48:47-98. [PMID: 38145591 DOI: 10.1016/j.plrev.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
Graph theory is now becoming a standard tool in system-level neuroscience. However, endowing observed brain anatomy and dynamics with a complex network structure does not entail that the brain actually works as a network. Asking whether the brain behaves as a network means asking whether network properties count. From the viewpoint of neurophysiology and, possibly, of brain physics, the most substantial issues a network structure may be instrumental in addressing relate to the influence of network properties on brain dynamics and to whether these properties ultimately explain some aspects of brain function. Here, we address the dynamical implications of complex network, examining which aspects and scales of brain activity may be understood to genuinely behave as a network. To do so, we first define the meaning of networkness, and analyse some of its implications. We then examine ways in which brain anatomy and dynamics can be endowed with a network structure and discuss possible ways in which network structure may be shown to represent a genuine organisational principle of brain activity, rather than just a convenient description of its anatomy and dynamics.
Collapse
Affiliation(s)
- D Papo
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy; Center for Translational Neurophysiology, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy.
| | - J M Buldú
- Complex Systems Group & G.I.S.C., Universidad Rey Juan Carlos, Madrid, Spain
| |
Collapse
|
17
|
Karimi-Rouzbahani H. Evidence for Multiscale Multiplexed Representation of Visual Features in EEG. Neural Comput 2024; 36:412-436. [PMID: 38363657 DOI: 10.1162/neco_a_01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/01/2023] [Indexed: 02/18/2024]
Abstract
Distinct neural processes such as sensory and memory processes are often encoded over distinct timescales of neural activations. Animal studies have shown that this multiscale coding strategy is also implemented for individual components of a single process, such as individual features of a multifeature stimulus in sensory coding. However, the generalizability of this encoding strategy to the human brain has remained unclear. We asked if individual features of visual stimuli were encoded over distinct timescales. We applied a multiscale time-resolved decoding method to electroencephalography (EEG) collected from human subjects presented with grating visual stimuli to estimate the timescale of individual stimulus features. We observed that the orientation and color of the stimuli were encoded in shorter timescales, whereas spatial frequency and the contrast of the same stimuli were encoded in longer timescales. The stimulus features appeared in temporally overlapping windows along the trial supporting a multiplexed coding strategy. These results provide evidence for a multiplexed, multiscale coding strategy in the human visual system.
Collapse
Affiliation(s)
- Hamid Karimi-Rouzbahani
- Neurosciences Centre, Mater Hospital, Brisbane 4101, Australia
- Queensland Brain Institute, University of Queensland, Brisbane 4067, Australia
- Mater Research Institute, University of Queensland, Brisbane 4101, Australia
| |
Collapse
|
18
|
Rueda-Orozco PE, Hidalgo-Balbuena AE, González-Pereyra P, Martinez-Montalvo MG, Báez-Cordero AS. The Interactions of Temporal and Sensory Representations in the Basal Ganglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:141-158. [PMID: 38918350 DOI: 10.1007/978-3-031-60183-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In rodents and primates, interval estimation has been associated with a complex network of cortical and subcortical structures where the dorsal striatum plays a paramount role. Diverse evidence ranging from individual neurons to population activity has demonstrated that this area hosts temporal-related neural representations that may be instrumental for the perception and production of time intervals. However, little is known about how temporal representations interact with other well-known striatal representations, such as kinematic parameters of movements or somatosensory representations. An attractive hypothesis suggests that somatosensory representations may serve as the scaffold for complex representations such as elapsed time. Alternatively, these representations may coexist as independent streams of information that could be integrated into downstream nuclei, such as the substantia nigra or the globus pallidus. In this review, we will revise the available information suggesting an instrumental role of sensory representations in the construction of temporal representations at population and single-neuron levels throughout the basal ganglia.
Collapse
Affiliation(s)
- Pavel E Rueda-Orozco
- Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico.
| | | | | | | | - Ana S Báez-Cordero
- Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico
| |
Collapse
|
19
|
van der Molen T, Spaeth A, Chini M, Bartram J, Dendukuri A, Zhang Z, Bhaskaran-Nair K, Blauvelt LJ, Petzold LR, Hansma PK, Teodorescu M, Hierlemann A, Hengen KB, Hanganu-Opatz IL, Kosik KS, Sharf T. Protosequences in human cortical organoids model intrinsic states in the developing cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.29.573646. [PMID: 38234832 PMCID: PMC10793448 DOI: 10.1101/2023.12.29.573646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Neuronal firing sequences are thought to be the basic building blocks of neural coding and information broadcasting within the brain. However, when sequences emerge during neurodevelopment remains unknown. We demonstrate that structured firing sequences are present in spontaneous activity of human brain organoids and ex vivo neonatal brain slices from the murine somatosensory cortex. We observed a balance between temporally rigid and flexible firing patterns that are emergent phenomena in human brain organoids and early postnatal murine somatosensory cortex, but not in primary dissociated cortical cultures. Our findings suggest that temporal sequences do not arise in an experience-dependent manner, but are rather constrained by an innate preconfigured architecture established during neurogenesis. These findings highlight the potential for brain organoids to further explore how exogenous inputs can be used to refine neuronal circuits and enable new studies into the genetic mechanisms that govern assembly of functional circuitry during early human brain development.
Collapse
Affiliation(s)
- Tjitse van der Molen
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Alex Spaeth
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Julian Bartram
- Department of Biosystems Science and Engineering, ETH Zürich, Klingelbergstrasse 48, 4056 Basel, Switzerland
| | - Aditya Dendukuri
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Zongren Zhang
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106
| | - Kiran Bhaskaran-Nair
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lon J. Blauvelt
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Linda R. Petzold
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Paul K. Hansma
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106
| | - Mircea Teodorescu
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Klingelbergstrasse 48, 4056 Basel, Switzerland
| | - Keith B. Hengen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ileana L. Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Kenneth S. Kosik
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Tal Sharf
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
20
|
Lassers SB, Vakilna YS, Tang WC, Brewer GJ. The flow of axonal information among hippocampal sub-regions 2: patterned stimulation sharpens routing of information transmission. Front Neural Circuits 2023; 17:1272925. [PMID: 38144878 PMCID: PMC10739322 DOI: 10.3389/fncir.2023.1272925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/20/2023] [Indexed: 12/26/2023] Open
Abstract
The sub-regions of the hippocampal formation are essential for episodic learning and memory formation, yet the spike dynamics of each region contributing to this function are poorly understood, in part because of a lack of access to the inter-regional communicating axons. Here, we reconstructed hippocampal networks confined to four subcompartments in 2D cultures on a multi-electrode array that monitors individual communicating axons. In our novel device, somal, and axonal activity was measured simultaneously with the ability to ascertain the direction and speed of information transmission. Each sub-region and inter-regional axons had unique power-law spiking dynamics, indicating differences in computational functions, with abundant axonal feedback. After stimulation, spiking, and burst rates decreased in all sub-regions, spikes per burst generally decreased, intraburst spike rates increased, and burst duration decreased, which were specific for each sub-region. These changes in spiking dynamics post-stimulation were found to occupy a narrow range, consistent with the maintenance of the network at a critical state. Functional connections between the sub-region neurons and communicating axons in our device revealed homeostatic network routing strategies post-stimulation in which spontaneous feedback activity was selectively decreased and balanced by decreased feed-forward activity. Post-stimulation, the number of functional connections per array decreased, but the reliability of those connections increased. The networks maintained a balance in spiking and bursting dynamics in response to stimulation and sharpened network routing. These plastic characteristics of the network revealed the dynamic architecture of hippocampal computations in response to stimulation by selective routing on a spatiotemporal scale in single axons.
Collapse
Affiliation(s)
- Samuel Brandon Lassers
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Yash S. Vakilna
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Texas Institute of Restorative Neurotechnologies (TIRN), The University of Texas Health Science Center (UTHealth), Houston, TX, United States
| | - William C. Tang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Gregory J. Brewer
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Memory Impairments and Neurological Disorders (MIND) Institute, Center for Neuroscience of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
21
|
Banaie Boroujeni K, Womelsdorf T. Routing states transition during oscillatory bursts and attentional selection. Neuron 2023; 111:2929-2944.e11. [PMID: 37463578 PMCID: PMC10529654 DOI: 10.1016/j.neuron.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/22/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023]
Abstract
Brain-wide information routing relies on the spatio-temporal dynamics of neural activity, but it remains unclear how routing states emerge at fast spiking timescales and relate to slower activity dynamics during cognitive processes. Here, we show that localized spiking events participate in directional routing states with spiking activity in distant brain areas that dynamically switch or amplify states during oscillatory bursts, attentional selection, and decision-making. Modeling and neural recordings from lateral prefrontal cortex (LPFC), anterior cingulate cortex (ACC), and striatum of nonhuman primates revealed that cross-regional routing states arise within 20 ms following individual neuron spikes, with LPFC spikes leading the activity in ACC and striatum. The baseline routing state amplified during LPFC beta bursts between LPFC and striatum and switched direction during ACC theta/alpha bursts between ACC and LPFC. Selective attention amplified theta-/alpha-band-specific lead ensembles in ACC, while decision-making increased the lead of ACC and LPFC spikes to the striatum.
Collapse
Affiliation(s)
- Kianoush Banaie Boroujeni
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
22
|
Tanabe S, Lee H, Wang S, Hudetz AG. Spontaneous and Visual Stimulation Evoked Firing Sequences Are Distinct Under Desflurane Anesthesia. Neuroscience 2023; 528:54-63. [PMID: 37473851 DOI: 10.1016/j.neuroscience.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Recurring spike sequences are thought to underlie cortical computations and may be essential for information processing in the conscious state. How anesthesia at graded levels may influence spontaneous and stimulus-related spike sequences in visual cortex has not been fully elucidated. We recorded extracellular single-unit activity in the rat primary visual cortex in vivo during wakefulness and three levels of anesthesia produced by desflurane. The latencies of spike sequences within 0-200 ms from the onset of spontaneous UP states and visual flash-evoked responses were compared. During wakefulness, spike latency patterns linked to the local field potential theta cycle were similar to stimulus-evoked patterns. Under desflurane anesthesia, spontaneous UP state sequences differed from flash-evoked sequences due to the recruitment of low-firing excitatory neurons to the UP state. Flash-evoked spike sequences showed higher reliability and longer latency when stimuli were applied during DOWN states compared to UP states. At deeper levels, desflurane altered both UP state and flash-evoked spike sequences by selectively suppressing inhibitory neuron firing. The results reveal desflurane-induced complex changes in cortical firing sequences that may influence visual information processing.
Collapse
Affiliation(s)
- Sean Tanabe
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Heonsoo Lee
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Shiyong Wang
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Anthony G Hudetz
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
23
|
Vaz AP, Wittig JH, Inati SK, Zaghloul KA. Backbone spiking sequence as a basis for preplay, replay, and default states in human cortex. Nat Commun 2023; 14:4723. [PMID: 37550285 PMCID: PMC10406814 DOI: 10.1038/s41467-023-40440-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
Sequences of spiking activity have been heavily implicated as potential substrates of memory formation and retrieval across many species. A parallel line of recent evidence also asserts that sequential activity may arise from and be constrained by pre-existing network structure. Here we reconcile these two lines of research in the human brain by measuring single unit spiking sequences in the temporal lobe cortex as participants perform an episodic memory task. We find the presence of an average backbone spiking sequence identified during pre-task rest that is stable over time and different cognitive states. We further demonstrate that these backbone sequences are composed of both rigid and flexible sequence elements, and that flexible elements within these sequences serve to promote memory specificity when forming and retrieving new memories. These results support the hypothesis that pre-existing network dynamics serve as a scaffold for ongoing neural activity in the human cortex.
Collapse
Affiliation(s)
- Alex P Vaz
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - John H Wittig
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara K Inati
- Office of the Clinical Director, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Affiliation(s)
- Max Dabagia
- School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA
| | - Konrad P Kording
- Department of Biomedical Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Eva L Dyer
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
25
|
Bermudez-Contreras E, Schjetnan AGP, Luczak A, Mohajerani MH. Sensory experience selectively reorganizes the late component of evoked responses. Cereb Cortex 2023; 33:2626-2640. [PMID: 35704850 PMCID: PMC10016043 DOI: 10.1093/cercor/bhac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/13/2022] Open
Abstract
In response to sensory stimulation, the cortex exhibits an early transient response followed by late and slower activation. Recent studies suggest that the early component represents features of the stimulus while the late component is associated with stimulus perception. Although very informative, these studies only focus on the amplitude of the evoked responses to study its relationship with sensory perception. In this work, we expand upon the study of how patterns of evoked and spontaneous activity are modified by experience at the mesoscale level using voltage and extracellular glutamate transient recordings over widespread regions of mouse dorsal neocortex. We find that repeated tactile or auditory stimulation selectively modifies the spatiotemporal patterns of cortical activity, mainly of the late evoked response in anesthetized mice injected with amphetamine and also in awake mice. This modification lasted up to 60 min and results in an increase in the amplitude of the late response after repeated stimulation and in an increase in the similarity between the spatiotemporal patterns of the late early evoked response. This similarity increase occurs only for the evoked responses of the sensory modality that received the repeated stimulation. Thus, this selective long-lasting spatiotemporal modification of the cortical activity patterns might provide evidence that evoked responses are a cortex-wide phenomenon. This work opens new questions about how perception-related cortical activity changes with sensory experience across the cortex.
Collapse
Affiliation(s)
- Edgar Bermudez-Contreras
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | | | - Artur Luczak
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Majid H Mohajerani
- Corresponding author: Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
26
|
Riquelme JL, Hemberger M, Laurent G, Gjorgjieva J. Single spikes drive sequential propagation and routing of activity in a cortical network. eLife 2023; 12:e79928. [PMID: 36780217 PMCID: PMC9925052 DOI: 10.7554/elife.79928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/19/2022] [Indexed: 02/14/2023] Open
Abstract
Single spikes can trigger repeatable firing sequences in cortical networks. The mechanisms that support reliable propagation of activity from such small events and their functional consequences remain unclear. By constraining a recurrent network model with experimental statistics from turtle cortex, we generate reliable and temporally precise sequences from single spike triggers. We find that rare strong connections support sequence propagation, while dense weak connections modulate propagation reliability. We identify sections of sequences corresponding to divergent branches of strongly connected neurons which can be selectively gated. Applying external inputs to specific neurons in the sparse backbone of strong connections can effectively control propagation and route activity within the network. Finally, we demonstrate that concurrent sequences interact reliably, generating a highly combinatorial space of sequence activations. Our results reveal the impact of individual spikes in cortical circuits, detailing how repeatable sequences of activity can be triggered, sustained, and controlled during cortical computations.
Collapse
Affiliation(s)
- Juan Luis Riquelme
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Mike Hemberger
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
| | - Gilles Laurent
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
| | - Julijana Gjorgjieva
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| |
Collapse
|
27
|
Koren V, Bondanelli G, Panzeri S. Computational methods to study information processing in neural circuits. Comput Struct Biotechnol J 2023; 21:910-922. [PMID: 36698970 PMCID: PMC9851868 DOI: 10.1016/j.csbj.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The brain is an information processing machine and thus naturally lends itself to be studied using computational tools based on the principles of information theory. For this reason, computational methods based on or inspired by information theory have been a cornerstone of practical and conceptual progress in neuroscience. In this Review, we address how concepts and computational tools related to information theory are spurring the development of principled theories of information processing in neural circuits and the development of influential mathematical methods for the analyses of neural population recordings. We review how these computational approaches reveal mechanisms of essential functions performed by neural circuits. These functions include efficiently encoding sensory information and facilitating the transmission of information to downstream brain areas to inform and guide behavior. Finally, we discuss how further progress and insights can be achieved, in particular by studying how competing requirements of neural encoding and readout may be optimally traded off to optimize neural information processing.
Collapse
Affiliation(s)
- Veronika Koren
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, Hamburg 20251, Germany
| | | | - Stefano Panzeri
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, Hamburg 20251, Germany
- Istituto Italiano di Tecnologia, Via Melen 83, Genova 16152, Italy
| |
Collapse
|
28
|
Graham DJ. Nine insights from internet engineering that help us understand brain network communication. FRONTIERS IN COMPUTER SCIENCE 2023. [DOI: 10.3389/fcomp.2022.976801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Philosophers have long recognized the value of metaphor as a tool that opens new avenues of investigation. By seeing brains as having the goal of representation, the computer metaphor in its various guises has helped systems neuroscience approach a wide array of neuronal behaviors at small and large scales. Here I advocate a complementary metaphor, the internet. Adopting this metaphor shifts our focus from computing to communication, and from seeing neuronal signals as localized representational elements to seeing neuronal signals as traveling messages. In doing so, we can take advantage of a comparison with the internet's robust and efficient routing strategies to understand how the brain might meet the challenges of network communication. I lay out nine engineering strategies that help the internet solve routing challenges similar to those faced by brain networks. The internet metaphor helps us by reframing neuronal activity across the brain as, in part, a manifestation of routing, which may, in different parts of the system, resemble the internet more, less, or not at all. I describe suggestive evidence consistent with the brain's use of internet-like routing strategies and conclude that, even if empirical data do not directly implicate internet-like routing, the metaphor is valuable as a reference point for those investigating the difficult problem of network communication in the brain and in particular the problem of routing.
Collapse
|
29
|
Grimaldi A, Gruel A, Besnainou C, Jérémie JN, Martinet J, Perrinet LU. Precise Spiking Motifs in Neurobiological and Neuromorphic Data. Brain Sci 2022; 13:68. [PMID: 36672049 PMCID: PMC9856822 DOI: 10.3390/brainsci13010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Why do neurons communicate through spikes? By definition, spikes are all-or-none neural events which occur at continuous times. In other words, spikes are on one side binary, existing or not without further details, and on the other, can occur at any asynchronous time, without the need for a centralized clock. This stands in stark contrast to the analog representation of values and the discretized timing classically used in digital processing and at the base of modern-day neural networks. As neural systems almost systematically use this so-called event-based representation in the living world, a better understanding of this phenomenon remains a fundamental challenge in neurobiology in order to better interpret the profusion of recorded data. With the growing need for intelligent embedded systems, it also emerges as a new computing paradigm to enable the efficient operation of a new class of sensors and event-based computers, called neuromorphic, which could enable significant gains in computation time and energy consumption-a major societal issue in the era of the digital economy and global warming. In this review paper, we provide evidence from biology, theory and engineering that the precise timing of spikes plays a crucial role in our understanding of the efficiency of neural networks.
Collapse
Affiliation(s)
- Antoine Grimaldi
- INT UMR 7289, Aix Marseille Univ, CNRS, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Amélie Gruel
- SPARKS, Côte d’Azur, CNRS, I3S, 2000 Rte des Lucioles, 06900 Sophia-Antipolis, France
| | - Camille Besnainou
- INT UMR 7289, Aix Marseille Univ, CNRS, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Jean-Nicolas Jérémie
- INT UMR 7289, Aix Marseille Univ, CNRS, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Jean Martinet
- SPARKS, Côte d’Azur, CNRS, I3S, 2000 Rte des Lucioles, 06900 Sophia-Antipolis, France
| | - Laurent U. Perrinet
- INT UMR 7289, Aix Marseille Univ, CNRS, 27 Bd Jean Moulin, 13005 Marseille, France
| |
Collapse
|
30
|
Guidolin A, Desroches M, Victor JD, Purpura KP, Rodrigues S. Geometry of spiking patterns in early visual cortex: a topological data analytic approach. J R Soc Interface 2022; 19:20220677. [PMID: 36382589 PMCID: PMC9667368 DOI: 10.1098/rsif.2022.0677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
In the brain, spiking patterns live in a high-dimensional space of neurons and time. Thus, determining the intrinsic structure of this space presents a theoretical and experimental challenge. To address this challenge, we introduce a new framework for applying topological data analysis (TDA) to spike train data and use it to determine the geometry of spiking patterns in the visual cortex. Key to our approach is a parametrized family of distances based on the timing of spikes that quantifies the dissimilarity between neuronal responses. We applied TDA to visually driven single-unit and multiple single-unit spiking activity in macaque V1 and V2. TDA across timescales reveals a common geometry for spiking patterns in V1 and V2 which, among simple models, is most similar to that of a low-dimensional space endowed with Euclidean or hyperbolic geometry with modest curvature. Remarkably, the inferred geometry depends on timescale and is clearest for the timescales that are important for encoding contrast, orientation and spatial correlations.
Collapse
Affiliation(s)
- Andrea Guidolin
- MCEN Team, BCAM – Basque Center for Applied Mathematics, 48009 Bilbao, Basque Country, Spain
- Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mathieu Desroches
- MathNeuro Team, Inria at Université Côte d’Azur, 06902 Sophia Antipolis, France
| | - Jonathan D. Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Keith P. Purpura
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Serafim Rodrigues
- MCEN Team, BCAM – Basque Center for Applied Mathematics, 48009 Bilbao, Basque Country, Spain
- Ikerbasque – The Basque Foundation for Science, 48009 Bilbao, Basque Country, Spain
| |
Collapse
|
31
|
Lundqvist M, Rose J, Brincat SL, Warden MR, Buschman TJ, Herman P, Miller EK. Reduced variability of bursting activity during working memory. Sci Rep 2022; 12:15050. [PMID: 36064880 PMCID: PMC9445015 DOI: 10.1038/s41598-022-18577-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
Working memories have long been thought to be maintained by persistent spiking. However, mounting evidence from multiple-electrode recording (and single-trial analyses) shows that the underlying spiking is better characterized by intermittent bursts of activity. A counterargument suggested this intermittent activity is at odds with observations that spike-time variability reduces during task performance. However, this counterargument rests on assumptions, such as randomness in the timing of the bursts, which may not be correct. Thus, we analyzed spiking and LFPs from monkeys' prefrontal cortex (PFC) to determine if task-related reductions in variability can co-exist with intermittent spiking. We found that it does because both spiking and associated gamma bursts were task-modulated, not random. In fact, the task-related reduction in spike variability could largely be explained by a related reduction in gamma burst variability. Our results provide further support for the intermittent activity models of working memory as well as novel mechanistic insights into how spike variability is reduced during cognitive tasks.
Collapse
Affiliation(s)
- Mikael Lundqvist
- Department of Psychology, Department of Clinical Neuroscience, Karolinska Institute, Solna, Sweden.
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Jonas Rose
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Faculty of Psychology, Neural Basis of Learning, Ruhr University Bochum, 44801, Bochum, Germany
| | - Scott L Brincat
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Melissa R Warden
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Timothy J Buschman
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Princeton Neuroscience Institute, Princeton University, Washington Rd., Princeton, NJ, 08540, USA
| | - Pawel Herman
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science and Digital Futures, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Earl K Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
32
|
Developmental depression-to-facilitation shift controls excitation-inhibition balance. Commun Biol 2022; 5:873. [PMID: 36008708 PMCID: PMC9411206 DOI: 10.1038/s42003-022-03801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Changes in the short-term dynamics of excitatory synapses over development have been observed throughout cortex, but their purpose and consequences remain unclear. Here, we propose that developmental changes in synaptic dynamics buffer the effect of slow inhibitory long-term plasticity, allowing for continuously stable neural activity. Using computational modeling we demonstrate that early in development excitatory short-term depression quickly stabilises neural activity, even in the face of strong, unbalanced excitation. We introduce a model of the commonly observed developmental shift from depression to facilitation and show that neural activity remains stable throughout development, while inhibitory synaptic plasticity slowly balances excitation, consistent with experimental observations. Our model predicts changes in the input responses from phasic to phasic-and-tonic and more precise spike timings. We also observe a gradual emergence of short-lasting memory traces governed by short-term plasticity development. We conclude that the developmental depression-to-facilitation shift may control excitation-inhibition balance throughout development with important functional consequences. Using computational modelling this study proposes that the commonly observed depression-to-facilitation shift across development controls excitation-inhibition balance in the brain.
Collapse
|
33
|
Walsh E, Oakley DA. Editing reality in the brain. Neurosci Conscious 2022; 2022:niac009. [PMID: 35903411 PMCID: PMC9319104 DOI: 10.1093/nc/niac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/30/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Recent information technologies such as virtual reality (VR) and augmented reality (AR) allow the creation of simulated sensory worlds with which we can interact. Using programming language, digital details can be overlaid onto displays of our environment, confounding what is real and what has been artificially engineered. Natural language, particularly the use of direct verbal suggestion (DVS) in everyday and hypnotic contexts, can also manipulate the meaning and significance of objects and events in ourselves and others. In this review, we focus on how socially rewarding language can construct and influence reality. Language is symbolic, automatic and flexible and can be used to augment bodily sensations e.g. feelings of heaviness in a limb or suggest a colour that is not there. We introduce the term 'suggested reality' (SR) to refer to the important role that language, specifically DVS, plays in constructing, maintaining and manipulating our shared reality. We also propose the term edited reality to encompass the wider influence of information technology and linguistic techniques that results in altered subjective experience and review its use in clinical settings, while acknowledging its limitations. We develop a cognitive model indicating how the brain's central executive structures use our personal and linguistic-based narrative in subjective awareness, arguing for a central role for language in DVS. A better understanding of the characteristics of VR, AR and SR and their applications in everyday life, research and clinical settings can help us to better understand our own reality and how it can be edited.
Collapse
Affiliation(s)
- Eamonn Walsh
- Department of Basic and Clinical Neuroscience,
Institute of Psychiatry, Psychology & Neuroscience, King’s College
London, London, UK
| | - David A Oakley
- Division of Psychology and Language Sciences,
University College London, London, UK
- School of Psychology, Cardiff
University, Cardiff, UK
| |
Collapse
|
34
|
Cariani P, Baker JM. Time Is of the Essence: Neural Codes, Synchronies, Oscillations, Architectures. Front Comput Neurosci 2022; 16:898829. [PMID: 35814343 PMCID: PMC9262106 DOI: 10.3389/fncom.2022.898829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Time is of the essence in how neural codes, synchronies, and oscillations might function in encoding, representation, transmission, integration, storage, and retrieval of information in brains. This Hypothesis and Theory article examines observed and possible relations between codes, synchronies, oscillations, and types of neural networks they require. Toward reverse-engineering informational functions in brains, prospective, alternative neural architectures incorporating principles from radio modulation and demodulation, active reverberant circuits, distributed content-addressable memory, signal-signal time-domain correlation and convolution operations, spike-correlation-based holography, and self-organizing, autoencoding anticipatory systems are outlined. Synchronies and oscillations are thought to subserve many possible functions: sensation, perception, action, cognition, motivation, affect, memory, attention, anticipation, and imagination. These include direct involvement in coding attributes of events and objects through phase-locking as well as characteristic patterns of spike latency and oscillatory response. They are thought to be involved in segmentation and binding, working memory, attention, gating and routing of signals, temporal reset mechanisms, inter-regional coordination, time discretization, time-warping transformations, and support for temporal wave-interference based operations. A high level, partial taxonomy of neural codes consists of channel, temporal pattern, and spike latency codes. The functional roles of synchronies and oscillations in candidate neural codes, including oscillatory phase-offset codes, are outlined. Various forms of multiplexing neural signals are considered: time-division, frequency-division, code-division, oscillatory-phase, synchronized channels, oscillatory hierarchies, polychronous ensembles. An expandable, annotative neural spike train framework for encoding low- and high-level attributes of events and objects is proposed. Coding schemes require appropriate neural architectures for their interpretation. Time-delay, oscillatory, wave-interference, synfire chain, polychronous, and neural timing networks are discussed. Some novel concepts for formulating an alternative, more time-centric theory of brain function are discussed. As in radio communication systems, brains can be regarded as networks of dynamic, adaptive transceivers that broadcast and selectively receive multiplexed temporally-patterned pulse signals. These signals enable complex signal interactions that select, reinforce, and bind common subpatterns and create emergent lower dimensional signals that propagate through spreading activation interference networks. If memory traces share the same kind of temporal pattern forms as do active neuronal representations, then distributed, holograph-like content-addressable memories are made possible via temporal pattern resonances.
Collapse
Affiliation(s)
- Peter Cariani
- Hearing Research Center, Boston University, Boston, MA, United States
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
35
|
Lundqvist M, Wutz A. New methods for oscillation analyses push new theories of discrete cognition. Psychophysiology 2022; 59:e13827. [PMID: 33942323 PMCID: PMC11475370 DOI: 10.1111/psyp.13827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 11/28/2022]
Abstract
Classical ways of analyzing neural time series data has led to static views on cognition, in which the cognitive processes are linked to sustained neural activity and interpreted as stationary states. The core analytical focus was on slow power modulations of neural oscillations averaged across many experimental trials. Whereas this custom analytical approach reduces the complexity and increases the signal-to-noise ratio, it may disregard or even remove important aspects of the underlying neural dynamics. Novel analysis methods investigate the instantaneous frequency and phase of neural oscillations and relate them to the precisely controlled timing of brief successive sensory stimuli. This enables to capture how cognitive processes unfold in discrete windows within and across oscillatory cycles. Moreover, several recent studies analyze the oscillatory power modulations on single experimental trials. They suggest that the power modulations are packed into discrete bursts of activity, which occur at different rates and times, and with different durations from trial-to-trial. Here, we review the current work that made use of these methodological advances for neural oscillations. These novel analysis perspectives emphasize that cognitive processes occur in discrete time windows, instead of sustained, stationary states. Evidence for discretization was observed for the entire range of cognitive functions from perception and attention to working memory, goal-directed thought and motor actions, as well as throughout the entire cortical hierarchy and in subcortical regions. These empirical observations create demand for new psychological theories and computational models of cognition in the brain, which integrate its discrete temporal dynamics.
Collapse
Affiliation(s)
- Mikael Lundqvist
- Department of Clinical NeuroscienceKarolinska InstituteStockholmSweden
- Picower Institute for Learning & MemoryMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Andreas Wutz
- Picower Institute for Learning & MemoryMassachusetts Institute of TechnologyCambridgeMAUSA
- Centre for Cognitive NeuroscienceUniversity of SalzburgSalzburgAustria
| |
Collapse
|
36
|
Das R, Luczak A. Epileptic seizures and link to memory processes. AIMS Neurosci 2022; 9:114-127. [PMID: 35434278 PMCID: PMC8941196 DOI: 10.3934/neuroscience.2022007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 12/02/2022] Open
Abstract
Epileptogenesis is a complex and not well understood phenomenon. Here, we explore the hypothesis that epileptogenesis could be "hijacking" normal memory processes, and how this hypothesis may provide new directions for epilepsy treatment. First, we review similarities between the hypersynchronous circuits observed in epilepsy and memory consolidation processes involved in strengthening neuronal connections. Next, we describe the kindling model of seizures and its relation to long-term potentiation model of synaptic plasticity. We also examine how the strengthening of epileptic circuits is facilitated during the physiological slow wave sleep, similarly as episodic memories. Furthermore, we present studies showing that specific memories can directly trigger reflex seizures. The neuronal hypersynchrony in early stages of Alzheimer's disease, and the use of anti-epileptic drugs to improve the cognitive symptoms in this disease also suggests a connection between memory systems and epilepsy. Given the commonalities between memory processes and epilepsy, we propose that therapies for memory disorders might provide new avenues for treatment of epileptic patients.
Collapse
Affiliation(s)
- Ritwik Das
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Artur Luczak
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
37
|
Abstract
Understanding how the brain learns may lead to machines with human-like intellectual capacities. It was previously proposed that the brain may operate on the principle of predictive coding. However, it is still not well understood how a predictive system could be implemented in the brain. Here we demonstrate that the ability of a single neuron to predict its future activity may provide an effective learning mechanism. Interestingly, this predictive learning rule can be derived from a metabolic principle, where neurons need to minimize their own synaptic activity (cost), while maximizing their impact on local blood supply by recruiting other neurons. We show how this mathematically derived learning rule can provide a theoretical connection between diverse types of brain-inspired algorithms, thus, offering a step toward development of a general theory of neuronal learning. We tested this predictive learning rule in neural network simulations and in data recorded from awake animals. Our results also suggest that spontaneous brain activity provides “training data” for neurons to learn to predict cortical dynamics. Thus, the ability of a single neuron to minimize surprise: i.e. the difference between actual and expected activity, could be an important missing element to understand computation in the brain.
Collapse
|
38
|
Nunes RV, Reyes MB, Mejias JF, de Camargo RY. Directed functional and structural connectivity in a large-scale model for the mouse cortex. Netw Neurosci 2022; 5:874-889. [PMID: 35024534 PMCID: PMC8746117 DOI: 10.1162/netn_a_00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
Inferring the structural connectivity from electrophysiological measurements is a fundamental challenge in systems neuroscience. Directed functional connectivity measures, such as the generalized partial directed coherence (GPDC), provide estimates of the causal influence between areas. However, the relation between causality estimates and structural connectivity is still not clear. We analyzed this problem by evaluating the effectiveness of GPDC to estimate the connectivity of a ground-truth, data-constrained computational model of a large-scale network model of the mouse cortex. The model contains 19 cortical areas composed of spiking neurons, with areas connected by long-range projections with weights obtained from a tract-tracing cortical connectome. We show that GPDC values provide a reasonable estimate of structural connectivity, with an average Pearson correlation over simulations of 0.74. Moreover, even in a typical electrophysiological recording scenario containing five areas, the mean correlation was above 0.6. These results suggest that it may be possible to empirically estimate structural connectivity from functional connectivity even when detailed whole-brain recordings are not achievable. We analyzed the relationship between structural and directed functional connectivity by evaluating the effectiveness of generalized partial directed coherence (GPDC) to estimate the connectivity of a ground-truth, data-constrained computational model of a large-scale network model of the mouse cortex. We show that GPDC values provide a reasonable estimate of structural connectivity even in a typical electrophysiological recording scenario containing few areas. These results suggest that it may be possible to empirically estimate structural connectivity from functional connectivity even when detailed whole-brain recordings are not achievable.
Collapse
Affiliation(s)
- Ronaldo V Nunes
- Center for Mathematics, Computing, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Marcelo B Reyes
- Center for Mathematics, Computing, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Jorge F Mejias
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Raphael Y de Camargo
- Center for Mathematics, Computing, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| |
Collapse
|
39
|
Ivica N, Censoni L, Sjöbom J, Richter U, Petersson P. Differential effects of skilled reaching training on the temporal and spatial organization of somatosensory input to cortical and striatal motor circuits. J Neurophysiol 2021; 127:225-238. [PMID: 34936519 DOI: 10.1152/jn.00464.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been hypothesized that in order to perform sensorimotor transformations efficiently, somatosensory information being fed back to a particular motor circuit is organized in accordance with the mechanical loading patterns of the skin that results from the motor activity generated by that circuit. Rearrangements of sensory information to different motor circuits could in this respect constitute a key component of sensorimotor learning. We have here explored if the organization of tactile input from the plantar forepaw of the rat to cortical and striatal circuits is affected by a period of extensive sensorimotor training in a skilled reaching and grasping task. Our data show that the representation of tactile stimuli in terms of both temporal and spatial response patterns changes as a consequence of the training, and that spatial changes particularly involve the primary motor cortex. Based on the observed reorganization, we propose that reshaping of the spatiotemporal representation of the tactile afference to motor circuits is an integral component of the learning process that underlies skill-acquisition in reaching and grasping.
Collapse
Affiliation(s)
- Nedjeljka Ivica
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Luciano Censoni
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Joel Sjöbom
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Ulrike Richter
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Per Petersson
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
40
|
Afrashteh N, Inayat S, Bermudez-Contreras E, Luczak A, McNaughton BL, Mohajerani MH. Spatiotemporal structure of sensory-evoked and spontaneous activity revealed by mesoscale imaging in anesthetized and awake mice. Cell Rep 2021; 37:110081. [PMID: 34879278 DOI: 10.1016/j.celrep.2021.110081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 05/25/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022] Open
Abstract
Stimuli-evoked and spontaneous brain activity propagates across the cortex in diverse spatiotemporal patterns. Despite extensive studies, the relationship between spontaneous and evoked activity is poorly understood. We investigate this relationship by comparing the amplitude, speed, direction, and complexity of propagation trajectories of spontaneous and evoked activity elicited with visual, auditory, and tactile stimuli using mesoscale wide-field imaging in mice. For both spontaneous and evoked activity, the speed and direction of propagation is modulated by the amplitude. However, spontaneous activity has a higher complexity of the propagation trajectories. For low stimulus strengths, evoked activity amplitude and speed is similar to that of spontaneous activity but becomes dissimilar at higher stimulus strengths. These findings are consistent with observations that primary sensory areas receive widespread inputs from other cortical regions, and during rest, the cortex tends to reactivate traces of complex multisensory experiences that might have occurred in exhibition of different behaviors.
Collapse
Affiliation(s)
- Navvab Afrashteh
- University of Lethbridge, Faculty of Arts and Sciences, Department of Neuroscience, 4401 University Dr. W., Lethbridge, Alberta T1K 3M4, Canada
| | - Samsoon Inayat
- University of Lethbridge, Faculty of Arts and Sciences, Department of Neuroscience, 4401 University Dr. W., Lethbridge, Alberta T1K 3M4, Canada
| | - Edgar Bermudez-Contreras
- University of Lethbridge, Faculty of Arts and Sciences, Department of Neuroscience, 4401 University Dr. W., Lethbridge, Alberta T1K 3M4, Canada
| | - Artur Luczak
- University of Lethbridge, Faculty of Arts and Sciences, Department of Neuroscience, 4401 University Dr. W., Lethbridge, Alberta T1K 3M4, Canada
| | - Bruce L McNaughton
- University of Lethbridge, Faculty of Arts and Sciences, Department of Neuroscience, 4401 University Dr. W., Lethbridge, Alberta T1K 3M4, Canada; Center for Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92603, USA
| | - Majid H Mohajerani
- University of Lethbridge, Faculty of Arts and Sciences, Department of Neuroscience, 4401 University Dr. W., Lethbridge, Alberta T1K 3M4, Canada.
| |
Collapse
|
41
|
Tong APS, Vaz AP, Wittig JH, Inati SK, Zaghloul KA. Ripples reflect a spectrum of synchronous spiking activity in human anterior temporal lobe. eLife 2021; 10:68401. [PMID: 34779398 PMCID: PMC8716101 DOI: 10.7554/elife.68401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/13/2021] [Indexed: 11/13/2022] Open
Abstract
Direct brain recordings have provided important insights into how high-frequency activity captured through intracranial EEG (iEEG) supports human memory retrieval. The extent to which such activity is comprised of transient fluctuations that reflect the dynamic coordination of underlying neurons, however, remains unclear. Here, we simultaneously record iEEG, local field potential (LFP), and single unit activity in the human temporal cortex. We demonstrate that fast oscillations within the previously identified 80-120 Hz ripple band contribute to broadband high-frequency activity in the human cortex. These ripple oscillations exhibit a spectrum of amplitudes and durations related to the amount of underlying neuronal spiking. Ripples in the macro-scale iEEG are related to the number and synchrony of ripples in the micro-scale LFP, which in turn are related to the synchrony of neuronal spiking. Our data suggest that neural activity in the human temporal lobe is organized into transient bouts of ripple oscillations that reflect underlying bursts of spiking activity.
Collapse
Affiliation(s)
- Ai Phuong S Tong
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Alex P Vaz
- Medical Scientist Training Program, Duke University School of Medicine, Durham, United States
| | - John H Wittig
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Sara K Inati
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
42
|
Susin E, Destexhe A. Integration, coincidence detection and resonance in networks of spiking neurons expressing Gamma oscillations and asynchronous states. PLoS Comput Biol 2021; 17:e1009416. [PMID: 34529655 PMCID: PMC8478196 DOI: 10.1371/journal.pcbi.1009416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/28/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022] Open
Abstract
Gamma oscillations are widely seen in the awake and sleeping cerebral cortex, but the exact role of these oscillations is still debated. Here, we used biophysical models to examine how Gamma oscillations may participate to the processing of afferent stimuli. We constructed conductance-based network models of Gamma oscillations, based on different cell types found in cerebral cortex. The models were adjusted to extracellular unit recordings in humans, where Gamma oscillations always coexist with the asynchronous firing mode. We considered three different mechanisms to generate Gamma, first a mechanism based on the interaction between pyramidal neurons and interneurons (PING), second a mechanism in which Gamma is generated by interneuron networks (ING) and third, a mechanism which relies on Gamma oscillations generated by pacemaker chattering neurons (CHING). We find that all three mechanisms generate features consistent with human recordings, but that the ING mechanism is most consistent with the firing rate change inside Gamma bursts seen in the human data. We next evaluated the responsiveness and resonant properties of these networks, contrasting Gamma oscillations with the asynchronous mode. We find that for both slowly-varying stimuli and precisely-timed stimuli, the responsiveness is generally lower during Gamma compared to asynchronous states, while resonant properties are similar around the Gamma band. We could not find conditions where Gamma oscillations were more responsive. We therefore predict that asynchronous states provide the highest responsiveness to external stimuli, while Gamma oscillations tend to overall diminish responsiveness. In the awake and attentive brain, the activity of neurons is typically asynchronous and irregular. It also occasionally displays oscillations in the Gamma frequency range (30–90 Hz), which are believed to be involved in information processing. Here, we use computational models to investigate how brain circuits generate oscillations in a manner consistent with microelectrode recordings in humans. We then study how these networks respond to external input, comparing asynchronous and oscillatory states. This is tested according to several paradigms, an integrative mode, where slowly varying inputs are progressively integrated, a coincidence detection mode, where brief inputs are processed according to the phase of the oscillations, and a resonance mode where the network is probed with oscillatory inputs. Surprisingly, we find that in all cases, the presence of Gamma oscillations tends to diminish the responsiveness to external inputs. We discuss possible implications of this responsiveness decrease on information processing and propose new directions for further exploration.
Collapse
Affiliation(s)
- Eduarda Susin
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
- * E-mail:
| | - Alain Destexhe
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
| |
Collapse
|
43
|
Vakilna YS, Tang WC, Wheeler BC, Brewer GJ. The Flow of Axonal Information Among Hippocampal Subregions: 1. Feed-Forward and Feedback Network Spatial Dynamics Underpinning Emergent Information Processing. Front Neural Circuits 2021; 15:660837. [PMID: 34512275 PMCID: PMC8430040 DOI: 10.3389/fncir.2021.660837] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
The tri-synaptic pathway in the mammalian hippocampus enables cognitive learning and memory. Despite decades of reports on anatomy and physiology, the functional architecture of the hippocampal network remains poorly understood in terms of the dynamics of axonal information transfer between subregions. Information inputs largely flow from the entorhinal cortex (EC) to the dentate gyrus (DG), and then are processed further in the CA3 and CA1 before returning to the EC. Here, we reconstructed elements of the rat hippocampus in a novel device over an electrode array that allowed for monitoring the directionality of individual axons between the subregions. The direction of spike propagation was determined by the transmission delay of the axons recorded between two electrodes in microfluidic tunnels. The majority of axons from the EC to the DG operated in the feed-forward direction, with other regions developing unexpectedly large proportions of feedback axons to balance excitation. Spike timing in axons between each region followed single exponential log-log distributions over two orders of magnitude from 0.01 to 1 s, indicating that conventional descriptors of mean firing rates are misleading assumptions. Most of the spiking occurred in bursts that required two exponentials to fit the distribution of inter-burst intervals. This suggested the presence of up-states and down-states in every region, with the least up-states in the DG to CA3 feed-forward axons and the CA3 subregion. The peaks of the log-normal distributions of intra-burst spike rates were similar in axons between regions with modes around 95 Hz distributed over an order of magnitude. Burst durations were also log-normally distributed around a peak of 88 ms over two orders of magnitude. Despite the diversity of these spike distributions, spike rates from individual axons were often linearly correlated to subregions. These linear relationships enabled the generation of structural connectivity graphs, not possible previously without the directional flow of axonal information. The rich axonal spike dynamics between subregions of the hippocampus reveal both constraints and broad emergent dynamics of hippocampal architecture. Knowledge of this network architecture may enable more efficient computational artificial intelligence (AI) networks, neuromorphic hardware, and stimulation and decoding from cognitive implants.
Collapse
Affiliation(s)
- Yash S Vakilna
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - William C Tang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Bruce C Wheeler
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Gregory J Brewer
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Center for Neuroscience of Learning and Memory, Memory Impairments and Neurological Disorders (MIND) Institute, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
44
|
Mishra A, Marzban N, Cohen MX, Englitz B. Dynamics of Neural Microstates in the VTA-Striatal-Prefrontal Loop during Novelty Exploration in the Rat. J Neurosci 2021; 41:6864-6877. [PMID: 34193560 PMCID: PMC8360694 DOI: 10.1523/jneurosci.2256-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022] Open
Abstract
Neural activity at the large-scale population level has been suggested to be consistent with a sequence of brief, quasistable spatial patterns. These "microstates" and their temporal dynamics have been linked to myriad cognitive functions and brain diseases. Most of this research has been performed using EEG, leaving many questions, such as the existence, dynamics, and behavioral relevance of microstates at the level of local field potentials (LFPs), unaddressed. Here, we adapted the standard EEG microstate analysis to triple-area LFP recordings from 192 electrodes in rats to investigate the mesoscopic dynamics of neural microstates within and across brain regions during novelty exploration. We performed simultaneous recordings from the prefrontal cortex, striatum, and ventral tegmental area in male rats during awake behavior (object novelty and exploration). We found that the LFP data can be accounted for by multiple, recurring microstates that were stable for ∼60-100 ms. The simultaneous microstate activity across brain regions revealed rhythmic patterns of coactivations, which we interpret as a novel indicator of inter-regional, mesoscale synchronization. Furthermore, these rhythmic coactivation patterns across microstates were modulated by behavioral states such as movement and exploration of a novel object. These results support the existence of a functional mesoscopic organization across multiple brain areas and present a possible link of the origin of macroscopic EEG microstates to zero-lag neuronal synchronization within and between brain areas, which is of particular interest to the human research community.SIGNIFICANCE STATEMENT The coordination of neural activity across the entire brain has remained elusive. Here we combine large-scale neural recordings at fine spatial resolution with the analysis of microstates (i.e., short-lived, recurring spatial patterns of neural activity). We demonstrate that the local activity in different brain areas can be accounted for by only a few microstates per region. These microstates exhibited temporal dynamics that were correlated across regions in rhythmic patterns. We demonstrate that these microstates are linked to behavior and exhibit different properties in the frequency domain during different behavioral states. In summary, LFP microstates provide an insightful approach to studying both mesoscopic and large-scale brain activation within and across regions.
Collapse
Affiliation(s)
- Ashutosh Mishra
- Synchronisation in Neural Systems Laboratory, Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6500 HB, Nijmegen, The Netherlands
- Computational Neuroscience Laboratory, Department of Neurophysiology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6525 AJ, Nijmegen, The Netherlands
| | - Nader Marzban
- Synchronisation in Neural Systems Laboratory, Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6500 HB, Nijmegen, The Netherlands
| | - Michael X Cohen
- Synchronisation in Neural Systems Laboratory, Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6500 HB, Nijmegen, The Netherlands
| | - Bernhard Englitz
- Computational Neuroscience Laboratory, Department of Neurophysiology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Xu L, Guan NN, Huang CX, Hua Y, Song J. A neuronal circuit that generates the temporal motor sequence for the defensive response in zebrafish larvae. Curr Biol 2021; 31:3343-3357.e4. [PMID: 34289386 DOI: 10.1016/j.cub.2021.06.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 01/11/2023]
Abstract
Animals use a precisely timed motor sequence to escape predators. This requires the nervous system to coordinate several motor behaviors and execute them in a temporal and smooth manner. We here describe a neuronal circuit that faithfully generates a defensive motor sequence in zebrafish larvae. The temporally specific defensive motor sequence consists of an initial escape and a subsequent swim behavior and can be initiated by unilateral stimulation of a single Mauthner cell (M-cell). The smooth transition from escape behavior to swim behavior is achieved by activating a neuronal chain circuit, which permits an M-cell to drive descending neurons in bilateral nucleus of medial longitudinal fascicle (nMLF) via activation of an intermediate excitatory circuit formed by interconnected hindbrain cranial relay neurons. The sequential activation of M-cells and neurons in bilateral nMLF via activation of hindbrain cranial relay neurons ensures the smooth execution of escape and swim behaviors in a timely manner. We propose an existence of a serial model that executes a temporal motor sequence involving three different brain regions that initiates the escape behavior and triggers a subsequent swim. This model has general implications regarding the neural control of complex motor sequences.
Collapse
Affiliation(s)
- Lulu Xu
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Na N Guan
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092 Shanghai, China
| | - Chun-Xiao Huang
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yunfeng Hua
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Jianren Song
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092 Shanghai, China.
| |
Collapse
|
46
|
Karvat G, Alyahyay M, Diester I. Spontaneous activity competes with externally evoked responses in sensory cortex. Proc Natl Acad Sci U S A 2021; 118:e2023286118. [PMID: 34155142 PMCID: PMC8237647 DOI: 10.1073/pnas.2023286118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The interaction between spontaneous and externally evoked neuronal activity is fundamental for a functional brain. Increasing evidence suggests that bursts of high-power oscillations in the 15- to 30-Hz beta-band represent activation of internally generated events and mask perception of external cues. Yet demonstration of the effect of beta-power modulation on perception in real time is missing, and little is known about the underlying mechanism. Here, we used a closed-loop stimulus-intensity adjustment system based on online burst-occupancy analyses in rats involved in a forepaw vibrotactile detection task. We found that the masking influence of burst occupancy on perception can be counterbalanced in real time by adjusting the vibration amplitude. Offline analysis of firing rates (FRs) and local field potentials across cortical layers and frequency bands confirmed that beta-power in the somatosensory cortex anticorrelated with sensory evoked responses. Mechanistically, bursts in all bands were accompanied by transient synchronization of cell assemblies, but only beta-bursts were followed by a reduction of FR. Our closed loop approach reveals that spontaneous beta-bursts reflect a dynamic state that competes with external stimuli.
Collapse
Affiliation(s)
- Golan Karvat
- Optophysiology Lab, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- Bernstein Center for Computational Neuroscience Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Mansour Alyahyay
- Optophysiology Lab, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- BrainLinks-BrainTools, University of Freiburg, 79104 Freiburg, Germany
| | - Ilka Diester
- Optophysiology Lab, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany;
- Bernstein Center for Computational Neuroscience Freiburg, University of Freiburg, 79104 Freiburg, Germany
- BrainLinks-BrainTools, University of Freiburg, 79104 Freiburg, Germany
- Intelligent Machine Brain Interfacing Technology (IMBIT), 79110 Freiburg, Germany
| |
Collapse
|
47
|
Liang Y, Fan JL, Sun W, Lu R, Chen M, Ji N. A Distinct Population of L6 Neurons in Mouse V1 Mediate Cross-Callosal Communication. Cereb Cortex 2021; 31:4259-4273. [PMID: 33987642 DOI: 10.1093/cercor/bhab084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Through the corpus callosum, interhemispheric communication is mediated by callosal projection (CP) neurons. Using retrograde labeling, we identified a population of layer 6 (L6) excitatory neurons as the main conveyer of transcallosal information in the monocular zone of the mouse primary visual cortex (V1). Distinct from L6 corticothalamic (CT) population, V1 L6 CP neurons contribute to an extensive reciprocal network across multiple sensory cortices over two hemispheres. Receiving both local and long-range cortical inputs, they encode orientation, direction, and receptive field information, while are also highly spontaneous active. The spontaneous activity of L6 CP neurons exhibits complex relationships with brain states and stimulus presentation, distinct from the spontaneous activity patterns of the CT population. The anatomical and functional properties of these L6 CP neurons enable them to broadcast visual and nonvisual information across two hemispheres, and thus may play a role in regulating and coordinating brain-wide activity events.
Collapse
Affiliation(s)
- Yajie Liang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.,Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 201210, USA
| | - Jiang Lan Fan
- UCSF-UC Berkeley Joint PhD Program in Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Wenzhi Sun
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.,iHuman Institute, ShanghaiTech University, Shanghai 201210, China.,Chinese Institute for Brain Research, Beijing 102206, China
| | - Rongwen Lu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming Chen
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Na Ji
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.,Department of Physics, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
48
|
Egger R, Tupikov Y, Elmaleh M, Katlowitz KA, Benezra SE, Picardo MA, Moll F, Kornfeld J, Jin DZ, Long MA. Local Axonal Conduction Shapes the Spatiotemporal Properties of Neural Sequences. Cell 2021; 183:537-548.e12. [PMID: 33064989 DOI: 10.1016/j.cell.2020.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/07/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022]
Abstract
Sequential activation of neurons has been observed during various behavioral and cognitive processes, but the underlying circuit mechanisms remain poorly understood. Here, we investigate premotor sequences in HVC (proper name) of the adult zebra finch forebrain that are central to the performance of the temporally precise courtship song. We use high-density silicon probes to measure song-related population activity, and we compare these observations with predictions from a range of network models. Our results support a circuit architecture in which heterogeneous delays between sequentially active neurons shape the spatiotemporal patterns of HVC premotor neuron activity. We gauge the impact of several delay sources, and we find the primary contributor to be slow conduction through axonal collaterals within HVC, which typically adds between 1 and 7.5 ms for each link within the sequence. Thus, local axonal "delay lines" can play an important role in determining the dynamical repertoire of neural circuits.
Collapse
Affiliation(s)
- Robert Egger
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Yevhen Tupikov
- Department of Physics and Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Margot Elmaleh
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Kalman A Katlowitz
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Sam E Benezra
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Michel A Picardo
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Felix Moll
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Jörgen Kornfeld
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Dezhe Z Jin
- Department of Physics and Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
49
|
Altered Sensory Representations in Parkinsonian Cortical and Basal Ganglia Networks. Neuroscience 2021; 466:10-25. [PMID: 33965505 DOI: 10.1016/j.neuroscience.2021.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 11/22/2022]
Abstract
In parkinsonian conditions, network dynamics in the cortical and basal ganglia circuits present abnormal oscillations and periods of high synchrony, affecting the functionality of multiple striatal regions including the sensorimotor striatum. However, it is still unclear how these altered dynamics impact on sensory processing, a key feature for motor control that is severely impaired in parkinsonian patients. A major confound is that pathological dynamics in sensorimotor networks may elicit unspecific motor responses that may alter sensory representations through sensory feedback, making it difficult to disentangle motor and sensory components. To address this issue, we studied sensory processing using an anesthetized model with robust sensory representations throughout cortical and basal ganglia sensory regions and limited motor confounds in control and hemiparkinsonian rats. A general screening of sensory-evoked activity in large populations of neurons recorded in the primary sensory cortex (S1), dorsolateral striatum (DLS) and substantia nigra pars reticulata (SNr) revealed increased excitability and altered sensory representations in the three regions. Further analysis revealed uncoordinated population dynamics between DLS and S1/SNr. Finally, DLS lesions in hemiparkinsonian animals partially recovered population dynamics and execution in the rotarod.
Collapse
|
50
|
Wason TD. A model integrating multiple processes of synchronization and coherence for information instantiation within a cortical area. Biosystems 2021; 205:104403. [PMID: 33746019 DOI: 10.1016/j.biosystems.2021.104403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022]
Abstract
What is the form of dynamic, e.g., sensory, information in the mammalian cortex? Information in the cortex is modeled as a coherence map of a mixed chimera state of synchronous, phasic, and disordered minicolumns. The theoretical model is built on neurophysiological evidence. Complex spatiotemporal information is instantiated through a system of interacting biological processes that generate a synchronized cortical area, a coherent aperture. Minicolumn elements are grouped in macrocolumns in an array analogous to a phased-array radar, modeled as an aperture, a "hole through which radiant energy flows." Coherence maps in a cortical area transform inputs from multiple sources into outputs to multiple targets, while reducing complexity and entropy. Coherent apertures can assume extremely large numbers of different information states as coherence maps, which can be communicated among apertures with corresponding very large bandwidths. The coherent aperture model incorporates considerable reported research, integrating five conceptually and mathematically independent processes: 1) a damped Kuramoto network model, 2) a pumped area field potential, 3) the gating of nearly coincident spikes, 4) the coherence of activity across cortical lamina, and 5) complex information formed through functions in macrocolumns. Biological processes and their interactions are described in equations and a functional circuit such that the mathematical pieces can be assembled the same way the neurophysiological ones are. The model can be conceptually convolved over the specifics of local cortical areas within and across species. A coherent aperture becomes a node in a graph of cortical areas with a corresponding distribution of information.
Collapse
Affiliation(s)
- Thomas D Wason
- North Carolina State University, Department of Biological Sciences, Meitzen Laboratory, Campus Box 7617, 128 David Clark Labs, Raleigh, NC 27695-7617, USA.
| |
Collapse
|