1
|
Yuan H, Huang Q, Wen J, Gao Y. Ultrasound viscoelastic imaging in the noninvasive quantitative assessment of chronic kidney disease. Ren Fail 2024; 46:2407882. [PMID: 39344493 PMCID: PMC11443565 DOI: 10.1080/0886022x.2024.2407882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND This study aims to evaluate the clinical application value of ultrasound viscoelastic imaging in noninvasive quantitative assessment of chronic kidney disease (CKD). METHODS A total of 332 patients with CKD and 190 healthy adults as a control group were prospectively enrolled. Before kidney biopsy, ultrasound viscoelastic imaging was performed to measure the mean stiffness value (Emean), mean viscosity coefficient (Vmean), and mean dispersion coefficient (Dmean) of the renal. CKD patients were divided into three groups based on estimated glomerular filtration rate. The differences in clinic, pathology, ultrasound image parameters between the control and patient groups, or among different CKD groups were compared. The correlation between viscoelastic parameters and pathology were analyzed. RESULTS Emean, Vmean, and Dmean in the control group were less than the CKD group (p < 0.05). In the identification of CKD from control groups, the area under curve of Vmean, Dmean, Emean, and combining the three parameters is 0.90, 0.79, 0.69, 0.91, respectively. Dmean and Vmean were increased with the decline of renal function (p < 0.05). Vmean and Dmean were positively correlated with white blood cell, urea, serum creatinine, and uric acid (p < 0.05). Vmean is positively correlated with interstitial fibrosis and inflammatory cell infiltration grades (p < 0.001). CONCLUSIONS Ultrasound viscoelastic imaging has advantages in noninvasive quantitative identification and evaluating renal function of CKD. Emean > 6.61 kPa, Vmean > 1.86 Pa·s, or Dmean > 7.51 m/s/kHz may suggest renal dysfunction. Combining Vmean, Dmean, and Emean can improve the efficiency of identifying CKD.
Collapse
Affiliation(s)
- Han Yuan
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Qun Huang
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Jing Wen
- Department of Hematology and Rheumatology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yong Gao
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| |
Collapse
|
2
|
Niendorf T, Gladytz T, Cantow K, Klein T, Tasbihi E, Velasquez Vides JR, Zhao K, Millward JM, Waiczies S, Seeliger E. MRI of kidney size matters. MAGMA (NEW YORK, N.Y.) 2024; 37:651-669. [PMID: 38960988 PMCID: PMC11417087 DOI: 10.1007/s10334-024-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE To highlight progress and opportunities of measuring kidney size with MRI, and to inspire research into resolving the remaining methodological gaps and unanswered questions relating to kidney size assessment. MATERIALS AND METHODS This work is not a comprehensive review of the literature but highlights valuable recent developments of MRI of kidney size. RESULTS The links between renal (patho)physiology and kidney size are outlined. Common methodological approaches for MRI of kidney size are reviewed. Techniques tailored for renal segmentation and quantification of kidney size are discussed. Frontier applications of kidney size monitoring in preclinical models and human studies are reviewed. Future directions of MRI of kidney size are explored. CONCLUSION MRI of kidney size matters. It will facilitate a growing range of (pre)clinical applications, and provide a springboard for new insights into renal (patho)physiology. As kidney size can be easily obtained from already established renal MRI protocols without the need for additional scans, this measurement should always accompany diagnostic MRI exams. Reconciling global kidney size changes with alterations in the size of specific renal layers is an important topic for further research. Acute kidney size measurements alone cannot distinguish between changes induced by alterations in the blood or the tubular volume fractions-this distinction requires further research into cartography of the renal blood and the tubular volumes.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| | - Thomas Gladytz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Kathleen Cantow
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Tobias Klein
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Digital Health-Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
| | - Ehsan Tasbihi
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jose Raul Velasquez Vides
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Institute for Medical Engineering, Otto Von Guericke University, Magdeburg, Germany
| | - Kaixuan Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| |
Collapse
|
3
|
Shi Z, Sun C, Zhou F, Yuan J, Chen M, Wang X, Wang X, Zhang Y, Pylypenko D, Yuan L. Native T1-mapping as a predictor of progressive renal function decline in chronic kidney disease patients. BMC Nephrol 2024; 25:121. [PMID: 38575883 PMCID: PMC10996237 DOI: 10.1186/s12882-024-03559-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/22/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND To investigate the potential of Native T1-mapping in predicting the prognosis of patients with chronic kidney disease (CKD). METHODS We enrolled 119 CKD patients as the study subjects and included 20 healthy volunteers as the control group, with follow-up extending until October 2022. Out of these patients, 63 underwent kidney biopsy measurements, and these patients were categorized into high (25-50%), low (< 25%), and no renal interstitial fibrosis (IF) (0%) groups. The study's endpoint event was the initiation of renal replacement therapy, kidney transplantation, or an increase of over 30% in serum creatinine levels. Cox regression analysis determined factors influencing unfavorable kidney outcomes. We employed Kaplan-Meier analysis to contrast kidney survival rates between the high and low T1 groups. Additionally, receiver-operating characteristic (ROC) curve analysis assessed the predictive accuracy of Native T1-mapping for kidney endpoint events. RESULTS T1 values across varying fibrosis degree groups showed statistical significance (F = 4.772, P < 0.05). Multivariate Cox regression pinpointed 24-h urine protein, cystatin C(CysC), hemoglobin(Hb), and T1 as factors tied to the emergence of kidney endpoint events. Kaplan-Meier survival analysis revealed a markedly higher likelihood of kidney endpoint events in the high T1 group compared to the low T1 value group (P < 0.001). The ROC curves for variables (CysC, T1, Hb) tied to kidney endpoint events demonstrated area under the curves(AUCs) of 0.83 (95%CI: 0.75-0.91) for CysC, 0.77 (95%CI: 0.68-0.86) for T1, and 0.73 (95%CI: 0.63-0.83) for Hb. Combining these variables elevated the AUC to 0.88 (95%CI: 0.81-0.94). CONCLUSION Native T1-mapping holds promise in facilitating more precise and earlier detection of CKD patients most at risk for end-stage renal disease.
Collapse
Affiliation(s)
- Zhaoyu Shi
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, China
| | - Chen Sun
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, China
| | - Fei Zhou
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, China
| | - Jianlei Yuan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, China
| | - Minyue Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, China
| | - Xinyu Wang
- Nantong University Medical School, Nantong, Jiangsu, China
| | - Xinquan Wang
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Yuan Zhang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, China
| | - Dmytro Pylypenko
- GE Healthcare, MR Research China, Beijing, People's Republic of China
| | - Li Yuan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, China.
| |
Collapse
|
4
|
Klein T, Gladytz T, Millward JM, Cantow K, Hummel L, Seeliger E, Waiczies S, Lippert C, Niendorf T. Dynamic parametric MRI and deep learning: Unveiling renal pathophysiology through accurate kidney size quantification. NMR IN BIOMEDICINE 2024; 37:e5075. [PMID: 38043545 DOI: 10.1002/nbm.5075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 10/19/2023] [Indexed: 12/05/2023]
Abstract
Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supporting MRI data-driven preclinical investigations into the intricate mechanisms underlying renal pathophysiology. The integration of deep learning algorithms is crucial in achieving rapid and precise segmentation of the kidney from temporally resolved parametric MRI, facilitating the use of kidney size as a meaningful (pre)clinical biomarker for renal disease. To explore this potential, we employed dynamic parametric T2 mapping of the kidney in rats in conjunction with a custom-tailored deep dilated U-Net (DDU-Net) architecture. The architecture was trained, validated, and tested on manually segmented ground truth kidney data, with benchmarking against an analytical segmentation model and a self-configuring no new U-Net. Subsequently, we applied our approach to in vivo longitudinal MRI data, incorporating interventions that emulate clinically relevant scenarios in rats. Our approach achieved high performance metrics, including a Dice coefficient of 0.98, coefficient of determination of 0.92, and a mean absolute percentage error of 1.1% compared with ground truth. The DDU-Net enabled automated and accurate quantification of acute changes in kidney size, such as aortic occlusion (-8% ± 1%), venous occlusion (5% ± 1%), furosemide administration (2% ± 1%), hypoxemia (-2% ± 1%), and contrast agent-induced acute kidney injury (11% ± 1%). This approach can potentially be instrumental for the development of dynamic parametric MRI-based tools for kidney disorders, offering unparalleled insights into renal pathophysiology.
Collapse
Affiliation(s)
- Tobias Klein
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Digital Health - Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
| | - Thomas Gladytz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kathleen Cantow
- Institute of Translational Physiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Luis Hummel
- Institute of Translational Physiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christoph Lippert
- Digital Health - Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
- Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
5
|
Wang Z, Zheng C, Han X, Chen W, Lu L. An Innovative and Efficient Diagnostic Prediction Flow for Head and Neck Cancer: A Deep Learning Approach for Multi-Modal Survival Analysis Prediction Based on Text and Multi-Center PET/CT Images. Diagnostics (Basel) 2024; 14:448. [PMID: 38396486 PMCID: PMC10888043 DOI: 10.3390/diagnostics14040448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Objective: To comprehensively capture intra-tumor heterogeneity in head and neck cancer (HNC) and maximize the use of valid information collected in the clinical field, we propose a novel multi-modal image-text fusion strategy aimed at improving prognosis. Method: We have developed a tailored diagnostic algorithm for HNC, leveraging a deep learning-based model that integrates both image and clinical text information. For the image fusion part, we used the cross-attention mechanism to fuse the image information between PET and CT, and for the fusion of text and image, we used the Q-former architecture to fuse the text and image information. We also improved the traditional prognostic model by introducing time as a variable in the construction of the model, and finally obtained the corresponding prognostic results. Result: We assessed the efficacy of our methodology through the compilation of a multicenter dataset, achieving commendable outcomes in multicenter validations. Notably, our results for metastasis-free survival (MFS), recurrence-free survival (RFS), overall survival (OS), and progression-free survival (PFS) were as follows: 0.796, 0.626, 0.641, and 0.691. Our results demonstrate a notable superiority over the utilization of CT and PET independently, and exceed the result derived without the clinical textual information. Conclusions: Our model not only validates the effectiveness of multi-modal fusion in aiding diagnosis, but also provides insights for optimizing survival analysis. The study underscores the potential of our approach in enhancing prognosis and contributing to the advancement of personalized medicine in HNC.
Collapse
Affiliation(s)
- Zhaonian Wang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
| | - Chundan Zheng
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Pazhou Lab, Guangzhou 510330, China
| | - Xu Han
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Pazhou Lab, Guangzhou 510330, China
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
| | - Lijun Lu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Pazhou Lab, Guangzhou 510330, China
| |
Collapse
|
6
|
Zhou L, Yang Z, Guo L, Zou Q, Zhang H, Sun SK, Ye Z, Zhang C. Noninvasive Assessment of Kidney Injury by Combining Structure and Function Using Artificial Intelligence-Based Manganese-Enhanced Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5474-5485. [PMID: 38271189 DOI: 10.1021/acsami.3c14936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Contrast-enhanced magnetic resonance imaging (MRI) is seriously limited in kidney injury detection due to the nephrotoxicity of clinically used gadolinium-based contrast agents. Herein, we propose a noninvasive method for the assessment of kidney injury by combining structure and function information based on manganese (Mn)-enhanced MRI for the first time. As a proof of concept, the Mn-melanin nanoprobe with good biocompatibility and excellent T1 relaxivity is applied in MRI of a unilateral ureteral obstruction mice model. The abundant renal structure and function information is obtained through qualitative and quantitative analysis of MR images, and a brand new comprehensive assessment framework is proposed to precisely identify the degree of kidney injury successfully. Our study demonstrates that Mn-enhanced MRI is a promising approach for the highly sensitive and biosafe assessment of kidney injury in vivo.
Collapse
Affiliation(s)
- Li Zhou
- Department of Radiology, Tianjin Chest Hospital, Tianjin 300052, China
| | - Zizhen Yang
- Department of Radiology, Ningbo No.2 Hospital, Ningbo 315012, China
| | - Li Guo
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Quan Zou
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Hong Zhang
- Department of Radiology, Tianjin Chest Hospital, Tianjin 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Zhaoxiang Ye
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Cai Zhang
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
7
|
Ju Y, Wang Y, Luo RN, Wang N, Wang JZ, Lin LJ, Song QW, Liu AL. Evaluation of renal function in chronic kidney disease (CKD) by mDIXON-Quant and Amide Proton Transfer weighted (APTw) imaging. Magn Reson Imaging 2023; 103:102-108. [PMID: 37451519 DOI: 10.1016/j.mri.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a long-term condition that affects >10% of the adult population worldwide. Noninvasive assessment of renal function has important clinical significance for disease diagnosis and prognosis evaluation. OBJECTIVE To explore the value of mDIXON-Quant combined with amide proton transfer weighted (APTw) imaging for accessing renal function in chronic kidney disease (CKD). MATERIALS AND METHODS Twenty-two healthy volunteers (HVs) and 30 CKD patients were included in this study, and the CKD patients were divided into the mild CKD (mCKD) group (14 cases) and moderate-to-severe CKD (msCKD) group (16 cases) according to glomerular filtration rate (eGFR). The cortex APT (cAPT), medulla APT (mAPT), cortex R2⁎ (cR2⁎), medulla R2⁎ (mR2⁎), cortex FF (cFF) and medulla FF (mFF) values of the right renal were independently measured by two radiologists. Intra-group correlation coefficient (ICC) test was used to test the inter-observer consistency. The analysis of variance (ANOVA) was used to compare the difference among three groups. Mann-Whitney U test was used to analyze the differences of R2⁎, FF and APT values among the patient and HV groups. Area under the receiver operating characteristic (ROC) curve (AUC) was used to analyze the diagnostic efficiency. The corresponding threshold, sensitivity, and specificity were obtained according to the maximum approximate index. The combined diagnostic efficacy of R2⁎, FF, and APT values was analyzed by binary Logistic regression, and the AUC of combined diagnosis was compared with the AUC of the single parameter by the Delong test. RESULTS The cAPT value of the HV, mCKD and msCKD groups increased gradually. The mAPT value and cR2⁎ values of the mCKD and msCKD groups were higher than those of the HV group, while the mFF value of the mCKD group was lower than HV group (all P < 0.05). The cAPT and mAPT values showed good diagnostic efficacy in evaluating different degrees of renal damage, while cR2⁎ and mFF values showed moderate diagnostic efficacy. When combining the APT, R2⁎, and FF values, the diagnostic efficiency was significantly improved. CONCLUSION mDIXON-Quant combined APTw imaging can be used for improved diagnosis of CKD.
Collapse
Affiliation(s)
- Y Ju
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - Y Wang
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - R N Luo
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China; Department of Nephrology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - N Wang
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - J Z Wang
- Clinical & Technical Support, Philips Healthcare, 100016 Beijing, PR China
| | - L J Lin
- Clinical & Technical Support, Philips Healthcare, 100016 Beijing, PR China
| | - Q W Song
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - A L Liu
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China; Dalian Medical Imaging Artificial Intelligence Engineering Technology Research Center, Dalian 116011, Liaoning, PR China.
| |
Collapse
|
8
|
Grzywińska M, Świętoń D, Sabisz A, Piskunowicz M. Functional Magnetic Resonance Urography in Children-Tips and Pitfalls. Diagnostics (Basel) 2023; 13:diagnostics13101786. [PMID: 37238270 DOI: 10.3390/diagnostics13101786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
MR urography can be an alternative to other imaging methods of the urinary tract in children. However, this examination may present technical problems influencing further results. Special attention must be paid to the parameters of dynamic sequences to obtain valuable data for further functional analysis. The analysis of methodology for renal function assessment using 3T magnetic resonance in children. A retrospective analysis of MR urography studies was performed in a group of 91 patients. Particular attention was paid to the acquisition parameters of the 3D-Thrive dynamic with contrast medium administration as a basic urography sequence. The authors have evaluated images qualitatively and compared contrast-to-noise ratio (CNR), curves smoothness, and quality of baseline (evaluation signal noise ratio) in every dynamic in each patient in every protocol used in our institution. Quality analysis of the image (ICC = 0.877, p < 0.001) was improved so that we have a statistically significant difference in image quality between protocols (χ2(3) = 20.134, p < 0.001). The results obtained for SNR in the medulla and cortex show that there was a statistically significant difference in SNR in the cortex (χ2(3) = 9.060, p = 0.029). Therefore, the obtained results show that with the newer protocol, we obtain lower values of standard deviation for TTP in the aorta (in ChopfMRU: first protocol SD = 14.560 vs. fourth protocol SD = 5.599; in IntelliSpace Portal: first protocol SD = 15.241 vs. fourth protocol SD = 5.506). Magnetic resonance urography is a promising technique with a few challenges that arise and need to be overcome. New technical opportunities should be introduced for everyday practice to improve MRU results.
Collapse
Affiliation(s)
- Małgorzata Grzywińska
- Applied Cognitive Neuroscience Lab., Department of Neurophysiology, Neuropsychology and Neuroinformatics, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Dominik Świętoń
- 2nd Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Agnieszka Sabisz
- 2nd Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Maciej Piskunowicz
- 1st Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
9
|
Zeng F, Nijiati S, Liu Y, Yang Q, Liu X, Zhang Q, Chen S, Su A, Xiong H, Shi C, Cai C, Lin Z, Chen X, Zhou Z. Ferroptosis MRI for early detection of anticancer drug-induced acute cardiac/kidney injuries. SCIENCE ADVANCES 2023; 9:eadd8539. [PMID: 36888714 PMCID: PMC9995079 DOI: 10.1126/sciadv.add8539] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Ferroptosis has been realized in anticancer drug-induced acute cardiac/kidney injuries (ACI/AKI); however, molecular imaging approach to detect ferroptosis in ACI/AKI is a challenge. We report an artemisinin-based probe (Art-Gd) for contrast-enhanced magnetic resonance imaging of ferroptosis (feMRI) by exploiting the redox-active Fe(II) as a vivid chemical target. In vivo, the Art-Gd probe showed great feasibility in early diagnosis of anticancer drug-induced ACI/AKI, which was at least 24 and 48 hours earlier than the standard clinical assays for assessing ACI and AKI, respectively. Furthermore, the feMRI was able to provide imaging evidence for the different mechanisms of action of ferroptosis-targeted agents, either by blocking lipid peroxidation or depleting iron ions. This study presents a feMRI strategy with simple chemistry and robust efficacy for early evaluation of anticancer drug-induced ACI/AKI, which may shed light on the theranostics of a variety of ferroptosis-related diseases.
Collapse
Affiliation(s)
- Fantian Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Sureya Nijiati
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yangtengyu Liu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qinqin Yang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361102, China
| | - Xiaomin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qianyu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Anqi Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hehe Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Congbo Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361102, China
| | - Zhongning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Programme, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
10
|
Shin SH, Wendland MF, Wang J, Velasquez M, Vandsburger MH. Noninvasively differentiating acute and chronic nephropathies via multiparametric urea-CEST, nuclear Overhauser enhancement-CEST, and quantitative magnetization transfer MRI. Magn Reson Med 2023; 89:774-786. [PMID: 36226662 PMCID: PMC11027791 DOI: 10.1002/mrm.29477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Standardized blood tests often lack adequate sensitivity and specificity to capture the gradual progression of renal injuries. We suggest a multiparametric molecular MRI approach as a noninvasive tool for monitoring renal function loss and distinguishing different types of renal injuries. METHODS CEST and quantitative magnetization transfer (qMT) imaging were performed on cisplatin (n = 16) and aristolochic acid (AA)-induced nephropathy (n = 22) mouse models at 7T with an infusion of either saline or urea. Seven-pool Lorentzian fitting was applied for the analysis of CEST Z-spectra, and the T1 -corrected CEST contrast apparent exchange-dependent relaxation (AREX) from urea (+1 ppm) and two nuclear Overhauser enhancement (NOE) pools (-1.6 and -3.5 ppm) were measured. Similarly, qMT spectra were fitted into two-pool Ramani equation and the relative semi-solid macromolecular pool-size ratio was measured. Histology of mouse kidneys was performed to validate the MR findings. RESULTS AA model showed disrupted spatial gradients of urea in the kidney and significantly decreased NOE CEST and qMT contrast. The cisplatin model showed slightly decreased qMT contrast only. The orrelation of MR parameters to histological features showed that NOE CEST and qMT imaging are sensitive to both acute and chronic injuries, whereas urea CEST shows a significant correlation only to acute injuries. CONCLUSION These results indicate that our multiparametric approach allows comprehensive and totally noninvasive monitoring of renal function and histological changes for distinguishing different nephropathies.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA
| | - Michael F. Wendland
- Berkeley Preclinical Imaging Core (BPIC), University of California, Berkeley, Berkeley, CA
| | - Jingshen Wang
- Department of Biostatistics, University of California, Berkeley, Berkeley, CA
| | - Mark Velasquez
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA
| | | |
Collapse
|
11
|
Łagosz P, Biegus J, Urban S, Zymliński R. Renal Assessment in Acute Cardiorenal Syndrome. Biomolecules 2023; 13:biom13020239. [PMID: 36830608 PMCID: PMC9953721 DOI: 10.3390/biom13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Cardiorenal syndrome (CRS) is a complex, heterogeneous spectrum of symptoms that has kept cardiologists awake for decades. The heart failure (HF) population being burdened with multimorbidity poses diagnostic and therapeutic challenges even for experienced clinicians. Adding deteriorated renal function to the equation, which is one of the strongest predictors of adverse outcome, we measure ourselves against possibly the biggest problem in modern cardiology. With the rapid development of new renal assessment methods, we can treat CRS more effectively than ever. The presented review focuses on explaining the pathophysiology, recent advances and current practices of monitoring renal function in patients with acute CRS. Understanding the dynamic interaction between the heart and the kidney may improve patient care and support the selection of an effective and nephroprotective treatment strategy.
Collapse
Affiliation(s)
- Piotr Łagosz
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Clinical Hospital, 50-556 Wroclaw, Poland
- Correspondence:
| | - Jan Biegus
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Clinical Hospital, 50-556 Wroclaw, Poland
| | - Szymon Urban
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Robert Zymliński
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Clinical Hospital, 50-556 Wroclaw, Poland
| |
Collapse
|
12
|
Heart Failure and Cardiorenal Syndrome: A Narrative Review on Pathophysiology, Diagnostic and Therapeutic Regimens-From a Cardiologist's View. J Clin Med 2022; 11:jcm11237041. [PMID: 36498617 PMCID: PMC9741317 DOI: 10.3390/jcm11237041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
In cardiorenal syndrome (CRS), heart failure and renal failure are pathophysiologically closely intertwined by the reciprocal relationship between cardiac and renal injury. Type 1 CRS is most common and associated with acute heart failure. A preexistent chronic kidney disease (CKD) is common and contributes to acute kidney injury (AKI) in CRS type 1 patients (acute cardiorenal syndrome). The remaining CRS types are found in patients with chronic heart failure (type 2), acute and chronic kidney diseases (types 3 and 4), and systemic diseases that affect both the heart and the kidney (type 5). Establishing the diagnosis of CRS requires various tools based on the type of CRS, including non-invasive imaging modalities such as TTE, CT, and MRI, adjuvant volume measurement techniques, invasive hemodynamic monitoring, and biomarkers. Albuminuria and Cystatin C (CysC) are biomarkers of glomerular filtration and integrity in CRS and have a prognostic impact. Comprehensive "all-in-one" magnetic resonance imaging (MRI) approaches, including cardiac magnetic resonance imaging (CMR) combined with functional MRI of the kidneys and with brain MRI are proposed for CRS. Hospitalizations due to CRS and mortality are high. Timely diagnosis and initiation of effective adequate therapy, as well as multidisciplinary care, are pertinent for the improvement of quality of life and survival. In addition to the standard pharmacological heart failure medication, including SGLT2 inhibitors (SGLT2i), renal aspects must be strongly considered in the context of CRS, including control of the volume overload (diuretics) with special caution on diuretic resistance. Devices involved in the improvement of myocardial function (e.g., cardiac resynchronization treatment in left bundle branch block, mechanical circulatory support in advanced heart failure) have also shown beneficial effects on renal function.
Collapse
|
13
|
Adam BA. Importance of Confounding Factors in the Evaluation of Surrogate Measures for Kidney Transplant Fibrosis. KIDNEY360 2022; 3:1829-1830. [PMID: 36514406 PMCID: PMC9717621 DOI: 10.34067/kid.0005852022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Benjamin A Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| |
Collapse
|
14
|
Tsai MC, Lu HHS, Chang YC, Huang YC, Fu LS. Automatic Screening of Pediatric Renal Ultrasound Abnormalities: Deep Learning and Transfer Learning Approach. JMIR Med Inform 2022; 10:e40878. [PMID: 36322109 PMCID: PMC9669887 DOI: 10.2196/40878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Accepted: 10/02/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND In recent years, the progress and generalization surrounding portable ultrasonic probes has made ultrasound (US) a useful tool for physicians when making a diagnosis. With the advent of machine learning and deep learning, the development of a computer-aided diagnostic system for screening renal US abnormalities can assist general practitioners in the early detection of pediatric kidney diseases. OBJECTIVE In this paper, we sought to evaluate the diagnostic performance of deep learning techniques to classify kidney images as normal and abnormal. METHODS We chose 330 normal and 1269 abnormal pediatric renal US images for establishing a model for artificial intelligence. The abnormal images involved stones, cysts, hyperechogenicity, space-occupying lesions, and hydronephrosis. We performed preprocessing of the original images for subsequent deep learning. We redefined the final connecting layers for classification of the extracted features as abnormal or normal from the ResNet-50 pretrained model. The performances of the model were tested by a validation data set using area under the receiver operating characteristic curve, accuracy, specificity, and sensitivity. RESULTS The deep learning model, 94 MB parameters in size, based on ResNet-50, was built for classifying normal and abnormal images. The accuracy, (%)/area under curve, of the validated images of stone, cyst, hyperechogenicity, space-occupying lesions, and hydronephrosis were 93.2/0.973, 91.6/0.940, 89.9/0.940, 91.3/0.934, and 94.1/0.996, respectively. The accuracy of normal image classification in the validation data set was 90.1%. Overall accuracy of (%)/area under curve was 92.9/0.959.. CONCLUSIONS We established a useful, computer-aided model for automatic classification of pediatric renal US images in terms of normal and abnormal categories.
Collapse
Affiliation(s)
- Ming-Chin Tsai
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Henry Horng-Shing Lu
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsing-chu, Taiwan
| | - Yueh-Chuan Chang
- Institute of Electrical & Control Engineering, National Yang Ming Chiao Tung University, Hsing-chu, Taiwan
| | - Yung-Chieh Huang
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Pediatrics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Lin-Shien Fu
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Pediatrics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
15
|
Chauveau B, Merville P, Soulabaille B, Taton B, Kaminski H, Visentin J, Vermorel A, Bouzgarrou M, Couzi L, Grenier N. Magnetic Resonance Elastography as Surrogate Marker of Interstitial Fibrosis in Kidney Transplantation: A Prospective Study. KIDNEY360 2022; 3:1924-1933. [PMID: 36514413 PMCID: PMC9717636 DOI: 10.34067/kid.0004282022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 01/12/2023]
Abstract
Background Fibrosis progression is a major prognosis factor in kidney transplantation. Its assessment requires an allograft biopsy, which remains an invasive procedure at risk of complications. Methods We assessed renal stiffness by magnetic resonance elastography (MRE) as a surrogate marker of fibrosis in a prospective cohort of kidney transplant recipients compared with the histologic gold standard. Interstitial fibrosis was evaluated by three methods: the semi-quantitative Banff ci score, a visual quantitative evaluation by a pathologist, and a computer-assisted quantitative evaluation. MRE-derived stiffness was assessed at the superior, median, and inferior poles of the allograft. Results We initially enrolled 73 patients, but only 55 had measurements of their allograft stiffness by MRE before an allograft biopsy. There was no significant correlation between MRE-derived stiffness at the biopsy site and the ci score (ρ=-0.25, P=0.06) or with the two quantitative assessments (pathologist: ρ=-0.25, P=0.07; computer assisted: ρ=-0.21, P=0.12). We observed negative correlations between the stiffness of both the biopsy site and the whole allograft, with either the glomerulosclerosis percentage (ρ=-0.32, P=0.02 and ρ=-0.31, P=0.02, respectively) and the overall nephron fibrosis percentage, defined as the mean of the percentages of glomerulosclerosis and interstitial fibrosis (ρ=-0.30, P=0.02 and ρ=-0.28, P=0.04, respectively). At patient level, mean MRE-derived stiffness was similar across the three poles of the allograft (±0.25 kPa). However, a high variability of mean stiffness was found between patients, suggesting a strong influence of confounding factors. Finally, no significant correlation was found between mean MRE-derived stiffness and the slope of eGFR (P=0.08). Conclusions MRE-derived stiffness does not directly reflect the extent of fibrosis in kidney transplantation.
Collapse
Affiliation(s)
- Bertrand Chauveau
- CHU de Bordeaux, Service de Pathologie, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France,Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| | - Pierre Merville
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France,CHU de Bordeaux, Service de Néphrologie, Transplantation Dialyse, Aphérèses, Hôpital Pellegrin, Bordeaux, France
| | - Bruno Soulabaille
- CHU de Bordeaux, Service d’Imagerie Diagnostique et Interventionnelle de l’Adulte, Hôpital Pellegrin, France
| | - Benjamin Taton
- CHU de Bordeaux, Service de Néphrologie, Transplantation Dialyse, Aphérèses, Hôpital Pellegrin, Bordeaux, France
| | - Hannah Kaminski
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France,CHU de Bordeaux, Service de Néphrologie, Transplantation Dialyse, Aphérèses, Hôpital Pellegrin, Bordeaux, France
| | - Jonathan Visentin
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France,CHU de Bordeaux, Laboratoire d’Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | - Agathe Vermorel
- CHU de Bordeaux, Service de Néphrologie, Transplantation Dialyse, Aphérèses, Hôpital Pellegrin, Bordeaux, France
| | - Mounir Bouzgarrou
- CHU de Bordeaux, Service d’Imagerie Diagnostique et Interventionnelle de l’Adulte, Hôpital Pellegrin, France
| | - Lionel Couzi
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France,CHU de Bordeaux, Service de Néphrologie, Transplantation Dialyse, Aphérèses, Hôpital Pellegrin, Bordeaux, France
| | - Nicolas Grenier
- CHU de Bordeaux, Service d’Imagerie Diagnostique et Interventionnelle de l’Adulte, Hôpital Pellegrin, France
| |
Collapse
|
16
|
Grattan-Smith JD, Chow J, Kurugol S, Jones RA. Quantitative renal magnetic resonance imaging: magnetic resonance urography. Pediatr Radiol 2022; 52:228-248. [PMID: 35022851 PMCID: PMC9670866 DOI: 10.1007/s00247-021-05264-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023]
Abstract
The goal of functional renal imaging is to identify and quantitate irreversible renal damage and nephron loss, as well as potentially reversible hemodynamic changes. MR urography has evolved into a comprehensive evaluation of the urinary tract that combines anatomical imaging with functional evaluation in a single test without ionizing radiation. Quantitative functional MR imaging is based on dynamic contrast-enhanced MR acquisitions that provide progressive, visible enhancement of the renal parenchyma and urinary tract. The signal changes related to perfusion, concentration and excretion of the contrast agent can be evaluated using both quantitative and qualitative measures. Functional evaluation with MR has continued to improve as a result of significant technical advances allowing for faster image acquisition as well as the development of new tracer kinetic models of renal function. The most common indications for MR urography in children are the evaluation of congenital anomalies of the kidney and urinary tract including hydronephrosis and renal malformations, and the identification of ectopic ureters in children with incontinence. In this paper, we review the underlying acquisition schemes and techniques used to generate quantitative functional parameters including the differential renal function (DRF), asymmetry index, mean transit time (MTT), signal intensity versus time curves as well as the calculation of individual kidney glomerular filtration rate (GFR). Visual inspection and semi-quantitative assessment using the renal transit time (RTT) and calyceal transit times (CTT) are fundamental to accurate diagnosis and are used as a basis for the interpretation of the quantitative data. The importance of visual assessment of the images cannot be overstated when analyzing the quantitative measures of renal function.
Collapse
Affiliation(s)
| | - Jeanne Chow
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Sila Kurugol
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Richard A Jones
- Department of Radiology, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Li A, Luo X, Li L, Chen D, Liu X, Yang Z, Yang L, Gao J, Lin H. Activatable Multiplexed 19F Magnetic Resonance Imaging Visualizes Reactive Oxygen and Nitrogen Species in Drug-Induced Acute Kidney Injury. Anal Chem 2021; 93:16552-16561. [PMID: 34859996 DOI: 10.1021/acs.analchem.1c03744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In vivo levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are critical to many physiological and pathological processes. Because of the distinct differences in their biological generation and effects, simultaneously visualizing both of them could help deepen our insights into the mechanistic details of these processes. However, real-time and deep-tissue imaging and differentiation of ROS- and RNS-related molecular events in living subjects still remain a challenge. Here, we report the development of two activatable 19F magnetic resonance imaging (MRI) molecular probes with different 19F chemical shifts and specific responsive behaviors for simultaneous in vivo detection and deep-tissue imaging of O2•- and ONOO-. These probes are capable of real-time visualization and differentiation of O2•- and ONOO- in living mice with drug-induced acute kidney injury by interference-free multiplexed hot-spot 19F MRI, illustrating the potential of this technique for background-free real-time imaging of diverse biological processes, accurate diagnosis of various diseases in deep tissues, and rapid toxicity evaluation of assorted drugs.
Collapse
Affiliation(s)
- Ao Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangjie Luo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingxuan Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongxia Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhaoxuan Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lijiao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Dang W, Xu X, Luo D, Luo H, Hu J, Zhou J, Liu J, You L. Analysis of Risk Factors for Changes in the Renal Two-Dimensional Image in Gout Patients. Int J Gen Med 2021; 14:6367-6378. [PMID: 34675606 PMCID: PMC8502035 DOI: 10.2147/ijgm.s336220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/23/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To explore the effects of different blood uric acid levels in gout patients on the two-dimensional image of the kidney and the risk factors for gout-related kidney damage for providing clinical evidence to enable early prevention and treatment of gout-related kidney damage. METHODS We obtained information of 227 patients with primary gout and estimated the association between two-dimensional kidney images and clinical indicators using binary logistic regression. RESULTS Our study showed that different uric acid levels, age, disease course, cystatin C (CysC) level, and γ-glutamyl transpeptidase level were correlated with echo of the renal medulla (P < 0.05). CysC level was correlated with the renal cortex thickness and kidney stones in different uric acid-level groups (P < 0.05). Disease course, aspartate transaminase (AST) level, creatinine (CREA) level, and tophi were risk factors for renal cortex thinning in gout patients (P = 0.045, 0.026, 0.004, 0.006, respectively). The disease course, platelet (PLT) count, and high-density lipoprotein (HDL-C) level were risk factors for kidney stone formation in gout patients (P = 0.037, 0.022, 0.023, respectively), while CysC level and C-reactive protein (CRP) level were risk factors for increased renal medulla echo in these patients (P = 0.022, 0.028, respectively). CONCLUSION Our study revealed disease course, AST level, CREA level, tophi, PLT count, HDL-C level, CysC level and CRP level may be important predictors of renal image changes.
Collapse
Affiliation(s)
- Wantai Dang
- Department of Rheumatism and Immunity, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People’s Republic of China
| | - Xiaohui Xu
- Department of Ultrasound, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People’s Republic of China
| | - Danling Luo
- Department of Ultrasound, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People’s Republic of China
| | - Hui Luo
- Department of Ultrasound, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People’s Republic of China
| | - Jin Hu
- Department of Ultrasound, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People’s Republic of China
| | - Jingguo Zhou
- Department of Rheumatism and Immunity, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People’s Republic of China
| | - Jian Liu
- Department of Ultrasound, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People’s Republic of China
| | - Lanlan You
- Department of Ultrasound, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People’s Republic of China
| |
Collapse
|
19
|
Gladytz T, Millward JM, Cantow K, Hummel L, Zhao K, Flemming B, Periquito JS, Pohlmann A, Waiczies S, Seeliger E, Niendorf T. Reliable kidney size determination by magnetic resonance imaging in pathophysiological settings. Acta Physiol (Oxf) 2021; 233:e13701. [PMID: 34089569 DOI: 10.1111/apha.13701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/05/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022]
Abstract
AIM Kidney diseases constitute a major health challenge, which requires noninvasive imaging to complement conventional approaches to diagnosis and monitoring. Several renal pathologies are associated with changes in kidney size, offering an opportunity for magnetic resonance imaging (MRI) biomarkers of disease. This work uses dynamic MRI and an automated bean-shaped model (ABSM) for longitudinal quantification of pathophysiologically relevant changes in kidney size. METHODS A geometry-based ABSM was developed for kidney size measurements in rats using parametric MRI (T2 , T2 * mapping). The ABSM approach was applied to longitudinal renal size quantification using occlusion of the (a) suprarenal aorta or (b) the renal vein, (c) increase in renal pelvis and intratubular pressure and (d) injection of an X-ray contrast medium into the thoracic aorta to induce pathophysiologically relevant changes in kidney size. RESULTS The ABSM yielded renal size measurements with accuracy and precision equivalent to the manual segmentation, with >70-fold time savings. The automated method could detect a ~7% reduction (aortic occlusion) and a ~5%, a ~2% and a ~6% increase in kidney size (venous occlusion, pelvis and intratubular pressure increase and injection of X-ray contrast medium, respectively). These measurements were not affected by reduced image quality following administration of ferumoxytol. CONCLUSION Dynamic MRI in conjunction with renal segmentation using an ABSM supports longitudinal quantification of changes in kidney size in pathophysiologically relevant experimental setups mimicking realistic clinical scenarios. This can potentially be instrumental for developing MRI-based diagnostic tools for various kidney disorders and for gaining new insight into mechanisms of renal pathophysiology.
Collapse
Affiliation(s)
- Thomas Gladytz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kathleen Cantow
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Luis Hummel
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Kaixuan Zhao
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Bert Flemming
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Joāo S Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute of Physiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Erdmann Seeliger
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
20
|
Lin L, Zhou X, Dekkers IA, Lamb HJ. Cardiorenal Syndrome: Emerging Role of Medical Imaging for Clinical Diagnosis and Management. J Pers Med 2021; 11:734. [PMID: 34442378 PMCID: PMC8400880 DOI: 10.3390/jpm11080734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiorenal syndrome (CRS) concerns the interconnection between heart and kidneys in which the dysfunction of one organ leads to abnormalities of the other. The main clinical challenges associated with cardiorenal syndrome are the lack of tools for early diagnosis, prognosis, and evaluation of therapeutic effects. Ultrasound, computed tomography, nuclear medicine, and magnetic resonance imaging are increasingly used for clinical management of cardiovascular and renal diseases. In the last decade, rapid development of imaging techniques provides a number of promising biomarkers for functional evaluation and tissue characterization. This review summarizes the applicability as well as the future technological potential of each imaging modality in the assessment of CRS. Furthermore, opportunities for a comprehensive imaging approach for the evaluation of CRS are defined.
Collapse
Affiliation(s)
- Ling Lin
- Cardiovascular Imaging Group (CVIG), Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.L.); (I.A.D.); (H.J.L.)
| | - Xuhui Zhou
- Department of Radiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 510833, China
| | - Ilona A. Dekkers
- Cardiovascular Imaging Group (CVIG), Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.L.); (I.A.D.); (H.J.L.)
| | - Hildo J. Lamb
- Cardiovascular Imaging Group (CVIG), Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.L.); (I.A.D.); (H.J.L.)
| |
Collapse
|
21
|
Urban MW, Rule AD, Atwell TD, Chen S. Novel Uses of Ultrasound to Assess Kidney Mechanical Properties. KIDNEY360 2021; 2:1531-1539. [PMID: 34939037 PMCID: PMC8691758 DOI: 10.34067/kid.0002942021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ultrasound is a key imaging tool for evaluating the kidney. Over the last two decades, methods to measure the mechanical properties of soft tissues have been developed and used in clinical practice, although use in the kidney has not been as widespread as for other applications. The mechanical properties of the kidney are determined by the structure and composition of the renal parenchyma and perfusion characteristics. Because pathologic processes change these factors, the mechanical properties change and can be used for diagnostic purposes and for monitoring treatment or disease progression. Ultrasound-based elastography methods for evaluating the mechanical properties of the kidney use focused ultrasound beams to perturb the kidney and then high frame-rate ultrasound methods are used to measure the resulting motion. The motion is analyzed to estimate the mechanical properties. This review will describe the principles of these methods and discuss several seminal studies related to characterizing the kidney. Additionally, an overview of the clinical use of elastography methods in native and kidney allografts will be provided. Perspectives on future developments and uses of elastography technology along with other complementary ultrasound imaging modalities will be provided.
Collapse
Affiliation(s)
| | - Andrew D. Rule
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Shigao Chen
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
22
|
Periquito JS, Gladytz T, Millward JM, Delgado PR, Cantow K, Grosenick D, Hummel L, Anger A, Zhao K, Seeliger E, Pohlmann A, Waiczies S, Niendorf T. Continuous diffusion spectrum computation for diffusion-weighted magnetic resonance imaging of the kidney tubule system. Quant Imaging Med Surg 2021; 11:3098-3119. [PMID: 34249638 DOI: 10.21037/qims-20-1360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022]
Abstract
Background The use of rigid multi-exponential models (with a priori predefined numbers of components) is common practice for diffusion-weighted MRI (DWI) analysis of the kidney. This approach may not accurately reflect renal microstructure, as the data are forced to conform to the a priori assumptions of simplified models. This work examines the feasibility of less constrained, data-driven non-negative least squares (NNLS) continuum modelling for DWI of the kidney tubule system in simulations that include emulations of pathophysiological conditions. Methods Non-linear least squares (LS) fitting was used as reference for the simulations. For performance assessment, a threshold of 5% or 10% for the mean absolute percentage error (MAPE) of NNLS and LS results was used. As ground truth, a tri-exponential model using defined volume fractions and diffusion coefficients for each renal compartment (tubule system: Dtubules , ftubules ; renal tissue: Dtissue , ftissue ; renal blood: Dblood , fblood ;) was applied. The impact of: (I) signal-to-noise ratio (SNR) =40-1,000, (II) number of b-values (n=10-50), (III) diffusion weighting (b-rangesmall =0-800 up to b-rangelarge =0-2,180 s/mm2), and (IV) fixation of the diffusion coefficients Dtissue and Dblood was examined. NNLS was evaluated for baseline and pathophysiological conditions, namely increased tubular volume fraction (ITV) and renal fibrosis (10%: grade I, mild) and 30% (grade II, moderate). Results NNLS showed the same high degree of reliability as the non-linear LS. MAPE of the tubular volume fraction (ftubules ) decreased with increasing SNR. Increasing the number of b-values was beneficial for ftubules precision. Using the b-rangelarge led to a decrease in MAPE ftubules compared to b-rangesmall. The use of a medium b-value range of b=0-1,380 s/mm2 improved ftubules precision, and further bmax increases beyond this range yielded diminishing improvements. Fixing Dblood and Dtissue significantly reduced MAPE ftubules and provided near perfect distinction between baseline and ITV conditions. Without constraining the number of renal compartments in advance, NNLS was able to detect the (fourth) fibrotic compartment, to differentiate it from the other three diffusion components, and to distinguish between 10% vs. 30% fibrosis. Conclusions This work demonstrates the feasibility of NNLS modelling for DWI of the kidney tubule system and shows its potential for examining diffusion compartments associated with renal pathophysiology including ITV fraction and different degrees of fibrosis.
Collapse
Affiliation(s)
- Joāo S Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute of Physiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany.,Experimental and Clinical Research Center, a Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thomas Gladytz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Paula Ramos Delgado
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kathleen Cantow
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Dirk Grosenick
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Luis Hummel
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Ariane Anger
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Kaixuan Zhao
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Erdmann Seeliger
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
23
|
Zhao Y, Pu M, Wang Y, Yu L, Song X, He Z. Application of nanotechnology in acute kidney injury: From diagnosis to therapeutic implications. J Control Release 2021; 336:233-251. [PMID: 34171444 DOI: 10.1016/j.jconrel.2021.06.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/29/2022]
Abstract
Acute kidney injury (AKI), a major health issue concerning ~50% of patients treated in intensive care units, generally leads to severe renal damage associated with high mortality rate. The application of nanotechnology for the management of AKI has profound potential of further development, providing innovative strategies for predicting the early onset and progression of renal disease and improving the treatment efficacy of the life-threating AKI. This review has comprehensively summarized the nanomedicines in the application of AKI diagnosis and emphatically discussed the unique potential of various nanotechnology-based drug delivery systems (e.g., polymeric nanoparticles, organic nanoparticles, inorganic nanoparticles, lipid-based nanoparticles, hydrogels etc.) in the treatment of AKI, allowing for improved therapeutic index by enhancing both efficacy and safety concurrently. These approaches may mechanically mitigate oxidative stress, inflammation, and mitochondrial and other organellar damage, etc. In addition, the combination of nanotechnology with stem cells-based therapy or gene therapy has been explored for reducing renal tissues damage and promoting kidney repair or recovery from AKI. The review provides insights into the synthesis, advantages, and limitations of innovative nanomedicine application in the early detection and effective treatment of AKI.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mingju Pu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
24
|
Abstract
Interstitial fibrosis with tubule atrophy (IF/TA) is the response to virtually any sustained kidney injury and correlates inversely with kidney function and allograft survival. IF/TA is driven by various pathways that include hypoxia, renin-angiotensin-aldosterone system, transforming growth factor (TGF)-β signaling, cellular rejection, inflammation and others. In this review we will focus on key pathways in the progress of renal fibrosis, diagnosis and therapy of allograft fibrosis. This review discusses the role and origin of myofibroblasts as matrix producing cells and therapeutic targets in renal fibrosis with a particular focus on renal allografts. We summarize current trends to use multi-omic approaches to identify new biomarkers for IF/TA detection and to predict allograft survival. Furthermore, we review current imaging strategies that might help to identify and follow-up IF/TA complementary or as alternative to invasive biopsies. We further discuss current clinical trials and therapeutic strategies to treat kidney fibrosis.Supplemental Visual Abstract; http://links.lww.com/TP/C141.
Collapse
|
25
|
Waiczies S, Prinz C, Starke L, Millward JM, Delgado PR, Rosenberg J, Nazaré M, Waiczies H, Pohlmann A, Niendorf T. Functional Imaging Using Fluorine ( 19F) MR Methods: Basic Concepts. Methods Mol Biol 2021; 2216:279-299. [PMID: 33476007 PMCID: PMC9703275 DOI: 10.1007/978-1-0716-0978-1_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Kidney-associated pathologies would greatly benefit from noninvasive and robust methods that can objectively quantify changes in renal function. In the past years there has been a growing incentive to develop new applications for fluorine (19F) MRI in biomedical research to study functional changes during disease states. 19F MRI represents an instrumental tool for the quantification of exogenous 19F substances in vivo. One of the major benefits of 19F MRI is that fluorine in its organic form is absent in eukaryotic cells. Therefore, the introduction of exogenous 19F signals in vivo will yield background-free images, thus providing highly selective detection with absolute specificity in vivo. Here we introduce the concept of 19F MRI, describe existing challenges, especially those pertaining to signal sensitivity, and give an overview of preclinical applications to illustrate the utility and applicability of this technique for measuring renal function in animal models.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.
Collapse
Affiliation(s)
- Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.
| | - Christian Prinz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Ludger Starke
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Paula Ramos Delgado
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Jens Rosenberg
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- Siemens Healthcare, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
26
|
Cantow K, Ladwig-Wiegard M, Flemming B, Pohlmann A, Niendorf T, Seeliger E. Monitoring Renal Hemodynamics and Oxygenation by Invasive Probes: Experimental Protocol. Methods Mol Biol 2021; 2216:327-347. [PMID: 33476009 PMCID: PMC9703868 DOI: 10.1007/978-1-0716-0978-1_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Renal tissue hypoperfusion and hypoxia are early key elements in the pathophysiology of acute kidney injury of various origins, and may also promote progression from acute injury to chronic kidney disease. Here we describe methods to study control of renal hemodynamics and tissue oxygenation by means of invasive probes in anesthetized rats. Step-by-step protocols are provided for two setups, one for experiments in laboratories for integrative physiology and the other for experiments within small-animal magnetic resonance scanners.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by a separate chapter describing the basic concepts of quantitatively assessing renal perfusion and oxygenation with invasive probes.
Collapse
Affiliation(s)
- Kathleen Cantow
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Mechthild Ladwig-Wiegard
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Free University Berlin, Berlin, Germany
| | - Bert Flemming
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- Siemens Healthcare, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Erdmann Seeliger
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité - University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
27
|
Shin SH, Wendland MF, Vandsburger MH. Delayed urea differential enhancement CEST (dudeCEST)-MRI with T 1 correction for monitoring renal urea handling. Magn Reson Med 2020; 85:2791-2804. [PMID: 33180343 DOI: 10.1002/mrm.28583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE We demonstrate a method of delayed urea differential enhancement CEST for probing urea recycling action of the kidney using expanded multi-pool Lorentzian fitting and apparent exchange-dependent relaxation compensation. METHODS T1 correction of urea CEST contrast by apparent exchange-dependent relaxation was tested in phantoms. Nine mice were scanned at 7 Tesla following intraperitoneal injection of 2M 150 μL urea, and later saline. T1 maps and Z-spectra were acquired before and 20 and 40 min postinjection. Z-spectra were fit to a 7-pool Lorentzian model for CEST quantification and compared to urea assay of kidney homogenate. Renal injury was induced by aristolochic acid in 7 mice, and the same scan protocol was performed. RESULTS Apparent exchange-dependent relaxation corrected for variable T1 times in phantoms. Urea CEST contrast at +1 ppm increased significantly at both time points following urea injection in the inner medulla and papilla. When normalizing the postinjection urea CEST contrast to the corresponding baseline value, both urea and saline injection resulted in identical fold changes in urea CEST contrast. Urea assay of kidney homogenate showed a significant correlation to both apparent exchange-dependent relaxation (R2 = 0.4687, P = .0017) and non-T1 -corrected Lorentzian amplitudes (R2 = 0.4964, P = .0011). Renal injury resulted in increased T1 time in the cortex and reduced CEST contrast change upon urea and saline infusion. CONCLUSION Delayed urea enhancement following infusion can provide insight into renal urea handling. In addition, changes in CEST contrast at 1.0 ppm following saline infusion may provide insight into renal function.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Michael F Wendland
- Berkeley Preclinical Imaging Core (BPIC), University of California, Berkeley, Berkeley, California, USA
| | - Moriel H Vandsburger
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
28
|
Li A, Xu C, Liang P, Hu Y, Shen Y, Hu D, Li Z, Kamel IR. Role of Chemical Exchange Saturation Transfer and Magnetization Transfer MRI in Detecting Metabolic and Structural Changes of Renal Fibrosis in an Animal Model at 3T. Korean J Radiol 2020; 21:588-597. [PMID: 32323504 PMCID: PMC7183831 DOI: 10.3348/kjr.2019.0646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022] Open
Abstract
Objective To investigate the value of combined chemical exchange saturation transfer (CEST) and conventional magnetization transfer imaging (MT) in detecting metabolic and structural changes of renal fibrosis in rats with unilateral ureteral obstruction (UUO) at 3T MRI. Materials and Methods Thirty-five Sprague-Dawley rats underwent UUO surgery (n = 25) or sham surgery (n = 10). The obstructed and contralateral kidneys were evaluated on days 1, 3, 5, and 7 after surgery. After CEST and MT examinations, 18F-labeled fluoro-2-deoxyglucose positron emission tomography was performed to quantify glucose metabolism. Fibrosis was measured by histology and western blots. Correlations were compared between asymmetrical magnetization transfer ratio at 1.2 ppm (MTRasym(1.2ppm)) derived from CEST and maximum standard uptake value (SUVmax) and between magnetization transfer ratio (MTR) derived from MT and alpha-smooth muscle actin (α-SMA). Results On days 3 and 7, MTRasym(1.2ppm) and MTR of UUO renal cortex and medulla were significantly different from those of contralateral kidneys (p < 0.05). On day 7, MTRasym(1.2ppm) and MTR of UUO renal cortex and medulla were significantly different from those of sham-operated kidneys (p < 0.05). The MTRasym(1.2ppm) of UUO renal medulla was fairly negatively correlated with SUVmax (r = −0.350, p = 0.021), whereas MTR of UUO renal medulla was strongly negatively correlated with α-SMA (r = −0.744, p < 0.001). Conclusion CEST and MT could provide metabolic and structural information for comprehensive assessment of renal fibrosis in UUO rats in 3T MRI and may aid in clinical monitoring of renal fibrosis in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Anqin Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuou Xu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Liang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ihab R Kamel
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
29
|
Gooding KM, Lienczewski C, Papale M, Koivuviita N, Maziarz M, Dutius Andersson AM, Sharma K, Pontrelli P, Garcia Hernandez A, Bailey J, Tobin K, Saunavaara V, Zetterqvist A, Shelley D, Teh I, Ball C, Puppala S, Ibberson M, Karihaloo A, Metsärinne K, Banks RE, Gilmour PS, Mansfield M, Gilchrist M, de Zeeuw D, Heerspink HJL, Nuutila P, Kretzler M, Welberry Smith M, Gesualdo L, Andress D, Grenier N, Shore AC, Gomez MF, Sourbron S. Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): study protocol. BMC Nephrol 2020; 21:242. [PMID: 32600374 PMCID: PMC7323369 DOI: 10.1186/s12882-020-01901-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) remains one of the leading causes of premature death in diabetes. DKD is classified on albuminuria and reduced kidney function (estimated glomerular filtration rate (eGFR)) but these have modest value for predicting future renal status. There is an unmet need for biomarkers that can be used in clinical settings which also improve prediction of renal decline on top of routinely available data, particularly in the early stages. The iBEAt study of the BEAt-DKD project aims to determine whether renal imaging biomarkers (magnetic resonance imaging (MRI) and ultrasound (US)) provide insight into the pathogenesis and heterogeneity of DKD (primary aim) and whether they have potential as prognostic biomarkers in DKD (secondary aim). METHODS iBEAt is a prospective multi-centre observational cohort study recruiting 500 patients with type 2 diabetes (T2D) and eGFR ≥30 ml/min/1.73m2. At baseline, blood and urine will be collected, clinical examinations will be performed, and medical history will be obtained. These assessments will be repeated annually for 3 years. At baseline each participant will also undergo quantitative renal MRI and US with central processing of MRI images. Biological samples will be stored in a central laboratory for biomarker and validation studies, and data in a central data depository. Data analysis will explore the potential associations between imaging biomarkers and renal function, and whether the imaging biomarkers improve the prediction of DKD progression. Ancillary substudies will: (1) validate imaging biomarkers against renal histopathology; (2) validate MRI based renal blood flow measurements against H2O15 positron-emission tomography (PET); (3) validate methods for (semi-)automated processing of renal MRI; (4) examine longitudinal changes in imaging biomarkers; (5) examine whether glycocalyx and microvascular measures are associated with imaging biomarkers and eGFR decline; (6) explore whether the findings in T2D can be extrapolated to type 1 diabetes. DISCUSSION iBEAt is the largest DKD imaging study to date and will provide valuable insights into the progression and heterogeneity of DKD. The results may contribute to a more personalised approach to DKD management in patients with T2D. TRIAL REGISTRATION Clinicaltrials.gov ( NCT03716401 ).
Collapse
Affiliation(s)
- Kim M Gooding
- Diabetes and Vascular Medicine, University of Exeter Medical School, Barrack Road, Exeter, EX2 5AX, UK. .,NIHR Exeter Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK.
| | | | - Massimo Papale
- Department of Emergency and Organ Transplantation, Nephrology Unit, University of Bari Aldo Moro, Bari, Italy
| | - Niina Koivuviita
- Department of Medicine, Division of Nephrology, Turku University Hospital, Turku, Finland.,Turku PET Centre, University of Turku, Turku, Finland
| | - Marlena Maziarz
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmo, Sweden
| | | | - Kanishka Sharma
- Department of Imaging, Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Paola Pontrelli
- Department of Emergency and Organ Transplantation, Nephrology Unit, University of Bari Aldo Moro, Bari, Italy
| | | | | | - Kay Tobin
- Department of Renal Medicine and Renal Transplantation, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Virva Saunavaara
- Department of Medical Physics, Division of Medical Imaging, Turku University Hospital, Turku, Finland
| | - Anna Zetterqvist
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmo, Sweden
| | - David Shelley
- Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Advanced Imaging Centre, University of Leeds, Leeds, UK
| | - Irvin Teh
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Claire Ball
- NIHR Exeter Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | | | - Mark Ibberson
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Anil Karihaloo
- Novo Nordisk Research Center Seattle, Inc., Seattle, USA
| | - Kaj Metsärinne
- Department of Medicine, Division of Nephrology, Turku University Hospital, Turku, Finland
| | - Rosamonde E Banks
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | | | | | - Mark Gilchrist
- Diabetes and Vascular Medicine, University of Exeter Medical School, Barrack Road, Exeter, EX2 5AX, UK
| | - Dick de Zeeuw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, Groningen, The Netherlands
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, Groningen, The Netherlands
| | - Pirjo Nuutila
- Department of Medicine, Division of Nephrology, Turku University Hospital, Turku, Finland.,Turku PET Centre, University of Turku, Turku, Finland
| | - Matthias Kretzler
- Department of Nephrology, University of Michigan, Ann Arbor, USA.,Computational Medicine and Bioinformatics, University of Michigan, Ann Arbour, USA
| | - Matthew Welberry Smith
- Department of Renal Medicine and Renal Transplantation, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology Unit, University of Bari Aldo Moro, Bari, Italy
| | | | - Nicolas Grenier
- Service de Radiologie, CHU de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Angela C Shore
- Diabetes and Vascular Medicine, University of Exeter Medical School, Barrack Road, Exeter, EX2 5AX, UK.,NIHR Exeter Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Maria F Gomez
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmo, Sweden
| | - Steven Sourbron
- Department of Imaging, Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
30
|
Irrera P, Consolino L, Cutrin JC, Zöllner FG, Longo DL. Dual assessment of kidney perfusion and pH by exploiting a dynamic CEST-MRI approach in an acute kidney ischemia-reperfusion injury murine model. NMR IN BIOMEDICINE 2020; 33:e4287. [PMID: 32153058 DOI: 10.1002/nbm.4287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 02/03/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Several factors can lead to acute kidney injury, but damage following ischemia and reperfusion injuries is the main risk factor and usually develops into chronic disease. MRI has often been proposed as a method with which to assess renal function. It does so by measuring the renal perfusion of an injected Gd-based contrast agent. The use of pH-responsive agents as part of the CEST (chemical exchange saturation transfer)-MRI technique has recently shown that pH homeostasis is also an important indicator of kidney functionality. However, there is still a need for methods that can provide more than one type of information following the injection of a single contrast agent for the characterization of renal function. Herein we propose, for the first time, dynamic CEST acquisition following iopamidol injection to quantify renal function by assessing both perfusion and pH homeostasis. The aim of this study is to assess renal functionality in a murine unilateral ischemia-reperfusion injury model at two time points (3 and 7 days) after acute kidney injury. The renal-perfusion estimates measured with iopamidol were compared with those obtained with a gadolinium-based agent, via a dynamic contrast enhanced (DCE)-MRI approach, to validate the proposed method. Compared with the contralateral kidneys, the clamped ones showed a significant decrease in renal perfusion, as measured using the DCE-MRI approach, which is consistent with reduced filtration capability. Dynamic CEST-MRI findings provided similar results, indicating that the clamped kidneys displayed significantly reduced renal filtration that persisted up to 7 days after the damage. In addition, CEST-MRI pH imaging showed that the clamped kidneys displayed significantly increased pH values, reflecting the disturbance to pH homeostasis. Our results demonstrate that a single CEST-MRI contrast agent can provide multiple types of information related to renal function and can discern healthy kidneys from pathological ones by combining perfusion measurements with renal pH mapping.
Collapse
Affiliation(s)
- Pietro Irrera
- Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
- Istituto di Biostrutture e Bioimmagini (IBB), Consiglio Nazionale delle Ricerche (CNR), Torino, Italy
| | - Lorena Consolino
- Centro di Imaging Molecolare, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università degli Studi di Torino, Torino, Italy
| | - Juan Carlos Cutrin
- Centro di Imaging Molecolare, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università degli Studi di Torino, Torino, Italy
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dario Livio Longo
- Istituto di Biostrutture e Bioimmagini (IBB), Consiglio Nazionale delle Ricerche (CNR), Torino, Italy
| |
Collapse
|
31
|
Pajenda S, Rasul S, Hacker M, Wagner L, Geist BK. Dynamic 2-deoxy-2[18F] fluoro-D-glucose PET/MRI in human renal allotransplant patients undergoing acute kidney injury. Sci Rep 2020; 10:8270. [PMID: 32427878 PMCID: PMC7237443 DOI: 10.1038/s41598-020-65267-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Patients after solid organ kidney transplantation (KTX) often suffer from acute kidney injury (AKI). Parameters as serum creatinine indicate a loss of kidney function, although no distinction of the cause and prognosis can be made. Imaging tools measuring kidney function have not been widely in clinical use. In this observational study we evaluated 2-deoxy-2[18F] fluoro-D-glucose (FDG) PET/MRI in thirteen patients after KTX with AKI as a functional assessment of the graft. Twenty-four healthy volunteers served as control. General kidney performance (GKP), initial flow (IF) and renal response function (RF) were calculated by standardized uptake values (SUV) and time activity curves (TAC). The GKP measured for the total kidney and medulla was significantly higher in healthy patients compared to patients after KTX (p = 0.0002 and p = 0.0004, respectively), but no difference was found for the GKP of the cortex (p = 0.59). The IF in KTX patients correlated with renal recovery, defined as change in serum creatinine 10 days after PET/MRI (r = 0.80, p = 0.001). With regard to the RF, a negative correlation for tubular damage was found (r = -0.74, p = 0.004). In conclusion, parameters obtained from FDG PET/MRI showed a possible predictive feature for renal recovery in KTX patients undergoing AKI.
Collapse
Affiliation(s)
- Sahra Pajenda
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna. Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Sazan Rasul
- Department of Biomedical Imaging and Image- Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna. Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image- Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna. Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ludwig Wagner
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna. Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Barbara Katharina Geist
- Department of Biomedical Imaging and Image- Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna. Waehringer Guertel 18-20, 1090, Vienna, Austria
| |
Collapse
|
32
|
Sun Q, Baues M, Klinkhammer BM, Ehling J, Djudjaj S, Drude NI, Daniel C, Amann K, Kramann R, Kim H, Saez-Rodriguez J, Weiskirchen R, Onthank DC, Botnar RM, Kiessling F, Floege J, Lammers T, Boor P. Elastin imaging enables noninvasive staging and treatment monitoring of kidney fibrosis. Sci Transl Med 2020; 11:11/486/eaat4865. [PMID: 30944168 DOI: 10.1126/scitranslmed.aat4865] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 11/28/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022]
Abstract
Fibrosis is the common endpoint and currently the best predictor of progression of chronic kidney diseases (CKDs). Despite several drawbacks, biopsies remain the only available means to specifically assess the extent of renal fibrosis. Here, we show that molecular imaging of the extracellular matrix protein elastin allows for noninvasive staging and longitudinal monitoring of renal fibrosis. Elastin was hardly expressed in healthy mouse, rat, and human kidneys, whereas it was highly up-regulated in cortical, medullar, and perivascular regions in progressive CKD. Compared to a clinically relevant control contrast agent, the elastin-specific magnetic resonance imaging agent ESMA specifically detected elastin expression in multiple mouse models of renal fibrosis and also in fibrotic human kidneys. Elastin imaging allowed for repetitive and reproducible assessment of renal fibrosis, and it enabled longitudinal monitoring of therapeutic interventions, accurately capturing anti-fibrotic therapy effects. Last, in a model of reversible renal injury, elastin imaging detected ensuing fibrosis not identifiable via routine assessment of kidney function. Elastin imaging thus has the potential to become a noninvasive, specific imaging method to assess renal fibrosis.
Collapse
Affiliation(s)
- Qinxue Sun
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany.,Department of Radiology, Ningbo Medical Center Li Huili Hospital, 315040 Ningbo, China
| | - Maike Baues
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Barbara M Klinkhammer
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany.,Department of Nephrology and Immunology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Josef Ehling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Sonja Djudjaj
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Natascha I Drude
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany.,Department for Nuclear Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Christoph Daniel
- Institute of Pathology and Department of Nephropathology, University Erlangen, 91054 Erlangen, Germany
| | - Kerstin Amann
- Institute of Pathology and Department of Nephropathology, University Erlangen, 91054 Erlangen, Germany
| | - Rafael Kramann
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Hyojin Kim
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074 Aachen, Germany.,Institute of Computational Biomedicine, Heidelberg University, 69120 Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074 Aachen, Germany.,Institute of Computational Biomedicine, Heidelberg University, 69120 Heidelberg, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | | | - Rene M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, WC2R 2LS London, UK
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Jürgen Floege
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany. .,Department of Targeted Therapeutics, University of Twente, 7522 NB Enschede, Netherlands
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany. .,Department of Nephrology and Immunology, RWTH Aachen University Hospital, 52074 Aachen, Germany.,Electron Microscopy Facility, RWTH Aachen University Hospital, 52074 Aachen, Germany.,Institute of Molecular Biomedicine, Comenius University, 81972 Bratislava, Slovakia
| |
Collapse
|
33
|
Mishima E, Ota H, Suzuki T, Toyohara T, Seiji K, Ito S, Saiki Y, Takase K, Abe T. Apparent Diffusion Coefficient in the Resolution of Renal Ischemia after Angioplasty on Diffusion-weighted Imaging: Renal Artery Stenosis Caused by Progressive Thrombosis in Residual Chronic Aortic Dissection. Intern Med 2020; 59:1173-1177. [PMID: 31956203 PMCID: PMC7270755 DOI: 10.2169/internalmedicine.3855-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/27/2019] [Indexed: 11/06/2022] Open
Abstract
We report a case in which diffusion-weighted magnetic resonance imaging (DWI) demonstrated renal artery stenosis-related renal ischemia and the therapeutic efficacy of revascularization. The patient was a 73-year-old man, who underwent descending thoracic aortic replacement due to DeBakey IIIb chronic aortic dissection, and who showed progressive renal dysfunction due to right renal artery stenosis caused by false lumen thrombosis. DWI demonstrated a decreased apparent diffusion coefficient (ADC) in the right kidney, indicating renal ischemia. Angioplasty with stenting restored renal perfusion and improved the renal function, resulting in the normalization of the decreased ADC in the treated kidney. Thus, DWI can be used to monitor renal ischemia in cases involving advanced renal artery stenosis.
Collapse
Affiliation(s)
- Eikan Mishima
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Hideki Ota
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Japan
| | - Takehiro Suzuki
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Takafumi Toyohara
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Kazumasa Seiji
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Japan
| | | | - Yoshikatsu Saiki
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Kei Takase
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Japan
- Division of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Japan
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Japan
| |
Collapse
|
34
|
Niendorf T, Seeliger E, Cantow K, Flemming B, Waiczies S, Pohlmann A. Probing renal blood volume with magnetic resonance imaging. Acta Physiol (Oxf) 2020; 228:e13435. [PMID: 31876349 DOI: 10.1111/apha.13435] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
Damage to the kidney substantially reduces life expectancy. Renal tissue hypoperfusion and hypoxia are key elements in the pathophysiology of acute kidney injury and its progression to chronic kidney disease. In vivo assessment of renal haemodynamics and tissue oxygenation remains a challenge. Blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) is sensitive to changes in the effective transversal relaxation time (T2 *) in vivo, and is non-invasive and indicative of renal tissue oxygenation. However, the renal T2 * to tissue pO2 relationship is not governed exclusively by renal blood oxygenation, but is affected by physiological confounders with alterations in renal blood volume fraction (BVf) being of particular relevance. To decipher this interference probing renal BVf is essential for the pursuit of renal MR oximetry. Superparamagnetic iron oxide nanoparticle (USPIO) preparations can be used as MRI visible blood pool markers for detailing alterations in BVf. This review promotes the opportunities of MRI-based assessment of renal BVf. Following an outline on the specifics of renal oxygenation and perfusion, changes in renal BVf upon interventions and their potential impact on renal T2 * are discussed. We also describe the basic principles of renal BVf assessment using ferumoxytol-enhanced MRI in the equilibrium concentration regimen. We demonstrate that ferumoxytol does not alter control of renal haemodynamics and oxygenation. Preclinical applications of ferumoxytol enhanced renal MRI as well as considerations for its clinical implementation for examining renal BVf changes are provided alongside practical considerations. Finally, we explore the future directions of MRI-based assessment of renal BVf.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Erdmann Seeliger
- Institute of Physiology Charité – Universitätsmedizin Berlin Campus Mitte, and Center for Cardiovascular Research (CCR) Berlin Germany
| | - Kathleen Cantow
- Institute of Physiology Charité – Universitätsmedizin Berlin Campus Mitte, and Center for Cardiovascular Research (CCR) Berlin Germany
| | - Bert Flemming
- Institute of Physiology Charité – Universitätsmedizin Berlin Campus Mitte, and Center for Cardiovascular Research (CCR) Berlin Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| |
Collapse
|
35
|
Niendorf T, Frydman L, Neeman M, Seeliger E. Google maps for tissues: Multiscale imaging of biological systems and disease. Acta Physiol (Oxf) 2020; 228:e13392. [PMID: 31549487 DOI: 10.1111/apha.13392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | | | | | - Erdmann Seeliger
- Institute of Physiology Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin Berlin Institute of Health Berlin Germany
| |
Collapse
|
36
|
Gandhi D, Kalra P, Raterman B, Mo X, Dong H, Kolipaka A. Magnetic Resonance Elastography of kidneys: SE-EPI MRE reproducibility and its comparison to GRE MRE. NMR IN BIOMEDICINE 2019; 32:e4141. [PMID: 31329347 PMCID: PMC6817380 DOI: 10.1002/nbm.4141] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 05/09/2019] [Accepted: 06/17/2019] [Indexed: 05/10/2023]
Abstract
The purpose of this study is 1) to demonstrate reproducibility of spin echo-echo planar imaging (SE-EPI) magnetic resonance elastography (MRE) to estimate kidney stiffness; and 2) to compare SE-EPI MRE and gradient recalled echo (GRE) MRE-derived stiffness estimations in various anatomical regions of the kidney. Kidney MRE was performed on 33 healthy subjects (8 for SE-EPI MRE reproducibility and 25 for comparison with GRE MRE; age range: 22-66 years) in a 3 T MRI scanner. To demonstrate SE-EPI MRE reproducibility, subjects were scanned for the first scan and then asked to leave the scan room and repositioned again for the second (repeat) scan. Similar set-up was used for GRE MRE as well. The displacement data was then processed to obtain overall stiffness estimates of the kidney. Concordance correlation analyses were performed to determine SE-EPI MRE reproducibility and agreement between GRE MRE and SE-EPI MRE derived stiffness. A high concordance correlation (ρc = 0.95; p-value<0.0001) was obtained for SE-EPI MRE reproducibility. Good concordance correlation was observed (ρc = 0.84; p < 0.0001 for both kidneys, ρc = 0.91; p < 0.0001 for right kidney and ρc = 0.78; p < 0.0001 for left kidney) between GRE MRE and SE-EPI MRE derived stiffness measurements. Paired t-test results showed that stiffness value of medulla was significantly (p < 0.0001) greater than cortex using SE-EPI MRE as well as GRE MRE. SE-EPI MRE was reproducible and good agreement was observed in MRE-derived stiffness measurements obtained using SE-EPI and GRE sequences. Therefore, SE-EPI can be used for kidney MRE applications.
Collapse
Affiliation(s)
- Deep Gandhi
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Prateek Kalra
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Brian Raterman
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Huiming Dong
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Arunark Kolipaka
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
37
|
Huang J, Li J, Lyu Y, Miao Q, Pu K. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. NATURE MATERIALS 2019; 18:1133-1143. [PMID: 31133729 DOI: 10.1038/s41563-019-0378-4] [Citation(s) in RCA: 434] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/16/2019] [Indexed: 05/16/2023]
Abstract
Drug-induced acute kidney injury (AKI) with a high morbidity and mortality is poorly diagnosed in hospitals and deficiently evaluated in drug discovery. Here, we report the development of molecular renal probes (MRPs) with high renal clearance efficiency for in vivo optical imaging of drug-induced AKI. MRPs specifically activate their near-infrared fluorescence or chemiluminescence signals towards the prodromal biomarkers of AKI including the superoxide anion, N-acetyl-β-D-glucosaminidase and caspase-3, enabling an example of longitudinal imaging of multiple molecular events in the kidneys of living mice. Importantly, they in situ report the sequential occurrence of oxidative stress, lysosomal damage and cellular apoptosis, which precedes clinical manifestation of AKI (decreased glomerular filtration). Such an active imaging mechanism allows MRPs to non-invasively detect the onset of cisplatin-induced AKI at least 36 h earlier than the existing imaging methods. MRPs can also act as exogenous tracers for optical urinalysis that outperforms typical clinical/preclinical assays, demonstrating their clinical promise for early diagnosis of AKI.
Collapse
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yan Lyu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Qingqing Miao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
38
|
Shin SH, Wendland MF, Zhang B, Tran A, Tang A, Vandsburger MH. Noninvasive imaging of renal urea handling by CEST-MRI. Magn Reson Med 2019; 83:1034-1044. [PMID: 31483529 DOI: 10.1002/mrm.27968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Renal function is characterized by concentration of urea for removal in urine. We tested urea as a CEST-MRI contrast agent for measurement of the concentrating capacity of distinct renal anatomical regions. METHODS The CEST contrast of urea was examined using phantoms with different concentrations and pH levels. Ten C57BL/6J mice were scanned twice at 7 T, once following intraperitoneal injection of 2M 150 µL urea and separately following an identical volume of saline. Kidneys were segmented into regions encompassing the cortex, outer medulla, and inner medulla and papilla to monitor spatially varying urea concentration. Z-spectra were acquired before and 20 minutes after injection, with dynamic scanning of urea handling performed in between via serial acquisition of CEST images acquired following saturation at +1 ppm. RESULTS Phantom experiments revealed concentration and pH-dependent CEST contrast of urea that was both acid- and base-catalyzed. Z-spectra acquired before injection showed significantly higher CEST contrast in the inner medulla and papilla (2.3% ± 1.9%) compared with the cortex (0.15% ± 0.75%, P = .011) and outer medulla (0.12% ± 0.58%, P = .008). Urea infusion increased CEST contrast in the inner medulla and papilla by 2.1% ± 1.9% (absolute), whereas saline infusion decreased CEST contrast by -0.5% ± 2.0% (absolute, P = .028 versus urea). Dynamic scanning revealed that thermal drift and diuretic status are confounding factors. CONCLUSION Urea CEST has a potential of monitoring renal function by capturing the spatially varying urea concentrating ability of the kidneys.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Michael F Wendland
- Berkeley Preclinical Imaging Core, University of California, Berkeley, Berkeley, California
| | - Brandon Zhang
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - An Tran
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Albert Tang
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Moriel H Vandsburger
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| |
Collapse
|
39
|
Gao X, Dai N, Tao C, Liu X. Quantification of number density of random microstructure from a photoacoustic signal by using Nakagami statistics. OPTICS LETTERS 2019; 44:2951-2954. [PMID: 31199353 DOI: 10.1364/ol.44.002951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Tissue microstructure characterization is a valuable tool in diagnosis and staging of many diseases. In this study, we propose a photoacoustic Nakagami statistics method to noninvasively evaluate the number density of random microstructure. The Nakagami parameters are acquired by fitting the photoacoustic signal envelope histogram with Nakagami distribution function. Theoretical calculations and phantom experiments demonstrate that the Nakagami shape parameter is only related to the number density of random microstructure and monotonically increases with the number density. Based on this finding, we propose a photoacoustic tomography modality with the imaging contrast of the Nakagami shape parameter. Experiments show that the proposed method can provide more comprehensive and accurate description of tissue microstructure.
Collapse
|
40
|
Järv L, Kull I, Riispere Z, Kuudeberg A, Lember M, Ots-Rosenberg M. Ultrasound elastography correlations between anthropometrical parameters in kidney transplant recipients. J Investig Med 2019; 67:1137-1141. [PMID: 31127005 DOI: 10.1136/jim-2018-000970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2019] [Indexed: 12/20/2022]
Abstract
Ultrasound elastography (USE) is a method to assess the stiffness of parenchymatous organs. Shear wave elastography (SWE) is considered to be the most suitable elastography method for the non-invasive kidney transplant (KTx) elasticity assessment. The aim of this study was to assess the implementability of SWE for the evaluation of kidney transplant elasticity measurement depending on the depth of an allograft, body mass index (BMI) and donor age. Secondly, to investigate the associations between SWE stiffness measurements and the clinical parameters. This cross-sectional prospective study involved consecutive 100 KTx patients were grouped according to time from transplantation and their BMI (in BMI<25 group the mean was 22.1±2.4, n=42 and in BMI≥25 group the mean BMI was 29.9±3.3, n=58). Mean estimated glomerular filtration rate was almost similar in both groups: <25 group 54.3 and ≥25 group 53.4 mL/min. Mean elastography results were found statistically different (p=0.006) BMI<25 (8.95±5.84 kPa) and BMI≥25 (5.95±3.16 kPa) groups. Significant correlation was found between SWE and the depth of the measurement (r=-0.4, p<0.05). The variations in USE stiffness values were smallest in patients group with lower BMI. In conclusion, we demonstrated that the non-invasive USE measurement stiffness result depends on a patient's BMI, the depth of renal allograft and donor age.
Collapse
Affiliation(s)
- Leelo Järv
- Tartu Ulikool Arstiteaduskond, Tartu, Estonia
| | - Ingrid Kull
- Internal Medicine Department, Tartu Ulikooli Kliinikum, Tartu, Estonia
| | - Zivile Riispere
- Department of Pathology, Tartu Ulikooli Kliinikum, Tartu, Estonia
| | - Anne Kuudeberg
- Institute of Pathological Anatomy and Forensic Medicine, Tartu Ulikool, Tartu, Estonia
| | | | | |
Collapse
|
41
|
Jiang X, Du B, Tang S, Hsieh J, Zheng J. Photoacoustic Imaging of Nanoparticle Transport in the Kidneys at High Temporal Resolution. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xingya Jiang
- Department of Chemistry and BiochemistryThe University of Texas at Dallas 800 W. Campbell Rd. Richardson TX 75080 USA
| | - Bujie Du
- Department of Chemistry and BiochemistryThe University of Texas at Dallas 800 W. Campbell Rd. Richardson TX 75080 USA
| | - Shaoheng Tang
- Department of Chemistry and BiochemistryThe University of Texas at Dallas 800 W. Campbell Rd. Richardson TX 75080 USA
| | - Jer‐Tsong Hsieh
- Department of UrologyThe University of Texas Southwestern Medical Center 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Jie Zheng
- Department of Chemistry and BiochemistryThe University of Texas at Dallas 800 W. Campbell Rd. Richardson TX 75080 USA
- Department of UrologyThe University of Texas Southwestern Medical Center 5323 Harry Hines Blvd. Dallas TX 75390 USA
| |
Collapse
|
42
|
Jiang X, Bujie D, Shaoheng T, Jer-Tsong H, Jie Z. Photoacoustic Imaging of Nanoparticle Transport in the Kidneys at High Temporal Resolution. Angew Chem Int Ed Engl 2019; 58:5994-6000. [PMID: 30850996 PMCID: PMC6548461 DOI: 10.1002/anie.201901525] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Noninvasive monitoring of kidney elimination of engineered nanoparticles at high temporal and spatial resolution will not only significantly advance our fundamental understandings of nephrology on the nanoscale, but also aid in the early detection of kidney disease, which affects more than 10 % of the worldwide population. Taking advantage of strong NIR absorption of the well-defined Au25 (SG)18 nanocluster, photoacoustic (PA) imaging was used to visualize its transport in situ through the aorta to the renal parenchyma and its subsequent filtration into the renal pelvis at a temporal resolution down to 1 s. High temporal and spatial resolution imaging of Au25 (SG)18 kidney elimination allowed the accurate quantification of the glomerular filtration rate (GFR) of individual kidneys in normal and pathological conditions, broadening the biomedical applications of engineered nanoparticles in preclinical kidney research.
Collapse
Affiliation(s)
- Xingya Jiang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 W. Campbell Rd., Richardson, TX 75080 (USA)
| | - Du Bujie
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 W. Campbell Rd., Richardson, TX 75080 (USA)
| | - Tang Shaoheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 W. Campbell Rd., Richardson, TX 75080 (USA)
| | - Hsieh Jer-Tsong
- Department of Urology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 (USA)
| | - Zheng Jie
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 W. Campbell Rd., Richardson, TX 75080 (USA)
- Department of Urology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 (USA)
| |
Collapse
|
43
|
Zhang G, Sun H, Qian T, An J, Shi B, Zhou H, Liu Y, Peng X, Liu Y, Chen L, Jin Z. Diffusion-weighted imaging of the kidney: comparison between simultaneous multi-slice and integrated slice-by-slice shimming echo planar sequence. Clin Radiol 2019; 74:325.e1-325.e8. [DOI: 10.1016/j.crad.2018.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
|
44
|
Waiczies S, Rosenberg JT, Kuehne A, Starke L, Delgado PR, Millward JM, Prinz C, Dos Santos Periquito J, Pohlmann A, Waiczies H, Niendorf T. Fluorine-19 MRI at 21.1 T: enhanced spin-lattice relaxation of perfluoro-15-crown-5-ether and sensitivity as demonstrated in ex vivo murine neuroinflammation. MAGMA (NEW YORK, N.Y.) 2019; 32:37-49. [PMID: 30421250 PMCID: PMC6514110 DOI: 10.1007/s10334-018-0710-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Fluorine MR would benefit greatly from enhancements in signal-to-noise ratio (SNR). This study examines the sensitivity gain of 19F MR that can be practically achieved when moving from 9.4 to 21.1 T. MATERIALS AND METHODS We studied perfluoro-15-crown-5-ether (PFCE) at both field strengths (B0), as a pure compound, in the form of nanoparticles (NP) as employed to study inflammation in vivo, as well as in inflamed tissue. Brains, lymph nodes (LNs) and spleens were obtained from mice with experimental autoimmune encephalomyelitis (EAE) that had been administered PFCE NPs. All samples were measured at both B0 with 2D-RARE and 2D-FLASH using 19F volume radiofrequency resonators together. T1 and T2 of PFCE were measured at both B0 strengths. RESULTS Compared to 9.4 T, an SNR gain of > 3 was observed for pure PFCE and > 2 for PFCE NPs at 21.1 T using 2D-FLASH. A dependency of 19F T1 and T2 relaxation on B0 was demonstrated. High spatially resolved 19F MRI of EAE brains and LNs at 21.1 T revealed signals not seen at 9.4 T. DISCUSSION Enhanced SNR and T1 shortening indicate the potential benefit of in vivo 19F MR at higher B0 to study inflammatory processes with greater detail.
Collapse
Affiliation(s)
- Sonia Waiczies
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany.
| | - Jens T Rosenberg
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | | | - Ludger Starke
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Paula Ramos Delgado
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Jason M Millward
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Christian Prinz
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Joao Dos Santos Periquito
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Andreas Pohlmann
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | | | - Thoralf Niendorf
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
- MRI TOOLS GmbH, Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
45
|
Gray Scale Ultrasound, Color Doppler Ultrasound, and Contrast-Enhanced Ultrasound in Renal Parenchymal Diseases. Ultrasound Q 2018; 34:250-267. [DOI: 10.1097/ruq.0000000000000383] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Fast Abdominal Contrast-Enhanced Imaging With High Parallel-Imaging Factors Using a 60-Channel Receiver Coil Setup. Invest Radiol 2018; 53:602-608. [DOI: 10.1097/rli.0000000000000481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Selby NM, Blankestijn PJ, Boor P, Combe C, Eckardt KU, Eikefjord E, Garcia-Fernandez N, Golay X, Gordon I, Grenier N, Hockings PD, Jensen JD, Joles JA, Kalra PA, Krämer BK, Mark PB, Mendichovszky IA, Nikolic O, Odudu A, Ong ACM, Ortiz A, Pruijm M, Remuzzi G, Rørvik J, de Seigneux S, Simms RJ, Slatinska J, Summers P, Taal MW, Thoeny HC, Vallée JP, Wolf M, Caroli A, Sourbron S. Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA. Nephrol Dial Transplant 2018; 33:ii4-ii14. [PMID: 30137584 PMCID: PMC6106645 DOI: 10.1093/ndt/gfy152] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 12/13/2022] Open
Abstract
Functional renal magnetic resonance imaging (MRI) has seen a number of recent advances, and techniques are now available that can generate quantitative imaging biomarkers with the potential to improve the management of kidney disease. Such biomarkers are sensitive to changes in renal blood flow, tissue perfusion, oxygenation and microstructure (including inflammation and fibrosis), processes that are important in a range of renal diseases including chronic kidney disease. However, several challenges remain to move these techniques towards clinical adoption, from technical validation through biological and clinical validation, to demonstration of cost-effectiveness and regulatory qualification. To address these challenges, the European Cooperation in Science and Technology Action PARENCHIMA was initiated in early 2017. PARENCHIMA is a multidisciplinary pan-European network with an overarching aim of eliminating the main barriers to the broader evaluation, commercial exploitation and clinical use of renal MRI biomarkers. This position paper lays out PARENCHIMA's vision on key clinical questions that MRI must address to become more widely used in patients with kidney disease, first within research settings and ultimately in clinical practice. We then present a series of practical recommendations to accelerate the study and translation of these techniques.
Collapse
Affiliation(s)
- Nicholas M Selby
- Centre for Kidney Research and Innovation, University of Nottingham, UK
| | - Peter J Blankestijn
- Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, RWTH University, Aachen, Germany
| | - Christian Combe
- Service de Néphrologie Transplantation Dialyse Aphérèse, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Eli Eikefjord
- Department of Health and Functioning, Western Norway University of Applied Sciences, Norway
| | | | - Xavier Golay
- Institute of Neurology, University College London, Queen Square, London, UK
| | - Isky Gordon
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Nicolas Grenier
- Service d'Imagerie Diagnostique et Interventionnelle de l'Adulte, Centre Hospitalier Universitaire de Bordeaux Place Amelie Raba-Leon, Bordeaux, France
| | | | - Jens D Jensen
- Departments of Renal and Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jaap A Joles
- Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Philip A Kalra
- Department of Renal Medicine, Salford Royal Hospital and Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Bernhard K Krämer
- Vth Department of Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University Heidelberg, Mannheim, Germany
| | - Patrick B Mark
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Iosif A Mendichovszky
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, UK
| | - Olivera Nikolic
- Faculty of Medicine,University of Novi Sad, Center of Radiology, Clinical Centre of Vojvodina, Serbia
| | - Aghogho Odudu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Albert C M Ong
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Alberto Ortiz
- Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | - Menno Pruijm
- Service of Nephrology and Hypertension, Department of Medicine, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Giuseppe Remuzzi
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Jarle Rørvik
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Sophie de Seigneux
- Service of Nephrology, Department of Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Roslyn J Simms
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Janka Slatinska
- Department of Nephrology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Paul Summers
- Department of Medical Imaging and Radiation Sciences, Radiology Division, European Institute of Oncology (IEO), Milan, Italy
- QMRI Tech iSrl, Piazza dei Martiri Pennesi 20, Pescara, Italy
| | - Maarten W Taal
- Centre for Kidney Research and Innovation, University of Nottingham, UK
| | - Harriet C Thoeny
- University of Bern, Inselspital, Bern, Switzerland
- HFR Fribourg, Hôpital Cantonal, Fribourg, Switzerland
| | - Jean-Paul Vallée
- Radiology Department, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Marcos Wolf
- Center for Medical Physics and Biomedical Engineering, MR-Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Anna Caroli
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Steven Sourbron
- Leeds Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
48
|
Dekkers IA, Paiman EHM, de Vries APJ, Lamb HJ. Reproducibility of native T 1 mapping for renal tissue characterization at 3T. J Magn Reson Imaging 2018; 49:588-596. [PMID: 30171825 PMCID: PMC6585932 DOI: 10.1002/jmri.26207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Background Advanced renal disease is characterized by adverse changes in renal structure; however, noninvasive techniques to diagnose and monitor these changes are currently lacking. Purpose To evaluate the reproducibility of native T1 mapping for renal tissue characterization. Study Type Reproducibility study. Population Fifteen healthy volunteers (mean age 31 years, range 19–63 years), and 11 patients with diabetic nephropathy (mean age 57 years, range 51–69 years). Field Strength/Sequence 3T, modified Look–Locker imaging (MOLLI) 5(3)3. Assessment Intra‐ and interexamination reproducibility of voxel‐based T1 relaxation times of renal cortex and medulla was assessed in healthy human volunteers and diabetic nephropathy patients. Statistical Tests Reproducibility was evaluated using Bland–Altman and intraclass correlation coefficients (ICCs). Results Intra‐ and interexamination reproducibility of renal native T1 mapping showed good–strong ICCs (0.83–0.89) for renal cortex and medulla, and moderate–good ICCs (0.62–0.81) for cortex–medulla ratio in both healthy volunteers and diabetic nephropathy patients. Intra‐ and interexamination limits of agreement were respectively (–124 msec, + 82 msec) and (–134 msec, + 98 msec) for renal cortex and (–138 msec, + 107 msec) and (–118 msec, + 151 msec) for medulla. Overall T1 values for renal cortex (P = 0.277) and medulla (P = 0.973) were not significantly different between healthy volunteers and diabetic nephropathy patients, in contrast to the cortex–medulla ratio (P = 0.003). Data Conclusion Renal native T1 mapping is a technique with good–strong intra‐ and examination reproducibility in both healthy volunteers and diabetic nephropathy patients. Level of Evidence: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:588–596.
Collapse
Affiliation(s)
- Ilona A Dekkers
- Department of Radiology, Leiden University Medical Center and Leiden University, Leiden, the Netherlands
| | - Elisabeth H M Paiman
- Department of Radiology, Leiden University Medical Center and Leiden University, Leiden, the Netherlands
| | - Aiko P J de Vries
- Division of Nephrology, Department of Medicine, Leiden University Medical Center and Leiden University, Leiden, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center and Leiden University, Leiden, the Netherlands
| |
Collapse
|
49
|
Zhou JY, Wang YC, Zeng CH, Ju SH. Renal Functional MRI and Its Application. J Magn Reson Imaging 2018; 48:863-881. [PMID: 30102436 DOI: 10.1002/jmri.26180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Renal function varies according to the nature and stage of diseases. Renal functional magnetic resonance imaging (fMRI), a technique considered superior to the most common method used to estimate the glomerular filtration rate, allows for noninvasive, accurate measurements of renal structures and functions in both animals and humans. It has become increasingly prevalent in research and clinical applications. In recent years, renal fMRI has developed rapidly with progress in MRI hardware and emerging postprocessing algorithms. Function-related imaging markers can be acquired via renal fMRI, encompassing water molecular diffusion, perfusion, and oxygenation. This review focuses on the progression and challenges of the main renal fMRI methods, including dynamic contrast-enhanced MRI, blood oxygen level-dependent MRI, diffusion-weighted imaging, diffusion tensor imaging, arterial spin labeling, fat fraction imaging, and their recent clinical applications. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:863-881.
Collapse
Affiliation(s)
- Jia-Ying Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yuan-Cheng Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Chu-Hui Zeng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Sheng-Hong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
50
|
Shirvani S, Tokarczuk P, Statton B, Quinlan M, Berry A, Tomlinson J, Weale P, Kühn B, O'Regan DP. Motion-corrected multiparametric renal arterial spin labelling at 3 T: reproducibility and effect of vasodilator challenge. Eur Radiol 2018; 29:232-240. [PMID: 29992384 PMCID: PMC6291439 DOI: 10.1007/s00330-018-5628-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVES We investigated the feasibility and reproducibility of free-breathing motion-corrected multiple inversion time (multi-TI) pulsed renal arterial spin labelling (PASL), with general kinetic model parametric mapping, to simultaneously quantify renal perfusion (RBF), bolus arrival time (BAT) and tissue T1. METHODS In a study approved by the Health Research Authority, 12 healthy volunteers (mean age, 27.6 ± 18.5 years; 5 male) gave informed consent for renal imaging at 3 T using multi-TI ASL and conventional single-TI ASL. Glyceryl trinitrate (GTN) was used as a vasodilator challenge in six subjects. Flow-sensitive alternating inversion recovery (FAIR) preparation was used with background suppression and 3D-GRASE (gradient and spin echo) read-out, and images were motion-corrected. Parametric maps of RBF, BAT and T1 were derived for both kidneys. Agreement was assessed using Pearson correlation and Bland-Altman plots. RESULTS Inter-study correlation of whole-kidney RBF was good for both single-TI (r2 = 0.90), and multi-TI ASL (r2 = 0.92). Single-TI ASL gave a higher estimate of whole-kidney RBF compared to multi-TI ASL (mean bias, 29.3 ml/min/100 g; p <0.001). Using multi-TI ASL, the median T1 of renal cortex was shorter than that of medulla (799.6 ms vs 807.1 ms, p = 0.01), and mean whole-kidney BAT was 269.7 ± 56.5 ms. GTN had an effect on systolic blood pressure (p < 0.05) but the change in RBF was not significant. CONCLUSIONS Free-breathing multi-TI renal ASL is feasible and reproducible at 3 T, providing simultaneous measurement of renal perfusion, haemodynamic parameters and tissue characteristics at baseline and during pharmacological challenge. KEY POINTS • Multiple inversion time arterial spin labelling (ASL) of the kidneys is feasible and reproducible at 3 T. • This approach allows simultaneous mapping of renal perfusion, bolus arrival time and tissue T 1 during free breathing. • This technique enables repeated measures of renal haemodynamic characteristics during pharmacological challenge.
Collapse
Affiliation(s)
- Saba Shirvani
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Department of Chemistry, Imperial College London, South Kensington Campus, Exhibition Road, London, UK
| | - Paweł Tokarczuk
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Ben Statton
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Marina Quinlan
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Alaine Berry
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - James Tomlinson
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | | | - Bernd Kühn
- Siemens Healthcare GmbH, Erlangen, Germany
| | - Declan P O'Regan
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|